http://acoustique.ec-lyon.fr

Homework #7

Modèle de turbulence $k_t - \omega_t$

The k_t - ϵ turbulence model is widely used, but to fix some shortcomings of this model now well established in the literature Saffman and Wilcox,^{3,4} then Menter^{1,2} have proposed alternative models. For this family of turbulence models, the transport equation for the turbulent kinetic energy k_t is still solved, but the turbulent viscosity μ_t is now computed as $\mu_t = \rho k_t/\omega_t$, where ω_t is a new variable. For high-Reynolds number turbulent flow, the k_t – ω_t model of Wilcox reads

$$\begin{cases}
\frac{\partial(\rho k_t)}{\partial t} + \frac{\partial(\rho k_t \overline{U}_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma^* \mu_t \right) \frac{\partial k_t}{\partial x_j} \right] + \mathcal{P} - \beta^* \rho k_t \omega \\
\frac{\partial(\rho \omega_t)}{\partial t} + \frac{\partial(\rho \omega_t \overline{U}_i)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma \mu_t \right) \frac{\partial \omega_t}{\partial x_j} \right] + \alpha \frac{\omega_t}{k_t} \mathcal{P} - \beta \rho \omega_t^2
\end{cases} \tag{1}$$

where the values of the constants are

$$\alpha = 5/9$$
 $\beta = 3/40$ $\beta^* = 9/100$ $\sigma = 1/2$ $\sigma^* = 1/2$

As usual, incompressible flow with uniform density is considered and \mathcal{P} stands for the production term of the turbulent kinetic energy.

1. By applying the change of variable $\epsilon = C_{\mu}\omega_t k_t$ in the $k_t - \epsilon$ turbulence model, derive the transport equation for ω_t , and show that this equation has some differences with respect to the Wilcox model (1). Identify, nevertheless, the constants of the model to obtain the expressions of α , β , σ and σ^* as a function of C_{μ} , C_{ϵ_1} , C_{ϵ_2} , σ_k and σ_{ϵ} , that is

$$\alpha = C_{\epsilon_1} - 1 \qquad \beta = C_{\mu} \left(C_{\epsilon_2} - 1 \right) \qquad \beta^{\star} = C_{\mu} \qquad \sigma = \frac{1}{\sigma_{\epsilon}} \qquad \sigma^{\star} = \frac{1}{\sigma_k}$$

Compare the numerical values with the values above, provided by the authors, and comment.

- 2. Write the transport equations of the k_t ω_t model for the case of decaying isotropic turbulence, and provide the evolution of k_t , ω_t and ν_t (refer to homework #6).
- **3.** Write the transport equations of the $k_t \omega_t$ for the log-law of a turbulent boundary layer (refer again to homework #6 for the assumptions).

References

¹ Menter, F. R., 1994, « Two-equation eddy-viscosity turbulence models for engineering applications », *AIAA Journal*, **32**(8), 1598-1605.

² Menter, F. R., 1997, « Eddy viscosity transport equations and their relation to the $k - \epsilon$ model », *J. Fluid Eng.*, **119**, 876-884

³ Saffman, P. G. & Wilcox, D. C., 1974, « Turbulence-model predictions for turbulent boundary layers », *AIAA Journal*, **12**(4), 541-546.

 $^{^4}$ Wilcox, D. C., 1988, « Reassessment of the scale-determining equation for advanced turbulence models », AIAA Journal, 26(11), 1299-1310.