LARGE-EDDY SIMULATION FOR ACOUSTICS

Noise pollution around airports, trains, and industries increasingly attracts environmental concern and regulation. Designers and researchers have intensified the use of large-eddy simulation (LES) for noise-reduced industrial design and acoustical research. This book, written by thirty experts, presents the theoretical background of acoustics and LES followed by details about numerical methods such as discretization schemes, boundary conditions, and coupling aspects. Industrially relevant, hybrid Reynolds-averaged Navier–Stokes/LES techniques for acoustic source predictions are discussed in detail. Many applications are featured ranging from simple geometries for mixing layers and jet flows to complex wing and car geometries. Selected applications include recent scientific investigations at industrial and university research institutions. Presently perfect solution methodologies that address all relevant applications do not exist; however, the book presents a state-of-the-art collection of methods, tools, and evaluation methodologies. The advantages and weaknesses of both the commercial and research methodologies are carefully presented.

Claus Wagner received his Ph.D. in Fluid Dynamics in 1995 at the Technical University of Munich, Germany. He is Honorary Professor for Industrial Aerodynamics, Ilmenau University of Technology, Germany. Since 1998, he has been a scientist in and head of the Section of Numerical Simulations for Technical Flows of the Institute for Aerodynamics and Flow Technology, German Aerospace Center, Göttingen, Germany. Dr. Wagner's research includes experimental investigations of the resonant control of nonlinear dynamic systems, theoretical and numerical investigations of thermal convection in cylindrical containers, and direct numerical simulation and large-eddy simulations of turbulent flows in different configurations. He has held visiting positions in Gainsville, Florida, USA as well as in Bremen, Germany.

Thomas Hüttl received his Ph.D. in Fluid Dynamics in 1999 at the Technical University of Munich, Germany. His academic research included work on the direct numerical simulation of turbulent flows in curved and coiled pipes, and direct and large-eddy simulations of boundary layer flows with and without separation, in the framework of a French–German DFG-CNRS-Cooperation project. He has held visiting positions in Nantes, France and Bangalore, India. Between 2000 and 2003, he was a senior engineer for aeroacoustics at MTU Aero Engines GmbH, Germany's leading manufacturer of engine modules and components and of complete aero engines. Dr. Hüttl led MTU's contribution for the European research project TurboNoiseCFD and contributed to the European research project SILENCER. After some years working as IT quality manager and internal auditor, he is now Chief Privacy Officer for the entire MTU Aero Engines concern. Among his many honors, Dr. Hüttl was elected a member of the Senate of the DGLR, Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal - Oberth e.V. in 2003 and 2006.

Pierre Sagaut received his DEA in Mechanics in 1991 and his Ph.D. in Fluid Mechanics in 1995 at Université Pierre et Marie Curie – Paris 6 (Paris, France). He worked as a research engineer at ONERA (French National Aerospace Research Center) from 1995 to 2002. He has been a professor in mechanics at University Pierre et Marie Curie – Paris 6 since 2002. He is also part-time Professor at École Polytechnique (France) and scientific consultant at ONERA, IFP, and CERFACS (France). His main research interests are fluid mechanics, aeroacoustics, numerical simulation of turbulent flows (both direct and large-eddy simulation), and numerical methods. He is also involved in uncertainty modeling for computational fluid dynamics (CFD). He has authored and coauthored more than sixty papers in peer-reviewed international journals and 130 proceedings papers. He is the author of several books dealing with turbulence modeling and simulation. He is member of several editorial boards: *Theoretical and Computational Fluid Dynamics, Journal of Scientific Computing*, and *Progress in CFD*. He received the ONERA award three times for the best publication and the John Green Prize (delivered by ICAS, 2002).

Cambridge Aerospace Series

Editors Wei Shyy and Michael J. Rycroft

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: *Aircraft Noise*
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles of Space Instrument Design*
- 10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
- 11. J. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, 2nd Edition
- 13. J. Katz and A. Plotkin: Low Speed Aerodynamics, 2nd Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History of the Technologies that Made Aviation Possible*, 2nd Edition
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity*
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. Doyle D. Knight: Elements of Numerical Methods for High-Speed Flows
- 20. C. Wagner, T. Hüttl, and P. Sagaut: Large-Eddy Simulation for Acoustics

Large-Eddy Simulation for Acoustics

Edited by

CLAUS WAGNER German Aerospace Center

THOMAS HÜTTL MTU Aero Engines GmbH

PIERRE SAGAUT Université Pierre et Marie Curie

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521871440

© Cambridge University Press 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Large-eddy simulation for acoustics / edited by Claus Albrecht Wagner, Thomas Hüttl, Pierre Sagaut.
p. cm. – (Cambridge aerospace series)
Includes bibliographical references and index.
ISBN-13: 978-0-521-87144-0 (hardback)
ISBN-10: 0-521-87144-1 (hardback)
I. Noise control–Mathematics. 2. Noise–Simulation methods. 3. Eddies–Mathematical models.
I. Wagner, Claus Albrecht, 1962– II. Hüttl, Thomas, 1970– III. Sagaut, Pierre, 1967– IV. Title.
V. Series.
TD892,L26 2007
620.2'3 – dc22 2006019237

ISBN 978-0-521-87144-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Lis	st of Figures and Tables	<i>page</i> xiii
Сс	ontributors	xxi
Pr	eface	xxv
1	Introduction	1
	1.1 The importance of acoustic research Thomas Hüttl	1
	1.1.1 Health effects	1
	1.1.2 ACTIVITY effects	2
	1.1.4 Technical noise sources	2
	1.1.5 Political and social reactions to noise	4
	1.1.6 Reactions of industry	5
	1.1.7 Research on acoustics by LES	5
	1.2 Introduction to computational aeroacoustics Manuel Keßler	7
	1.2.1 Definition	7
	1.2.2 History	7
	1.2.3 Aeroacoustics	8
	1.2.4 Conceptual approaches 1.2.5 Remaining problem areas for sound computation	9 13
	1.3 State of the art: LES for acoustics	15
	Claus Wagner, Oliver Fleig, and Thomas Hüttl	15
	1.3.1 Broadband noise prediction in general	15
	1.3.2 Broadband noise prediction based on LES	17
2	Theoretical Background: Aeroacoustics	24
	2.1 Introduction to aeroacoustics	24
	2.2 Fluid dynamics	25
	2.2.1 Mass, momentum, and energy equations	25
	2.2.2 Constitutive equations	28

3

	2.2.3	Approximations and alternative forms of the basic	
		equations	30
2.3	Free-s	pace acoustics of a quiescent fluid	33
	2.3.1	Orders of magnitude	33
	2.3.2	Wave equation and sources of sound	35
	2.3.3	Green's function and integral formulation	36
	2.3.4	Inverse problem and uniqueness of source	38
	2.3.5	Elementary solutions of the wave equation	39
	2.3.6	Acoustic energy and impedance	44
	2.3.7	Free-space Green's function	47
	2.3.8	Multipole expansion	47
	2.3.9	Doppler effect	49
	2.3.10	Uniform mean flow, plane waves, and edge diffraction	52
2.4	Aeroa	coustic analogies	55
	2.4.1	Lighthill's analogy	55
	2.4.2	Curle's formulation	59
	2.4.3	Ffowcs Williams–Hawkings formulation	60
	2.4.4	Choice of aeroacoustic variable	62
	2.4.5	Vortex sound	65
2.5	Confin	ed flows	68
	2.5.1	Wave propagation in a duct	68
	2.5.2	Low-frequency Green's function in an infinitely long uniform duct	72
	2.5.3	Low-frequency Green's function in a duct with a discontinuity	74
	2.5.4	Aeroacoustics of an open pipe termination	76
The		al Background: Large-Eddy Simulation	. 89
Th Pie	eoretica rre Saga	al Background: Large-Eddy Simulation	. 89
The Pie 3.1	eoretica rre Saga Introde	al Background: Large-Eddy Simulation	. 89 89
The Pie 3.1	eoretica rre Saga Introdu 3.1.1	al Background: Large-Eddy Simulation	89 89
The Pie 3.1	eoretica rre Saga Introdu 3.1.1 3.1.2	al Background: Large-Eddy Simulation	89 89 89 90
Th Pie 3.1 3.2	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe	al Background: Large-Eddy Simulation aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations	89 89 90 91
Th e Pie 3.1 3.2	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe 3.2.1	al Background: Large-Eddy Simulation aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations	89 89 89 90 91 91
Th Pie 3.1 3.2	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2	al Background: Large-Eddy Simulation	89 89 90 91 91 92
Th Pie 3.1 3.2	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3	al Background: Large-Eddy Simulationaut aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations The Navier–Stokes equations The filtering procedure Governing equations for LES	89 89 90 91 91 92 95
The Pie 3.1 3.2	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4	al Background: Large-Eddy Simulationaut aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations The Navier–Stokes equations The filtering procedure Governing equations for LES Extension for compressible flows	89 89 90 91 91 92 95 98
The Pie 3.1 3.2	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	al Background: Large-Eddy Simulationaut aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations The Navier–Stokes equations The filtering procedure Governing equations for LES Extension for compressible flows Filtering on real-life computational grids	89 89 90 91 91 92 95 98 100
The Pie 3.1 3.2	eoretica rre Saga 1ntrodu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic	al Background: Large-Eddy Simulationaut aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations The Navier–Stokes equations The filtering procedure Governing equations for LES Extension for compressible flows Filtering on real-life computational grids numerical issues in large-eddy simulation	89 89 90 91 91 92 95 98 100 105
The Pie 3.1 3.2	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1	al Background: Large-Eddy Simulationaut aut uction to large-eddy simulation General issues Large-eddy simulation: Underlying assumptions matical models and governing equations The Navier–Stokes equations The Navier–Stokes equations The filtering procedure Governing equations for LES Extension for compressible flows Filtering on real-life computational grids numerical issues in large-eddy simulation Grid resolution requirements	89 89 90 91 91 92 95 98 100 105
The Pie 3.1 3.2 3.3	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2	al Background: Large-Eddy Simulationaut aut aut aut aut aut aut aut aut aut	89 89 90 91 91 92 95 98 100 105 105
Thu Pie 3.1 3.2 3.3	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3	al Background: Large-Eddy Simulationaut aut aut aut aut aut aut aut aut aut	89 89 90 91 91 92 95 98 100 105 105 109 112
Thu Pie 3.1 3.2 3.3	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe 3.2.1 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112
The Pie 3.1 3.2 3.3 3.3	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112
The Pie 3.1 3.2 3.3 3.3	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112 112 112 113 113
The Pie 3.1 3.2 3.3 3.3	eoretica rre Saga 1ntrodu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2 3.4.3 0.4.4	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112 112 113 118
The Pie 3.1 3.2 3.3 3.4	eoretica rre Saga 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2 3.4.3 3.4.4	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112 112 112 113 118
The Pie 3.1 3.2 3.3 3.4	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2 3.4.3 3.4.4	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 109 112 112 112 112 112 113 118 119 105
The Pie 3.1 3.2 3.3 3.4	eoretica rre Saga Jintrodu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 0.4.5	al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 105 109 112 112 112 112 113 118 119 120 1
The Pie 3.1 3.2 3.3 3.4	eoretica rre Saga Introdu 3.1.1 3.1.2 Mathe 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Basic 3.3.1 3.3.2 3.3.3 Subgr 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6	Al Background: Large-Eddy Simulation	89 89 90 91 91 92 95 98 100 105 105 105 105 105 112 112 112 112 112 113 118 119 120 121 120 121 120 121 120 120 121 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 1

СОИТ	ENTS	
3	5 Extension of subgrid models for the compressible case 3.5.1 Background	125 125
	3.5.2 Extension of functional models	125
	3.5.3 Extension of structural models	126
	3.5.4 The MILES concept for compressible flows	126
4 U P	se of Hybrid RANS–LES for Acoustic Source Predictions	128
4	1 Introduction to hybrid RANS-LES methods	128
4	2 Global hybrid approaches	130
	4.2.1 The approach of Speziale	130
	4.2.2 Detached-eddy simulation	131
	4.2.3 LNS	133
	4.2.4 The approach of Menter, Kunz, and Bender	138
	4.2.5 Defining the filter width	140
	4.2.6 Modeling the noise from unresolved scales	142
	4.2.7 Synthetic reconstruction of turbulence	143
	4.2.8 The NLAS approach of Batten, Goldberg,	
	and Chakravarthy	145
4	3 Zonal hybrid approaches	148
	4.3.1 The approach of Quéméré and Sagaut	150
	4.3.2 The approach of Labourasse and Sagaut	150
	4.3.3 Zonal-interface boundary coupling	152
4	4 Examples using hybrid RANS–LES formulations	154
	4.4.1 Flow in the wake of a car wing mirror	154
	4.4.2 Unsteady flow in the slat cove of a high-lift airfoil	158
4	.5 Summary of hybrid RANS-LES methods	163
; N	umerical Methods	167
5	1 Spatial and temporal discretization schemes Tim Broeckhoven, Jan Ramboer, Sergey Smirnov, and Chris Lacor	167
	5.1.1 Introduction to discretization schemes	167
	5.1.2 Dispersion and dissipation errors	168
	5.1.3 Spatial discretization schemes	170
	5.1.4 Temporal discretization schemes	197
5	2 Boundary conditions for LES Michael Breuer	201
	5.2.1 Outflow boundary conditions	203
	5.2.2 Inflow boundary conditions	204
	5.2.3 Boundary conditions for solid walls	208
	5.2.4 Far-field boundary conditions for compressible flows	214
	5.2.5 Final remark for discretization schemes	215
5	3 Boundary conditions: Acoustics Fang Q. Hu	216
	5.3.1 Characteristic nonreflecting boundary condition	217
	5.3.2 Radiation boundary condition	218
	5.3.3 Absorbing-zone techniques	218

ix

х	CONTENTS

		5.3.4 Perfectly matched layers5.3.5 Summary of boundary conditions for acoustics	220 222
	5.4	Some concepts of LES–CAA coupling Wolfgang Schröder and Roland Ewert	222
		5.4.1 LES inflow boundary5.4.2 Silent embedded boundaries	225 232
6	Арр	plications and Results of Large-Eddy Simulations for Acoustics	238
	6.1	Plane and axisymmetric mixing layers Christophe Bogey and Christophe Bailly	238
		6.1.1 Plane mixing layer6.1.2 Axisymmetric mixing layers – jets6.1.3 Concluding remarks for mixing layer simulations	239 241 244
	6.2	Far-field jet acoustics Daniel J. Bodony and Sanjiva K. Lele	245
		 6.2.1 Introduction to jet acoustics 6.2.2 Numerics of jet simulations 6.2.3 Results for jet simulations 6.2.4 Future directions of jet acoustics 6.2.5 Conclusions for far-field jet acoustics 6.2.6 Acknowledgments 	245 247 252 259 262 262
	6.3	Cavity noise Xavier Gloerfelt, Christophe Bogey, and Christophe Bailly	262
		6.3.1 Introduction to cavity noise6.3.2 Overview of cavity-flow simulations6.3.3 Recent achievements using LES6.3.4 Concluding remarks for cavity noise	262 263 266 272
	6.4	Aeroelastic noise Sandrine Vergne, Jean-Marc Auger, Fred Périé, André Jacques, and Dimitri Nicolopoulos	272
		 6.4.1 Introduction to aeroelastic noise 6.4.2 Fluid-structure interaction 6.4.3 Numerical simulation 6.4.4 Application 6.4.5 Simulation model 6.4.6 Numerical results 6.4.7 Mesh influence 6.4.8 Conclusions for aeroelastic noise prediction 6.4.9 Acknowledgment 	272 274 276 278 279 283 290 293 293
	6.5	Trailing-edge noise Roland Ewert and Eric Manoha	293
		6.5.1 Introduction to trailing-edge noise simulation using LES6.5.2 Trailing-edge noise simulation using LES and APE6.5.3 Trailing-edge noise simulation using LES, Euler equations,	293 296
		and the Kirchhoff integral 6.5.4 Unsteady pressure-field analysis	315 320

со	NTE	NTS		
	6.6 Blunt bodies (cylinder, cars) Franco Magagnato			
		6.6.1 Overv 6.6.2 Circula 6.6.3 Car	iew of blunt-body simulations ar cylinder	333 335 345
	6.7	Internal flow Philippe Lafe	<i>is</i> on, Fabien Crouzet, and Jean Paul Devos	349
		6.7.1 Introd 6.7.2 Comp	uction to internal flows putation of acoustic fluctuations due to	349
		turbul 6.7.3 Comp	ence-generated noise at low Mach number outation of flow acoustic coupling in low-Mach-number	349
		ductee 6.7.4 Comp	d flows outation of aeroacoustic instabilities in high-Mach-	351
		numb 6.7.5 Concl	er ducted flow usions for internal flow prediction	354 355
	6.8	Industrial ae Fred Mendo	eroacoustics analyses nça	356
		 6.8.1 Introd 6.8.2 Prelim 6.8.3 A two 6.8.4 Postp 6.8.5 Concl 6.8.6 Ackno 	uction to industrial aeroacoustics analyses ninary considerations -step CFD modeling process (steady-state and transient) rocessing through acoustic coupling usions for industrial aeroacoustics analyses owledgments	356 357 358 370 376 376
7	Cor Cla	iclusions us Wagner, P	ierre Sagaut, and Thomas Hüttl	378
	7.1	Governing e	equations and acoustic analogies	378
	7.2	Numerical e	rrors	384
	7.3	Initial and b	oundary conditions	385
	7.4	Examples		386
Ар	Appendix A. Nomenclature 3		389	
Ар	pene	dix B. Abbre	viations	391
Re	References 395			395
Inc	ndex 429			429

xi

List of Figures and Tables

Figures

1.1	Magnetic levitation hover train project Transrapid	4
1.2	Noise prediction methods	12
1.3	Insulator of a high-speed train's pantograph	21
1.4	Sketch of the insulator of a high-speed train's pantograph	22
1.5	Far-field sound-pressure spectra	22
2.1	Monopole, dipole, and quadrupole generating waves on the surface	
	of the water around a boat	44
2.2	Sketch of scattered plane wave with mean flow	54
2.3	A potential flow through the vocal folds is silent	66
2.4	Straight duct of arbitrary cross section	68
2.5	(a) Method of images applied to a source at $\mathbf{y} = (y_1, y_2, y_3)$ at a distance w from a bard well $\mathbf{x} = 0$ has a Green's function; $G(\mathbf{x}, t \mathbf{y}, z) =$	
	y_3 from a field wall $x_3 = 0$ fields a Green's function. $G(\mathbf{x}, \iota \mathbf{y}, \iota) = 0$ ($\mathbf{x}, \iota \mathbf{y}, \iota$) = 0 ($\mathbf{x}, \iota \mathbf{y}, \iota$) = 0 ($\mathbf{x}, \iota \mathbf{y}, \iota$)	
	$G_0(\mathbf{x},\iota \mathbf{y},\iota) + G_0(\mathbf{x},\iota \mathbf{y},\iota)$ with $\mathbf{y} = (y_1, y_2, -y_3)$. (b) A source between two parellel hard wells generated an infinite row of images. (c) A source	
	in a restangular dust generates an array of sources	70
0.6	The end correction for no flow $(M_{1}, 0)$ and a little flow $(M_{1}, 0, 01)$	13
2.0	The end correction for no now $(M_j = 0)$ and a null now $(M_j = 0.01)$	04
2.1	Plane-wave reflection coefficient $ A $ and end correction δ at jet	05
00	Exhaust without conow for $M_j = 0.01, 0.1, \dots, 0.6$	60
2.0	explored with $M = 0.2$ and coffer value in the first of $M/M = 0.025$	
	exhaust with $M_j = 0.3$ and conow velocities $M_0/M_j = 0, 0.25$,	06
0.0	U.5, U.75, I Assurtia flow at a nine sutlat (a) for an unflorged nine termination	80
2.9	Acoustic now at a pipe outlet (a) for an unnanged pipe termination	07
0.4	and (b) for a norm	87
3.1	Schemalic kinetic energy spectra of resolved and subgrid scales	05
<u> </u>	Streeks in the inner lower of the boundary lower	107
3.2	Schemetie of kinetie onevery transfer is is strengie turbulence	107
3.3	Schematic of kinetic energy transfer in isotropic turbulence	114
3.4	Schematic of the two-level litering procedure and the Germano identity	122
4.1	iurbuience energy spectrum partitioned into resolvable	105
4.0	and unresolvable frequencies	135
4.2	Hequired near-wall mesh resolutions with DNS, traditional LES, global hybrid BANS_LES, and nonlinear acoustics solvers (NLAS) based on	
	disturbance equations	1/7
		141

xiv LIST OF FIGURES AND TABLES

4.3	Initial startup transient at probe 111 (cylinder rear face) predicted by unsteady RANS and hybrid RANS-LES (LNS model) using identical	
	base model, mesh, and time step	155
4.4	Instantaneous streamwise vorticity contours (with streamwise velocity shading) predicted by hybrid RANS–LES model	155
4.5	Resolved and unresolved (synthetically generated) signals for probe 111 (cylinder rear face)	156
4.6	Sound-pressure levels determined by resolved, unresolved, and	457
4.7	Instantaneous streamwise vorticity contours (with streamwise velocity	157
4.8	shading) predicted by the nonlinear acoustics solver (NLAS) Sound-pressure levels determined by NLAS method at probe 111	157
49	(cylinder rear face) Location of the LES subdomain (displayed mesh shows every eighth	158
4.40	grid line)	159
4.10	Mean flow streamlines. Left: RANS computation, Right: Hybrid	150
1	RANS-LES computation	109
4.11 / 10	Installations of the dilatation field ω	160
4.12	Acoustic pressure spectrum at location S2	161
4.10	Acoustic pressure spectrum in the recirculation bubble (location S3)	162
4.14 1 15	Accusate pressure spectrum in the recirculation bubble (location $33)$	162
4.15	Acoustic pressure spectrum at the slat's trailing edge (location S/I)	162
4.10	Acoustic pressure spectrum in the slat's wake	164
4.17 5.1	Resolution of different explicit and compact (implicit) schemes	178
5.2	Comparison of the resolution of Taylor and Fourier difference	170
	schemes	180
5.3	Effect of α_f on a second- and an eighth-order filter	188
5.4	Perturbation pressure of an acoustic wave initiated by a Gaussian	
	pulse: comparison of solution with smooth and randomly perturbed mesh	197
5.5	Example for a reasonable choice of the integration domain (inflow	
	and outflow boundaries) for the flow past a wing in a wind tunnel	202
5.6	Von Kármán vortex street past an inclined wing (NACA-4415) at	
	$Re = 20,000$ and $\alpha = 12^{\circ}$ visualized by streaklines; four different time	
	instants of a shedding cycle in the vicinity of the outflow boundary are shown	205
5.7	Sketch of Lund et al.'s (1998) procedure for generating appropriate	
	inflow conditions for a boundary layer flow	206
5.8	Example for the generation of inflow data for a 90° bend using a	007
F 0	second simulation for a straight duct now with periodic b.c.	207
5.9	Law of the wall $u^{-1}(y^{-1})$ in a turbulent boundary layer without or with only a weak pressure gradient (half-logarithmic plot)	211
5.10	Sketch of the computational domains to determine, for example,	
	trailing-edge noise with the hybrid approach	224
5.11	Sketch of the rescaling concept	226
5.12	Sketch of the flat-plate boundary layer domain (left) and the	
	trailing-edge domain (right). The procedure to provide the inlet	
	distribution to simulate trailing-edge flow is visualized	230

LIST OF FIGURES AND TABLES

xv

5.13	LES of a turbulent boundary layer for $Re_{\theta_0} = 1400$ and $M_{\infty} = 0.4$. Skin-friction coefficient c_f versus Re_{θ} for different rescaling	
5 1/	formulations Transfer function $ \tilde{E} $ as a function of wave number α scaled by	232
5.14	damping zone thickness d	235
5.15	Spurious sound waves and velocity field generated at an artificial boundary at $x = 0$	236
5.16	Pressure distribution on $y = 35$ in Figure 5.15 for several thickness	
6.1	values <i>d</i> and Biot–Savart's law (denoted as compensation) Simulation of a 2D mixing layer. (a) Snapshot of the dilatation field $\Theta = \nabla . \mathbf{u}$ on the whole calculation domain, levels in s ⁻¹ . (b) View of the pairing zone with the vorticity field in the mixing layer and the	237
6.0	dilatation field outside	240
0.2	fluctuating pressure p' in Pa as a function of $t^* = tu_j/D$, at $x = 16r_0$,	
6.3	$y = 8r_0$, and $z = 0$ LES of a $Re_D = 6.5 \times 10^4$ subsonic jet. Snapshot of the vorticity norm in the flow field and of the fluctuating pressure outside in the plane	242
0 4	$z = 0$ at $t^* = 7.5$	242
6.4	LES of a $Re_D = 6.5 \times 10^4$ subsonic jet. Snapshots of the vorticity norm in the plane $z = 0$ at times: (a) $t^* = 2.2$, (b) $t^* = 3.5$	243
6.5	the flow field and of the fluctuating pressure outside in the plane $z = 0$	243
6.6	LES of a $Re_D = 4 \times 10^5$ subsonic jet. (a) Pressure spectra at $(x = 11r_0, r = 15r_0)$. (b) Profiles of v'_{rms}/u_j in the shear layer for $r = r_0$. Different simulations: LESac (), LESampl (), LESshear (),	
	LESmode $(-\cdot -\cdot)$	244
6.7 6.8	Schematic of a turbulent jet issuing into a still fluid $OASPL$ directivity at a distance of $30D_{\odot}$ from the unbeated Mach 0.9	247
0.0	jet exit	249
6.9 6.10	Centerline distribution of streamwise root-mean-square fluctuations Centerline distribution of density root-mean-square fluctuations	254
	normalized by the difference $(ho_j - ho_\infty)$	255
6.11 6.12	Far-field OASPL taken at a distance of $30D_j$ from the nozzle exit Integral Lagrangian time scale of streamwise fluctuations near the end	256
0.40	of the potential core	257
6.13	of Bodony and Lele (2004) with the 195 m/s data of Lush (1971)	258
6.14	Azimuthal correlation of the far-field sound field of LES data from Bogev Bailly and Juvé (2003) $(-, -)$ and Bodony and Lele (2004) $(-)$	258
6.15	Far-field OASPL taken at a distance of $30D_i$ from the nozzle exit	260
6.16	Far-field acoustic spectra taken at a distance of $30D_j$ from the nozzle exit	260
6.17	Transition toward a wake mode for large L/δ_{θ} ratio (2D DNS of the	
6 1 0	flow over an $L/D = 4$ cavity, at $M = 0.5$, and $Re_D = 4800$)	265
6.19	Influence of the boundary layer turbulence on cavity noise	200 270
6.20	Mode switching	271
6.21	The plate model	275

xvi	LIST OF FIGURES AND TABLES
-----	----------------------------

6.22	Sketch of the experimental setup	278
6.23	Wall-pressure transducer positions on the elastic steel plate	279
6.24	Vibroacoustics measurements: (+) accelerometers and (•)	
	microphones positions	280
6.25	General mesh dimensions	280
6.26	General sizes of the mesh	281
6.27	Detailed mesh around the obstacle	281
6.28	Contours of the streamwise mean velocity U_1/U_0 near the ruler in the	
	median plane	283
6.29	Streamwise velocity fluctuations $u'_{\rm rms}/U_0$ near the ruler in the	
	median plane	283
6.30	Velocity profiles at the origin of the reference: (- $-$ -) measurement;	
	(+++) simulation	284
6.31	Pressure coefficient	285
6.32	Wall-pressure fluctuation rms levels calculated at various positions	
	along the median plane	285
6.33	Comparison of calculated (\cdots) and measured (+ + +) wall-pressure	
/	fluctuation rms levels on the plate	286
6.34	PSD of wall-pressure fluctuations measured on the flat plate	287
6.35	Coherence γ^2 of wall-pressure fluctuations measured on the flat plate	
	for streamwise points using the same notation as in Figure 6.34	288
6.36	Coherence γ^2 of wall-pressure fluctuations measured on the flat plate	000
0.07	for spanwise points using the same notation as in Figure 6.34	289
6.37	Phase velocity U_p of wall-pressure fluctuations measured on the flat	000
c 00	plate for streamwise points using the same notation as in Figure 6.34	290
0.38	Acceleration PSD Ψ_{aa} - channel 20 Acceleration PSD Φ_{aa} - channel 20 ($D_{aa} = 0 \times 10^{-5}$ Pc) using the	291
0.39	Acoustic pressure PSD Φ_{pp} – channel 30 ($P_{ref} = 2 \times 10^{\circ}$ Pa) using the	201
6 40	Same notation as in Figure 0.30	291
0.40 6.41	Comparison of the two simulations – wall pressure fluctuations DSP	292
0.41	on the plate	202
6 12	Comparison of the two simulations – acquetic pressure in cavity	292
0.42	Using the same notation as in Figure 6 11	203
6 / 3	Numerical simulation of airfoil aerodynamic noise: possible hybrid	200
0.40	strategies	295
6 4 4	Sketch of the computational domains to determine trailing-edge noise	200
0.44	with the hybrid approach	297
6 4 5	Coordinate system and nomenclature used to determine corrections	201
0.40	for a 2D acoustic simulation	301
6 4 6	LES subdomain at the trailing edge (left) and horizontal weighting	001
0110	function (right)	304
6.47	Damping function $ F(\alpha d) $ over vortical wavenumber in x ₁ -direction	
	$\alpha = 2\pi / \lambda_{\rm V}$ scaled with the damping zone on- and offset width	
	$d = (l_2 - l_1)/2$	305
6.48	LES grid with partially resolved plate and every second grid point	
	shown	305
6.49	Acoustic grid scaled with the plate length /	306
6.50	Enlargement of the leading- (left) and trailing-edge region (right)	307
6.51	Visualization of the instantaneous flow field	307

LIST OF FIGURES AND TABLES

xvii

6.52	APE source terms $\vec{L}' = [\vec{\omega} \times \vec{u}]' = (L'_x, L'_y)^T$, L'_x (left), L'_y (right), and	200
6 53	DAA grid Pressure contours of the trailing-edge problem $M = 0.15$	300
0.00	$R_{e} = 7 \times 10^{5}$ at time level $T = 3.0$ with APE solution	
	$\frac{1}{2} = \frac{1}{2} \times \frac{10}{3}, \text{ at time level } 1 = 0.0 \text{ with At E solution}$	300
6 54	Pressure contours of the trailing-edge problem $M = 0.15$	000
0.04	$Be = 7 \times 10^5$ at time level $T = 3.0$	310
6 55	Directivity $\Phi^{1/2}(\theta, r, f)$ with $\Phi \simeq$ nondimensional power spectral	010
0.00	density (PSD) $\mathbf{r}^{2}(\theta, r)/(\theta, c^{2})^{2}$ i.e. $\int_{0}^{\infty} \Phi(\theta, r, f) df = \frac{1}{2} \frac{r^{2}(\theta, r)}{(\theta, r)^{2}}$	
	$\frac{(p_{\infty}, p_{\infty})}{(p_{\infty}, p_{\infty})} \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1) dI = p'(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0, 1)/(p_{\infty}, p_{\infty}) \text{ i.e., } \int_{0} \Psi(0$	010
0.50	$(\rho_{\infty} C_{\infty}^2)$	310
6.56	Comparison of the trailing-edge noise directivities $\Phi^{+/2}(\theta, r, t)$ for	
	$r = 1.5$ applying Equations (6.32, 6.33) ($\Phi = PSD_{\mu}\sigma^{\mu}$) and Möhring's	
(1	999) acoustic analogy ($\Phi \doteq PSD$ of $B^{\prime 2}$), Equations (6.43, 6.44)	311
6.57	Sound-pressure level (SPL) versus frequency for a receiving point in	014
6 5 9	$r = 1.5$ above the trailing edge for various directions θ (see Figure 6.45)	311
0.58	Generation of a periodical source term via window weighting	313
0.59	A harmonic toot course over the trailing edge (left) and directivities	313
0.00	A final monitories isource over the training edge (left) and directivities obtained for $M = 0.0009$ with LEE and ADE (right) applied	21/
6.61	APE source term $(\vec{a} \times \vec{a})$ (left) and sound radiation from the trailing	314
0.01	Are source term $(\omega \times u)_y$ (left) and sound radiation from the training edge (right)	315
6 62	Computational arid	310
6.63	Contours of instantaneous Mach-number isovalues	320
6.64	Flow streamlines at the trailing edge: instantaneous (above) and	020
0.01	time-averaged (below)	321
6.65	Wall-pressure fluctuations on pressure and suction sides near the TE	322
6.66	Evolution of the wall-pressure PSD along the chord	323
6.67	Evolution of the wall-pressure PSD along the chord	324
6.68	Wave-number-frequency spectrum of wall-pressure fluctuations	
	on the airfoil suction side at $x/C = 0.9$	324
6.69	Wave-number-frequency spectrum of wall-pressure fluctuations	
	on the airfoil suction side at $x/C = 0.5$	325
6.70	Instantaneous isovalues of pressure fluctuations obtained from	
	LES data	326
6.71	Evolution of the wall-pressure spectra along the vertical grid	
	line $x = C$ (starting from the TE upper corner) with respect to the	
	vertical distance z	326
6.72	Spanwise evolution of the coherence of the surface-pressure field on	
	the suction side near the TE ($x/C = 0.9958$). The frequency	
	bandwidths are integrated	327
6.73	Spanwise evolution of the coherence of the pressure field at distance	
	$z_0 = 37.9$ mm from the TE at $x/C = 1$	328
6.74	Final problem-adapted acoustic grid	328
6.75	Final problem-adapted acoustic grid (closer view)	330
6.76	Isovalue contours of instantaneous pressure fluctuation field	
	(range ± 2 Pa, black and white) computed from (i) LES inside the	
	injection interface and (ii) E3P (from LES data injection) outside the	004
	INJECTION INTERTACE	331

xviii LIST OF FIGURES AND TABLES

injection interface (closer view) (331 6.78 Isovalue contours (range 4.5) Pa black and white) of instantaneous pressure fluctuation field computed from (i) LES data inside the injection interface, (ii) Euler data (from LES data inside the injection interface, and the Kirchhoff control surface, and (iii) from Kirchhoff integration data beyond the Kirchhoff control surface 333 6.79 Numerical mesh (2D plane) 5.80 Sound-pressure level of 1ES 5.81 Sound-pressure level of 3D URANS 6.82 Experimental setup 6.83 Instantaneous streamlines in 2D URANS simulation 6.84 Instantaneous streamlines in LES with adaptive model 6.85 Lift and drag coefficients of the cylinder in the third-finest grid 6.86 Acoustic density fluctuations of 2D URANS simulation in the finest grid 6.87 Lift and drag coefficients of the cylinder in the second-finest grid 6.88 Acoustic density fluctuations of 2D URANS simulation in the finest grid 6.80 Acoustic density fluctuations of 2D URANS simulation in the finest grid 6.90 Acoustic density fluctuations of 2D URANS simulation in finest grid 6.91 Sound-pressure level of LES with adaptive model in second-finest grid 6.93 Sound pressure level of LES with adaptive model in second-finest grid 6.94 Sound pressure level of LES with adaptive model in second-finest grid 6.93 Sound pressure level of LES with adaptive model in second-finest grid 6.94 Sound pressure level of LES in finest grid with Smagorinsky and Lilley model 6.95 The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003) 6.96 Mesh for the CFD model 6.97 Streamlines in the wake of the CFD model 6.99 Pressure coefficient in the symmetry plane of the CFD model 6.99 Pressure coefficient in the symmetry plane of the CFD model 6.101 Aerodynamic computational domain 6.103 LES velocity field; longitudinal component ($U = 14 ms^{-1}$, $t = 6.6 \times 10^{-2} s$) 6.104 Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acou	6.77	Isovalue contours of instantaneous pressure fluctuation field (range ± 2 Pa, black and white) computed from (i) LES inside the injection interface and (ii) E3P (from LES data injection) outside the injection interface (algorithm view)	001
Kirchnoti integration data beyond the Kirchhoft control surface3336.79Numerical mesh (2D plane)3356.80Sound-pressure level of LES3376.81Sound-pressure level of 3D URANS3376.82Experimental setup3386.83Instantaneous streamlines in 2D URANS simulation3396.84Instantaneous streamlines in 2D URANS simulation3396.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of 2D URANS simulation in finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}, y = 10 \text{ m},$ and $z = 1 \text{ m}$ </td <td>6.78</td> <td>Isovalue contours (range ± 3 Pa black and white) of instantaneous pressure fluctuation field computed from (i) LES data inside the injection interface, (ii) Euler data (from LES data injection) between the injection interface and the Kirchhoff control surface, and (iii) from</td> <td>331</td>	6.78	Isovalue contours (range ± 3 Pa black and white) of instantaneous pressure fluctuation field computed from (i) LES data inside the injection interface, (ii) Euler data (from LES data injection) between the injection interface and the Kirchhoff control surface, and (iii) from	331
6.79Numerical mesn (2D plane)3356.80Sound-pressure level of LES3376.81Sound-pressure level of 3D URANS3376.82Experimental setup3386.83Instantaneous streamlines in 2D URANS simulation3396.84Instantaneous streamlines in LES with adaptive model3406.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in second-finest grid3446.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic computa	0.70	Kirchhoff integration data beyond the Kirchhoff control surface	333
5.80Sound-pressure level of LES3376.81Sound-pressure level of 3D URANS3376.82Experimental setup3386.83Instantaneous streamlines in LES with adaptive model3406.84Lift and drag coefficients of the cylinder in the second-finest grid3416.85Lift and drag coefficients of the cylinder in the second-finest grid3416.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the second-finest grid3426.90Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.91Sound-pressure level of 2D URANS simulation in finest grid3436.93Sound pressure level of LES with adaptive model in second-finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3446.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean	6.79	Numerical mesh (2D plane)	335
5.81Sound-pressure level of 3D URANS3376.82Experimental setup3386.83Instantaneous streamlines in 2D URANS simulation3396.84Instantaneous streamlines in LES with adaptive model3406.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamlines in the wake of the CFD model3476.96Mesh for the CFD model from Volkswagen3486.101Aeroustic computational domain3516.102Acoustic computational domain3516.104Aerodynamic computational domain3516.105Geometry of the sudden enlargment3526.106Geometry of the sudden enlargment3526.106Geometry of the sudden enlargment3536.107Geomet	6.80	Sound-pressure level of LES	337
6.82Experimental setup3386.83Instantaneous streamlines in 2D URANS simulation3396.84Instantaneous streamlines in LES with adaptive model3406.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3446.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamvise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.101Acoustic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.104Acoustic results: acoustic po	6.81	Sound-pressure level of 3D URAINS	337
0.83Instantaneous streamlines in LED UHANS simulation3396.84Instantaneous streamlines in LES with adaptive model3406.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model form Volkswagen3466.97Streamlines in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3476.99Pressure coefficient an observer point of $x = 10 \text{ m}, y = 10 \text{ m},$ and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)352 <tr< td=""><td>6.82</td><td>Experimental setup</td><td>338</td></tr<>	6.82	Experimental setup	338
0.84Instantaneous streamlines in LES with adaptive model3406.85Lift and drag coefficients of the cylinder in the third-finest grid3416.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model insecond-finest grid6.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES with adaptive model in finest grid3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3446.100Sound-pressure level at an observer point of $x = 10$ m, $y = 10$ m, and $z = 1$ m3486.101Acoustic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14$ ms ⁻¹ , $t = 6.6 \times 10^{-2}$ s)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and a	6.83	Instantaneous streamlines in 2D URANS simulation	339
6.85Lift and drag coefficients of the cylinder in the third-rinest grid3406.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamvise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}, y = 10 \text{ m},$ and $z = 1 \text{ m}$ 3486.101Acoustic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of th	6.84	Instantaneous streamlines in LES with adaptive model	340
6.86Lift and drag coefficients of the cylinder in the second-finest grid3416.87Lift and drag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ms}^{-1}$ (bottom)3526.105Geometry of the sudden enlargment3556.106Snapshots of the Mach number for $\tau_1 = 5.5$ 3566.109Snapshots of the Mach number for $\tau_1 = 5.5$ 3566.100Opel 2004 Astra356	6.85	Lift and drag coefficients of the cylinder in the third-finest grid	340
6.87Lift and orag coefficients of the cylinder in the finest grid3416.88Acoustic density fluctuations of 2D URANS simulation in the finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 ms^{-1}$, $t = 6.6 \times 10^{-2}$ s)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 ms^{-1}$ (bottom)3526.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108<	6.86	Lift and drag coefficients of the cylinder in the second-finest grid	341
6.88Acoustic density fluctuations of 2D URANS simulation in fines fighd3416.89Sound-pressure level of 2D URANS simulation in finest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 356	6.87	Lift and drag coefficients of the cylinder in the finest grid	341
6.89Sound-pressure level of 2D ORANS simulation in linest grid3426.90Acoustic density fluctuations of LES with adaptive model in second-finest grid3436.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}, y = 10 \text{ m},$ and $z = 1 \text{ m}$ 3486.101Acoustic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.104Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.103Snapshots of the mean relargment3556.104Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.105Geometry of the sudden enlargment3556.106Snapshots	0.88	Acoustic density fluctuations of 2D URANS simulation in the finest grid	341
6.90Accoustic density fluctuations of LES with adaptive model in second-finest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.104Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.103Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.104Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.105Opel 2004 Astra360	0.89	Sound-pressure level of 2D URANS simulation in linest grid	342
Second-Intest grid3426.91Sound-pressure level of LES with adaptive model in second-finest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Acoustic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.104Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.105Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.100Snapshots of the Mach number for $\tau_2 = 2.65$ 356	6.90	Acoustic density nucluations of LES with adaptive model in	040
6.91Sound-pressure level of LES with adaptive model in second-linest grid3436.92Acoustic density fluctuations of 3D LES simulation in finest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}, y = 10 \text{ m},$ and $z = 1 \text{ m}$ 3486.101Acrodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1},$ $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the	6.01	Second-Intestignu	04Z
6.92Accoustic density indictations of 3D LES similation in linest grid3436.93Sound pressure level of LES with adaptive model in finest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \mathrm{m}$, $y = 10 \mathrm{m}$, and $z = 1 \mathrm{m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.00	Sound-pressure level of LES with adaptive model in second-linest grid	040 040
6.93Sound pressure level of LES with adaptive model in finitest grid3436.94Sound pressure level of LES in finest grid with Smagorinsky and Lilley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, 	0.92	Sound processing indications of SD LES simulation in finest grid	040 040
0.34South pressure reveror LES in finitest grid with Sinagolinisky and Enley model3446.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with 	0.93	Sound pressure level of LES with adaptive model in messignu	343
6.95The Ahmed body from Ahmed et al. (1984) (isosurface of zero streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	0.94	model	344
streamwise velocity from Kapadia et al. 2003)3456.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.95	The Ahmed body from Ahmed et al. (1984) (isosurface of zero	••••
6.96Mesh for the CFD model from Volkswagen3466.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360		streamwise velocity from Kapadia et al. 2003)	345
6.97Streamlines in the wake of the CFD model3476.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.96	Mesh for the CFD model from Volkswagen	346
6.98Vorticity in the wake of the CFD model3476.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \mathrm{m}$, $y = 10 \mathrm{m}$, and $z = 1 \mathrm{m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.97	Streamlines in the wake of the CFD model	347
6.99Pressure coefficient in the symmetry plane of the CFD model3486.100Sound-pressure level at an observer point of $x = 10 \mathrm{m}$, $y = 10 \mathrm{m}$, and $z = 1 \mathrm{m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms^{-1}}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms^{-1}}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.98	Vorticity in the wake of the CFD model	347
6.100Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$, and $z = 1 \text{ m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \text{ ms}^{-1}$, $t = 6.6 \times 10^{-2} \text{ s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3566.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.99	Pressure coefficient in the symmetry plane of the CFD model	348
and $z = 1 \mathrm{m}$ 3486.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.100	Sound-pressure level at an observer point of $x = 10 \text{ m}$, $y = 10 \text{ m}$,	
6.101Aerodynamic computational domain3516.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms^{-1}}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms^{-1}}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360		and $z = 1 \text{ m}$	348
6.102Acoustic computational domain3516.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms^{-1}}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms^{-1}}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.101	Aerodynamic computational domain	351
6.103LES velocity field; longitudinal component ($U = 14 \mathrm{ms^{-1}}$, $t = 6.6 \times 10^{-2} \mathrm{s}$)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms^{-1}}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.102	Acoustic computational domain	351
$t = 6.6 \times 10^{-2}$ s)3526.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.103	LES velocity field; longitudinal component ($U = 14 \mathrm{ms}^{-1}$,	
6.104Acoustic results: acoustic power radiated by the diaphragm with respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	0 1 0 1	$t = 6.6 \times 10^{-2} \text{ s}$	352
respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \mathrm{ms}^{-1}$ (bottom)3526.105Geometry of the cavity duct system3536.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.104	Acoustic results: acoustic power radiated by the diaphragm with	
$0 = 14$ ms(bottom) 352 6.105 Geometry of the cavity duct system 353 6.106 Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation 354 6.107 Geometry of the sudden enlargment 355 6.108 Snapshots of the Mach number for $\tau_1 = 5.5$ 355 6.109 Snapshots of the Mach number for $\tau_2 = 2.65$ 356 6.110 Opel 2004 Astra 360		respect to the mean velocity (top) and acoustic power spectrum for $U = 14 \text{ ms}^{-1}$ (bottom)	250
6.105Cleonnerry of the cavity duct system3556.106Snapshots of the pressure in the duct (left) and the vorticity in the cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6 105	O = 14 ms (DOILOTT) Geometry of the cavity duct system	352 353
cavity (right) during a period of the oscillation3546.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6 106	Shapshots of the prossure in the duct (left) and the verticity in the	303
6.107Geometry of the sudden enlargment3556.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	0.100	cavity (right) during a period of the oscillation	354
6.108Snapshots of the Mach number for $\tau_1 = 5.5$ 3556.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6 107	Geometry of the sudden enlargment	355
6.109Snapshots of the Mach number for $\tau_2 = 2.65$ 3566.110Opel 2004 Astra360	6.108	Snapshots of the Mach number for $\tau_1 = 5.5$	355
6.110 Opel 2004 Astra 360	6.109	Snapshots of the Mach number for $\tau_2 = 2.65$	356
	6.110	Opel 2004 Astra	360

LIST OF FIGURES AND TABLES

6.111	Lilley turbulence shear-source distribution illustrated by isosurfaces for	261
6.112	Mesh frequency cutoff (MFC) estimate; idealized wing-mirror example	201
6 1 1 3	of Siegert et al. (1999) Predicted versus measured pressure spectra: idealized wing-mirror	362
01110	example of Siegert et al. (1999)	363
6.114	Mach 0.85 cavity: symmetry-plane snapshot at $t = 0.3$ s; DES/k- ε	
	(top) and URANS/ k – ε (bottom)	365
6.115	Overall (a) and band-limited (b) P _{rms} along cavity ceiling centerline	366
6.116	PSD (kPa ² /Hz) at location $x/L = 0.45$	367
6.117	Diesel injector primary liquid spray breakup; liquid-free surface with	007
	synthetic inlet perturbation (top) and without inlet perturbation (bottom)	367
	Audi A2 full-venicle geometry with localized domain shown in dark	308
6 1 2 0	SPL against frequency at Microphone 4	360
6 121	Experimental (top) and simulated (bottom) pressure trace to 0.3 s at	309
0.121	x/L = 0.95	369
6.122	Sampling effects on overall $P_{\rm rms}$ (kPa) along the cavity ceiling for	
	M219 experimental data	370
6.123	Sampling effects on overall Prms (kPa) along the cavity ceiling for	
	CFD data	370
6.124	Resonator geometry: application challenge from BEHR GmbH in the	
	DESTINY-AAC project	372
6.125	Velocity contours (top), pressure-time traces (bottom left), and spectral	
	magnitude (bottom right) at three bulk velocities (4, 8, and 12 m/s)	070
6 1 2 6	Accustic response for 8 m/s case at the microphone	373
6 127	Experimental prototype with inlet cylinder and outlet filter removed	574
0.127	and locations of far-field monitors	374
6.128	Comparison of steady-state RANS and snapshots from the DES	••••
	calculation	375
6.129	Surface acoustic pressure (Pa) on the exterior model (a) and acoustic	
	pressure in the far-field (b)	375
6.130	Computed and measured dB(A) levels at the nine microphone	
	locations at the blade-passing frequency (BPF)	376
Tables	5	
1 1	Sound-pressure levels for common sounds	2
		~

		-
3.1	Examples of usual spatial convolution filters	94
3.2	Various decompositions for the nonlinear terms	97
3.3	Resolution requirements referred to Kolmogorov length scale η used in	
	DNS based on spectral methods of some incompressible	
	homogeneous and wall-bounded flows	105
3.4	Typical mesh size (expressed in wall units) for DNS and LES of	
	boundary layer flow	107
3.5	Definition of simulation types for compressible flows	109
3.6	Modified wave-number analysis of some classical centered finite	
	difference schemes	109

XX LIST OF FIGURES AND TABLES

5.1	Coefficients for the DRP scheme of Equation (5.27)	174
5.2	Coefficients for filter formula 5.72	188
5.3	Optimized coefficients of the amplification factor for the LDDRK schemes	200
5.4	Typical mesh sizes (expressed in wall units) for a boundary layer flow	
	using DNS, wall-resolved LES, and LES with an appropriate wall model	209
6.1	LES of a $Re_D = 4 \times 10^5$ subsonic jet. Sideline sound levels and	
	$v'_{ m rms}$ -maxima in the shear layer for the different simulations	244

Contributors

Jean-Marc Auger

PSA Peugeot Citroën 1 route de Gisy F-78943 Vélizy-Villacoublay Cedex FRANCE e-mail: jeanmarc.auger@mpsa.com

Dr. Christophe Bailly

Centre Acoustique LMFA & UMR CNRS 5509 Ecole Centrale de Lyon 36, avenue Guy de Collongue F-69134 Ecully FRANCE e-mail: christophe.bailly@ec-lyon.fr

Dr. Paul Batten

Metacomp Technologies, Inc. 28632-B Roadside Drive Suite 255 Agoura Hills, CA 91301 USA e-mail: batten@metacomptech.com

Dr. Daniel J. Bodony

Stanford University Department of Aeronautics and Astronautics Stanford, CA 94305-4035 USA e-mail: bodony@stanford.edu

Dr. Christophe Bogey

Centre Acoustique LMFA & UMR CNRS 5509 Ecole Centrale de Lyon 36, avenue Guy de Collongue F-69134 Ecully FRANCE e-mail: christophe.bogey@ec-lyon.fr

Priv.-Doz. Dr.-Ing. Michael Breuer

Lehrstuhl für Strömungsmechanik (LSTM) Universität Erlangen-Nürnberg Cauerstr. 4 D-91058 Erlangen GERMANY e-mail: breuer@lstm.uni-erlangen.de

Ir. Tim Broeckhoven

Vrije Universiteit Brussel Department of Mechanical Engineering
Fluid Mechanics and Thermodynamics Research Group
Pleinlaan 2
B-1050 Brussels
BELGIUM
e-mail: tim@stro.vub.ac.be

CAMBRIDGE

Cambridge University Press 978-0-521-87144-0 - Large-Eddy Simulation for Acoustics Edited by Claus Wagner, Thomas Huttl and Pierre Sagaut Frontmatter More information

xxii CONTRIBUTORS

Fabien Crouzet

Electricite de France Analysis in Mechanics and Acoustics Department 1 avenue du General de Gaulle F-92141 Clamart Cedex FRANCE e-mail: Fabien.Crouzet@edf.fr

Jean Paul Devos

Electricite de France Analysis in Mechanics and Acoustics Department 1 avenue du General de Gaulle F-92141 Clamart Cedex FRANCE e-mail: Jean-Paul.devos@edf.fr

Dr.-Ing. Roland Ewert

DLR Institute of Aerodynamics and Flow Technology Technical Acoustics Lilienthalplatz 7 D-38108 Braunschweig GERMANY e-mail: roland.ewert@dlr.de

Oliver Fleig

The University of Tokyo Graduate School of Engineering Department of Mechanical Engineering 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-8656 JAPAN e-mail: oliverfleig@hotmail.com

Xavier Gloerfelt

Laboratoire SINUMEF ENSAM (Ecole Nationale Supérieure d'Arts et Métiers) 151, boulevard de l'Hopital F-75013 Paris FRANCE e-mail: Xavier.Gloerfelt@paris.ensam.fr

Prof. Dr. Ir. Avraham Hirschberg

Faculteit Technische Natuurkunde Technische Universiteit Eindhoven CC 2.24, Postbus 513 NL-5600 MB Eindhoven THE NETHERLANDS e-mail: a.hirschberg@tue.nl

Prof. Fang Q. Hu

Department of Mathematics and Statistics Old Dominion University Norfolk, VA 23529 USA e-mail: fhu@odu.edu

Dr. Thomas Hüttl

MTU Aero Engines GmbH Dachauer Str. 665 D-80995 München GERMANY e-mail: Thomas.Huettl@muc.mtu.de

André Jacques

Mcube 54, Rue Montgrand - BP 232 F-13178 Marseille Cedex 20 FRANCE e-mail: andre@mcube.fr

Dr. Manuel Keßler, Dipl.-Phys.

Institut für Aerodynamik und Gasdynamik Universität Stuttgart Pfaffenwaldring 21 D-70550 Stuttgart GERMANY e-mail: kessler@iag.uni-stuttgart.de

Prof. Dr. Ir. Chris Lacor

Vrije Universiteit Brussel Department of Mechanical Engineering Fluid Mechanics and Thermodynamics Research Group Pleinlaan 2 B-1050 Brussels BELGIUM e-mail: chris.lacor@vub.ac.be

Philippe Lafon

Laboratoire de Mecanique des Structures Industrielles Durables (LaMSID) UMR CNRS EDF 2832 1 avenue du General de Gaulle F-92141 Clamart Cedex FRANCE e-mail: Philippe.Lafon@edf.fr

CAMBRIDGE

Cambridge University Press 978-0-521-87144-0 - Large-Eddy Simulation for Acoustics Edited by Claus Wagner, Thomas Huttl and Pierre Sagaut Frontmatter More information

CONTRIBUTORS

Sanjiva K. Lele Stanford University Department of Aeronautics and Astronautics & Department of Mechanical Engineering Stanford, CA 94305-4035 USA e-mail: lele@Stanford.edu

Dr.-Ing. Franco Magagnato

Fachgebiet Strömungsmaschinen Universität Karlsruhe (TH) Kaiserstrasse 12 D-76128 Karlsruhe GERMANY e-mail: magagnato@mach.uni-karlsruhe.de

Eric Manoha

ONERA/DSNA/BREC BP 72 F-92322 Chatillon Cedex FRANCE e-mail: eric.manoha@onera.fr

Fred G. Mendonça

CDadapco CFD Engineering Services Manager, London CD adapco Group, UK 200 Shepherds Bush Road London W6 7NY ENGLAND e-mail: fred@uk.cd-adapco.com

Dimitri Nicolopoulos

Mcube 54, Rue Montgrand - BP 232 F-13178 Marseille Cedex 20 FRANCE e-mail: dimitri@mcube.fr

Fred Périé Mcube 54, Rue Montgrand - BP 232 F-13178 Marseille Cedex 20 FRANCE e-mail: fred@mcube.fr

Ir. Jan Ramboer

Vrije Universiteit Brussel Department of Mechanical Engineering Fluid Mechanics and Thermodynamics Research Group Pleinlaan 2 B-1050 Brussels BELGIUM e-mail: jan@stro.vub.ac.be

Dr. Sjoerd W. Rienstra

Department of Mathematics and Computer Science Eindhoven University of Technology P.O. Box 513 NL-5600 MB Eindhoven THE NETHERLANDS e-mail: S.W.Rienstra@tue.nl

Prof. Pierre Sagaut

LMM - UPMC/CNRS Laboratoire de modélisation en mécanique Université Pierre et Marie Curie Boite 162, 4 place Jussieu F-75252 Paris Cedex 05 FRANCE e-mail: sagaut@lmm.jussieu.fr

Univ.-Prof. Dr.-Ing. Wolfgang Schröder

Lehrstuhl für Strömungslehre und Aerodynamisches Institut RWTH Aachen Wüllnerstr. zw. 5 u. 7 D-52062 Aachen GERMANY e-mail: office@aia.rwth-aachen.de

Ir. Sergey Smirnov

Vrije Universiteit Brussel Department of Mechanical Engineering Fluid Mechanics and Thermodynamics Research Group Pleinlaan 2 B-1050 Brussels BELGIUM e-mail: serg@stro.vub.ac.be **Philippe Spalart** Boeing Commercial Airplanes

P.O. Box 3707 Seattle, WA 98124-2207 USA e-mail: Philippe.r.spalart@boeing.com xxiii

CAMBRIDGE

Cambridge University Press 978-0-521-87144-0 - Large-Eddy Simulation for Acoustics Edited by Claus Wagner, Thomas Huttl and Pierre Sagaut Frontmatter More information

xxiv CONTRIBUTORS

Marc Terracol

ONERA 29 avenue de la Division Leclerc F-92320 Chatillon FRANCE e-mail: marc.terracol@onera.fr

Sandrine Vergne

PSA Peugeot Citroën 2 route de Gisy F-78943 Vélizy-Villacoublay Cedex FRANCE e-mail: sandrine.vergne@mpsa.com

Dr. Claus Wagner

Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR Institut für Aerodynamik und Strömungstechnik Abt. Technische Strömungen Bunsenstraße 10 D-37073 Göttingen GERMANY e-mail: Claus.Wagner@dlr.de

Preface

Two branches of the same tree are growing together: Acoustics and the large-eddy simulation (LES) technique are based on the same fundamental equations of fluid dynamics. In the past, both scientific disciplines developed independently from each other. Acoustics is one of the classical disciplines of mechanics, having its roots in Greek and Roman times. LES is a comparatively young field of research that has benefited from the exponential growth in computational possibilities over the last few decades. Each scientific community has developed its own methods, definitions, and conventions, and it sometimes seems that experts and scientists in acoustics and LES techniques speak different languages. During the last few years, the LES and the acoustics communities realized that LES can be a comprehensive tool for acoustical research and design and intensified its use.

This book presents the current state of the art for LES used in acoustical investigations and comprises 19 contributions from 30 authors, each an expert in his field of research. A general introduction to the subject is followed by descriptions of the theoretical background of acoustics and of LES. A chapter on hybrid RANS–LES for acoustic source predictions follows. More details are given for numerical methods, such as discretization schemes, boundary conditions, and coupling aspects. Numerous applications are discussed ranging from simple geometries for mixing layers and jet flows to complex wing or car geometries. The selected applications deal with recent scientific investigations at universities and research institutes as well as applied studies at industrial companies. Side areas of LES for acoustics are addressed in a contribution on vibroacoustics.

The book is a collection of different methods, tools, and evaluation methodologies. Currently it is not possible to offer a perfect solution methodology that generally covers all possible applications. Although interesting results of several commercial codes are presented, a recommendation for any specific solver cannot be made because a benchmark of the codes has not been established and several other codes have not been considered yet. Each method, both scientific and commercial, has its individual advantages and weaknesses. It was also not our intention to harmonize the definitions

XXVI PREFACE

and conventions in acoustics and LES computing. Therefore, the same nomenclature is not used by all authors.

The book is intended to be used by students, researchers, engineers, and code developers willing to become more familiar with the use of the LES technique for acoustical studies. The limitations of the method have been outlined as well as its requirements. The reader should acquire an impression of possible and appropriate applications for this methodology. The editors would welcome any initiatives motivated by this book for international cooperation in the development or application of LES for acoustics.

The idea for this book came from Eric Willner, the former commissioning editor for engineering at Cambridge University Press, when he read the first call for papers for the International Workshop on LES for Acoustics organized by Thomas Hüttl, Claus Wagner, and Jan Delfs in Göttingen, 2002.* At this time, Cambridge University Press was actively seeking a book on LES for acoustics for its aerospace series. Thomas Hüttl and Claus Wagner agreed to edit a scientific book based on the contributions of the workshop in Göttingen. Several speakers and participants of the workshop and other experts promised to contribute to the book, which was conceived as more of a scientific handbook than a simple workshop proceedings. Pierre Sagaut separately developed the idea of a book on LES for acoustics and joined the team of editors.

The book would not exist without the contributions from each of the authors. The editors are not only grateful for these contributions but also for valuable review comments from several authors during two book reviews as well as interesting scientific discussions of review comments and proposals. We would also like to thank Peter Gordon, Senior Editor of Engineering at Cambridge University Press, for his help in preparing the book but also for enthusiasm, patience, and confidence during the last 2 years when the progress of the book was sometimes slow but never stopped.

Thomas Hüttl gratefully acknowledges the advice and comments of MTU Aero Engines aeroacoustics specialist Fritz Kennepohl, who introduced him to the secrets of acoustics during the TurboNoiseCFD research project.

Pierre Sagaut, Thomas Hüttl, and Claus Wagner Europe, May 2006

* International ERCOFTAC-DGLR-DLR-Workshop on LES for Acoustics organized by T. Hüttl, C. Wagner and J. Delfs, German Aerospace Center (DLR), Göttingen, Germany, 7–8 October 2002.

LARGE-EDDY SIMULATION FOR ACOUSTICS