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Abstract

An acoustic analogy combining Linearized Euler’s
Equations (LEE) as wave operator with suitable source
terms is investigated to predict aerodynamic noise. The
validity of this hybrid approach is evaluated by compar-
ison with the acoustic far field provided directly by solv-
ing the Navier-Stokes equations. The method is applied
to the case of two co-rotative vortices first in a medium
at rest and second in a shear flow. Then, the noise gen-
erated by vortex pairings in a mixing layer is studied.
A simplified formulation of LEE is proposed to prevent
the exponential development of instability waves. The
acoustic far ficld obtained by solving LEE is in good
agreement with the solution given by direct calenlation.

1. Introduction

Recent achievements of Computational AeroA-
coustics {CAA) to predict aerodynamic noise are
based on the direct calculation of the acoustic field
by solving compressible Navier-Stokes equations.
Freund! has thus carried on the work of the Stanford
group with a Direct Numnerical Simulation {DNS) of
a Mach 0.9 jet with a Reynolds number Rep = 3600.
Direct computation of the noise radiated by a sub-
sonic 3-D jet remains however difficult, because of
the large computing ressources required, and also be-
cause of numerical issues of CAA, In DNS, all turbu-
lence scales, namely from the integral length scale to
Kolmogorov's scale, are to be described. Colonius?
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has estimated the cost of a DNS of a subsonic turbu-
lent flow providing both aerodynamic and acoustic
fields. The total cost of an efficient numerical algo-
rithm is proportional to Rel,/M?, where M is the
mean flow Mach number. In the same manner, the
cost of a direct acoustic calculation using a Large
Eddy Simulation (LES) is proportional to Re%, /M?*,
assuming that the size of the resolved smallest eddies
is given by the Taylor length scale. In that way, Bo-
gey®* ¢t al. have performed a direct calculation of
the noise radiated by a Mach (.9 jet with a Reynolds
number Rep = 6.5 x 104,

Direct noise calculation for flows of practical in-
terest, i.e. at high Reynolds number and usually at
moderate Mach number, is quite expensive. In many
engineering problems, only the time-dependent near
aerodynamic field can be determined. An alterna-
tive to direct acoustic calculation consists in sep-
arating sound generation and sound propagation.
Among the first hybrid methods, the most famous
was proposed by Lighthill® He derived a simple
wave equation from the conservation laws of mo-
ticn. The acoustic field is then obtained by solving
a classical wave equation in which the source term is
written as function of the aerodynamic field. A diffi-
culty of Lighthill’s analogy is to interpret the scurce
term in which mean flow effects on the propagation
are included.® Therefore, to account for all these
effects, Lighthill’s analogy requires a source volume
containing all acoustic - flow interactions, and not
only the turbulent region. With this aim in view,
the velocity field used to built up source terms must
be compressible.

A third-order wave operator was developped by
Lilley? and Pridmore-Brown® to describe exactly
acoustic propagation in unidirectional sheared mean
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fHows. The associated source term is mainly a non-
lingar function of the aerodynamic fluctuating ve-
locity field. Many studies have been devoted to the
resolution of Lillev’s equation, analvticallv® or by
using geometrical methods.'? A time resolution can
also be performed by transforming Lilley’s equation
mto a system of first-order equations. By this way,
Borman & Ramos!! have calculated the radiation of
a monopolar source in o jet mean How provided by a
k — e closure. This idea was developed by Béchara'®
et al. with an approach based on Lincarized Eu-
ler’s Equations (LEE) accounting for refraction and
convection effects in any sheared mean flows. In
this approach, a source term is added into the right-
hand side of LEE, and is built up from a synthe-
sized turbulent field. The source term expression
and the construction of a stochastic space-time tur-
bulent field were improved later! and extended to
3-D geometries. !9

The primary ohjective of this paper is to show
that an acoustic analogy combining LEE with the
source terms defined in Bailly'? et al., is able to pre-
dict aerodynamic noise. The validity of this hybrid
approach is checked as follows. At first, a reference
solution of the acoustic far-field is determined di-
rectly from Navier-Stokes cquations. The aerody-
namic field of this simulation is also used to built
up the source terms introduced into LEE, and to
estimate the mean fow. Finally, the acoustic field
obtained by solving LEE is compared to the refer-
ence solution. LEE support acoustic disturbances as
well as vortical and cotropic disturbances. In par-
ticular, the acoustic mode and the vorticity mode
are not decoupled when the mean How is no longer
As a result, physical growing instability
waves are excited by the source terms. We propose
to remove this coupling by considering a simplified
formulation of LEE, without significant effects on
noise propagation.

In section 2, we introduce the formulation of the
source terms in 2-D LEE. Next three building block
problems are eonsidered. Sound field generated by
two co-rotative vortices in a medium at rest is stud-

uniform.

ied in section 3. In section 4, the same problem is
investigated in the prescnce of a sheared mean flow
with zero convection velocity. By this way, develop-
ment of instability waves is neutralized. The noise
generated by a mixing layer is then investigated in
section 5. Influence of some quantities such as the
mean value of source terms, and the removal of insta-
bility waves are also discussed. Definition of source

2
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terms in LEE, and connection with Lilley’s equation
is given in Appendix A. A validation of simplified
LEE is shown in appendix B using the mean flow of
the mixing layer.

2. Hybrid method based on LEE
2.1 Formulation

Consider small perturbations around a steady
mean flow with density g, velocity a = (u;,1u2) and
pressure . These perturbations are governed by
Linearized Euler’s Equations:

ou , oF
at 8LE1

JF
(93:2

+H=S5 (1)
where U = [pf, pu}, pub, ')’ is the unknown vector,
The prime denotes the perturbation variable. Ex-
pressions of vectors E, F and H arc given in ap-
pendix A, and S represents a possible source term.
The two notations z; = x and z, = y will be equiv-
alent in this work.

In the present hybrid approach, generation is
provided by source terms in the momentum equa-

tions of LEE written as!'®
s—[0.5 -8 -5l.s,=5/ 5.0
where

The reasoning and assumptions behind this ex-
pression are explained in appendix A, The source
term 87 is non-linear in velocity Huctuations, and
its mean value is substracted. Density is provided
by the acrodynamic calculation. The acoustic ficld
is included in the source term, through density and
Huctuating velocity, but this acoustic component is
negligible compared to acrodynamic fluctuations.

For the three applications presented in sections
3 to 5, the Navier-Stokes equations are solved us-
ing the ALEsia code to obtain the acoustic far field.
This reference solution will be compared to the re-
sult. given by LEE forced with source terms (2).
The near acrodynamic field is also used to build up
these source terms, and to estinate the mean ve-
locity ficld. LEE are then solved using the SPRINT
code. The two solvers are briefly described in the
next subsections.
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2.2 Flow simulation: ALESIA

A 2D and 3-D Large Eddy Simulation code -
ALesia for Appropriate Large Eddy Slmulation for
Acroacoustics - has been developed.® Large Eddy
Simulation {LES) is an alternative to Direct Nu-
merical Simulation {(DNS) for computing Hows at
higher Reynolds number.  Only the larger struc-
tures are resolved, and the effects of the smaller
scales are taken into account via the Smagorinsky
subgrid scale model. Filtered Navier-Stokes equa-
tions are solved in a conservative form on a carte-
sian prid. The space derivatives are discretized with
the DRP scheme of Tam & Webb,'® and the time
integration is performed by a fourth-order Runge-
Kutta algorithn. Great care is taken in order to ex-
ploit dircctly the calculated acoustic field. The non-
reflocting boundary conditions of Tam & Dong,'”
based on the asymptotic expression of Euler’s equa-
tions in far field, are implemented. Outflow bouund-
ary conditions combined with a sponge zone are used
to allow the exit of vortical structures. More details
can be found in Bogey™®'® et al. ALRSIA can also be
run without, turbulence modelling to performe DNS.

2.3 Resolution of LEE: SPRINT

A 2-D and 3-D LEE solver - SPRINT for Sound
PRapagation IN mean turbulent Turbulent flows -
has been built using CAA techniques.!® An out-
line of the numerical procedure is given below. LEE
are solved using the DRP scheme of Tam & Webb?!®
to evaluase spatial derivatives. The solution is ad-
vanced i time with a fourth-order Runge-Kutta in-
tegration. The radiation and outflow boundary con-
ditions arc based on an asymptotic formulation of
LEE.' A sponge zone is needed when linear insta-
bility waves are convected by the sheared mcan flow
to dissipate acrodynamic fluctuations and to avoid
reflactions to be produced at the outflow boundary
condition.

3. Sound field generated by two co-rotative
vortices in a medium at rest

3.1 Flow simulation

In this first application, we consider the noise
generated by two co-rotating vortices in a medium
at rest. The initial tangential velocity distribution
of cach vortex is given by??

I'r

)
<

3

(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Te

o

o

Figure 1: Sketch of the two co-rotative vortices.

where r is the radial distance from the vortex center,
r. 15 the core radius, and T is the circulation. The
two vortices are scparated by a distance 2rg, as il-
lustrated in Figure 1. The angular frequency of the
whole swirling flow is*! w = 27 f = [/(dmrg), the
period is T = 87%r3/I and the co-rotating Mach
number is M, = T/(dargee). In this study, the
Mach number based on the maximum tangential ve-
locity Voo = Tf{dnre) is M = 0.5, v frg = 2/9,
M, = 1/9 and the Reynolds number is Re = I'/r =
1.4 x 109, «

The acoustic field is calculated directly by a Di-
rect Numerical Simulation using the AvLesia code
without turbulence modelling. The square computa-
tional mesh has 281 x 281 points with a regular step
size & = /18 for the first thirty points in each di-
rection from the center, and extends to 104r,. The
time step is At = 0.8A/¢p which gives a rotating
period T ~ 1272At. The acoustic source associated
with the two vortices is a rotating quadrupole,®!
and the acoustic frequency is f, = 2 x f because
of the source symmetry. The mesh is stretched so
that at least 7 points are in the accustic wavelength
Ao = 28.3rg. The simulation runs for 12 x 109 iter-
ations.

After a trausient period, an acoustic radiation at
the frequency f, is observed during about six periods
T of rotation. Then, the two vortices begin to merge
with an increase of the amplitude and frequency of
the acoustic signal. A peak in amplitude is reached

Armerican Institute of Acronautics and Astronautics



Figure 2. Snapshot of the near field vorticity sur-
rounded by 7 iso-contours of the dilatation field de-
fined from & s~! to 56 s~} with constant increinent.
positive values, — — — negative values.

when the two vortices coalesce and the amplitude di-
minishes significantly after merger. The description
of the vortex pairing is not shown in this paper.?
A snapshot of the necar field dilatation ©@ = V.u is
displayed in Figure 2. The dilatation is directly con-
nected to the acoustic pressure time derivative in a
medium at rest by © = —(1/pgc?)dp/8t. The use of
the dilatation as acoustic variable allows to get rid of
the low-frequency small drift of the mean pressurc
field.?? There is actually no pressure drift in this
first application but we will use anyway dilatation to
represent acoustic fields. The typical double-spiral
pattern of a rotating quadrupolar source is obtained
as shown analytically by Powell,2! and numecrically
by Lee?® et al. and Mitchell®® et al.

3.2 Application of LEE

Aerodynamib fluctuations provided by the DNS
are now used to build up the source terms (2). They
are recorded every At, from ¢ = 2000A¢ to 6000A¢,
on a square domain of size 9.5rp corresponding to a
121 x 121 grid. The source domain is large enough
to avoid significant truncation of the source terms.
Their amplitudes on the boundaries are less than 1%
of their maximum amplitude reached in the domain.
Linearized Euler’s Equations (1) are then solved on
the same mesh than the previous DNS, and with
the same time step since the numerical algorithms
are identical.

4
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Figure 3: Representation of the dilatation field com-
puted by solving LEE with source term (2) at time
t = 6000A¢t. Levels are given from -15 to 15 571,

The dilatation field predicted by LEE is pre-
sented in Figure 3, and is in good agreement with
the reference solution.® To provide a more quan-
titative comparison, dilatation profiles obtained by
solving LEE and from the DNS are compared in Fig-
ure 4. The same result would be obtained by apply-
ing Lighthill’s analogy since there is no mean flow.
This simple example shows that the acoustic anal-
ogy based on LEE with the source term (2) is able
to provide correctly the radiated acoustic field.

4. Sound field generated by two co-rotative
vortices in a sheared mean flow

4.1 Flow simulation

We still consider the case of two co-rotatives vor-
tices represented in Figure 1, but they are now placed
in a sheared flow with a zero convection velocity,
as illustrated in Figure 5. The following hyperbolic
tangent profile is chosen:

(3)

with AV = 0.125¢y. The vorticity thickness is taken
as 4, = 4rg, where 7o is half the distance between
the two vortices. Mean density and mean pressurc
are constant. The acoustic reference solution is again
calculated directly by DNS. The middle part of the
DNS mesh of section 3.1 is used to obtain a carte-
sian grid of 251 x 251 points which extends to 55rg
in each direction.

uy {y) = AU tanh (2y/4,.)

American Institute of Aeronautics and Astronautics
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) _ ‘ ‘ . Figure 6: Dilatation field at time ¢t = 2500A¢t, ra-

Figure 4:. Dilatation proﬁles_ obtained along line diated by co-rotatives vortices placed in a sheared

r=y with z > 0 and at time ¢ = 6000A¢, by o) dow with a zero convection velocity. DNS re-
solving LEE with source term (2) — — — and from sult. Levels of dilatation from -50 to 50 s~1_

the DNS . Levels arc given in 7!,

After a numerical transient, the merging process
can be described in the three usual steps. The two
vortices begin to roll around each other, then the two
cores coalesce with production of vorticity filaments,
and a final circular vortex is formed. In our config-
uration, however, the rotation of the mean flow is
added to the rotation induced by the two spinning
vortices. Thus, the period of rotation is smaller,

AU T =~ 750At, corresponding to an acoustic wavelength
of A, = 16.7r9. Moreover, there are only three pe-
riods of rotation before merger. The dilatation field
obtained by DNS at time ¢ = 2500At is shown in
Figure 6. The dilatation variable is related to the

O acoustic pressure by:

. 1 Op ap)
9= " poc? (5t iAU@m

~AU for the upper stream and lower stream respectively.
In comparison with Figure 4, wave fronts are oval-
ized due to mean flow convection effects. There are
also refraction effects, but they are not important
since the shear-layer vorticity thickness 4rg is small
with respect to the acoustic wavelength A,.

Figure 5: Sketch of the sheared flow with a zero
convection velocity. The two flow velocities are 4.2 Application of LEE

+AU = +0.125¢p and the vorticity thickness is
5, = drg Source terms are recorded every At between t =
W = 4rp.

200At and t = 2500A¢ on the same square domain
as in section 3.2. LEE are solved by using the ana-
Iytic mean velocity profile (3). The transverse mean

5
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Figure 7: Dilatation field at time t = 25004¢, radi-
ated by co-rotatives vortices placed in a sheared flow
with a zero convection velocity. LEE result. Levels

of dilatation are given from -50 to 50 s~!.
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dfr,
Figure 8 Dilatation profiles obtained by solving
LEE with source term (2) — — — | by solving LEE
without mean fltow —-—- | and from the DNS
Profiles are taken along line x = y with
x> 0 and at time t = 2500At, d = /2 + %% and

levels are given in s—1.
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Figure 9: Sketch of the mixing layer.

velocity is zero while mean pressure and density are
taken to be constant, with the same values used to
initialize the DNS. Figure 7 shows the dilatation field
predicted by LEE. This result is consistent with the
DNS field displayed in Figure 6. No instability wave
is ohserved since the shear flow has no convection
velocity.

Dilatation profile along a diagonal line of the
computational domain is plotted in Figure 8. It is
in very good agreement with the DNS profile. Im-
portance of mean flow effets can be underlined by
solving LEE without mean velocity field, by setting
ug = 0. This point is clearly illustrated with the
corresponding dilatation profile shown in Figure 8.

5. Sound field generated by a mixing layer
5.1 Flow simulation

In this last application, the noise generated by a
subsonic mixing layer between two flows at U7 = 40
and Us; = 160 m.s~! is investigated. The inflow
hyperbolic tangente profile is given by:

()

where 4,(0) is the initial vorticity thickness. Omne
also defines the convection velocity as U, = (Uy +
Uz)/2 =100 m.s™! and the Reynolds number Re =
Uy /v = 12800. The flow is forced at its funda-
mental frequency fy and its first subharmonic fo/2
i order to fix the location of vortex pairings around
x =~ 704,,(0) in the mixing tayer. The acoustic field
is calculated directly by a Large Eddy Simulation

_U1+U2 U, -t
T2 2

u; (y)
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Figure 11: Mean axial velocity contours in the near

field region provided by the LES. Contour levels: 44,
Y 52, 68,100, 132, 148, 156 m.s~.
100 '

time steps during the last 5400 iterations of the LES,

— corresponding to 16 pairing periods. By this way,
83 0 Atrge = 24ty s and, space or time interpolations
w | of source terms are avoided. The mean velocity field
- is provided by the LES whercas mean density and
e pressure are constant. Figure 11 displays the mean

-100 4 |/ axial velocity contours in the shear flow region, and

shows clearly the location of vortex pairings around
. Jﬂ z =~ 704,.(0) with a doubling of the shear-layer thick-

[ess.
- d Growing instability waves can be excited by sour-
-200 v ce terms in LEE through the mean shear 0t,/0z,
e in the vector H, sce appendix A. In order to pre-
“ﬂ vent the development, of linear instability waves, we

— set H = 0. The reader is referred to appendix B
_ | . N . . .
3000 100 200 for a discussion of this assumption. A test case is
Wi (0 also performed to show acoustic propagation is not

W

modified significantly. This simplified formulation
Figure 10: Dilatation field obtained by LES on the  ©f LEE allows to consider only the acoustic mode.

whole physical computational domain. Levels are Three particular points are now investigated.

given from -1.6 to 16 57 Contribution of the average of source terms

The source term (2) can be decomposed as S =
S/ — 8/, Figure 12 represents the contribution of
the average S/ of the source terms S¢ in the pres-
sure fleld. To solve LEE, the mean velocity field is
taken as zero in this paragraph. Figure 13 shows
the radial pressure profiles associated with the three
source terms S, 87 and Sf. To understand thesc
curves, we consider the following basic problem of
an incompressible acrodynamic field. The incom-
pressible pressure induced by a solenoidal velocity
field u, is defined by the relation:

using the ALESIA code. All the details of the simnula-
tion as well as acoustic results and comparisons with
Lighthill’s analogy can be found in Bogey®'® et al.
The dilatation field is displayed in Figure 10 on the
whole physical computational domain. Wave fronts
arc observed coming from the location of pairings
with an acoustic wavelength Ay, = 51.56,(0), cor-
responding to the frequency of pairings f, = fo/2.
Convection effects are visible and are well marked in
the downstream direction for the upper flow,

r s
5.2 Application of LEE ) 1 0 putus dy

- Paxj=s = | o

I'he source volume extends from &4,(0) to 2335 dm Jyv Ouidy; Y Ix - y!

(—L(U) m‘t.he axial dlrectlonf an('l from —506,(0) to in 3-D, and:
508,(0) in the transversal direction. The mesh used
in the source region is coarser since only cvery two s 1 9 1 s s 1

. ‘1 : ; =5\ pujuidy ~ O | —
points of the LES grid in the two coordinate direc- Am O 0wy \ @ 4 z3

tions is kept. Source terms are recorded cvery two
as © — oo. The pressure p* decreases faster than

7
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Figure 12: Contribution of the average Sf in the
pressure fleld p — pg, calculated hy LEE. ,
5 positive iso-contours of pressure from 0.5 to 8 Pa,
, negative iso-contours. The mean velocity
field is taken as zero.

acoustic waves, and we have a similar result in 2-D
with p* ~ 1/z% Thus, to get the correct radiated
acoustic pressure in the near field region, it is rec-
ommended to substract the time-average of source
terms in LEE.

Inappropriate formulation of the source term

The source term introduced in LEE must be de-
termined from the fluctuating velocity field, and not
from the instantaneous velocity field provided by
LES. In this last case, the source term

gt = Opusu; : dpuiu;
1
Bitj Ba:j
_ Opiiu N dpuli; N Dpu _ dpuiuf
ij ij 8Ij 8.!'}
s

i

contains a linear contribution in velocity fluctua-
tions. The acoustic analogy based on LEE is de-
veloped precisely to eliminate the ambiguous inter-
pretation of this kind of terms. Figure 14 shows
the pressure field provided by LEE using the source
term 8¢ Mean flow effects, and more specially re-
fraction effects are clearly overestimated, as shown

(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

p(Pa)

-15
50 100 150 200 250 300
x/& (0)
w
Figure 13: Pressure profile at x = 908,,(0) by solving
LEE: source term S, — — — source term
sf ... contribution of the source term 8.

-300 !
-i00 0 100 200 300 400
X/ (0)

Figure 14: Dilatation field obtained by solving LEE
with an inappropriate formulation of the source
terms, 8 = Sf. Levels are given from -1.6 to 1.6
-1
s
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Figure 15: Representation of the dilatation field, (a)
from LEE with the source term (2), {b) from LES.
Levels are given from -1.6 to 1.6 s71.

by comparison with the DNS result of Figure 10.

Simplified formulation of LEE

LEE are now solved with the source term given
by expression (2}, and the calculated dilatation field
is compared with the LES result in Figure 15. Re-
call that the mean velocity field provided by the LES
is used to linearize Euler’s equations, and that the
term H is cancelled. The two acoustic fields are con-
sistent, and this point is made clear in Figure 16 by
comparison with corresponding dilatation profiles.
The two profiles are in excellent agreement in am-
plitude and in phase, except in the source region
where the acoustic field is greatly dominated by the
aerodynamic field. The importance of mean flow ef-
fects is shown in Figure 17. LEE are solved using the
source term (2}, without mean velocity field in the
case (a), and with the mean velocity field in the case
{b). Mean flow effects strongly affect the radiated
field. '

6. Concluding remarks

In this study, we show that an acoustic analogy
based on Linearized Euler’s Equations is able to pro-
vide aerodynamic noise, accounting for the major
part of mean flow effects. The expression of term
sources is validated without using ad hoc assump-
tions since the aerodynamic velocity field as well

(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)" Sponsoring Organization.
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Figure 16: Radial dilatation profiles at the pair-
ing location & = 708,(0). — — — from LEE with
source term (2}, from LES, reference solu-

tion.
300 (fi_‘_h\_ : 300 _-___(E_
g —_— —
H :...%‘\‘\:x —
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Figure 17: Representation of the dilatation field
from LEE: (a) without taking account for mean flow
effects by setting @; = itz = 0, (b) with the mean
flow effects. Levels are given from -1.6 to 1.6 s™1.

as the reference acoustic far field are given directly
by solving the compressible Navier-Stokes equations.
Growing instability waves are removed by consider-
ing a simplified formulation of LEE, in which the
mean shear term corresponding to the second deriva-
tive of the velocity profile in Rayleigh’s stability equa-
tion is cancelled. Further studies are needed in the
case of high-frequency radiation to evaluate the part
of refraction effects taken into account by the sim-
plified wave operator, and to analyse the associated
stability equation. These results support also previ-
ous works developed by one of the authors.'3
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Appendix A: Wave equation from LEE

The three vectors E, F and H of Linearized Eu-
ler’s Equations (1) are given respectively by:
pliy + pu.
g pu)

Pl + iy
i puy + 1/

E= = F= P | 1
U] Py UpPlig + P
i p + yiu) iiap’ + Py
and
0
on ai
(P + p'T) 5+ (e + ') |
H= € Lo
ai_f":' 6”&’)
(puy + p'i) E)_.r- + (P + p'la) e

(v — l)p’V.lli —(y-1u.Vp

The term H is zero for an uniform mean flow
field. A part of the refraction effects can be at-
tributed to H.

In order to derive a wave equation on the pres-
sure fluctuation p’ including all acoustic - mean flow
interactions, LEE must be combined 1o eliminate
all the terms involving velocity fluctuations. By
this way, the simplest nontrivial differential equa-
tion for the pressure is obtained in the case of a
strictly parallel mean flow, 1.e. & = @ (z2) and
iz = 0. Since the steady mean flow satisfies Euler’s
equations, the mean pressure is necessarily constant
with § = pg, whereas the mean density and speed
of sound are only function of the transverse coor-
dinate zs, 7 = g{z2) and & = &(xs). Moreover en-
tropy Huctuations are siluply convected by the mean
How without production, and if we assume s' = 0 at
a given time, then p’ = £p'. Applying the con-
veelive derivative based on the mean flow velocity
D/Dt = 8/8t + ©,0/0x, to the continuity equa-
tion, taking the divergence of the momentum equa-
tion, and substracting the two expressions lead to
Phillips® wave equation:

szr
Dt
To climinate the linear term in wh, the operator

D/ Dt is applied again to the transverse momentum
equation. Thus, one finds:

4 duly dit
B VP Y bt S R
drq dxs

D [1 D% . di, &%
— 5= -V |+2——5—=A (5
Dt {(:‘2 D¢ p] (1.:13-3 6:1:169:2 ! (d)
where the source term is:
D dl_-‘.l 052
A=-—=VS+2——
Dt day Oaq
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Equation (3) derived from LEE, corresponds ex-
actly to the simplified formulation of Lilley’s equa-
tion” obtained for a unidirectional sheared mean flow.
An unambiguous interpretation of Lilley’s wave equa-
tion can be provided orly in this case.®' Then the
source term 8 must be written as

— 2 ta! - 2 gt gt
D &' puin di, 9" pus

A=——"" —
Dt Ox;dx; des 0wy (6)
by choosing S; = —dpuju’/dr; to closely follow

Lilley’s equation. The source term A contains two
parts. The first one corresponds to the convection
by the mean How of V.8 when the second one is
connected to the mean velocity shear. But the “self-
noise” term and the ¥shear-noise” term in Lilley’s
equation are quadratic in velocity fluctuations, which
is not the case in Lighthill’s analogy.

Appendix B: Simplified wave operator
based on LEE

Source terms in LEE excite growing instability
waves in sheared flows.  Instability waves are in-
deed governed by the homogeneous linearized Eu-
ler equations (1). For a strictly parallel mean flow
ity = @y (x2), and assuming incompressible pertur-
bations to keep the problem as simple as possible,
Rayleigh’s stability equation is given by:

\ 2.5 25
(al _ ’t) [d Y2 _ kﬁag] - df‘f,l fia=0 (7)

k dz} dir

where the transverse velocity ), corresponds to the
real part of Gy (@) exp [ (ke — wt)}. The incompress-
ibility assumption atlows to write the same equation
for the stream function 4 since i, = —ik¢ where
¢ = ¢ (w2) exp [i (ko —wt}]. For spatial instability
analysis, the axial wavenumber k = &, + tk; is com-
plex whereas the angular frequency w is real. Thus,
perturbations are unstable when the imaginary part
of the wavenumber is negative, i.e. k; < 0.

The siinplified wave operator used in section 5 is
obtained by cancelling the vector H, which writes
a8 [ﬂ,ﬁufzdﬁl/dml,ﬂ,ﬂ]t for a strictly parallel mean
flow. The new stability equation corresponding to
this simplified operator can be written as:

W dzﬂz 2 d’l_tl (fﬁg
- - — k| +5—5—=0 8
( ! k) [dm% 2 dxy iy (8)
and the homogeneous wave equation associated with
equation (5) is:
D [1 D%
Dt

diay, 0% —A ()

dus Hu,0cy

s = — VP |+
& Di? p]
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Note that ¢he second derivative of the mean ve- (@) )
locity #s which plays a crucial role in Rayleigh’s 300 . :
equation {7) with the inflexion point theorem, does
not appear in (8). The consequence for acoustic
propagation is that the refraction term proportional 20

10

'

to dity /dzo differs from a factor 2 with respect to

Lilley’s equation (5).
Consider now the response of LEE to time-harmo-

0 |
nic forcing of the mixing layer mean flow studied in /
section 5. The mean axial velocity is expressed as: / i :.7 pre
st S
i) = 22 BB (2) g 1K @ / @bﬁm

~.-

‘\

g
g '
2 2 Oy >
where the vorticity thickness is taken as: I N
-100 1

8, (z) = 6,(0) [g + %tanh (“” ;070)}

. . -Z200
to fit the LES result shown in Figure 11. The vector
S represents a monopolar source:
S = esin(wt) e~ (zi+e3) [1/c3,0,0, l]t -306 - . ! .
100 2000 100 200
) /5, (0)

with the same angular frequency w = 27 f, as the

vortex pairing frequency, and located at f = 704,(0). Figure 18: (a) Pressure field from LEE with H = 0,
The amplitude of the source is € = 107", The value levels from —5 x 1079 to 5 x 10-5. (b) Difference

. - 2 . s
of the coefficient s In2/b° with a hfrilf’Mdth of between pressure fields from LEE with H = 0 and
b=3x A, astep size of A = 0.245,(0) in the shear ) . .
. | from full LEE. Contour levels: — — — [1.;2.;4.] x
region and a mesh of 651 x 501 points. The pres- 10-7 [1.6;3.2;6.4] x 1078
sure field obtained by solving LEE with H = 0 is ’ o '

represented in Figure 18(a), and the difference with

the pressure field given by a full resolution of LEE < 107
is plotted in Figure 18(b). As expected, instabil- 5 '
ity waves are created and convected in the down- a
stream direction. However the resulting error for 3]
the acoustic field is small, since refraction effects are
limited in our case where the acoustic wavelength 21
A = 51.58,{0) is much larger than the shear layer 11
thickness. Radial pressure profiles are compared in a ol
Figure 19, and confirm more quantitatively this re-
sult. -1 I
-2 4
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