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When operated at o�-design conditions, supersonic jets produce BroadBand Shock-
Associated Noise (BBSAN). This noise is generated by the interaction of the quasi-periodic
shock-cell structure with the large scale turbulence. BBSAN radiation is characterized
by multiple frequency humps dominating the jet turbulent mixing noise in the forward
quadrant. A semi-analytical prediction method is presented in this paper. BBSAN sources
are formally derived from the Linearized Euler Equations and then numerically computed
from a calculation of the turbulent mean 
ow. Moreover, a ray-tracing method is used to
account for refraction e�ects. Predicted acoustic results are compared with experimental
data to assess the model capabilities.

Nomenclature

c Speed of sound
D Nozzle exit diameter
fp Peak frequency of BBSAN
gL Green’s function of Lilley’s equation
l Characteristic length scale in the streamwise direction
l? Characteristic length scale in the cross-stream direction
Md Nozzle design Mach number
Mj Isentropic jet Mach number
NPR Nozzle pressure ratio pt=p1
p Static pressure
pt Stagnation pressure
PSD Power Spectrum Density
Rpp Cross spectral density
SPL Sound Pressure Level
St Strouhal number
Spp Power spectral density
uc Convection velocity
uj Isentropic jet velocity
vi Velocity component in the i-direction
x = (xi)i=1;2;3 Observer location
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� = (�; 
; �) Vector joining two point sources
� Inlet angle

 Speci�c heat ratio of air
! Angular frequency
� Non dimensional pressure
�n Vector Green’s functions
� Air density

Subscripts
i Variable number
s Shock induced perturbations
t Turbulence induced perturbations
�s Turbulence characteristic time scale
1 Undisturbed quantities

Superscripts
0 Acoustic perturbations
� Complex conjugate

I. Introduction

When a supersonic jet is operated at o� design conditions, the static pressure in the jet at the nozzle exit
does not match the ambient pressure. As a result, a series of expansion fans and compression cells appears,
the role of which is to bring the static pressure in the jet plume to the ambient pressure. If the static
pressure at the nozzle exit is higher than the ambient pressure, the shocked jet is said to be underexpanded.
Otherwise, it is overexpanded. Only underexpanded jets are considered in this paper.
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Figure 1. Far-�eld sound pressure levels of a supersonic
shocked jet. Mj = 1:15, � = 130� (downstream reference),
R=D = 53:2. A: mixing noise, B: screech, C: BBSAN. Mea-
surements by Andr�e et al.1

Both subsonic and supersonic jets produce turbulent mixing noise. This noise originates from the turbu-
lence developing in the mixing layer between the jet 
ow and the ambient medium. This broadband noise
is shown in Figure 1 (part A of the spectrum) in which a typical spectrum of a shocked jet is presented.
Shocked jets contain two additional sources of noise, as compared to perfectly expanded jets. Screech is
the �rst one. Powell assumed that a feedback loop between shocks and the nozzle lip was responsible for
screech. Berland et al.2 studied this phenomenon numerically, for the case of an underexpanded planar jet.
Screech tones produce a sharp peak on the Sound Pressure Levels (SPLs), as shown in Figure 1 (part B of
the spectrum). The second additional source of noise is BroadBand Shock-Associated Noise (BBSAN). It
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is the subject of this paper. Physically, BBSAN is created by the interaction of the jet shock-cell pattern
with the turbulence from the mixing layer. BBSAN is a wide frequency range phenomenon that dominates
mixing noise in the upstream direction. It corresponds to part C of Figure 1. Harper-Bourne and Fisher3

were the �rst to thoroughly study BBSAN. They exhibited the key role of the parameter � =
q
M2
j � 1 to

propose dimensional laws. The isentropic jet Mach number Mj depends only on the Nozzle Pressure Ratio
(NPR), that is the ratio of the stagnation pressure in the jet pt to the ambient pressure p1

NPR =
pt
p1

=

�
1 +


 � 1

2
M2
j

�
=(
�1)

(1)

They observed from experiments that BBSAN intensity follows a �4 law, and noticed that the pressure
jump across a normal shock (i.e. the shock strength) depends on �2. Their fundamental conclusion is that
the strength of BBSAN sources scales like the shock strength in the jet. Furthermore, BBSAN overwhelms
mixing noise in the upstream direction and seems omnidirectional in this region. Lastly, the interaction
between the shock-cell structure and the turbulent eddies from the mixing layer is the physical mechanism
for BBSAN. These conclusions led Harper-Bourne and Fisher to the following semi-empirical model for
BBSAN radiation: BBSAN is modeled by a linear distribution of monopole sources, located at the end of
each shock-cell. The monopoles are correlated and the phase is determined by the eddy convection velocity.
Such a model relates the characteristic peak frequency fp of BBSAN to the mean shock-cell length L

fp =
uc

L(1�Mc cos �)
(2)

where uc is the eddy convection speed, Mc = uc=c1 is the convection Mach number and � is the angle
of observation (downstream reference). According to (2), fp increases when the observer moves from the
upstream to the downstream direction, which is con�rmed by experiments. Harper Bourne and Fisher’s
model is limited to far �eld predictions and relies neither on the nozzle geometry nor on the details of the
turbulent 
ow �eld.

Tam predicted BBSAN using a di�erent approach.4,5 The pressure perturbation ps created by the shock-
cell pattern is calculated using a waveguide model, while large scale turbulence is described by instability
waves traveling downstream. The weak interaction of these two phenomena creates BBSAN. Tam’s model
produces spectra in good agreement with experiments. It has been extended to dual-stream jets,6 but in
this case, only the peak frequency is available.

Those two models share the common limitation that they do not rely on the true 
ow �eld. A similar
issue exists for mixing noise models. Bailly et al.7,8 and Morris & Farassat,9 among others, showed it was
possible to feed the acoustic model with a turbulent mean 
ow calculation. A similar approach was recently
used by Morris and Miller10{12 for the prediction of BBSAN. The model is based on an acoustic analogy, and
the Power Spectrum Density is expressed as a function of 
ow variables. As a result, the model can tackle
complex geometry and even includes 
ight e�ect13 using an adjoint approach. Morris and Miller’s model is
used as a starting point for the present work.

The paper is organized as follows. The model development is detailed in the �rst part. At this stage, the
source terms are propagated to the far �eld using the free �eld Green’s function: the refraction e�ects due
to the mean 
ow surrounding the shocked jets are neglected. Then, results on single-stream jets are shown.
The next part tackles the inclusion of refraction e�ects using ray-tracing to compute the Green’s functions
of the problem.

II. Model development

II.A. Physical model

The model relies on the LEE (Linearized Euler Equations). A dimensionless pressure variable � is intro-
duced14

� =
1



ln

�
p

p1

�
(3)

where p is the static pressure and 
 is the speci�c heat ratio of air. For air considered as a perfect gas,
the relation p = p(�; s) de�nes an equation of state, where s is the entropy and � the density. The total
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derivative of p is

dp =
@p

@�

���
s
d�+

@p

@s

���
�
ds i.e. dp = c2d�+

p

cv
ds (4)

where c denotes the speed of sound and cv the speci�c heat capacity at constant volume. The sound velocity
is given by c2 = 
p=� so that

dp

p
� 
 d�

�
=

1

cv
ds (5)

The conservation of mass can thus be written as,

@vi
@xi

= �1

�

D�

Dt
=

1




�
1

cv

Ds

Dt
� 1

p

Dp

Dt

�
(6)

where D=Dt is the material derivative. Einstein notation is used. The 
ow is assumed to be isentropic, i.e.
Ds=Dt = 0, which leads to

@vi
@xi

= � 1


p

Dp

Dt
= � 1




D

Dt

�
ln

�
p

p1

��
(7)

Making use of �, the conservation of mass takes the following form,

D�

Dt
+
@vi
@xi

= 0 (8)

In the same way, the conservation of momentum can be arranged as

Dvi
Dt

+ c2
@�

@xi
= 0 (9)

where vi is the velocity component in the i-direction. To linearize (8) and (9), the 
ow �eld is split up among
four contributions, as proposed by Lele15 or Tam5(

�

vi

)
=

(
�� + "s�s + "t�t + "s"t�

0

�vi + "svsi + "tvti + "s"tv
0

)
(10)

where the overline denotes an average term, the subscripts s and t represents the perturbations due to the
shock-cells and turbulence respectively, and the superscript 0 accounts for the interaction between shock and
turbulence, containing acoustic perturbations. "s and "t are two dimensionless parameters used to quantify
the orders of magnitude of each perturbation. When inserting (10) into (8) and (9), only the terms of order
"s"t are kept. Indeed, the physical mechanism generating BBSAN is the interaction between shock-cells and
turbulence, which makes this approximation consistent. Especially, interaction of turbulence with itself ("2

t

terms) is neglected: it represents mixing noise, which is much weaker than shock-cell noise for the considered
problem. The shock-cell structure is assumed to be �xed with time and thus satis�es the steady version of
(7)-(9). Taking this into account, the unsteady linearized system is

@�0

@t
+ �vj

@�0

@xj
+
@v0i
@xi

= �

@v0i
@t

+ �vj
@v0i
@xj

+ v0j
@ �vi
@xj

+ c2
@�0

@xi
= fvi + fai i = 1; 2; 3

(11)

An interpretation of (11) is that a linear propagation operator is applied to the acoustic �eld, and source
terms appear on the right-hand side, namely

� = �vsj
@�t
@xj
� vtj

@�s
@xj

fvi = �vsj
@vti
@xj
� vtj

@vsi
@xj

fai = �c2s
@�t
@xi
� c2t

@�s
@xi

(12)

4 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

Se
pt

em
be

r 
17

, 2
01

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

21
63

 



Only fvi is of interest in the present study dealing with BBSAN. This term accounts for the interaction of
the velocity perturbations due to shock-cells and turbulence. Consequently, fai and � are now neglected in
what follows. The simpli�ed system to be solved is given by,

@�0

@t
+ vj

@�0

@xj
+
@v0i
@xi

= 0 (13a)

@v0i
@t

+ vj
@v0i
@xj

+ v0j
@vi
@xj

+ c2
@�0

@xi
= fi (13b)

II.B. Calculation of the associated Green’s functions

Since (13a)-(13b) is a linear di�erential system, the Green’s function technique is well suited. According to
Du�y,16 one has to �nd a set of functions f�n; Vni; 0 � n � 3g satisfying

@�n

@t
+ vj

@�n

@xj
+
@Vni
@xi

= �(x� y)�(t� t1)�0n (14a)

@Vni
@t

+ vj
@Vni
@xj

+ Vnj
@vi
@xj

+ c2
@�n

@xi
= �(x� y)�(t� t1)�in (14b)

where � is the Dirac distribution and �in is the Kronecker delta. Since there is no source term in (13a),
�0 = 0 and V0i = 0 for 1 � i � 3. The acoustic pressure �0 is directly related to the source terms through
the following integral

�0(x; t) =

ZZ
�n(x;y; t� t1)fn(y; t1)dydt1 (15)

Once again, the summation over the three components fn of the source term is implied here.
The Green’s functions in the absence of a mean 
ow will now be derived. Physically, refraction due

to the jet shear layer or any external 
ow surrounding the shocked jet is neglected. The validity of this
approximation is discussed further in section IV. The speed of sound is constant in this speci�c case and
c = c1. Mathematically, the mean velocity components are set to vj = 0 in (13a)-(13b), which yields

@�0

@t
+
@v0i
@xi

= 0 (16a)

@v0i
@t

+ c21
@�0

@xi
= fi (16b)

System (16) describes the propagation of an acoustic perturbation due to a source term fi in a quiescent
medium. The medium being at rest, the velocity 
uctuations may be classically eliminated by combining
(16a) and (16b)

@

@t
(16a)� @

@xi
(16b) =

@2�0

@t2
� c21��0 = �r � f (17)

to form the well-known wave equation, where �r � f is a force source term. What is shown here, is that
the pressure perturbation �0 satis�es a set of ordinary di�erential equations (the LEE) as well as a wave
equation. The free �eld Green’s function g1(x; tjy; t1) associated with the wave equation satis�es

@2g1
@t2

� c21�g1 = �(x� y)�(t� t1) (18)

This is the response of the medium at location x and time t for a pulse emitted at location y and time t1.
This function is given by16

g1(x; tjy; t1) =
�(t� t1 � jx� yj=c1)

4�jx� yjc21
(19)

and the formal solution to (18) is

�0(x; t) = �
Z
g(x;y; t� t1)r � f(y; t1)dydt1 (20)
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Using properties of the convolution product, the divergence operator may be applied to the Green’s function,

�0(x; t) =

ZZ �
@g1
@yn

(x;y; t� t1)

�
fn(y; t1)dydt1 (21)

Direct identi�cation between (15) and (21) provides

�n(x;y; t� t1) =
@g1
@yn

(x;y; t� t1) (22)

This equation relates the vector Green’s functions �n of the LEE to the free �eld Green’s function g1 of the
wave equation. The next calculations will be performed in the frequency domain. The following convention
is used for the Fourier transform

h(!) =

Z +1

�1
h(t)e�i!tdt h(t) =

1

2�

Z +1

�1
h(!)ei!td! (23)

In the frequency domain, the vector Green’s functions are given by

�n(x;y; !) =
@g1
@yn

(x;y; !) (24)

The free �eld Green’s function in the frequency domain is straightforwardly computed

g1(x;y; !) =
e�i!

jx�yj
c1

4�c21jx� yj
(25)

After some algebra, one �nds the Green’s functions associated with the initial LEE system

�n(x;y; !) =
e�i!jx�yj=c1

4�c21

i!

c1

xn
jxj2

(26)

This expression relies on a far �eld approximation. First, the observation distance jxj is much larger than
the size of the source domain jyj, that is jyj=jxj << 1, corresponding to the geometric far �eld assumption.
Second, the observation distance is much larger than the characteristic wavelength. For a nozzle diameter
D = 0:038m at a jet Mach number Mj = 1:15, the lowest frequency of interest is around f = 1000Hz, which
corresponds to a wavelength � = c=f � 10D. Typical distances of observation range from 50D to 100D so
that the acoustic far �eld condition is clearly met

Now that �0 is known, � is asymptotically expanded assuming small perturbations

� =
1



ln

�
p+ ps + pt + p0

p1

�
= � +

1




�
ps
p1

+
pt
p1

+
p0

p1

�
(27)

Comparing (27) with the original expression of � leads to the approximation p0 = 
p1�
0 and recalling that

c21 = 
p1=�1 gives p0 = �1c
2
1�
0. The �nal expression for the acoustic pressure as a function of the Green’s

functions and the source terms is

p0(x; t) = �1c
2
1

ZZ
�n(x;y; t� t1)fn(y; t1) dy dt1 (28)

II.C. Estimation of the pressure correlation function

In this section, the pressure correlation function Rpp is formally derived. The pressure signal is treated
as a random, time-dependent, signal. Physically, N acoustic pressure measurements will give N di�erent
spectra but the signal is assumed to be stationary, i.e. its statistical properties are constant over time.
Mathematically it is a stochastic process, the kth realization of which is

p(k)(x; t) = �1c
2
1

ZZ
�n(x;y; t� t1)f (k)

n (y; t1) dy dt1 (29)
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The randomness of the signal is due to the source terms, not to the Green’s functions that are deterministic.
It is more convenient to make use of the spectral Green’s functions in (29), so that the acoustic pressure is
given by

p(k)(x; t) =
�1c

2
1

2�

ZZZ
�n(x;y; !)f (k)

n (y; t1)ei!(t�t1)d!dydt1 (30)

The pressure correlation function over time is the ensemble average

Rpp(x; �) =< p(k)(x; t)p�(k)(x; t+ �) >

Rpp(x; �) = lim
N!+1

1

N

NX
k=1

p(k)(x; t)p�(k)(x; t+ �)
(31)

where the star superscript stands for complex conjugate. Replacing the pressure terms by their explicit
expressions, the pressure correlation function is given by

Rpp(x; �) =

�
�1c

2
1

2�

�2 Z
:::

Z
�n(x;y1; !1)��m(x;y2; !2) < fn(y1; t1)fm(y2; t2) > �:::

ei[!1(t�t1)�!2(t+��t2)]d!1d!2dy1dy2dt1dt2

(32)

In this expression, the time variable t can take any value. It will have no in
uence on the �nal result as will
be shown below. This is due to the statistical stationarity of the signals.

II.D. Estimation of the Power Spectral Density

The Power Spectral Density (PSD) is the Fourier transform of Rpp(x; �). One has

Spp(x; !) =

�
�1c

2
1

2�

�2 Z
:::

Z
�n(x;y1; !1)��m(x;y2; !2) < fn(y1; t1)fm(y2; t2) > �:::

ei[!1(t�t1)�!2(t�t2)�(!+!2)� ]d!1d!2dy1dy2dt1dt2d�

(33)

The integration over � and !2 are straightforward. Moreover, the change of variables

(t1; t2) 7!

(
t1 = t1

� = t2 � t1
(34)

completes the integration over t2. The PSD is given by,

Spp(x; !) =
(�1c

2
1)2

2�

Z
:::

Z
�n(x;y1; !1)��m(x;y2;�!) < fn(y1; t1)fm(y2; t1 + �) > �:::

ei[�(!1+!)t1+!1t+!(t��)]d!1dy1dy2dt1d�

(35)

Since the sources are stationary, their correlation function depends only on location and time di�erence, i.e.

< fn(y1; t1)fm(y2; t1 + �) > = Rnm(y1;�; �) (36)

where � = y2 � y1 is the vector joining two sources. Injecting this expression into the PSD and integrating
over t1 and !1 gives

Spp(x; !) = (�1c
2
1)2

Z
:::

Z
�n(x;y1;�!)��m(x;y1 + �;�!)Rnm(y1;�; �)e�i!�dy1d�d� (37)

Using an asymptotic expansion of the vector Green’s functions with respect to �, one has

��m(x;y + �;�!) w ��m(x;y;�!)ei
!

c1
x:�
jx�yj (38)

The exponential factor is the phase factor accounting for the retarded time di�erence for an observer located
at x and two source terms located at y1 and y1 + �. Recasting this expression into the PSD,

Spp(x; !) =
�2
1!

2

16�2c21

1

R2

Z
:::

Z
xnxm
R2

Rnm(y1;�; �)ei!( 1
c1

x:�
R ��)dy1d�d� (39)

where jx� yj � jxj = R
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II.E. Estimation of the source term correlation

The initial expression for the source terms in (13b) is

fi = �vsj
@vti
@xj
� vtj

@vsi
@xj

(40)

Turbulence will be modeled using a classical two-equation turbulence model, for which anisotropic e�eects
are di�cult to correctly capture. Assuming that the BBSAN source terms are isotropic appears to be a
coherent level of approximation. Therefore,

fi(y1; t) = f(y1; t) for 1 � i � 3 (41)

Dimensional analysis gives an estimate of the source terms as

f(y1; t) =
ps(y1)vt(y1; t)

�1c1l(y1)
(42)

where l is the local characteristic length scale of turbulence in the streamwise direction. The source terms
being isotropic, so is the correlation function. Hence Rnm(y1; �; �) = Riso(y1; �; �) for n = m and there is
no contribution of the terms for n 6= m. As a result

xnxm
R2

Rnm(y1;�; �) =
x2

1 + x2
2 + x2

3

R2
Riso(y1;�; �) = Riso(y1;�; �) (43)

Inserting (42) into (36),

Riso(y1; �; �) =
ps(y1)ps(y1 + �)

�2
1c

2
1l(y1)2

< vt(y1; t1)vt(y1 + �; t1 + �) > (44)

where the ensemble average < > applies only on unsteady terms and l was considered as constant over the dis-
tance �. ps will be determined directly from the RANS calculation, whereas < vt(y1; t1)vt(y1 + �; t1 + �) >
requires some modeling. It represents the correlation of the turbulent velocity 
uctuations and is modeled
by

Rv(y1;�; �) = K(y1) exp

�
� j�j
uc�s

� (� � uc�)2

l2
� 
2 + �2

l2?

�
(45)

where � = (�; 
; �) is the distance between two source terms, K is the turbulence kinetic energy, �s is the
characteristic time scale of turbulence and l? is the characteristic length scale of turbulence in the cross
stream direction, uc is the local convection velocity. The isotropic correlation is now given by

Riso(y1;�; �) = K(y1)
ps(y1)ps(y1 + �)

�2
1c

2
1l(y1)2

exp

�
� j�j
uc�s

� (� � uc�)2

l2
� 
2 + �2

l2?

�
(46)

The PSD is determined by casting (46) into (39) and integrating over � at �xed �, giving

Spp(x; !) =
!2

16�
p
�c41R

2

Z
:::

Z
K

luc
exp

�
�!

2

4

l2

u2
c

�
ps(y)ps(y + �)� :::

exp

�
�i!�

uc

�
exp

�
� j�j
uc�s

� 
2 + �2

l2?

�
exp

�
i
!

c1

x1� + x2
 + x3�

R

�
d�dy

(47)

II.F. Numerical Implementation

Equation (47) consists in a double spatial integral over the BBSAN source domain, that is the jet 
ow. The
numerical computation of this expression requires some inputs from a RANS calculation. Following Tam and
Auriault,17 the characteristic time scale is given by �s = c�K=" where " is the dissipation of the turbulent
kinetic energy and c� is a constant. The length scales are given by l = clK

3=2=" and l? = c?l where cl and
c? are two constants. The shock pressure ps is given by subtracting the ambient pressure to the computed
static pressure in the jet. The convection velocity is approximated by the local mean velocity.
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At this stage, the main di�erence with Morris and Miller’s model10 is that the Fourier transform of the
static pressure along the x1 direction ~ps(k1; y2; y3) has not been used here. Morris and Miller argued that
this resulted in a simpler numerical implementation, which is true, because it simpli�es the �nal expression
for the PSD: the PSD here requires the evaluation of 6 spatial integrals, whereas Morris and Miller only use
3 spatial integrals and one along the wave number k1 of ~ps.

It should be noted that computing the Fourier transform ~ps with a fast algorithm such as FFT requires
an equally spaced mesh in the x1 direction. If the original CFD mesh does not meet this requirement, it is
possible to interpolate the original mesh to a regular grid, as Morris and Miller did. Consequently, Morris
and Miller approach is probably more e�cient for academic con�gurations. On the other hand, industrial
geometries are dual-stream and include a plug (a cone-shaped part in the center of the primary 
ow). Then
secondary 
ow is not parallel to x1 but follows the plug slopes.

The correlation function used here also di�ers from the one proposed by Morris and Miller. It is expected
to give similar results, but provides a simpler expression of the PSD when the spatial Fourier transform is
not used.

III. Results on single-stream jets

Single-stream jets are typical academic con�gurations. A thorough test campaign has been conducted
at Ecole Centrale de Lyon by Andr�e et al.1,18,19 to characterize BBSAN and 
ight e�ects. Measurements
include aerodynamic quantities (static pressure, Particle Injection Velocimetry, Schlieren imaging) as well as
acoustic data (near and far �eld spectra).

First, the aerodynamic calculations are compared with measurements to ensure the validity of the inputs
given to the model. Then, the results of the model are compared with the measured spectra for several jet
Mach number Mj and observation angles.

III.A. Aerodynamic results

The RANS calculations were done with the elsA CFD solver developed by ONERA. A spatial Roe scheme
was used and turbulence was modeled using a k � ! � SST model.20{22

The same nozzle geometry was used for measurements and calculations. It is a convergent-divergent
nozzle, the design Mach number is Md = 1:3 and the exit diameter is D = 0:038m. The jet is cold.

(a) Calculation at Mj = 1:15, NPR = 2:27 (b) Measurement at Mj = 1:15, NPR = 2:27

(c) Calculation at Mj = 1:35, NPR = 2:96 (d) Measurement at Mj = 1:35, NPR = 2:96

(e) Calculation at Mj = 1:5, NPR = 3:67 (f) Measurement at Mj = 1:5, NPR = 3:67

Figure 2. Comparison of numerical and experimental Schlieren visualisations for di�erent jet Mach number
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The qualitative features of the jet are easily studied through Schlieren visualizations. This optical tech-
nique re
ects the density gradients in the jet and is particularly suited for shocked jets. Numerically, it is
simulated by computing the norm of the density gradient. Comparisons are shown in �gure 2. The overall
agreement is very good. In Figures 2(a) and 2(b) a slightly underexpanded jet at Mj = 1:15 is presented.
The shock-cell structure is clearly visible: it consists in a series of expansion fans and compression cells, the
strength of which decreases as moving downstream. When the jet Mach number is increased to Mj = 1:35,
the shock-cells lengthens as shown in Figures 2(c) and 2(d). The jet sonic line bends creating a barrel-like
pattern for the shock-cells. In Figures 2(e) and 2(f), a strongly underexpanded jet at Mj = 1:5 is presented.
A Mach disc forms in the �rst shock-cell as seen in �gure 2(f).

According to equation (47), the key aerodynamic quantities used to predict BBSAN are the shock pressure
ps, the convection velocity uc and the turbulent variables. The study of the jet static pressure is an essential
quantitative information. The comparison of calculations with measurements in Figure 3 shows an excellent
agreement. The shock locations are correctly predicted by the calculation. The trend in amplitude decay
is similar between measurements and calculations, though the CFD solution seems to slightly overestimate
the shock damping. Numerical dissipation is probably responsible for this di�erence. It should be noted
that the presence of shocks in the jet 
ow requires some numerical dissipation to be added on purpose. The
numerical dissipation used should be strong enough to ensure the convergence of the calculation, but as low
as possible not to 
atten the shocks.

For x=D > 6, ps=p1 tends to unity in the calculations and to a lower value experimentally, which may
look surprising. This di�erence probably stems from the pressure probe: it is designed to work at supersonic
Mach numbers, and for x=D > 6 the 
ow becomes transonic. Hence, far downstream the probe is out of its
operating range, which explains the di�erence.

The case Mj = 1:35 contains stronger shocks as evidenced in Figure 4. Both expansion fans and com-
pression shocks are stronger than in the Mj = 1:15 case. Comparison with Figure 3 shows that shock cells
lengthens with Mach number, as expected.

0 2 4 6 8

0.8

0.9

1

1.1

1.2

x/D

P
s/P

∞

Figure 3. Static pressure on the jet axis, Mj = 1:15.
calculations, t measurements

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

1.6

x / D

P
s / 

P
∞

Figure 4. Static pressure on the jet axis, Mj = 1:35.
calculations, t measurements

III.B. Acoustic results

The �rst results given in Figure 5 concern a jet at Mj = 1:15. This Mach number is a typical value of the
secondary stream of a civil engine. The PSDs were computed using (47). A Strouhal representation is used:
let fc = uj=D be a characteristic frequency of the jet, then the frequencies (in Hertz) are divided by fc to
get a Strouhal representation. A 10 log10 fc factor is added to the PSDs: the PSDs are in dB=St and energy
is thus preserved.

Four observation angles � (inlet angle, � = ���) were computed, from the upstream to the downstream
direction. The �rst encouraging result is that the peak frequency is correctly captured numerically for all
observer locations: fp increases with inlet angle, both experimentally and numerically. Experimentally,
the emergence of BBSAN diminishes as � increases, which is also the case with the computations. On
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quantitative grounds, the shape of the hump is generally well captured, especially for � = 70� (see Figure
5(b)) and � = 90� (see Figure 5(c)).

The fact that the calculated PSDs agree well with measurements for low frequencies (St < 0:5 for
� = 50�) is a coincidence: at such low frequencies, mixing noise is dominant and the model is not expected
to account for mixing noise.

(a) � = 50� (b) � = 70�

(c) � = 90� (d) � = 110�

Figure 5. PSDs of a shocked jet, Mj = 1:15 for various observer locations. � is the inlet angle. Measurements by
Andr�e et al., Calculations

The case of a jet at Mj = 1:35 is now considered. It is presented in Figure 6. As compared to the
Mj = 1:15 case, BBSAN is expected to peak at lower frequencies because of longer shock-cells due to the
increased jet Mach number. According to measurements, at � = 50�, fp=fc = 1 at Mj = 1:15 and fp=fc = 0:5
at Mj = 1:35. This was expected. Another interesting feature of this higher Mj case, is that multiple peaks
become more visible especially at � = 50� and � = 70�.

The aforementioned changes are well captured by the model: the peak frequency is lower than in the
Mj = 1:15 case and the general shape of the spectrum agrees reasonably well with measurements. The
multiple peaks in the spectrum are also predicted, though their amplitude decays a bit too fast.

IV. Inclusion of refraction e�ects

So far, the free �eld Green’s functions were used hence neglecting the potential refraction e�ects of the
acoustic waves by the mean 
ow. In this part, it is proposed to account for refraction e�ects using geometric
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(a) � = 50� (b) � = 70�

(c) � = 90� (d) � = 110�

Figure 6. PSDs of a shocked jet, Mj = 1:35 for various observer locations. � is the inlet angle. Measurements by
Andr�e et al., Calculations
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acoustics. First, two simple examples are presented to illustrate the refraction phenomenon on a commercial
engine. Secondly, the ray-tracing theory is brie
y recalled. It is used in the third part, where a formal
relation between the Green’s functions and the acoustic rays is derived.

IV.A. Refraction on a dual-stream jet

Before accounting for the phenomenon, it seems interesting to mention where it takes place. BBSAN sources
are located where shock-cells and turbulence interact, that is in the mixing layers. On a commercial civil
engine, the secondary stream is shocked while the primary stream is subsonic. As a result, BBSAN sources
are located in the mixing layer between the primary and secondary 
ow (PS sources), as well as in the mixing
region between the secondary and external 
ow (SE sources).

In Figures 7-8, the radiation pattern of both types of sources is presented on a civil con�guration. It
involves a dual-stream geometry with no external 
ow. A source is placed inside the mixing layer and
acoustic rays (in white) are shot from the source. The bending of the ray accounts for refraction e�ects. An
example of SE source radiation is shown in Figure 7. In this case, acoustic rays undergo slight refraction
e�ects. Neglecting refraction e�ects for these sources could appear as a reasonable approximation. The case
of PS sources is illustrated in Figure 8. The acoustic rays shot from the source are strongly refracted by
the mixing layer between the secondary and external stream. Refraction cannot be neglected in this present
case.
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Figure 7. Radiation of a SE source
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Figure 8. Radiation of a PS source

To circumvent this issue, Morris and Miller13 numerically computed the vector Green’s functions asso-
ciated with the LEE. The problem is mathematically and numerically complex and a simpler approach is
described here. A ray-tracing algorithm is used to account for refraction e�ects. A high-frequency approxi-
mation of the Green’s functions may be derived directly from ray-tracing.

IV.B. The ray-tracing method

The basics of the ray-tracing method used in the remaining of the paper are brie
y recalled. The ray-tracing
approach provides a high-frequency solution to the LEE. It is similar to a multiple scale resolution of the
LEE. Physically, the acoustic waves are locally described as plane waves. Ray paths are tangent to the group
velocity and indicate the propagation of acoustic energy. The ray paths are obtained by solving the eikonal
equations 8>><>>:

dxi
dt

= c
ki
k

+ v0i � gi(x;k)

dki
dt

= �k @c
@xi
� kj

@v0j

@xi
� hi(x;k)

(48)

where x is the ray trajectory as a function of time, k is the wave vector, k = jjkjj. The initial conditions are
the source location and the shooting angles (�0; �0). The formulation adopted here is provided by Candel.23

The coordinate system is described in Figure 9. The acoustic 
ux is conserved in a ray tubeZ
S

Evg:ndS = 0 (49)
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Figure 9. Coordinate system used for ray-tracing. x1 is the jet axis, the ray is shown in blue

where E is acoustic energy density (J:m�3), dS is the elementary surface of the ray tube cross-section, n is
the normal vector to dS and vg is the group velocity vector. The local interpretation of (49) is

Evg � ndS = I � ndS = K1 (50)

where I is the acoustic intensity vector and K1 is a constant equal to the acoustic power injected by the
source in the ray tube. In the particular case of an isotropically radiating source

K1 =
d


4�
Wa (51)

where d
 is the solid angle associated with the ray tube and Wa is the source power. I being collinear to
the ray paths, one has

I =
K1

dS
(52)

To track the evolution of dS along the ray paths, Candel23 introduced the following geodesic elements8>>><>>>:
R� =

�
@x

@�0

�
t;�0

R� =

�
@x

@�0

�
t;�0

Q� =

�
@k

@�0

�
t;�0

Q� =

�
@k

@�0

�
t;�0

(53)

R� quanti�es the change in the ray path when slightly shifting the shooting angle �0. By applying the chain
rule of di�erentiation, the evolution of the geodesic elements is governed by8><>:

dR

dt
=
@g

@x
�R+

@g

@k
�Q

dQ

dt
=
@h

@x
�R+

@h

@k
�Q

(54)

After solving systems (48) and (54), the divergence or convergence of the rays is easily evaluated by

dS = j(d�0R
�)� (d�0R

�) cos(k;vg)j (55)

and I is then determined by (52). The ray-tracing algorithm can provide the acoustic pressure evolution in
the 
ow from a �xed source term. Intuitively, this is closely related to the general de�nition of a Green’s
function. This point is established in the next section.

IV.C. Formal relation between Green’s functions and acoustic rays

The source terms lie in the mixing layer and radiate to the observer in the acoustic far �eld. It is assumed
that the mean 
ow is uniformly sheared and parallel to the jet axis, so that

v = (v1(x2; x3); 0; 0) (56)
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As shown by Lilley,24 it is possible to combine the Euler equations to form a third-order wave equation.
The interpretation of all the source terms on the right-hand side of this equation is however tricky.25 It is
possible to linearize this equation about the mean state, so that Lilley’s equation reduces to26,27

Lp0 =
D

Dt

�
D2

Dt2
�r � c2r

�
p0 + 2c2rv1 � r

@

@x1
p0 = � c2� (57)

where � is the source term de�ned by

� � D

Dt
r � f � 2rv1 �

@

@x1
f (58)

In (57) the assumption that � c2 = 
p has been made. Indeed, the uniform shear 
ow hypothesis implies
that the mean static pressure p is constant.

The Green’s function associated with L, namely gL, satis�es

LgL(x;y; !) = �(x� y) (59)

so that the solution to (57) is

p0(x; !) = � c2
Z
gL(x;y; !)�(y; !)dy (60)

The source term is given by

�(y; !) =

�
�i! + v1

@

@y1

�
@fi
@yi
� 2

@v1

@yi

@fi
@y1

(61)

Injecting (61) into (60) and performing some algebra leads to

p0(x; !) =� c2
Z ��

i!
@gL
@y1

+ v1
@2gL
@y2

1

�
f1 +

�
i!
@gL
@y2

+ 3
@v1

@y2

@gL
@y1

+ v1
@2gL
@y1@y2

�
f2

+

�
i!
@gL
@y3

+ 3
@v1

@y3

@gL
@y1

+ v1
@2gL
@y1@y3

�
f3

�
dy

(62)

Comparing (62) with the general solution

p0(x; !) = � c2
ZZ

�n(x;y; !)fn(y; !)dy (63)

gives the analytical expressions of the vector Green’s functions, namely

�1(x;y; !) = i!
@gL
@y1

+ v1
@2gL
@y2

1

�2(x;y; !) = i!
@gL
@y2

+ 3
@v1

@y2

@gL
@y1

+ v1
@2gL
@y1@y2

�3(x;y; !) = i!
@gL
@y3

+ 3
@v1

@y3

@gL
@y1

+ v1
@2gL
@y1@y3

(64)

These equations relate the scalar Green’s function of Lilley’s equation gL, to the vector Green’s functions
�n of the LEE.

The last step is to determine gL(x;y; !) from the ray-tracing method. The starting point is to shoot from
y at x and to compute the conservative quantities along the ray. To properly scale the Green’s function
computed, the acoustic power to inject in the ray tubes has to be determined �rst. The Green function
gL(x;y; !) is the pressure �eld created by a source term S(x) = �(x � y). The total acoustic power Wa

radiated by the elementary source S is computed in the absence of a mean 
ow, on a sphere of radius unity

Wa =

Z
I � ndS (65)
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The pressure �eld is given by

p0(x; t) = �e
�i !

c1R

4�R
e�i!t (66)

where R = jjxjj. Recalling that I = p02=�1c1, one has

p02(x) =
1

32�2R2
I =

1

32�2�1c1R2
and Wa =

1

8��1c1
(67)

The conservation of the acoustic 
ux through a ray tube gives

p02 =
�c2K1

(1 +M :�)vg � dS
(68)

Under the high-frequency hypothesis, the acoustic pressure is expressed as

p0(x; t) = ~p(x)ei(k�x�!t) (69)

The complex amplitude ~p(x) is related to the RMS value of p0 by

~p(x) = �

s
2�c2K1

(1 +M :�)vg � dS
(70)

The Green’s function gL is then given by

gL(x;y; !) = �

s
2�c2K1

(1 +M :�)vg � dS
eik�x (71)

This expression supposes that K1 (the acoustic power injected in the ray tube) as well as the value of Wa

have been calculated using (51) and (67) respectively.
An example of the calculation of gL is now given. The particular case of a quiescent medium is presented

in Figure 10 for veri�cation: the source is located at the origin, the ray is shot at �0 = 45�, the source
pulsation is set to !0 = 2� � 10000rad/s and the evolution of gL(x; 0; !0) versus x=� is shown in Figure 10.
� is the wavelength de�ned by � = 2�c

! . The function gL computed by the ray-tracing method is compared
to the analytical free �eld Green’s function and a perfect agreement is found.

As a second example, the case of a uniform 
ow parallel to the x1 direction, with v1 = 200m/s, is reported
in Figure 11. The Green’s function gL is compared to the analytical Green’s function given by Howe28 and
a perfect agreement is again observed.

0 1 2 3 4 5 6
−5

0

5

x/λ

g L(x
,y

,ω
)

Figure 10. Numerical calculation of the Green’s function
without mean 
ow. analytical solution. t ray solu-
tion. Shooting angle �0 = 45 deg

0 1 2 3 4 5 6
−5

0

5

x/λ

g L(x
,y

,ω
)

Figure 11. Numerical calculation of the Green’s function
with a uniform mean 
ow v1 = 200m=s. analytical
solution. t ray solution. Shooting angle �0 = 45 deg
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IV.D. Numerical implementation of refraction e�ects

To account for refraction e�ects, the vector Green’s functions of the LEE �n(x;y; !) need to be evaluated.
This requires the knowledge of the Green’s function of Lilley’s equation gL(x;y; !), and its �rst and second
order derivatives along y as expressed in (64).

The function gL(x;y; !) is determined by shooting from y at the observer x as explained above. Its �rst
and second order derivatives are computed with �nite di�erences, by shooting from points close to the source
location. For instance, to compute @gL=@y1 at �rst order, one shoots from y and from y + dye1, where dy
is a small spatial step and e1 is a unit vector in the x1 direction.

The direct determination of eigen rays between a couple source at x and receiver at y is not very e�cient.
A more e�cient approach consists in preliminarily solving the adjoint problem, as suggested by Tam.29 The
adjoint problem is obtained by reversing the mean 
ow, that is v in the direct problem becomes �v in the
adjoint problem. The fundamental property is that ray paths will have the same trajectory in both problems
(direct and adjoint). An example of application is given in Figure 12. A Gaussian velocity pro�le is used for
the mean shear 
ow

v1(y) = 0:58c1 exp(�y2=(5D2)) (72)

The velocity pro�le is drawn on the left side of the �gure. On the right side, the ray paths are plotted.
The black circles represent 3 observers and the 2 red circles represent two source terms. For a given source-
observer pair, the computation of gL(x;y; !) is achieved like this: �rst consider the adjoint problem. Shoot
from the observer at the source in all directions (black rays in Figure 12). Determine the closest ray to the
source and its angle of intersection: this is �0. Then shoot back at the observer in the direct problem (red
ray in Figure 12), using �0 determined in the adjoint problem. The equivalence of the direct and adjoint
problem is clearly illustrated in Figure 12: the rays do follow the same trajectories in both problems. The
strong e�ect of the 
ow on the rays is also evidenced: rays bend away from the jet axis, and produce the
so-called cone of silence.
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Figure 12. Ray-tracing in the direct and adjoint problems. t
observer, t source, adjoint ray, direct ray

V. Conclusion

The objective of this work was to develop a model for BBSAN, applicable to complex con�gurations,
and informed by a RANS simulation. Neglecting refraction e�ects at �rst, this model has been successfully
validated on a single-stream jet at two operating conditions and for various observation angles.

A methodology to include refraction e�ects using geometric acoustics has then been developed. The
Green’s function of Lilley’s equation is estimated by ray-tracing, and then related to the vector Green’s
functions of the LEE. The numerical calculation of the scalar Green’s function has been validated.
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The computation of the vector Green’s functions and their coupling with the initial prediction model will
be done in the near future, enabling predictions on more complex dual-stream con�gurations with external

ow.
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