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Abstract

A lattice Bolzmann code based on the two-dimensional
nine-velocity model has been developed for computational
aeroacoustic studies. The connection between the continu-
ous and lattice Boltzmann equations is completely described
for this model. A discrete-velocity Boltzmann equation is
first constructed and is integrated along a characteristic.
The fully explicit equations of the LBM are recovered by
introducing equivalent distribution functions. Using the dis-
crete velocity Boltzmann equation, a free field boundary is
proposed to minimize the reflection of vortical and acoustic
perturbations on the limit of the calculation domain. The
numerical stability problem for under-resolved sheared flow
is overcome by adding a selective viscosity filter that damps
the spurious high frequency numerical oscillations. The first
validation cases are the pulse propagation in a uniform flow
and a cavity excited by a laminar grazing flow. The results
show that the LBM could be used for aeroacoustic compu-
tations of low subsonic flows.

1. Introduction

The lattice Boltzmann method (LBM) is an inno-
vative numerical method based on kinetic theory to
simulate various hydrodynamic systems. The scheme

10 involv-

is particularly successful in fluid applications
ing interfacial dynamics, multiphase, multicomponent
flows and particle suspension which are usually diffi-
cult problems for traditional numerical schemes. But
in its simplest form, the lattice Boltzmann method sim-
ulates the time-dependent motion of a perfect gas at
low Mach number that is governed by the compressible
Navier-Stokes equations. Then, LBM is a reasonable

candidate for simulations of turbulence, flow-induced
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noise and sound propagation. For example, the re-
sponse of a two-dimensional Helmholtz cavity under
grazing flow has been investigated3? with the commer-
cial code PowerFLOW based on the LBM. The acoustic
coupling between the vortex shedding and the cavity
resonance has been predicted by the solver. This pre-
liminary result encouraged the authors to study in more
details this numerical method in the framework of com-
putational aeroacoustics.

The development of the lattice Boltzmann equation
(LBE) was independent of the continuous Boltzmann
equation. It was introduced®?? to solve some of the
difficulties of the Lattice Gas Automata (LGA).!® A
parameter matching procedure (see appendix of refer-
ence [?3]) based on the Chapman-Enskog analysis of the
LGA allowed to construct a set of relaxation equations
so that the correct hydrodynamic equations are derived.
But recently, the connection between the LBE models
and the continuous Boltzmann equation has been ex-
plicitly shown.!?! This new approach is presented in
the second part of this paper. The boundary conditions
for aeroacoustic simulations are investigated in the third
part. The stability problem of LBM for low viscosity is
discussed in part 4. Then, the aeroacoustic test case of
a pulse in a uniform flow is studied in part 5. In part
6, the self-sustained oscillation of a laminar flow over a
rectangular cavity is calculated.

2. Theory of the Lattice Boltzmann Method

2.1 The continuous Boltzmann equation

In kinetic theory,?* a monoatomic gas is represented

as a cloud of like point particles and is fully described by
its continuous distribution function f,, (x,c,t), which
represents the number of particles whose positions and
velocities are x and ¢ at time ¢. Then we can define a the
density distribution function f (x,¢,t) = mfy, (x,¢,1),
with m the molecular mass of the gas. It is a mesoscopic
description of the fluid, intermediate between the micro-
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scopic and macroscopic ones. For a dilute (or rarefied)
gas where only binary collisions between particles occur,
the evolution of the distribution function is governed by
the Boltzmann equation® :

of of

E—i—ciamizg(f) (1)

where Q (f) is a bilinear collision operator which deter-
mines physics of the flow. The fluid density p, velocity

u and internal energy e are defined via moments of the
distribution function :

p= [ rac
pu:/cfdc

1 1
e+ goll? = [ lePsae

In case of elastic collisions, the mass, momentum
and kinetic energy are conserved. For the collision op-
erator  (f) to be mass, momentum and energy conser-
vative, it is required that

[womde=0 (5)
for \I/O = ].,\111 = 61,\1/2 = Cz,\I/3 = C3,\I/4 = |C|2, which
are frequently called the elementary collision invariants.
Hence, it is possible to derive all the continuous equa-
tions by multiplying the Boltzmann equation (1) by ¥,
p =0, ...,4 and integrating over all velocities. Using re-
lations (2), (3) and (4), we obtain successively :

ot Ox;
dpuj 0 (puiuj + Pij) |
ot dz; =0 ©)
Lo (e +)] 0w (0 +0) + Ry 4] _
+ =0
at D

where F;; is the total stress tensor and q is the heat
flux which expressions depend on ¢ and f :

P

= / (i — us) (e — u) fde (7)

qi = %/(ci—ui)|c—u|2fdc (8)

It is worth noting that the derivation of these equa-
tions does not depend on the exact form of the collision
operator. Of course, the above conservation equations
are not the hydrodynamic equations : the stress tensor
and heat flux cannot be a priori computed only in term
of p, u and e. The closure problem consists in find-
ing such relations and it was tackled via the expansion

2

methods of Chapman-Enskog” and Hilbert. Rigorous
mathematical derivation of compressible Navier-Stokes
equations with formal expressions of the transport co-
efficients (shear and bulk viscosities, heat conductivity)
can be found in literature.*%1° In this paper, the gen-
eral outlines of the Chapman-Enskog (or Hilbert) ex-
pansion will be given within the framework of discrete-
velocity Boltzmann equation with the nine-speed model
and a simplified collision operator.

Boltzmann’s equation can be use to derive the fun-
damental conservation laws but it also contains a natu-
ral notion of entropy and entropy production. This can
be seen by considering the function H () = [ f1n fdc.
The entropy of the system can be written as S (¢) =
—kpH () + a, where kp is the Boltzmann’s constant
and « is also a constant. Differentiating H with respect
to time and using Boltzmann’s equation to replace the
time derivative of f in the integral, it can be shown’
that 0H/d0t < 0. This means that H can never in-
crease, and consequently that the entropy can never de-
crease, and is known as Boltzmann’s H-theorem. It can
be also shown that H is bounded below. Then H de-
creases until f reaches an equilibrium state f°? defined
by OH /0t = 0. Solutions of this equation are the global
(constant in both time and space) and local Maxwellian
equilibrium functions. The local Maxwellian is :

m \P/? —ml|c —ul?
eq __ )
—r <27rkBT> P [ %UpT ] )

with T' the fluid temperature and D the spatial dimen-
sion. We introduce the normalized temperature 6 = rT,
with r the gas constant given by r = kg/m.

The complicated analytical form of the particle col-
lision term Q (f) leads to tedious calculations for the
closure problem.
tails of the two-body interaction is unlikely to influence

In fact, a large amount of the de-

significantly the values of macroscopic quantities. It is
therefore assumed® that Q (f) can be replaced by a sim-
plified collision operator. The H-theorem shows that
the collision operator drives the distribution function
f toward the local Maxwell-Boltzmann equilibrium dis-
tribution f°?. The most straightforward choice of colli-
sion operator is the linearized collision operator with a
single relaxation time A or the Bhatnagar-Gross-Krook
(BGK) approximation® :
f=r
A
By considering the collision invariant condition (5),
it appears that the three moments (2), (3) and (4) still
hold if f is replaced by f¢?. Then, the non-equilibrium
part (f — f°?) of the distribution function do not con-
tribute to the macroscopic fluid variables.

Q(f)=- (10)
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2.2 The discrete-velocity Boltzmann equation

Noting that the mass and momentum conservation
equations involve moments of up to second order, an
effective equilibrium function is obtained!:2! by a trun-
cation at order 2 of the small velocity Taylor expansion
of (9) :
|2

eq _ |C_

~an0yP2 7 [_ 20]

o Gl

Of course, in order to construct a non-isothermal model,
a third-order expansion would be considered.?3

As for the original derivation of LBE,*?° the poly-
nomial form of the equilibrium function is necessary
for the explicit calculation of weighting factors associ-
ated with the discrete velocities. As shown in the next

section, the evaluation of the stress tensor and heat
flux needs the calculation of the third and fourth mo-
ments of f9 respectively. Considering the linear form
of the equilibrium function, all the integrals (2), (3),
(4), (7) and (8) can be expressed as linear combination
of terms :

C
V20

with 0 < n,m,p <7 in the more general case. The one-
dimensional integrals can be calculated using a Gaus-
sian quadrature formulae.?! If the third-order Hermite
formula'? is used, we obtain :

/ ¢ ;”25536_(651+Ei2+§ia)dx1dx2dx3, €=
PR3

3
/ Egle_gizdmi = Zwkfg for 1 =1,2,3
R k=1

where €123 = (—\/m, 0, \/3/_2) are the abscissas of
the quadrature points with the corresponding weights
w123 = (v/7/6,2y/7/3,4/7/6). This quadrature is ex-
act only up to n = 6, then it can not be applied for ther-
mal simulations. If we consider now the two-dimensional
case (D = 2), the moment integrals of the continuous
equilibrium function can be evaluated by performing
the moment summations over the nine discrete veloci-

ties co = 1/(20) (k, &) of the discrete-velocity equilib-

rium functions given by :
2 2
Co-u  (cyo-1) u
1 - — 11
{ MR TE 29} (1)

with h, = 20wiw;, a = 0,...,8. This discretization of
the velocity space and the discrete equilibrium func-
tion correspond exactly to the classical so-called nine-
speed lattice Boltzmann model.?® Since only the val-
ues of distribution functions at the discrete speed are

pha

eq _
o' = 270

3

needed for the evaluation of the moments, the contin-
uous Boltzmann equation (1) may be replaced by a
discrete-velocity Boltzmann equation :
dfa Ofa _ 1
- tCaimz—=—7
Since we are only concerned with isothermal simula-
tions, the energy equation is no more considered in the
following. The discrete forms of the density, momentum
and stress tensor are :

(fo = 1) (12)

8 8
p=> Jo, pu=7 cafs (13)
a=0 a=0
and
8
Pij = (Cai = ui) (Caj — ) fa (14)
a=0

The continuous moments of f can be evaluated by
the discrete moments of f(x,cq,t) = fa (x,t) at the
velocity nodes because in the limit of slow variations in
space and time of the distribution function around the
equilibrium state, f can be expressed as a function of
f¢?. This important result is shown in the next section.

2.3 Derivation of the Navier-Stokes equations

The treatment of the closure problem generally ap-
peals to the expansion of the distribution function as
regard to the Knudsen number of the flow. The Knud-
sen number is the ratio of the collision mean free path
to the macroscopic length scale :

o/
L
where Xg is a characteristic relaxation time (the av-
erage time between collisions), 6y is the characteristic
temperature and L is the hydrodynamic length scale.
Considering the dimensionless variables ¢ = t/0o/L,
A= XX, & =a/L, ¢ =c/\/lo and fo = fo/po the
following rescaled Boltzmann equation can be written :
O fa
ot

Ofw 1

2 €A

(foc - f;q)

For simplicity, all hats will be dropped in the fol-
lowing. The Chapman-Enskog or Hilbert expansion al-
lows to find successive approximate solutions of equa-

+ éoz,i (15)

tion (15) in term of small parameter €. The formal
expansion of f, is :
Fo=F0 4y 25 4 (16)

Inserting (16) in (15) and balancing order by order
in € leads to :

American Institute of Aeronautics and Astronautics



Order -1 : fo(co) =g (17)
. Ui af 1 (1) \
Order 0 : 5 + cai oz _Xfo( (18)
. aftH afs) 1 ;
Order 1 : 5 + cai oz _Xfo( (19)

In the Chapman-Enskog analysis’ the distribution
function is supposed to be a normal solution, which is
constrained by :

YW, fM=0 n=12.. (20)

o
Considering only the first order expansion of f,, we re-
mark that in case of the BGK collision operator, the
solvability condition for fo(él) is ensured by construc-
tion and traduces the conservation of collision invari-
ants (equation (5)). In the general mathematical ap-
proach,1%19 the solvability condition (20) for f&") is
viewed as a compatibility condition to ensure the ex-
istence of the next term fén'H) of the expansion. The
interest of equations (17), (18) and (19) is that they pro-
vide an explicit expression of the (n+1)-th order term
of the expansion of f, as a function of the n-th order
term.
Taking the first two moments, Y ¥, , (-) forp =0, ..., 2,
of the equation (15) truncated at the order zero and
using relation (17) and (20) for n = 1, we immediately
obtain the mass and momentum conservation equations

(6) with :

—ui) (caj — ug) fo7 = p0di;  (21)

The details of the calculations of Pi(jo) can be found in
reference [23]. Noting that the thermodynamic pres-
sure is p = pf (equation of state of an ideal gas), the
exact Euler equations have been recovered by this pro-
cedure. Now, if we take the first two moments of the
rescaled Boltzmann equation, neglecting term in O (62)
and using (20) for n = 1,2 we obtain the conservation
equations with :

> (eai = i) (e = u) (£ + s} (22)

o

P =

Inserting relations (17), (18) and (21), the stress tensor
becomes :

ad

€ €

E :Cmca,jfa”—a E CoyiCajCak [&
)

o o

0
Pij :paij—GA (E

4

The temporal derivative 3/0t > cq iq i fST =

0/0t (p0d;; + pusu;) is calculated as a function of spa-
tial derivatives using the mass and momentum conser-
vation equations at the Euler level. Since the energy
conservation equation is not considered, the tempera-
ture must be supposed to be constant. The third-order
moment can be calculated using the symmetry proper-
ties of the discrete velocity system.?3 The final expres-
sion of the stress tensor for the isothermal flow is :

o Ou;  Ou; Opujujuy
PZ] a p(sm €A <p9 <alj + 8131) &tk

The unphysical cubic nonlinear term in the stress
tensor can be neglected in case of low Mach flows. More
complicated lattice Boltzmann models have been pro-
posed in order to remove this spurious term.3° The
small Mach number hypothesis was also used for the
Taylor expansion of the equilibrium function. Then, we
can conclude that the Navier-Stokes equation can be
derived from the discrete-velocity Boltzmann equation
with an accuracy of O (62) and O (Ma?’). The viscous
stress tensor is given by :

2
Tij = 2puSij + <77 - gﬂ) Skkdij

with Si; = (Oui/dx; + Ouj/0x;) /2. The shear viscos-
ity is u = 7pf, with 7 = e\X. The density-dependent
behavior of u could be removed by noting that in di-
lute gas, the collision time-scale 7 is inversely propor-
tional to the local density.'® Unlike in usual fluid as
air (Stoke’s hypothesis), the second viscosity coefficient
n = 2u/3 (sometimes called bulk viscosity) is nonzero.
This difference directly results from the isothermal hy-
pothesis.14

2.4 Integration of the discrete-velocity Boltzmann
equation

To achieve a fully discrete lattice Boltzmann equa-
tion, we must approximate (15) in x and ¢. For example,
the discrete-velocity Boltzmann equation can be calcu-
lated numerically using an Euler time step in conjunc-
tion with a first order upwind spatial discretization.3®
A Lagrangian behavior is then obtained by imposing
Az/At = |c,|. But this approach does not allow to
show that the LBM is in fact a second order method. In
the classical approach of the LBM,%19:2? the second or-
der accuracy is theoretically shown by Taylor expanding
in time and space the kinetic discrete equation (equa-
tion (25)). In the framework of Chapman-Enskog pro-
cedure, both the temporal derivative operator and the
distribution functions are expanded as a function of the
Knudsen number.?1923 At the Navier-Stokes level, it

appears that the numerical diffusion due to second order
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terms can be included in the viscous tensor. The result
is that the coefficient 7 in the transport coefficients is
simply replaced by 7—1/2. Thus, the numerical contri-
bution to the viscosity for the lattice Boltzmann scheme
is negative, requiring that the relaxation time 7 to be
greater than one half to maintain positive viscosity.

Recently, Dellar™ showed that the second order ac-
curacy of the LBE and the effective value of the relax-
ation time could be recovered directly from the discrete-
velocity Boltzmann equation. The idea is to integrate
equation (15) along the characteristic (the direction of
c,) for a time interval At¢. The integral of the BGK col-
lision operator is approximated by the trapezium rule
which is a second order accuracy method :

fo (X + co At 4+ At) — [, (x,1) =
—g {fo (X4 coAt,t + At) — f29(x + co AL, T + Al)
+fa (%) = f(x,0)} + O (AF?)  (23)

This equation is implicit because of the presence of
the term fS? (x + coAt,t 4+ At). By a change of vari-
ables

g (6.1) = o (3,1) o (1) = 129 (1)) (24)

we can find an equivalent explicit equation :

Jo(Xt+ea At t+AlL) = < —§> ga(x,t)ﬁ—ggzq(x,t)
Tg Tg

(25)
with 7, = 7+ At/2 and ¢ = f&9. For the calcu-
lation of the moments of g,, it is interesting to note
that, at the first order in ¢, we can write g, = fo +
€Atfo(¢1)/2T. Then, the first two moments of g, give
exactly to the same macroscopic density and momen-
tum than f,. Solving the distribution functions g, by
equation (25) with a relaxation time 7, allows to calcu-
late the fluid variables for a flow of which the distribu-
tion functions f, are described by the discrete-velocity
Boltzmann equation (15) with the relaxation time . In
particular, the kinematic viscosity of the simulated flow

isv=20(ry — At/2).

2.5 Spatial and temporal discretizations

In this part, we write again the dimensionless vari-
ables with hat. The time ¢ is discretized with a time
step At and a space grid is defined such as if x; is a
grid node then xi + éaAt, a =0,...,8 are also on the
lattice. In case of the two-dimensional nine speed model
(see part 2.2), this condition leads to a mesh with square

cells of length Az = V 30At. This shows that temper-
ature must be supposed constant. Thermal simulations
can not be performed with a “single energy” discrete

5

velocity scheme. To include temperature variations, it
is necessary to use a multispeed model 2810

We can re-write the relation between time and space
increments in term of variables with physical dimen-
sion :

1 Az

T V3 AL
where ¢, = v/0 is the speed of sound for an “athermal”

fluid. The kinematic viscosity also depends on the space
and time increments :

1 /. 1
V:§ Tg—§

However, the lattice Boltzmann equation (25) is cal-
culated in its dimensionless form. Using the relation
between Az, At and 8, the discrete equilibrium distri-
bution functions given by (11) can be written as :

Cs

(26)

with 7, g

=2 @)

§59 = phy, {1 438, -u+ g (€q -11)" — %ﬁQ} (28)
where 1 = uAt/Az and ¢, = (0,0) for @ = 0, ¢, =

(sin ((a — 1) m/2) ,cos ((a — 1) w/2)) for o = 1,2,3,4,
Co = V2 (sin ((2a — 1) 7/4) ,cos ((2a — 1) 7/4)) fora =
2,3,4,5. The corresponding weights are he = 4/9 for
a =0, hog=1/9for a =1,2,3,4 and h, = 1/36 for
a=56,178.

3. Boundary Conditions

For a node on a boundary, some of its neighboring
nodes lie outside the flow domain. Therefore, the dis-
tribution functions associated with the inward-pointing
velocities (velocities which are on the directions point-
ing into the flow) are not defined. In case of the nine-
velocity model, there are three unknown distribution
functions on a plane boundary. The more simple way
to fix these unknown functions for a no-slip wall condi-
tion is to use the bounce-back scheme, that was origi-
nally taken from the Lattice Gas Automata method!® :
when a particle distribution streams to a wall node,
the particle distribution scatters back to the node it
came from. Then, the unknown inward-pointing dis-
tributions §i” are defined directly from the outward-
pointing distributions : §i* = g%, with ¢i* = —c¥t.
Unfortunately, it was found that the bounce-back con-
dition is only first-order accuracy scheme. In order to
improve the numerical accuracy, other boundary treat-
ments have been proposed. For example, Noble et al?”
suggested using the hydrodynamic variables to calcu-
late the unknown distributions (equation (13)). If the
fluid velocity is known (u = 0 for a no-slip wall) it is
necessary to enforce a pressure constraint to obtain a
system of three equations with three unknowns. The
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pressure enforcing can be avoided by adding some sup-
plementary rules on the distribution functions. Zou and
He*! supposed that the bounce-back condition could be
apply for the non-equilibrium part of the particle dis-
tribution normal to the boundary. If the components of
the fluid velocity must also been calculated (frictionless
wall, fluid boundary conditions), extrapolation schemes
can be used to evaluated some particle distributions?®
or macroscopic fluid variables*! in order to obtain as
many equations as unknowns.

3.1 An extended equilibrium distribution for wall
boundary conditions

As it is done for the initialization of populations, the
inward-pointing distributions §i* can also be supposed
equal to the equilibrium values §&? which are known in
term of p and u (equation (28)). In fact, this method
for evaluating the unknown distributions can be consid-
ered as an application of the lattice Boltzmann equa-
tion (25) with 7, = 1. Therefore, a systematic error is
made on the viscous fluxes at the boundary if the relax-
ation time in the fluid domain is not equal to one. But
it can be shown'43%39 that the transport coefficients
can be controlled independently of the relaxation time
by adding “non-equilibrium” terms in the equilibrium
populations. For example,353% the following extended
equilibrium distribution functions can be used :

0t;

)
with 7 (0) = 0 and s (0) = sp; 7 (@) = r1 and s (a) = 51
for @« = 1,2,3,4; r (o) = 72 and s(a) = sy for o =
5,6,7,8. Using the symmetric properties of the discrete
velocity tensors, it appears that the momentum is con-
served by this new expression of the equilibrium distri-
butions while the condition sqg+4s1 +4s9+2r1+4ro =0
is necessary for the mass conservation. Recalling that
fgq* = §57*, the modified stress tensor can be calcu-
lated with equation (22). Neglecting terms in O (¢?)
and choosing ro = r1/4, the viscous stress tensor can
be written as :

ou;

- eqx - -
Ca,iCa,j 7=
) g .
0

i =i+ (r (@ s (a)

T;;- = Qﬁ (l; - 67"2) Sij — 2¢ (7’2 + 51 + 282) Skkaij

On a boundary, 7, can be set equal to one and the
coefficients er () and es («) are calculated such that
U — €rq is equal to the shear viscosity of the inside fluid
and 2¢ (rg + s1 + 2s2) = 0. The parameter ess is freely
chosen €sy = €s1/4 for simplicity. The coefficient esq is
calculated by the mass conservation condition. This ap-
proach for the calculation of inward-pointing distribu-
tions requires the macroscopic fluid variables be known
on the boundary. In case of a plane boundary parallel

6

to a Cartesian axis, the density does not depend on the
inward-pointing distributions (equation (13)) :

p= o+ Y2350

o qout

where n is the inward-pointing normal of the bound-
ary and o) are the indices of the velocities that are
parallel to the boundary. For example, if n = (0, 1),
then o = 1,3 and a®t = 4,7,8. In our simulations,
the calculation of inward-pointing populations by the
extended equilibrium method is only made on no-slip
walls. The nonzero velocity gradients are computed us-
ing second order asymmetric finite differences. For fluid
boundaries where the velocity is not imposed, an other
method must be used.

3.2 Finite difference method for non-reflective
boundary conditions

In lattice Boltzmann literature, it does not exist
boundary scheme to model non-reflective boundary con-
dition for vortical and acoustic perturbations. In this
case, six variables must be evaluated : the three inward-
pointing distribution functions and the three macro-
scopic variables. Since the explicit relaxation/convection
algorithm (25) can not be applied for inward-pointing
populations, the idea is to integrate directly the discrete-
velocity Boltzmann equation (15) using classical time
and space integration schemes. This approach has been
already applied for the calculation of the whole bulk
flow using finite difference®! or finite volume®*® schemes.
But since the relation (24) between the distributions jq
and fa is known, an hybrid method for the boundary
treatment can be constructed. An explicit fourth-order
Runge-Kutta time-marching is chosen.3® The spatial
derivatives are evaluated with second order central and
asymmetric finite differences. Since the distribution
functions of the inner points are not calculated with the
Runge-Kutta scheme, their values at the intermediate
times of the time-step are unknown. Then, the asym-
metric finite differences that are used to calculated the
normal spatial derivative at the boundary are only in-
troduced in the last step of the temporal integration
procedure. For example, we can write the numerical
scheme for a boundary parallel to the z-axis :

- - 3f”k—1
=74 Qk-l—ea,ng fork=1,..,3

R - a8 afe
fa (x’t—i— 1) = fg +CL4 (QS— Ca’xa—f _Cayya—g
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with

£l P ek _ feq,k
fo=fa(x,4) and Qk:_M

7

The coefficients of the Runge-Kutta method are a; =
1/4, ay = 1/3, as = 1/2, as = 1. Unfortunately, the
asymmetric finite difference scheme applied to normal
component of the inward-pointing function gradient is
a downwind scheme that is unconditionally unstable. It
is therefore necessary to suppose that

ofir

o 0 (29)

Moreover, Reider®' showed that the stability condition
for a direct discretization of equation (15) is not im-
posed by the classical CFL requirement but instead
by the constraint that populations are not allowed to
evolve far from equilibrium. Then the time-step must
be preferably lower than the collision time, or at least
we must have At = O(7). Since we are interesting
in high Reynolds number and low Mach number flows,
this condition is very restrictive and can be overcome
by using a space dependent collision time. In the bulk
flow, the value of 7, is close to 1/2 in order to reach
low viscosity and on fluid boundaries, a minimal value
of 7, = 1 can be imposed. To ensure the continuity,
an exponential increase of 7, on the nearest boundary
nodes is defined.

Even if the condition (29) is not a physical con-
straint, the boundary treatment described above ap-
pears to be a comparatively effective scheme to model
non-reflective conditions. For example, the figure 1
shows the behavior of this boundary condition under
acoustic excitation (see part 5 for the details of the cal-
culation). The total amplitude of the outcoming wave
is about 20 Pa. Only the contour-lines —1 and —2 Pa
are altered by the spurious incoming waves. It can be
deduced that the reflection rate is about 10%.

4. Short wave damping with artificial viscosity

In this paper, the simulated fluid is air with py =
1.22 kg/m®, ¢, = 340 m/s and v = 1.5 x 10=5 m?/s.
Expressions (26) and (27) show that the time and space
increments are inversely proportional to ¥ = 7, — 1/2.
Consequently, for a given number of lattice node, the
Reynolds number of the flow can be increased only by
decreasing 7, toward 1/2. But it is well known?3® that
the system can become unstable when the lattice re-
laxation time is close to 1/2. Most of time, the com-
putation diverges when some high frequency oscillations
become too strong. These oscillations can be associated

7

Figure 1: Pressure isocontour of a pulse in uniform flow
at M = 0.2. # =1.25x 107% and £ = 100. The do-
main size is 100 x 100. positive contours. — -
— - negative contours. The pressure step between two
contour-lines is 1 Pa.

to unphysical spurious invariants?® and are generated in
under-resolved regions.'* Then numerical instabilities
are generated when there is a lack of spatial resolution
in a strongly-sheared region of the flow. In order to per-
form simulations at high Reynolds number, the numer-
ical oscillations must be damped.'* In our model, these
high frequency instabilities are reduced by applying a
selective viscosity filter3” on the macroscopic variables
U =p, Uy and Uy :

6 9) =760 — a3 (A7 G+, ) + di G 5+)

j=-3

where v, 1s the artificial viscosity. Another solution pro-
posed by Dellar is to use an enhanced bulk viscosity.
Indeed, the bulk viscosity can be readily adjusted by
using the extended equilibrium functions (see part 3.1).

5. Pulse propagation in a uniform flow

Simulations of sound waves with LBM were studied
previously® ' but with an emphasis on non-linear steep-
ening at finite amplitude® and energy decay of high fre-
quency plane waves due to viscous dissipation.®'* For
very small values of 7, it is possible to simulate low
frequency wave with a limited number of nodes. The
viscous dissipation of long wave acoustic perturbations
is negligible and the results of LBM computations can
be compared to the solutions of Euler equations. For
example, the analytical expression of the linear propa-
gation of a Gaussian pressure pulse in a uniform flow
is known.?? A Gaussian density source of half-width b
and amplitude 1073 pg is introduced at the center of the
computational domain. For an Euler problem, numer-
ical oscillations are very weak because the distribution
functions are always close to the equilibrium, therefore
the artificial viscosity is not applied. Figure 2 shows the
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Pressure (Pa)
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Figure 2: Pressure pulse in a uniform flow at A/ = 0.2.
7 =1.25x 1075 and = 30. The domain size is 100 x
100. Analytical solution. o LBM simulation.

pressure profile along the centerline of the domain for
a convection flow at M = 0.2. The agreement between
the analytical and calculated profiles is quite good. Us-
ing the reference analytical solution p,.f, the conver-
gence of the numerical method can be investigated as
a function of the lattice discretization. Since the time
and spatial steps are linearly linked by (26), the accu-
racy is only expressed in term of Az. The constant CFL
number is a characteristic of LBM and must be taken
account for the convergence study.3! Indeed, a smaller
spatial lattice size requires an increase in the number of
time iteration needed for the same flow evolution.

The half-width of the pulse and the domain size are
kept constant at b = 19.3 cm and Ny x Ny, = 16 (b x b).
The definition of the error norm is :

|~ 1/2
Err = (N_ Z (p(k,Ny/2) — pref)2>

T p=1

In figure 3, if we consider first the convergence rate for
the largest spatial size, we see that the error decay is
almost in power three. This result is in agreement with
equation (23). However, the error saturates at a cer-
tain level as the mesh is refined and even increases if
the error is measured at a given physical time. The lin-
ear error increase is due to the cumulative sum of the
errors made at each iteration. The convergence satu-
ration of LBM has been also pointed out in previous
works.?53135 It can be associated with several effects
such as the influence of higher order terms in O (MS)
and O (62) (so-called compressibility errors) or the nu-
merical round-off error.3® Further investigations would
be necessary to study the cause of the error saturation
in our particular case.

Despite this limitation, the lattice Boltzmann method
appears to be a fairly good numerical scheme for acous-
tic propagation.

6. Simulations of low-excited cavities

Error (Pa)

10? 10"
Bx(m)

Figure 3: Evolution of the error as a function of Az.
o Error at a given physical time. a Error at a given
lattice time (f = 20). line with slope = 3. — —
— line with slope = —1.

In order to assess the ability of the lattice Boltzmann
method to simulate practical flow problems for low sub-
sonic speed and high Reynolds number, we studied the
case of a flow-excited cavity. Even if the introduction
of a subgrid viscosity for turbulence modeling is not
difficult,?? the two-dimensional hypothesis does not al-
low to compute actual turbulent phenomenon. Then,
laminar flows are chosen in this validation.

6.1 Cavity flow oscillation at very low Mach num-

ber

We try to reproduce the experiments of Sarohia®*
who investigated a laminar flow oscillation over an ax-
isymmetric non-resonant cavity. Flow oscillations over
rectangular cavities at very low Mach numbers and com-
parable Reynolds numbers have been also studied by
Gharib & Roshko'” and Rockwell & Knisely.?? The
simulations are performed at Rey, = 240 where 6 is
the momentum thickness of the boundary layer at sep-
aration. The Mach number is M = 0.044. The depth
of the cavity D/fy = 80 is kept constant. A cavity with
length to depth ratio L/D = 1 is meshed with 50 x 50
points. The mesh size i1s 300 x 200 outside the cavity.
The relaxation time is 7 = 1.6 x 10~% and the arti-
ficial viscosity is v, = 0.1. The initial condition is a
polynomial expression of the laminar Blasius boundary
layer. A typical computation is 6 hours long on a SGI
workstation with a 250 MHz R10000 processor.

Figure 4 shows the transverse velocity signals ob-
tained with four L/ ratios. The Strouhal numbers for
the simulations at L/0y = 61, L/0y = 80 and L/0; =
104 are respectively St = fL/Uy = 0.57, 0.91 and 1.01.
Figure 5 depicts the variation of the phase difference
® for probes located along the cavity opening near the
outside edge of the shear layer. Between the two corners
of the cavity, the characteristic phase difference!” of 2n7

with n = 1,2 is found. Then for L/ = 61 the flow os-
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Figure 4: Time history of the transverse velocity for a
point at y/0y = 1.5 and (a) L/ = 61, 2/0g = 48; (b)
L/0y = 80, 2 /0y = 64; (c) L/ = 104, /0y = 93; (d)
L/6y =134, /0o = 112.

cillates in mode T and for L/fy = 80 and L/fy = 104
the oscillation is in mode IT (figure 6 (a)). This behav-
ior well corresponds to experimental observations.'”34
For L/fy, = 61, the oscillation phenomenon tends to
disappear (figure 4). It is consistent with experimental
data, where the first mode appears to not be a stable
stage of oscillation in certain conditions. As L/f, fur-
ther increases, the transition from mode II to mode III
is obtained for L/, = 122 in experiments.!” Then for
L/6y = 134, the flow normally oscillates in mode III
while temporal signal (figure 4) and flow visualization
(figure 6 (b)) indicates that the cavity flow is in the
wake mode.!” This non-coherent organization of the
flow only appears at L/0y = 160 in experiments. The
transition to wake mode for too low ratios L/fy has
been also observed in other numerical simulations!! for
Mach numbers between 0.4 and 0.8 and is probably due
to the two-dimensional hypothesis of the computations.

For the self-sustained oscillation conditions, the growth

of the momentum thickness 6 of the shear layer have
been measured. As in experimental studies,'”33:3% ¢ is
found to grow linearly with z/6, and for all cases, the
growth rate is almost constant at df/dz = 0.021 which
is very close to the value found by Sarohia (df/dx =
0.022). Figure 7 represents the streamwise evolution of
the transverse profile of the shear stress for /0y = 80.
The amplitude and the existence of the second peak in
the lower portion of the shear layer compare very well
with the measurements of Gharib & Roshko.

6.2 The acoustic field radiated by a cavity flow

05 06 07 08 09 1
XL

Figure 5: Streamwise variation of the transverse veloc-
ity phase at y/0y = 6.5. A&, L/fy = 61, mode I; o,
L/6y = 80, mode IT; %, L/6p = 104, mode III.

-05

Figure 6: Instantaneous vorticity contours. (a) L/fy =
104, mode II; (b) L/ = 134, wake mode.

negative contours; — - — - positive contours.

Y Vedl®

6 7 8
x10?

0 1 2 3 4,8
Ou'u’ 0y
Xy o0

Figure 7: Reynolds stress profiles for L/6, = 80. A,
z2/0g=14; %, 2/00 =38; +2/0y =54; o, /0y =T0.
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Figure 8: Example of the pressure and vorticity fields
produced by an unsteady cavity flow. L/D =1, L/0y =
60, M = 0.25. The pressure is drawn for values between
—200 and 200 Pa. The negative pressures are in dark

gray.

The sound field radiated by a flow-excited cavity
can be also calculated by the code.
duced the ratio between the acoustic wavelength and
the domain size, calculations are performed with Mach
number M = 0.25. We keep the parameters 7, v, of
the previous computations and a cavity with the same
characteristic size is simulated. The outside domain size
is inceased up to 500 x 500 mesh points. the Reynolds
number is Reg, = 2250. Figure 8 shows the acoustic
pressure field radiated by a cavity flow for L/D = 1 and
L/6y = 60. The oscillation frequency is fL/Us = 0.81.

For this cavity length-to-depth ratio and Mach num-
ber, there is no available numerical data to compare
precisely our acoustic field. Most of cavity noise com-
putations have been performed!!:1® for shallow cavities
(L/D > 2) at greater Mach numbers. But, as in these
simulations, the acoustic field is centered at the down-
stream edge of the cavity : the noise is generated by
the periodic impingement of coherent vortices upon the
corner. Even if the radiated sound of our computation
is not omni-directional, the very strong upstream di-
rectivity!118 is not recovered. This difference can be
explained by a lower effect of the free stream convec-
tion and a different acoustic inteference pattern inside
the cavity.

In order to re-

7. Concluding remarks

In this paper, the lattice Boltzmann method is in-
vestigated for aeroacoustic simulations. The recent ap-
proach that allows to derive a discrete-velocity Boltz-
mann equation is presented. The Navier-Stokes equa-
tions can be recovered using exactly the same math-
ematical procedure that is applied in the continuous

Boltzmann kinetic theory. The second order accuracy
equations of the LBM are found by integrating the dis-
crete velocity model and introducing equivalent popu-
lation functions: the populations that are calculated by
the LBM are not the populations of the discrete veloc-
ity equation but give the same macroscopic variables.
This procedure allows very large time-steps as regard to
the fluid collision time, which is not physically correct
if the discrete-velocity Boltzmann equation is directly
solved. Specific treatments for aeroacoustic computa-
tions at high Reynolds number have been added to the
two-dimensional model. With small computational ef-
forts, we obtain a quite good agreement between nu-
merical results and analytical or experimental data. Of
course, further validations and comparisons with the
other CAA methods would be necessary but this first
application of Boltzmann methods for computational
aeroacoustics is encouraging. The new explicit link of
the LBM to the continuous kinetic theory offers new op-
portunities for future developments of kinetic boundary
conditions® and maybe for turbulence modeling.3
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