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Abstract

Explicit numerical methods for spatial derivation, �lter-

ing and time integration are proposed. They are de-

veloped with the aim of computing directly the aerody-

namic noise, but they are not limited to this application.

All the methods are constructed in the same way by min-

imizing the dispersion and the dissipation errors in the

wave number space up to k�x=�=2. They are shown

to be more accurate, and also more eÆcient numerically,

than most of the standard explicit high-order methods.

Two problems involving long-range sound propagation

are resolved to illustrate their respective precisions.

1. Introduction

The need of highly accurate numerical methods
was recognized from the earliest stages in the devel-
opment of computational aeroacoustics.1 The prop-
agation of sound waves in far-�eld requires long-time
integration with minimal dissipation and dispersion.
This can not be done using the low-order schemes
generally used in computational 
uid dynamics, and
therefore new schemes were proposed. All methods
for solving the compressible 
ow equations with ac-
curacy and eÆciency were considered. The �rst ones
were relative to the spatial derivation with �nite-
di�erence schemes showing dispersive properties op-
timized in the wavenumber space: among them, the
explicit Dispersion-Relation-Preserving (DRP),2 im-
plicit compact,3{6 and ENO schemes.7 The �ltering
which must be used to ensure numerical stability
was then improved to decrease the dissipative e�ects

�Copyright @ 2002 by the Authors. Published by the

American Institute of Aeronautics and Astronautics, Inc.,

with permission.
yResearch scientist CNRS, Member AIAA, email: chris-

tophe.bogey@ec-lyon.fr
zAssistant Professor, Member AIAA, email: christop-

he.bailly@ec-lyon.fr

on the resolved wave numbers, and both explicit8,9

and implicit �lters3,10 were provided. Finally, time
integration was also optimized for noise computa-
tion, and low-dissipation and low-dispersion Adams-
Bashforth2 and Runge-Kutta algorithms4,11{13 were
formulated. The list just drawn above is not exhaus-
tive, and other numerical methods were improved,
such as, for instance, the MacCormack schemes.14

The present work is in keeping up with the more
general pattern of computing noise directly from the
unsteady compressible Navier-Stokes equations. Th-
is approach is very attractive, since both the 
ow
and the sound �eld are intended to be calculated
with a high precision by the same computation. In
this way, not only the sound propagation, but also
the noise generation must be taken into account nu-
merically, and the turbulent 
ow must especially be
correctly described to provide the physical acoustic
sources. This issue is of great importance using the
Large Eddy Simulation (LES) approach, where the
turbulent scales are calculated up to the grid cut-
o� wavenumber, whereas e�ects of the unresolved
scales are modelized.15 Application of LES for noise
computation is promising,16,17 but it is still to be in-
vestigated very carefully for high Reynolds number

ows. It is actually necessary that the numerical al-
gorithm accounts for the spectral cut-o� properly,18

by introducing negligible dissipation and dispersion
on the resolved scales. This requirement is even
more acute with the modellings based on dynamic
procedures,19 evaluating the subgrid terms from the
smaller resolved scales. It has been demonstrated
recently that numerical errors can exceed the mag-
nitude of the subgrid terms,20 and that a poor calcu-
lation of the smaller scales can modify signi�cantly
the contribution of these terms.21 Thus, the use of
accurate schemes is crucial as much for the 
ow sim-
ulation as for the sound propagation itself.

The motivation of the present work is to pro-
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vide the numerical methods necessary for an ex-
plicit algorithm, following the requirements listed
above. Schemes are developed in the same way as
those speci�c to computational aeroacoustics. How-
ever, instead of demanding an accuracy limit for
about seven points per wavelength such as the DRP
scheme,2 the spatial-discretizationmethods must cal-
culate the waves up to four points per wavelength
with the aim of dynamic LES. The time-integration
methods must also have better stability properties
than those found in the literature.4,11,12 Thus, cen-
tral �nite-di�erence schemes for spatial-derivation,
selective �lters for removing grid-to-grid oscillations,
and low-storage Runge-Kutta algorithms for time
advancement are optimized by minimizing their dis-
persion and dissipation errors for the same range of
wave numbers. Test �lters with characteristics im-
proved in the wavenumber space are also proposed
for LES. Great attention is drawn to develop meth-
ods with a high accuracy, but also with a high nu-
merical eÆciency to decrease their computational
costs. Systematic comparisons to standard explicit
methods are used, and two basic problems are pro-
posed. The �rst one is a long-range propagation
problem, and the second one is devoted to LES since
waves with four points per wavelength are involved.

Optimized �nite-di�erence schemes, selective �l-
ters, low-storage Runge-Kutta algorithms and test
�lters are presented in sections 2, 3, 4 and 5 re-
spectively. Dispersive and dissipative properties are
shown, and both numerical accuracy and eÆciency
are discussed. In section 6, the test problems are
solved using the optimized and standard methods.
Concluding remarks are given in section 7. Finally,
coeÆcients of the optimized schemes are provided in
the appendices A, B, C and D.

2. Finite-di�erence schemes for spatial

derivation

The spatial derivative @u=@x at x0 can be ap-
proximated by a central, 2N+1 point stencil, �nite-
di�erence scheme as

@u

@x
(x0) =

1

�x

NX
j=�N

aju (x0 + j�x) (1)

where �x is the spacing of a uniform mesh, and
the coeÆcients aj are such as aj=�a�j , providing a
scheme with no dissipation.

For standard schemes, coeÆcients aj are deter-
mined to cancel the terms of the Taylor series of (1)
so that the maximum order is reached. Thus, stan-
dard schemes using 9, 11 and 13 points, hereafter

referred to as FDs9p, FDs11p and FDs13p, are of
order 8, 10 and 12 respectively.

In this work, following Tam & Webb,2 schemes
are constructed from their dispersion properties. By
applying spatial Fourier transform to (1), the e�ec-
tive wave number k? of the scheme is given by

k?�x = 2

NX
j=1

aj sin (jk�x)

The dispersion error is the di�erence between the
e�ective and the exact wave numbers, k? and k.

Finite-di�erence schemes using 9, 11 and 13 poi-
nts, referred to as FDo9p, FDo11p and FDo13p, are
developed so that the dispersion error is small for a
large range of wave numbers up to k�x=�=2. They
are fourth-order, and their coeÆcients aj are de�ned
to minimize the error de�ned by

Z ln(k�x)h

ln(k�x)l

jk?�x � k�xj d(ln(k�x))

where the limits are (k�x)l=�=16, and (k�x)h=�=2
for FDo9p and FDo11p, but 3�=5 for FDo13p. Co-
eÆcients are provided in Appendix A.

The relation between the e�ective and the ex-
act wave numbers for the three optimized schemes is
shown in Figure 1, for 0<k�x<�. Schemes are low
dispersive as long as there is a good superposition
with the line k?�x=k�x. Increasing the number
of points, from N=3 to N=6, allows apparently to
decrease the dispersion error for short waves. One
must also note that grid-to-grid waves with k�x=�
are not resolved by any schemes.

  0  π/4  π/2 3π/4   π 
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Figure 1: k?�x versus k�x for the optimized �nite-
di�erence schemes: FDo9p (N=4),
FDo11p (N=5), FDo13p (N=6); and
for the DRP scheme of Tam & Webb2 (N=3).
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The error between the e�ective and the exact
wave numbers, Ek (k�x)=jk?�x � k�xj =�, is rep-
resented in Figure 2 for �=8�k�x��, in logarith-
mic scales. Optimized schemes are less dispersive
than standard ones, for instance the FDs10p, for
short waves with about k�x>�=4. The reduction of
the error is particularly important for wave numbers
near k�x=�=2, with at least one order of magni-
tude between optimized and standard schemes. Op-
timized schemes are also more dispersive for long
waves but the dispersion error is then very small.
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Figure 2: Dispersion error in logarithmic scales, of:
FDo9p, FDo11p, FDo13p,

the standard scheme FDs11p.

To compare quantitatively the �nite-di�erence
schemes, two accuracy limits are estimated from the
arbitrary criteria Ek � 5� 10�4 and Ek � 5� 10�5.
The �rst limit indicates the maximum wave num-
ber properly calculated, and is expressed in term
of number of points per wavelength, by �p=�x. The
second one indicates the maximum wave number ac-
curatly calculated, and is given by �a=�x. They
are reported in Table 1 for the standard and opti-
mized schemes. For the same 2N+1 stencil, opti-
mized schemes have generally better accuracy limits
than standard ones. Furthermore, waves with about
4 points per wavelength are taken into account only
by FDo11p and FDo13p. For these two optimized
schemes, even short waves are very accuratly calcu-
lated since �a=�x'4.6.

The numerical eÆciency is now investigated thro-
ugh the product of the accuracy limits by the num-
ber of points 2N+1. This quantity, corresponding
to a ratio between computational cost and accuracy,
must be small. Values for the standard and opti-
mized schemes are given in Table 1. For the stan-
dard schemes, they are very similar showing that

cost and accuracy vary in the same proportion. The
optimized schemes, especially FDo11p and FDo13p,
appear to be more eÆcient. For the same computa-
tional cost, they are more precise than any standard
schemes.

�p=�x �a=�x p�p=�x p�a=�x
FDs9p 6.09 7.97 54.8 71.4
FDs11p 5.25 6.58 57.7 72.4
FDs13p 4.72 5.75 61.4 74.7
FDo9p 4.22 11.84 38 106.6
FDo11p 3.93 4.65 43.2 51.2
FDo13p 3.36 4.66 43.7 60.6

Table 1: Accuracy limits of the standard and optimized
FD schemes for N=4, 5, 6; and product by the number
of points p=2N+1 of the stencil. For comparison, with
the DRP scheme9: �p=�x=5.8 and �a=�x=13.1.

3. Selective �lters

Grid-to-grid oscillations are not solved by central
�nite-di�erence schemes, as illustrated in Figure 1,
and it is necessary to remove them because they can
lead to numerical instabilities. Practically, it is done
by introducing arti�cial dissipation through addi-
tional damping terms in the equations,22 or more
eÆciently, through �ltering.10,23 In the latter case,
selective �lters must be used to eliminate spurious
short waves without a�ecting the physical long waves.

Applying a central, 2N+1 point stencil �lter to
variable u on a uniform mesh provides

uf (x0) = u (x0)� �dDu (x0)

with Du (x0) =

NX
j=�N

dju (x0 + j�x) (2)

where coeÆcients dj are such as dj=d�j , ensuring
no dispersion, and �d is a constant between 0 and 1.

The standard approach18 for determining dj con-
sists in cancelling the terms resulting from the Tay-
lor series of (2) for k�x!0. In this way, standard
selective �lters using 9, 11 and 13 points, referred
to as SFs9p, SFs11p and SFs13p, are of order 8, 10
and 12 respectively.

To develop selective �lters in the present work
following the idea of Tam et al.,8,9 the spatial Fou-
rier transform of (2) is considered,

Dk (k�x) = d0 +

NX
j=1

2dj cos (jk�x) (3)
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where Dk(k�x=0)=0, and Dk(k�x=�)=1 for nor-
malization. This damping function Dk(k�x) shows
the amount of dissipation for any wave number.

Filters SFo9p, SFo11p and SFo13p, on 9, 11 and
13 points respectively, are built up by imposing small
values to Dk(k�x) in the range �=16�k�x��=2.
Filters SFo9p and SF13p are fourth-order and �lter
SFo11p second-order, and their coeÆcients dj are
optimized to minimize the integrated dissipation

Z ln(�=2)

ln(�=16)

Dk (k�x) d(ln(k�x))

Two conditions must also be met for 0<k�x<�: �l-
ters must be only dissipative with Dk>0, and to
limit variations of the damping function, we impose
@ ln(Dk)=@ ln(k�x)�-5 for SFo9p and SFo11p, and
@ ln(Dk)=@ ln(k�x)�-10 for SFo13p. CoeÆcients dj
are given in Appendix B.

The damping functions of the optimized �lters
are displayed in Figure 3. As expected, the dissipa-
tion is small for long waves and is signi�cant for the
wave numbers near k�x=�. Increasing the number
of points, from N=3 to 6, allows to construct more
selective, spectral-like �lters.
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Figure 3: Damping functions of the optimized selective
�lters: SFo9p (N=4), SFo11p (N=5),

SFo13p (N=6); and of the optimized �l-
ter proposed by Tam et al.

8 (N=3).

The damping functions of the optimized �lters
are also represented in logarithmic scales in Figure 4,
for �=8�k�x��, with the one of the standard �l-
ter SFs11p. Optimized �lters are less dissipative for
short waves with about k�x>�=4, the di�erence be-
ing considerable for k�x close to �=2. Because of
their second or fourth order, they are more dissipa-
tive for long waves but the amount of dissipation
remains very small.
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Figure 4: Damping functions in logarithmic scales, of:
SFo9p, SFo11p, SFo13p,

the standard �lter SFs11p.

The two criteria �dDk � 5 � 10�4 and �dDk �
5� 10�5 are now used to determine the wave num-
bers dissipated by the selective �lter in a small or in a
negligible way respectively. Since �ltering is applied
at every iteration, it is not necessary to set �d=1,
and values of �d between 0.1 and 0.2 are usually con-
venient for numerical stability. A value of �d=0.2 is
chosen in the present analysis, which provides the
two criteria Dk � 2:5� 10�3 and Dk � 2:5� 10�4.
The two corresponding accuracy limits are expressed
in terms of number of points per wavelength, by
�p=�x and �a=�x.

These limits are given in Table 2 for standard
and optimized �lters. Optimized �lters take into
account short waves in a better way than standard
ones. The products of the accuracy limits by the
number of points 2N+1, are also provided in Ta-
ble 2, and present better values for optimized �lters.
This demonstrates that the SFo11p and SFo13p �l-
ters are more eÆcient numerically.

�p=�x �a=�x p�p=�x p�a=�x
SFs9p 6.38 8.67 57.4 78
SFs11p 5.4 6.96 59.4 76.6
SFs13p 4.82 5.99 62.7 77.9
SFo9p 4.7 15.81 42.3 142.3
SFo11p 4.17 6 45.9 66
SFo13p 3.74 4.08 48.6 53

Table 2: Accuracy limits of the standard and optimized
selective �lters forN=4, 5, 6; and product by the number
of points p=2N+1 of the stencil. For comparison, with
the �lter of Tam et al.

8: �p=�x=6 and �a=�x=48.6.
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4. Runge-Kutta algorithms for time

integration

We now consider the time integration using Runge-
Kutta algorithms of a di�erential equation

@u=@t = F(u) (4)

where the operator F is function of u. Formulations
of Runge-Kutta schemes have been proposed13,25 to
improve accuracy while reducing storage requireme-
nts. It is the case for the low-storage, explicit Runge-
Kutta algorithms22,24 using only two storage loca-
tions per variable. An explicit p-stage algorithm ad-
vances the solution of equation (4) from the nth to
the (n+1)th iterations as

u0 = un

ul = un + �l�tF
�
ul�1

�
for l = 1; ::; p

un+1 = up

where �l are the coeÆcients of the algorithm, and
�t is the time step.

For F(u) linear, the algorithm is developed as

un+1 = un +

pX
j=1

pY
l=p�j+1

�l

| {z }

j

�tj
@jun

@tj
(5)

A p-stage algorithm of order p can be obtained by
setting 
j=1=j! for l=1; ::; p to match the Taylor se-
ries of u(tn +�t). The standard explicit 4-stage
Runge-Kutta algorithmRKs4s is de�ned by this way.
It is fourth-order in linear, but only second order in
non-linear as any scheme of this kind.

In the present work, explicit algorithms are con-
structed by optimizing their dispersion and dissipa-
tion properties following the idea of Hu et al..12 As-
suming F(u) is linear and applying temporal Fourier
transform to (5), the ampli�cation factor of the al-
gorithm is given by

GRK (!�t) =
ûn+1 (!)

ûn (!)
= 1 +

pX
j=1


j (i!�t)
j

For comparison with the exact ampli�cation factor
ei!�t, it is written as jGRK (!�t) j ei!

?�t, where
jGRK j is the ampli�cation rate and !

? is the e�ective
angular frequency. For the angular frequency !, the
amount of dissipation is then 1-jGRK (!�t) j and the
di�erence in phase is !?�t� !�t.

Two explicit 5-stage and 6-stage Runge-Kutta
algorithms, respectively referred to as RKo5s and
RKo6s, are built up by optimizing the dissipation

and the dispersion errors up to the angular frequency
!�t=�=2. Both are second-order, and are de�ned
by coeÆcients 
l minimizing the following error

Z ln(�=2)

ln(�=16)

(1� jGRK (!�t) j) d(ln(!�t))

+

Z ln(�=2)

ln(�=16)

(j!?�t� !�tj =�) d(ln(!�t))

with these two conditions for the dissipation rate

�
1� jGRK j > 0
@[ln(1� jGRK j)] = @[ln(!�t)] � �5

for 0�!�t��, as for the selective �lters. CoeÆ-
cients 
l are provided in Appendix C.

The ampli�cation rates of the standard RKs4s
and the optimized algorithms are plotted in Figure 5.
Optimized algorithms are less dissipative than the
standard RKs4s because their rates are close to 1 in
a larger range of angular frequencies. The stability,
detected for jGRK j<1, appears also higher with the
optimized algorithms.
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Figure 5: Ampli�cation rates of the Runge-Kutta
schemes: RKs4s (p=4), optimized:
� RKo5s (p=5), + RKo6s (p=6).

This is demonstrated by the accuracy limits re-
ported in Table 3, and expressed in term of number
of iterations by Ts=�t, where Ts is the period as-
sociated to the highest frequency ensuring stability
for the time step �t. The products of these limits
by the number of stages are also shown in this ta-
ble, and they are similar for the three algorithms.
Therefore, in the case of time steps determined only
from stability, the computational costs are the same.
The stability of the optimized algorithms must also
be compared to the poor stability of the 5-stage and
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Ts=�t pTs=�t
RKs4s 2.22 8.9
RKo5s 1.76 8.8
RKo6s 1.59 9.5

Table 3: Stability limits of the Runge-Kutta algorithms,
and products by the number of stages.

6-stage algorithms proposed by Hu et al.
12 showing

limits Ts=�t of 4.16 and 3.8 respectively.

The dissipation 1 � jGRK j and the phase error
E! (!�t)=j!?�t� !�tj =� of the Runge-Kutta al-
gorithms are now represented in logarithmic scales
in Figure 6. Both optimized algorithms are less dis-
sipative and dispersive than standard RKs4s in the
range �=8�!�t��, with RKo6s being also signif-
icantly more accurate than RKo5s. The improve-
ment is spectacular for the dissipation with about
one order of magnitude of di�erence between RKs4s
and RKo5s, and between RKo5s and RKo6s.
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Figure 6: Dissipation and phase errors in logarithmic
scales. See caption of Fig. 5 for details.

Two accuracy limits are provided in Table 4.
For dissipation, the criteria 1 � jGRK j � 5 � 10�4

and 1 � jGRK j � 5 � 10�5 are used to determine
T d
p =�t and T d

a =�t. For phase error, the criteria
E! � 5 � 10�4 and E! � 5 � 10�5 are applied to
evaluate T!

p =�t and T!
a =�t. The RKo5s algorithm

improve the accuracy with respect to RKs4s both
in dissipation and in phase, and in the same propor-
tions. The RKo6s algorithm still decreases the phase
error, but its speci�c feature is given by its very low
dissipation compared to the other algorithms.

T d
p =�t T d

a =�t T!
p =�t T!

a =�t

RKs4s 9.65 14.24 8.41 13.69
RKo5s 4.27 11.63 4.45 13.22
RKo6s 3.29 3.76 4.11 9.69

Table 4: Accuracy limits in amplitude and phase of the
Runge-Kutta algorithms.

Finally, numerical eÆciencies are estimated by
multiplying the accuracy limits, proportional to the
number of iterations, by the number of stages, and
they are displayed in Table 5. The optimized al-
gorithms are clearly more eÆcient than the RKs4s.
For the same computational cost, they provide more
accurate results than standard RKs4s algorithm.

pT d
p =�t pT d

a =�t pT!
p =�t pT!

a =�t

RKs4s 38.6 57 33.6 54.8
RKo5s 21.4 58.2 22.2 66.1
RKo6s 19.8 22.6 24.6 58.1

Table 5: Accuracy limits multiplied by the number of
stages for the Runge-Kutta algorithms.

5. Test �lters

In turbulence modellings used in Large Eddy Sim-
ulation, �lterings of the resolved variables are in-
volved to determine the magnitude of the subgrid
terms. Application to variable u is written, as for
the grid-to-grid oscillation �lters, as

uf (x0) = u (x0)�Du (x0)

with Du (x0) given by expression (2). Usually, the
grid �lter width is estimated as �x, and test �l-
ters having an e�ective width of 2�x or 3�x are
used. These �lters are constrained so that their
damping functions (3) are such as Dk (kc�x)=1/2
for kc�x=�=2 and kc�x=�=3 respectively.

To construct cut-o� test �lters, coeÆcients dj
can be evaluated by vanishing the low-order terms18
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in the Taylor series of Dk (k�x) for k�x!0, and
of 1-Dk (k�x) for k�x!�. However, to obtain �l-
ters with better characteristics in the whole range of
wave numbers, it is more interesting to use a mini-
mization procedure in Fourier space. In this work,
test �lters with kc�x=�=2 and kc�x=�=3 are built
up in this way. We impose Dk (0)=0, Dk (�)=1, and
Dk (kc�x)=1/2. For a sharp gradient near the cut-
o� wave number, we also set d2j=0 and d3j=0 (j 6=0)
respectively for the two �lters. The other coeÆcients
are optimized to minimize the error

Z ln(kc�x=
p
2)

ln(�=16)

jDk (k�x)j d(ln(k�x))

+

Z ln(�)

ln(
p
2kc�x)

j1�Dk (k�x)j d(ln(k�x))

The proposed test �lters, TFo11p�=2, TFo15p�=2,
TFo11p�=3 and TFo15p�=3, require 11 or 15 points,
and their damping functions are shown in Figures 7
and 8. They appear to be selective enough to elim-
inate the wave numbers such as k>kc without af-
fecting signi�cantly the waves numbers with k<kc.
CoeÆcients dj are provided in Appendix D.
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Figure 7: Damping functions of the test �lters:
TFo11p�=2 (N=5), TFo15p�=2 (N=7).

6. Test problems

6.1 De�nition

Two basic problems are considered to illustrate
the relative accuracy of the standard and the op-
timized schemes used for spatial derivation, grid-to-
grid selective �ltering and time integration. Both in-
volve the long-range propagation of one-dimensional
disturbances, allowing the observation of dispersion
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Figure 8: Damping functions of the test �lters:
TFo11p�=3 (N=5), TFo15p�=3 (N=7).

or dissipation errors. The convective wave equation

@u

@t
+ c

@u

@x
= 0 with c = 1

is solved, with a time step derived from the mesh
spacing as �t=��x=c, � being the CFL number.

Initial disturbances at t = 0 are de�ned as

u(x) = sin

�
2�x

a�x

�
exp

�
� ln (2)

� x

b�x

�2�

where a�x is the dominant wavelength, and b�x
the half-width of the Gaussian function. Parame-
ters a and b are directly connected to the spectral
contents of the disturbances, and we set a=8 and
b=3 for problem I, a=4 and b=9 for problem II. The
normalized spatial power spectral densities of the
initial disturbances are displayed in Figure 9.

  0  π/4  π/2 3π/4   π 
0

0.25

0.5

0.75

1

k∆x

P
S

D
(u

)

Figure 9: Spectral contents of the initial disturbances
for: problem I, problem II.
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Problem I is a typical test case to study the
propagation over a large distance. The initial per-
turbation is characterized by wave numbers in the
range 0<k�x<�=2 with a peak for k�x=�=4, i.e.
eight points per wavelength. It is propagated over
800�x corresponding to 100 times the dominant wa-
velength, to emphasize possible numerical errors.

The motivation for problem II is to investigate
the way the wave numbers such as k�x'�=2, with
about four points per wavelength, are calculated.
These waves are often involved in the LES dynamic
procedure to evaluate the modelling constants. The
initial perturbation is propagated over a distance of
200�x, corresponding to 50 times the wavelength.

For the two problems, to quantify the agreement
between the exact and the calculated solutions, the
error rate enum is evaluated as

enum =
�X

(ucalc � uexact)
2=
X

u2exact

�1=2
6.2 Problem I

First, problem I is solved using the di�erent stan-
dard and optimized �nite-di�erence schemes, no �l-
tering, and the RKo6s algorithm with a time step
small enough to introduce negligible errors since the
CFL number is �=0.2. The results obtained with
the optimized schemes are shown in Figure 10. The
solution using FDo9p is slightly distorted, whereas
the solutions using FDo11p and FDo13p superpose
fairly on the exact solution.

784 792 800 808 816
−1

−0.5

0

0.5

1

x/∆x

u

Figure 10: Problem I. Æ exact solution; solutions using
no SF, RKo6s and: FDo9p, FDo11p,

FDo13p, (�=0.2).

The agreement with the exact solution is demon-
strated by the values of the numerical errors given in
Table 6. Errors with the optimized schemes are at
least two times lower than errors with the standard

schemes using the same number of points. It should
also be noted that the FDo11p scheme is very well
suited to this problem.

FDs9p 0.630
FDs11p 0.307
FDs13p 0.141

FDo9p 0.329
FDo11p 0.052
FDo13p 0.065

Table 6: Problem I. Errors enum using standard and
optimized FD schemes, no SF and RKo6s (�=0.2).

Second, problem I is solved using the di�erent
standard and optimized selective �lters, the FDo13p
scheme, and the RKs6s algorithm with the same
small time step as previously. Filtering is applied at
every iteration with �d=0.2. The results calculated
with the optimized �lters are displayed in Figure 11
and compared to the exact solution. The solution
with SFo9p is signi�cantly dissipated, but the ones
with SFo11p and SFo13p are not.

784 792 800 808 816
−1

−0.5

0

0.5

1

x/∆x

u

Figure 11: Problem I. Æ exact solution; solutions using
FDo13p, RKo6s and: SFo9p, SFo11p,

SFo13p, (�d=0.2, �=0.2).

This is supported by the values of enum in Ta-
ble 7. Except for SFo9p, using optimized selective
�lters instead of standard ones decreases remarkably
the dissipation of the disturbances involved in this
problem. Numerical errors with SFo13p can partic-
ularly be attributed mainly to the spatial derivation.

SFs9p 0.533
SFs11p 0.303
SFs13p 0.168

SFo9p 0.580
SFo11p 0.114
SFo13p 0.077

Table 7: Problem I. Errors enum using standard and
optimized SF, FDo13p and RKo6s (�d=0.2, �=0.2).

Third, problem I is solved using the FDo13p sche-
me, the SFo13p �lter, and the standard or opti-
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mized explicit Runge-Kutta algorithms, with CFL
numbers of �=0.2, �=0.5 and �=1. Solutions for
�=1 are presented in Figure 12. They are distorted
and dissipated, highly with the RKs4s algorithm,
but slightly with RKo5s, whereas the solution found
with RKo6s is in agreement with the exact solution.
The errors enum are reported in Table 8. For �=0.2,
the three algorithms provide very good results, but
for �=0.5 and �=1, the RKo6s algorithm is quite
more accurate than the two others.

784 792 800 808 816
−1

−0.5

0

0.5

1

x/∆x

u

Figure 12: Problem I. Æ exact solution; solutions using
FDo13p, SFo13p and: RKs4s, RKo5s,

RKo6s, (�d=0.2, �=1).

�=0.2 �=0.5 �=1
RKs4s 0.070 0.269 0.884
RKo5s 0.086 0.229 0.528
RKo6s 0.077 0.122 0.200

Table 8: Problem I. Errors enum using RK schemes for
di�erent CFL numbers, FDo13p and SFo13p (�d=0.2).

6.3 Problem II

Problem II is solved using the RKo6s algorithm
with �=0.8, and three �nite-di�erence scheme/selec-
tive �lter combinations: FDo9p and SFo9p, FDo11p
and SFo11p, FDo13p and SFo13p. The solutions ob-
tained with the two last combinations are shown in
Figure 13. The wave packet is dispersed and dis-
sipated using the 11-point methods, but it is well
calculated using the 13-point methods. In the lat-
ter case, the computed solution is in phase with the
exact one, and is only very slightly dissipated. The
errors enum given in Table 9 support these observa-
tions, and also show that the 9-point methods are
not accurate enough to resolve this problem involv-
ing wave numbers with k�x'�=2.

176 188 200 212 224
−1

−0.5

0

0.5

1

x/∆x

u

Figure 13: Problem II. Æ exact solution; solutions us-
ing RKo6s with: FDo11p and SFo11p,
FDo13p and SFo13p, (�d=0.2, �=0.8).

FDo9p + SFo9p 0.905
FDo11p + SFo11p 0.488
FDo13p + SFo13p 0.077

Table 9: Problem II. Errors enum using optimized FD
schemes and SF with RKo6s (�d=0.2, �=0.8).

7. Conclusion

A family of explicit methods including �nite-di�e-
rence schemes for spatial derivation, low-storage Run-
ge-Kutta algorithms for time integration, selective
�lters for eliminating grid-to-grid oscillations, and
test �lters, is proposed. The characteristics of these
methods are optimized by minimizing numerical er-
rors for the same range of wave numbers, so that
they can be associated to form algorithms with spec-
tral-like resolution. This is of importance with the
aim of performing with con�dence 3-D computa-
tions, where dependence of results on numeric sche-
mes can hardly be investigated through parametric
studies. Analysis of dispersion and dissipation prop-
erties, evaluation of accuracy limits, and resolution
of test problems demonstrate the higher precision of
the optimized methods for short waves with respect
to the standard explicit ones. Numerical eÆciency
is also discussed, and it is shown that for an identi-
cal computational cost, optimized methods provide
higher accurate results. With this in view, the al-
gorithm using the 11-point stencil �nite-di�erence
scheme and selective �lter, and the six-stage Runge-
Kutta scheme, showing stability up to a CFL num-
ber �=1.98, appears especially appropriate for com-
puting noise.

9
American Institute of Aeronautics and Astronautics



Appendix A : Finite-di�erence schemes

CoeÆcients aj optimized for the schemes opti-
mized on 9, 11 and 13 points (a0=0, a�j=�aj):

FDo9p

a1 = 0.841570125482
a2 = -0.244678631765
a3 = 0.059463584768
a4 = -0.007650904064

FDo11p

a1 = 0.872756993962
a2 = -0.286511173973
a3 = 0.090320001280
a4 = -0.020779405824
a5 = 0.002484594688

FDo13p

a1 = 0.907646591371
a2 = -0.337048393268
a3 = 0.133442885327
a4 = -0.045246480208
a5 = 0.011169294114
a6 = -0.001456501759

Appendix B : Selective �lters

CoeÆcients dj optimized for the �lters on 9, 11
and 13 points (d�j=dj):

SFo9p

d0 = 0.243527493120
d1 = -0.204788880640
d2 = 0.120007591680
d3 = -0.045211119360
d4 = 0.008228661760

SFo11p

d0 = 0.215044884112
d1 = -0.187772883589
d2 = 0.123755948787
d3 = -0.059227575576
d4 = 0.018721609157
d5 = -0.002999540835

SFo13p

d0 = 0.190899511506
d1 = -0.171503832236
d2 = 0.123632891797
d3 = -0.069975429105
d4 = 0.029662754736
d5 = -0.008520738659
d6 = 0.001254597714

Appendix C : Runge-Kutta algorithms

CoeÆcients 
j optimized for the 5 and 6 stage
algoritms:

RKo5s


1 = 1

2 = 0.5

3 = 0.165250353664

4 = 0.039372585984

5 = 0.007149096448

RKo6s


1 = 1

2 = 0.5

3 = 0.165919771368

4 = 0.040919732041

5 = 0.007555704391

6 = 0.000891421261

Appendix D : Test �lters

CoeÆcients dj optimized for the �lters on 11 and
15 points with kc�x = �=2 (d�j=dj):

TFo11p�=2

d0 = 0.5
d1 = -0.30399520
d2 = 0
d3 = 0.06880899
d4 = 0
d5 = -0.01481379

TFo15p�=2

d0 = 0.5
d1 = -0.30834723
d2 = 0
d3 = 0.07876835
d4 = 0
d5 = -0.02617123
d6 = 0
d7 = 0.00575011

CoeÆcients dj optimized for the �lters on 11 and
15 points with kc�x = �=3 (d�j=dj):

TFo11p�=3

d0 = 2/3
d1 = -0.26775782
d2 = -0.12016956
d3 = 0
d4 = 0.03683622
d5 = 0.01775782

TFo15p�=3

d0 = 2/3
d1 = -0.26598093
d2 = -0.12936060
d3 = 0
d4 = 0.04602726
d5 = 0.03212998
d6 = 0
d7 = -0.01614906
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