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Lehrstuhl für Strömungslehre und
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Preface

Two branches of the same tree are growing together: Acoustics and the large-eddy
simulation (LES) technique are based on the same fundamental equations of fluid
dynamics. In the past, both scientific disciplines developed independently from each
other. Acoustics is one of the classical disciplines of mechanics, having its roots in Greek
and Roman times. LES is a comparatively young field of research that has benefited from
the exponential growth in computational possibilities over the last few decades. Each
scientific community has developed its own methods, definitions, and conventions, and
it sometimes seems that experts and scientists in acoustics and LES techniques speak
different languages. During the last few years, the LES and the acoustics communities
realized that LES can be a comprehensive tool for acoustical research and design and
intensified its use.

This book presents the current state of the art for LES used in acoustical inves-
tigations and comprises 19 contributions from 30 authors, each an expert in his field
of research. A general introduction to the subject is followed by descriptions of the
theoretical background of acoustics and of LES. A chapter on hybrid RANS–LES for
acoustic source predictions follows. More details are given for numerical methods,
such as discretization schemes, boundary conditions, and coupling aspects. Numerous
applications are discussed ranging from simple geometries for mixing layers and jet
flows to complex wing or car geometries. The selected applications deal with recent
scientific investigations at universities and research institutes as well as applied studies
at industrial companies. Side areas of LES for acoustics are addressed in a contribution
on vibroacoustics.

The book is a collection of different methods, tools, and evaluation methodologies.
Currently it is not possible to offer a perfect solution methodology that generally covers
all possible applications. Although interesting results of several commercial codes
are presented, a recommendation for any specific solver cannot be made because a
benchmark of the codes has not been established and several other codes have not
been considered yet. Each method, both scientific and commercial, has its individual
advantages and weaknesses. It was also not our intention to harmonize the definitions

xxv

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87144-0 - Large-Eddy Simulation for Acoustics
Edited by Claus Wagner, Thomas Huttl and Pierre Sagaut
Frontmatter
More information

http://www.cambridge.org/0521871441
http://www.cambridge.org
http://www.cambridge.org


xxvi PREFACE

and conventions in acoustics and LES computing. Therefore, the same nomenclature
is not used by all authors.

The book is intended to be used by students, researchers, engineers, and code
developers willing to become more familiar with the use of the LES technique for
acoustical studies. The limitations of the method have been outlined as well as its
requirements. The reader should acquire an impression of possible and appropriate
applications for this methodology. The editors would welcome any initiatives motivated
by this book for international cooperation in the development or application of LES for
acoustics.

The idea for this book came from Eric Willner, the former commissioning editor for
engineering at Cambridge University Press, when he read the first call for papers for
the International Workshop on LES for Acoustics organized by Thomas Hüttl, Claus
Wagner, and Jan Delfs in Göttingen, 2002.∗ At this time, Cambridge University Press
was actively seeking a book on LES for acoustics for its aerospace series. Thomas Hüttl
and Claus Wagner agreed to edit a scientific book based on the contributions of the
workshop in Göttingen. Several speakers and participants of the workshop and other
experts promised to contribute to the book, which was conceived as more of a scientific
handbook than a simple workshop proceedings. Pierre Sagaut separately developed the
idea of a book on LES for acoustics and joined the team of editors.

The book would not exist without the contributions from each of the authors. The
editors are not only grateful for these contributions but also for valuable review com-
ments from several authors during two book reviews as well as interesting scientific
discussions of review comments and proposals. We would also like to thank Peter
Gordon, Senior Editor of Engineering at Cambridge University Press, for his help in
preparing the book but also for enthusiasm, patience, and confidence during the last 2
years when the progress of the book was sometimes slow but never stopped.

Thomas Hüttl gratefully acknowledges the advice and comments of MTU Aero
Engines aeroacoustics specialist Fritz Kennepohl, who introduced him to the secrets of
acoustics during the TurboNoiseCFD research project.

Pierre Sagaut, Thomas Hüttl, and Claus Wagner
Europe, May 2006

∗ International ERCOFTAC-DGLR-DLR-Workshop on LES for Acoustics organized by T. Hüttl, C.
Wagner and J. Delfs, German Aerospace Center (DLR), Göttingen, Germany, 7–8 October 2002.
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