Experimental study of flight effects on screech in underexpanded jets

Benoît André, Thomas Castelain, and Christophe Bailly

1Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
2Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
3Institut Universitaire de France, Paris, France

(Received 9 June 2011; accepted 23 November 2011; published online 30 December 2011)

Flight effects on screech from an underexpanded supersonic jet have been experimentally investigated in a free jet facility. Screech frequency prediction is addressed, and some conclusions about the convection velocity under flight conditions are drawn. An azimuthal near field acoustic antenna is used to investigate the modal behaviour of screech with forward flight effects. Several mode switchings are identified as the flight velocity is increased but none can be related to a change in the screech azimuthal mode content. Screech is enhanced by flight at high fully expanded Mach number M_f. This conclusion, established from acoustic far field measurements, is supported by the analysis of schlieren visualizations. © 2011 American Institute of Physics. [doi:10.1063/1.3671735]

I. INTRODUCTION

Underexpanded supersonic jets usually emit two so-called shock associated noise components beside the mixing noise also present in subsonic jets: the broadband shock associated noise and a tonal noise referred to as screech. Screech has been extensively studied since Powell’s pioneering work. Powell explained with some success the genera-

tion of this tone by an acoustic feedback loop. In this model, vorticity disturbances originating from the nozzle lip are convected downstream and interact with the shock cell pattern of the jet plume. The acoustic waves emanating from this interaction propagate back to the nozzle where they trigger new disturbances, thus closing the loop. This loop is resonant for some frequencies which are the fundamental screech frequency and its harmonics. For circular jets, Powell isolated four modes, A, B, C, and D, from the screech frequency evolution with increasing nozzle pressure ratio (NPR), defined as the ratio of the upstream stagnation pressure to the ambient pressure. Each mode switching was characterized by a frequency jump, and each mode was dom-

inant over a rather well defined NPR range. Later, Merle pointed out that mode A could be divided into modes A1 and A2. Davies and Oldfield subsequently studied the acoustic emission using two microphones located on either side of the jet and associated the modes with emission patterns. A1 and A2 were, thus, classified as being axisymmetric, B sinuous, and C helical. Mode D longer resisted classification, but is now known to be sinuous. More recently, Tam et al. proposed a more elaborate model for screech generation based on a description of the relevant turbulent structures as instability waves. The modal characteristics of screech were

studied in detail by Powell et al. with measurements of frequency and convection velocity, estimation of source location, and focus on the screech unstable behaviour. Screech modes were investigated in light of the jet instability theory by Powell et al. and Ponton and Seiner, accrediting the instability wave description mentioned above. A summary of the knowledge on screech is provided in Raman.

Hay and Rose reported that screech could arise on an aircraft in flight and could lead to structural damage. However, as pointed out by Tam, screech in flight has not yet been studied in sufficient detail.

Modifications of jet noise in flight are of interest in aero-

nautics. The end of the 1970s, thus, saw considerable effort, both experimental and theoretical, devoted to understanding the noise source modifications due to forward motion. An extensive review on this topic was provided in the introduction of Michalke and Michel. Among the early works, Hay and Rose and Bryce and Pinkel addressed the problem of noise from shock containing jets in forward motion. They proposed an extension of the screech frequency prediction formula to the flight case. This particular problem was further looked at by Norum and Shearin and by Krothapalli et al. Norum and Shearin also showed that the screech amplitude is barely modified when the flight Mach number is increased up to 0.4. This conclusion is in agreement with the data of Krothapalli et al., but somewhat different from a recent publication by Viswanathan and Czech. The study of Brown et al., where flight Mach numbers go up to 0.8, also suggests a reduction of screech at high flight velocities but the screech contribution to the overall sound pressure levels (OASPLs) was very weak in their work, even under static conditions. Finally, the occurrence of mode switching in flight was reported by Norum and Shearin and Norum and Brown. In the former reference, the dominant screech mode for a fully expanded jet Mach number M_f of 1.67 was seen to switch from C to B between static conditions and a
flight Mach number M_f of 0.15. In addition, mode C was not found to dominate at any jet operating conditions in flight. This was later confirmed by Norum and Shearin, in whose work the appearance of new modes at $M_f > 1.55$ was identified.

To summarize, few studies have been devoted to the study of screech from jets in forward motion. Moreover, the existing ones usually concentrate on screech frequency prediction. No consensus has been reached on the effect of flight on screech strength, and the modal behaviour of screech in flight seems only to have been studied through the analysis of the screech frequency evolution. The present study has been undertaken as a step toward a better understanding of the phenomenon of screech in flight. It is part of a larger study of flight effects on shock associated noise, which is going to be responsible for a dominant part of cabin noise levels in cruise condition for the next-generation commercial aircraft including composite fuselage. In this perspective, the noise from cold circular supersonic jets is relevant. This configuration is tested herein.

This paper is organized as follows. First, the experimental facility is presented in Sec. II. Then, the screech frequency prediction for static and forward flight conditions is addressed in Sec. III. Flight effects on the screech modal behaviour are investigated in Sec. IV. Finally, effects of forward motion on screech amplitude are identified from acoustic measurements as well as analysis of schlieren flow visualizations in Sec. V.

II. EXPERIMENTAL SET-UP

A. The facility

Flight is simulated in the present experiment by means of a free jet facility, where the underexpanded supersonic jet is embedded in a larger free flow. In the following, the supersonic jet will also be called primary or model jet while the free jet will also be referred to as secondary or subsonic jet. The two jets exhaust in the $10 \times 8 \times 8$ m3 large anechoic room of the Centre Acoustique. The supersonic flow originates from a continuously operating compressor fed with dry air while the subsonic one is generated by a fan system. Both jets are unheated. Within the anechoic room, well upstream of the jet exit, the supersonic duct penetrates into the subsonic flow. In the final section before the exit, both ducts are cylindrical and coaxial. The supersonic duct is maintained at its central position inside the secondary tunnel by a set of 12% thick zero lift airfoil sections. The primary jet exhausts through a $D = 38$ mm diameter axisymmetric contoured convergent nozzle of 0.5 mm lip thickness. The secondary duct is terminated by a 200 mm diameter round contoured convergent nozzle, and both flows have the same exit plane. In the following, the origin of the coordinates is taken at the center of the nozzles. The flow set-up can be seen in Fig. 1.

The primary jet is monitored by measuring the wall static pressure 15 nozzle diameters upstream of the exit. Stagnation pressure is then retrieved from the static pressure value through an estimate of the local Mach number in the measurement cross section. This value is known by the use of the area Mach number relation (see, e.g., Anderson) with the assumption of a unit exit Mach number. The total temperatures of both flows are measured by thermocouple probes. In this paper, the fully expanded Mach number for the primary jet goes up to 1.5 and the flight Mach number up to about 0.4. All experiments reported herein have been conducted with supersonic primary jets whose mean convection velocities are subsonic, so that no strong Mach wave radiation occurs.

The experimental facility has been carefully checked by means of total pressure and hot wire traverses while operating at subsonic conditions to ensure that the flows are axisymmetric. Furthermore, the adequacy of the free jet to model jet diameter ratio to simulate flight conditions for shock associated noise has been verified by measuring the length of the free jet potential core at $M_f = 0.6$ and $M_f = 0.28$. It has been found that the potential core extends up to about 14 D, where D is the primary nozzle diameter. It has to be noted that the secondary potential core length in coaxial arrangements is known not to depend on the inner to outer velocity ratio (see, e.g., Champagne and Wygnanski), $14 D$ approximately correspond to 11 shock cells at $M_f = 1.50$ if we assess the mean shock cell length by the formula from Seiner and Norum, $L_s \approx 1.12 (M_f^2 - 1)^{1/2} D$. Referring to Davies and Oldfield, screech originates primarily from shock cells located further upstream. The part of the shock-containing jet plume which is relevant for screech generation is embedded in the potential core of the outer flow, and therefore, the free jet to model jet diameter ratio appears sufficient for proper flight simulation.

B. The measurement techniques

A conventional Z-type schlieren system is used to visualize the flow. It consists of a continuous Quartz Tungsten Halogen light source, two f/8 parabolic mirrors with diameter of 203.2 mm, a razor blade set perpendicular to the flow direction as filter, and a high-speed CMOS camera. This setup is mounted on a traversing system aligned with the jet axis. Far field acoustic data are obtained from thirteen 6.35 mm diameter PCB Piezotronics condenser microphones fixed on a circular polar antenna 2020 mm or approximately 53 D from the centre of the nozzles. The microphones are located every 10° from 30° to 150°. In the following, polar angles are measured from the downstream jet axis. The
transducers are used in normal incidence without protecting grid as is recommended by Viswanathan. A similar experimental arrangement has already been used for the study of screech, for example, by Powell et al., Pon- ton and Seiner, or Massey and Ahuja. Such an arrangement is essential to study screech modes from the phase relations between the microphones. Depending on the case considered, 15 or 18 PCB microphones are located on a 18-hole circular mesh with 20° azimuthal periodicity. All pressure signals are acquired at a rate of 102 400 Hz by a National Instrument PXI 5733 board.

C. Mach number profiles in the secondary flow

Total and static pressure transverse profiles have been measured across the secondary jet at several values of fan engine speed with no primary jet ($M_j = 0$). Using isentropic relations for compressible flows, Mach number profiles have been computed and are given in Fig. 3. It is apparent that the Mach number is not uniform across the secondary flow, which decelerates toward the supersonic jet. This variation is entirely due to the static pressure variation since the total pressure is constant across the secondary flow. The static pressure increase toward the inner jet can be attributed to the free jet curvature which is imposed by the primary nozzle. It is worth noting that some radial profiles of axial velocity by Plumblee clearly show the same feature.

Fan engine speeds have been translated into values of M_f by means of a calibration procedure where the local Mach number has been measured approximately at the center of the free jet. This value must then be taken as a mean rather than as a unique M_f characterizing the secondary flow.

III. SCREECH FREQUENCY IN STATIC AND FLIGHT CONDITIONS

A. Static case

The screech frequency evolution with jet Mach number under static conditions is shown in Fig. 4. Only Strouhal numbers associated with fundamental screech tones are displayed.

$$T_s = L_s / U_c + L_s / c_0,$$ (1)

with L_s the shock cell length, U_c the convection velocity of vortical disturbances in the mixing layer, and c_0 the speed of sound outside the jet. Equation (1) leads straightforwardly to the expression of the screech frequency f_s,
where the convective Mach number M_c denotes U_c/c_p. Essentially, the same formula is obtained by Tam et al.5 Depending on the retained expressions for L_s and U_c as a function of M_j and jet total temperature T_j, many final expressions for f_s have been proposed. The evolution of L_s with M_j has generally been expressed as a function of βD, with $\beta = (M^2_j - 1)^{1/2}$. The convection velocity is written as a fraction of the jet fully expanded velocity U_j, and $U_c = 0.7 U_j$ seems to be the most usual value. However, Panda et al.26 found a significant dependence of convection velocity with screech mode for a circular nozzle.

In Tam et al.5 the frequency expression was rewritten to express $f_s D_j/U_j$ as a function of M_j and T_j only as

$$f_s D_j/U_j = \frac{0.67}{(M^2_j - 1)^{1/2}} \left[1 + 0.7M_j \left(1 + \frac{\gamma - 1}{2} M^2_j \right)^{-1/2} \left(\frac{T_{amb}}{T_j} \right)^{-1/2} \right]^{-1},$$

(3)

In Eq. (3), D_j is the fully expanded jet diameter, T_{amb} the ambient temperature, and γ the ratio of specific heats. Massey and Ahuja24 proposed two different screech formulae for modes A and C, starting from Eq. (3) and using specific U_c estimates for each mode. Also, it was noticed that a $(M^2_j - 1)^{1/3}$ dependence of shock spacing allowed a better fit of the experimental data. In this reference, f_s for mode A (axisymmetric) is written as

$$f_s D_j/U_j = 1.25 \frac{0.63}{1.1(M^2_j - 1)^{1/3}} \left[1 + 0.63M_j \left(1 + \frac{\gamma - 1}{2} M^2_j \right)^{-1/2} \left(\frac{T_{amb}}{T_j} \right)^{-1/2} \right]^{-1},$$

(4)

and for mode C (helical) as

$$f_s D_j/U_j = \frac{0.615}{1.1(M^2_j - 1)^{1/3}} \left[1 + 0.615M_j \left(1 + \frac{\gamma - 1}{2} M^2_j \right)^{-1/2} \left(\frac{T_{amb}}{T_j} \right)^{-1/2} \right]^{-1}.$$

(5)

The following expression is proposed for mode B, which was left out by Massey and Ahuja.24

$$f_s D_j/U_j = \frac{0.58}{1.12(M^2_j - 1)^{1/3}} \left[1 + 0.58M_j \left(1 + \frac{\gamma - 1}{2} M^2_j \right)^{-1/2} \left(\frac{T_{amb}}{T_j} \right)^{-1/2} \right]^{-1},$$

(6)

where the value of the convection velocity $U_c = 0.58 U_j$ is taken from Panda et al.26 for mode B.

The Strouhal numbers $St_s = f_s D_j/U_j$ computed from these expressions are superimposed on our measured values in Fig. 4. It can be seen that the agreement is good for all modes. The formula of Massey and Ahuja24 for mode A seems in particular to be calibrated for mode A2. Equation (5) is in fair agreement with the two higher frequency points around $M_j = 1.4$, confirming that the helical mode is marginally present in our facility. Finally, Eq. (6) follows closely the measured frequencies for mode B over a large M_j range, giving support to the $(M^2_j - 1)^{1/3}$ dependence of shock propagation proposed by Massey and Ahuja.

B. Flight configuration

In the following, results for screech modes A1, A2, B, and C in flight are presented. For a given mode, only one jet Mach number is here considered, being representative of the main features noticed by the authors for the corresponding mode. Jet Mach numbers of 1.10, 1.15, 1.35, and 1.50 have thus been selected. For these values of M_j, M_c has been gradually varied from 0 to about 0.4 upward and downward. The resulting screech frequencies are displayed in Fig. 5 (the labels in Fig. 5 are associated with the analysis developed in Sec. IV). The general trend is a decrease of screech frequency with M_j. In all cases and especially for $M_j = 1.15$, the frequency evolution is discontinuous. Finally, some frequency jumps are seen to give rise to hysteretical behaviours, insofar as the upward and downward frequency curves are not always superimposed. The screech frequency prediction in flight is now discussed.

The screech frequency prediction formula has been extended to forward flight by Hay and Rose19 and later by Bryce and Pinker.13 starting from Powell’s11 static expression. The only modification of the expression of the screech time period in flight as compared to Eq. (1) arises from the slowed acoustic propagation back toward the nozzle,

$$T_s = L_s/U_c + L_s/(c_0 - U_j),$$

(7)

where U_j is the flight velocity. This leads to

$$f_s = U_c/(L_s [1 + M_j /(1 - M_j)]).$$

(8)

Equation (8) is also the same as that given by Tam.11 Here again, the relevant expressions for L_s and U_c can be discussed. First, the importance of considering the shock cell lengthening for frequency prediction was already underlined by Norum and Shearin.14 Morris27 proposed an expression for the shock cell length in flight from a vortex sheet model with proper boundary conditions. The model prediction for $M_j = 1.50$ is shown in Fig. 6 along with some mean shock cell length measurements from schlieren recordings of the present study. Also displayed are estimates from static pressure profiles of Norum and Shearin28 for $M_j = 1.49$. The agreement between the theory and the present results is seen to be good, especially considering the dispersion in the
experimental data. Hence, the theoretical expression from Morris27 is used in the following.

The convection velocity can be calculated as

\[U_c = a(U_j - U_f) + U_f \]

(9)

by generalizing Bryce and Pinker’s formula,13 who use \(a = 0.7 \). The value of \(a \) is considered here to be specific to each screech mode, according to the measurements of Panda \textit{et al.}26 On the other hand, the study of Sarohia and Massier29 suggests that the boundary layer on the engine cowl, or for us on the outer wall of the model jet nozzle, shields the model jet from the secondary flow. As a result, the relevant scale velocity is expected to be \(U_j \) and not \(U_j - U_f \). Hence, according to this hypothesis,

\[U_c = a U_j, \]

(10)

where \(a \) takes on the same values as in Eq. (9). The two prediction formulae for \(f_s \) derived from these expressions for \(U_c \) have been tested against the measured screech frequency evolutions displayed in Fig. 5 for the two higher Mach number cases. The results are depicted in Fig. 7, for \(a = 0.58 \) coming from Panda \textit{et al.}26 and \(L_s \) provided by Morris’ model.27 Equation (10) leads to a better prediction of the slope of \(St_s \) with \(M_f \). The agreement is even found to be very good for both \(M_f \) if one matches the predicted Strouhal number to the measured one at \(M_f = 0 \). This would support the hypothesis of Sarohia and Massier.29

IV. ANALYSIS OF NEAR FIELD MICROPHONE SIGNALS

In addition to allowing screech frequency predictions to be established, the time signals have also been used to investigate the modal behaviour of screech in flight. Several analyses have been performed.
For the sinuous mode B, the azimuthal distribution of acoustic pressure in the near field is antisymmetric with respect to a plane containing the jet axis. Next to this plane, the screech amplitude is vanishing, whereas it is maximum in the direction normal to the plane. Moreover, this plane is known to slowly rotate.

Using the near field azimuthal microphone antenna (Fig. 2), this behaviour can be followed by tracking the azimuthal location of the microphones associated with the lowest root mean square pressure calculated over a small number of screech periods, namely, ten in the results presented here. In the following, the position of the plane of antisymmetry is located by its azimuthal angle ϕ_m, as defined in Fig. 8.

Additionally, the time evolution of phase relationships between the microphones has been estimated. One near field microphone has been chosen as phase reference, and its azimuthal angle has been arbitrarily taken as $\phi_m = 0^\circ$. For each of the remaining microphones, the phase angle difference to the reference microphone has been computed from the time delay yielding the maximum cross-correlation between the two time signals. Time extracts of ten screech periods have been considered to evaluate an instantaneous phase relation. Repeating the calculation for such temporal blocks over the whole recording has allowed the time evolution of phase differences to be determined. The phase relations, written $\Delta \psi$, are expressed as a fraction of screech period. Thus, $\Delta \psi = 0$ means that the signals are in phase, while $\Delta \psi = \pm 0.5$ stands for an opposite phase relation. In the following, only a limited number of near field microphones is considered, to enhance the readability of the displayed results. Their position is shown in Fig. 8.

Finally, the modal detection method by Massey and Ahuja24 has been implemented and used to check some of the time results. A measure of the modal amplitude associated with each azimuthal mode contained in the time signals is obtained. Contrary to the first two techniques, this one has been used on the entire time signals and has thus provided integrated information over the whole recordings. In the following, the azimuthal order is written m.

Before applying the first two processings, the time signals have been digitally filtered around the screech frequency. It not only yields a more suitable frame for postprocessing, but also ensures that the dominant screech frequency is selected for analysis in the case of multiple screech tones. The points investigated specifically in the following are labeled on the frequency plots of Fig. 5 and described in Table I.

A. Mode A1

The case of $M_f = 1.10$ is discussed now. The screech Strouhal number evolution against M_f is shown in Fig. 5(a) and some small discontinuities can be identified. The first one occurring around $M_f = 0.13$ is considered here. A time trace of P1 is shown in Fig. 9(a). All microphones are seen to be in phase on this sample. The modal detection (b), which is an integrated result over the one-second recording, confirms that the axisymmetrical mode $m = 0$ dominates over the helices $m = \pm 1$. Phase relation calculations for all the other points have been performed, and the microphone

![FIG. 8. Sketch of the near field azimuthal microphone antenna, defining the location of microphones as a function of the azimuthal angle ϕ_m, and showing a possible location for the plane of antisymmetry, denoted by ϕ_p (relevant for flapping modes only).](image-url)
signals have always been seen to be in phase. This allows us to conclude that the screech at \(M_f = 1.10 \) remains axisymmetric at all \(M_f \) values, in spite of the frequency jumps.

B. Mode A2

The mode A2, which is dominant at \(M_f = 1.15 \), corresponds to the only fully expanded jet Mach number investigated that shows strong frequency jumps, see Fig. 5(b). It seems interesting to note that at \(M_f = 0 \) already, several non-harmonically related screech frequencies are visible in Fig. 4, indicating an unstable behaviour also pointed out by Davies and Oldfield.\(^4\) The presence of several screech frequencies is maintained throughout the \(M_f \) range tested. This is obvious on the map of sound pressure level versus flight Mach number displayed in Fig. 10. The dominant screech frequency at each value of \(M_f \) is the one selected for the plot of Fig. 5(b). Point P3, corresponding to the first jump, is examined here. A time-frequency diagram built on the two-second time signal is shown in Fig. 11(a). The two screech frequencies visible on each side of the jump are seen to appear alternatively. A phase analysis has been applied to the time signals, pass-band filtered around the upper screech frequency in Fig. 11(b) and around the lower one in Fig. 11(c).

It should be noted that the calculated phase relations \(\Delta \psi \) can only take discrete values due to the time signal discretization. The resolution is \(f_s/f_{sec} \), where \(f_{sec} \) is the sampling rate. For the case in Fig. 11(b), \(f_s/f_{sec} = 0.057 \), which explains that the displayed phase relations are not quite smooth.

One clearly remarks that, when the signals are pass-band filtered around a given frequency \(f_s \), the phase \(\Delta \psi \) is equal to zero when this frequency dominates in the time-frequency diagram: all microphones are approximately in phase at both frequencies, suggesting that both screech modes are axisymmetric. In fact, it is so for all the flight Mach numbers investigated at this value of \(M_f \). The second and third jump visible in Fig. 5(b) do not reveal any other type of mode. It means that the mode switching when \(M_f \) is increased is like the one between modes A1 and A2 for static jets: there is no change of azimuthal mode dominance. It seems from Fig. 10 that all encountered axisymmetric modes are present at most values of \(M_f \) and that they are alternatively emphasized as \(M_f \) is varying. Flight is known to modify the jet mixing layer stability,\(^30\) and for this value of \(M_f \) already showing multiple stages at \(M_f = 0 \), the most amplified mode is seen to vary with \(M_f \).

C. Mode B

A plot of phase relations for point P4 of sinuous mode B is shown in Fig. 12, along with an extract from the time signals. The flapping property of this mode stands out quite clearly, since the microphones can be gathered into two groups which are in opposite phase relation. It can be inferred from Fig. 12 that the plane of antisymmetry lies between 100° and 160°, as shown by the sketch of the near-field antenna drawn on the figure. This feature holds throughout the whole flight Mach number range; the screech at this value of \(M_f \) is thus always flapping.

Nevertheless, one flight effect on the rotation of the plane of antisymmetry has been identified. The position of the plane against time is shown in Fig. 13(a) for P5, over 0.5 s. It can be seen that the plane of antisymmetry completes approximately six half-rotations within 0.5 s. In Fig. 13(b), a

![Fig. 9. Mode A1, \(M_f = 1.10 \), point P1: (a) time signals; (b) modal content.](image)

![Fig. 10. Mode A2, \(M_f = 1.15 \). Map of sound pressure level (SPL) against \(M_f \). The colorbar codes SPL in dB/Hz.](image)
focus around the screech frequency of the spectrum at P5 is displayed. Two distinct peaks are readily identified. Their frequencies are 3236 Hz and 3248 Hz, which means that they are 12 Hz apart. Now there are six plane half-rotations over the first half-second of the time recording, which is connected to this 12 Hz difference in the way highlighted next. The modal detection algorithm has been applied on those two frequencies. Azimuthal modes $m = -1$ and $m = +1$ are seen to dominate separately for each frequency. Independently, if one adds up two artificial time signals of azimuthal modes $m = -1$ of frequency f_1 and $m = +1$ at f_2, it is seen that a flapping mode results but with a plane of antisymmetry rotating at $|f_1 - f_2|$. To conclude, it is believed that the existence of two counter-rotating helices of different frequencies is responsible for the rotation of the plane of antisymmetry visible for P5.

Now, the first two points in Fig. 5(c) at low M_f are seen to have rotating planes in connection with several spectral peaks very close to each other. As of the third point, from $M_f = 0.05$ upward, only one peak frequency is visible in the spectra, which is associated with a steady plane of antisymmetry. It is concluded that the secondary flow stabilizes the screech at $M_f = 1.35$ in some way. Furthermore, while M_f is decreased to zero, mode B remains stable even at vanishing flight Mach number. So, once the screech has been stabilized, it seems to remain stable even in the absence of flight. This change of state between upward and downward variations of M_f most probably explains the frequency difference noticed between both cases at $M_f = 0$ (see Fig. 5(c)).

D. Mode b

The upper fully expanded Mach number investigated is $M_f = 1.50$. The screech frequency evolution in flight is given in Fig. 5(d) and a small jump occurs around $M_f = 0.23$. The
phase relations for P6 on one side of the jump and P7 on the other side are shown in Fig. 14. This mode is obviously flapping as the same phase relations as for mode B are visible. As for mode A2, the frequency jump does not change the dominant azimuthal modes. Incidentally, these results confirm that this upper screech mode is, indeed, a mode b as it was stated earlier, and not a helical mode C.

Point P8 is nevertheless worth mentioning. This recording is the one right before the screech frequency jumps to lower frequencies. The position of the rotating plane of antisymmetry is shown in Fig. 15 over a short time period extracted from the 1-s recording, while the phase relations are displayed in Fig. 16(a) over the same time interval. Moreover, the entire time traces (not shown here) very much look like the ones shown by Powell et al.\(^6\) in their Fig. 15(a), revealing rapid and strong amplitude modulations over time. The plane rotation and the phase relation design are both fully stationary throughout the whole recording. The phase relation pattern looks rather puzzling at first sight but it has been artificially reconstructed in the following manner. First, as indicated by Fig. 15, the plane completes approximately forty half-rotations in a second. Furthermore, a second frequency peak of lower amplitude located 41 Hz aside the dominant one is visible in the acoustic spectra (not shown here). The modal content of the acoustic near field, determined using the modal detection algorithm, is exclusively

\[m = -1 \] at the screech frequency and \[m = +1 \] at the other peak frequency. It seems then that two helical modes of separate frequency coexist, in the manner of what happens for point P5. Analytically, a time signal was built as the sum of such two helices, whose orientations are opposite, frequencies are given by the acoustic spectra, and amplitudes are obtained by filtering the time signals sharply around each peak frequency and noting the amplitude of the resulting

\[\phi_m = 40^\circ, \quad \phi_m = 100^\circ, \quad (\text{gray}) \quad \phi_m = 160^\circ, \quad \phi_m = 220^\circ, \]

\[(\text{gray}) \quad \phi_m = 280^\circ, \quad \phi_m = 340^\circ. \] The inserts display the approximate location of the plane of antisymmetry.
signal. The ratio of these two amplitudes is the relevant parameter to properly reconstruct the time signals. Finally, the phase relations for the artificial signals made up of both helices have been computed, and the pattern shown in Fig. 16(b) has been obtained. It is obviously the same pattern as the experimental counterpart. The screech at P8 is thus made up of two counter-rotating helices of different frequencies and amplitudes. It has been observed that this peculiar behaviour builds up from the three previous points while \(M_f \) is increased and completely vanishes just after the jump. In addition, the agreement between measured and reconstructed phase relations demonstrates the adequacy of the phase relation analysis.

Finally, the current point P8 is then rather similar to P5 studied above. The main differences are a perfectly constant angular speed of the plane rotation at P8 which makes it particular among all the investigated points and the amplitude difference between the two counter-rotating helices. The latter property is responsible for the peculiar phase relation pattern, which has not been seen on any other measured point.

C. Summary of the time signal analyses

Our results are summarized in Table II. The expression double helical denotes the configuration where screech is made up of two counter-rotating helices of different frequencies, which makes the plane of antisymmetry rotate. The wording flapping denotes as usual a screech with two counter-rotating helices of same frequency. The frequency discontinuities, indicating some kind of mode switching, have never been related to a change in the azimuthal mode content of screech. This does not mean, however, that such a switch is impossible. Actually, it has already been reported by Norum and Shearin.\(^{14}\) Values of \(M_f \) located near a natural mode switching under static conditions might give rise to such azimuthal mode changes in flight condition.

V. FLIGHT EFFECTS ON SCREECH AMPLITUDE

A. Far field acoustic results

One well-known disadvantage of free jet facilities to simulate flight conditions is the presence of the external shear layer between secondary jet and quiescent medium,
which does not exist in a real flight configuration and whose influence on the radiated sound waves must be removed for the analysis of far field measurements. Many studies were devoted to this issue and the correction procedures, consisting of angle and amplitude corrections, are now widely accepted. The angle correction used in this work comes from Amiet and is the same as the one developed by Ahuja et al. Spectra at equal emission polar angle θ_e are compared since this angle should reflect source changes due to flight and not spectral modifications due to propagation effects. Amiet’s amplitude correction for a cylindrical shear layer has also been implemented. The correction to equal distance from the present source position has been retained, not the correction to equal distance from what is referred to as the retarded source position in this reference. No account has been taken for the actual source position, which is supposed to be the nozzle exit for angle and amplitude corrections.

The cases $M_j = 1.10$, 1.35, and 1.50 are investigated. According to Sec. IV, these values of M_j correspond to modes A1, B, and b, respectively. A2 is not included because of the significant flight induced mode switches reported above, which could have made any comparison throughout the M_f range tentative. Only data for $\theta_e = 90^\circ$ are shown. At this angle, θ_e is very near the geometrical angle and amplitude corrections are small. $\theta_e = 37.5^\circ$ and 130° have also been investigated and lead to the same conclusions as the ones presented here. All acoustic spectra are obtained by averaging of 120 individual spectra with frequency resolution of 1 Hz. Some spectra for $M_j = 1.50$ and $\theta_e = 90^\circ$ are displayed in Fig. 17. It is already apparent that the screech is not reduced at high M_j, which is at odds with the conclusion of Viswanathan and Czech. To the contrary, it seems rather enhanced as is visible from the number of harmonics that appear. In order to account for all harmonics, the far field spectra are analysed as follows. The OASPLs are computed. Then, the screech peaks are digitally removed, and the sound pressure level linearly interpolated over the defined narrow gaps. A screech free spectrum is thus built, whose OASPL is also calculated. From these two OASPLs, the sound pressure level associated with screech exclusively can be deduced by subtraction. This particular sound pressure level, noted SPL_{sc}, contains the contribution of all screech harmonics, and its evolution with M_f shows directly the total screech energy dependence on flight Mach number. From the OASPL of the complete spectrum and SPL_{sc}, the portion of the total acoustic energy coming from screech, $p_\text{rms}^2 / p_\text{rms}^2$, ratio of root mean square screech fluctuating pressure to total fluctuating pressure, can ultimately be calculated. This procedure also presents the advantage of considering a possible widening of screech peaks which could arise from turbulence scattering by the external shear layer, as discussed in Schlinker and Amiet. It is believed that the whole screech energy is thus considered, apart from what is lost by turbulence absorption through the external shear layer.
Some results are shown in Fig. 18 for $M_j = 1.50$. The OASPLs have been computed for $f > 500$ Hz to avoid considering the low frequency range where reflections could occur. Above this frequency, it was checked for all polar angles that the noise radiated by the external shear layer of the secondary flow is insignificant compared to the supersonic jet noise. Although the curves of Fig. 18 are not monotonous, the conclusion drawn from the spectra displayed in Fig. 17 is confirmed: SPLs globally increases as M_f grows. Furthermore, the portion of acoustic energy coming from screech is also increasing and reaches about 0.8 above $M_f = 0.3$, which is twice the screech content at $M_f = 0$.

The case $M_j = 1.35$ is shown in Fig. 19. A global increase of SPLs with M_f is also to be noted. The screech energy portion doubles between $M_f = 0$ and 0.30. However, the levels drop slightly at the higher flight Mach numbers.

In the case $M_f = 1.10$, the cutoff frequency for computing the OASPLs had to be raised to 1500 Hz due to the lower model jet noise levels. Above it, the noise radiated by the external shear layer is at least 7 dB/Hz beneath the noise from the primary jet. Here, the conclusions are different from the two cases mentioned above, as shown in Fig. 20. While M_f is increasing, the screech is also enhanced but reaches maximal strength at $M_f = 0.22$ before dropping and extinguishing at last at $M_f = 0.39$. Considering all the M_f cases analysed, one may conclude that there exists a M_f-limit for all M_j above which screech is finally reduced and that this limit increases with M_j. According to this hypothesis, $M_f = 0.39$ would not be high enough for the screech levels at $M_j = 1.50$ to fade out.

B. Schlieren visualizations

The screech enhancement by flight Mach number at high M_j has also been identified through indirect effects of screech on the underexpanded jet dynamics. A collage made out of three spark schlieren images for the case $M_j = 1.50$ and $M_f = 0.39$ is shown in Fig. 21. The first shock is seen to be twisted within the jet plume, denoting a strong oscillation amplitude, and a large flapping motion of the jet occurs further downstream. These two features are now specifically investigated.

1. Shock oscillations with and without simulated flight

A shock tracking procedure has been developed by André et al.\(^{35}\) and permits one shock to be followed from frame to frame in recorded schlieren movies. Here, the axial location of the tip of the first shock is followed in time. The power spectral density of this signal for $M_j = 1.52$ and $M_f = 0.39$ is given in Fig. 22 along with a far field acoustic spectrum recorded simultaneously. The former spectrum is computed from a one-second signal acquired at 29 000 Hz. The peak oscillation frequency is found to be exactly the...
measured screech frequency. Even some harmonics are visible in the shock position spectrum. It confirms that the shock considered oscillates at the screech frequency. In order to estimate the oscillation amplitude, the schlieren images have been phase averaged and the same shock tracking procedure has been applied on the averaged pictures. The oscillations of the upper and lower tips of the first shock for \(M_j = 1.52 \) and \(M_f = 0 \) and 0.39 are shown in Fig. 23. Two conclusions may be drawn: (1) for each \(M_f \) value, the first shock oscillates antisymmetrically about the jet centreline, which corresponds to the flapping property of mode b; (2) the oscillation is greatly enhanced when the secondary flow is on. Indeed, the amplitude of oscillation goes from about 0.2 mm at \(M_f = 0 \) to 2.8 mm at \(M_f = 0.39 \). As Panda’s shock oscillation model \(^{36}\) suggests that strong oscillation amplitudes come along with strong screech tones, these results are in agreement with the acoustic results reported above.

2. Jet large scale flapping motion

Sarohia et al. \(^{37}\) reported a large scale lateral oscillation, also termed whipping motion, of the supersonic jet in simulated flight conditions. Other shadowgrams by Sarohia \(^{38}\) clearly show this flow feature. Furthermore, Sarohia et al. \(^{37}\) suppressed screech by inserting a rod inside the jet plume but could still observe the whipping motion, from which they inferred that it is not related to screech. Such a jet motion has also been observed under simulated flight conditions in the present study, as it has been shown in Fig. 21. In this case, the oscillation amplitude, eight diameters downstream of the exit, has been roughly estimated to be of the order of one jet diameter. On the other hand, the application of the above mentioned tracking algorithm has permitted the oscillation frequency to be extracted, and it has been seen that the jet also flaps at the screech frequency, pleading for a connection between this motion and the tonal emission. With no flight velocity, however, no obvious flapping is visible although screech is present. Consequently, it could just as well be the screech enhancement by simulated flight which generates the strong whipping motion. This would corroborate the conclusion drawn from the far field acoustic results.

VI. CONCLUSIONS

Flight effects on screech from an underexpanded supersonic jet have been experimentally investigated. Near field and far field acoustic measurements, supplemented by schlieren flow visualizations, have provided some insight into the behaviour of screech amplitude and frequency under flight conditions. The near field measurements have been performed with a circular azimuthal antenna mounted on the secondary nozzle.

The far field acoustic measurements have been analysed in a way that permits all the acoustic energy associated with screech to be considered, by including not only the fundamental tone but also the numerous harmonics. From
$M_f = 1.10$ to 1.50, the screech is enhanced by forward motion at least for low flight velocity. The screech enhancement by flight velocity in the higher M_f case has also been identified through screech effects on the model jet dynamics. In particular, shock oscillations and jet large scale whipping motion have been related to screech and their amplitude has been seen to be emphasized at higher M_f.

The screech frequency evolution in flight has been deduced from detailed near field acoustic signals. The prediction formula from Bryce and Pinker has been investigated for modes B and b, it has been shown that the convection velocity estimate as $U_c = x \dot{U}_f$, with x being mode dependent, provides a very good frequency prediction. In particular, the slope of \dot{f}_s with M_f has been adequately predicted. This result gives support to the case of Sarohia and Massier that the boundary layer on the outer wall of the model jet nozzle shields the supersonic jet from the secondary flow. Some frequency jumps have been observed while the flight Mach number M_f has been increased. The screech mode evolution with M_f has been investigated from time signals and none of the frequency jumps could be related to a screech azimuthal mode change. It does not mean that screech was exactly identical on each side of a jump but only that the structure of the azimuthal instability mode related to screech remained unchanged across the observed discontinuities. Some work is still to be done to reveal the origin of the frequency jumps. It is believed that additional flow measurements, such as convective velocity measurements, should be able to further characterize and differentiate the screech modes arising from forward flight effects.

ACKNOWLEDGMENTS

This research has been funded by the French Research Agency (Agence Nationale de la Recherche) through the ANR-10-BLAN-937-01 project JESSICA. The authors wish to express their most sincere thanks to Emmanuel Jondeau and Jean-Michel Perrin for their help in setting up the experiments.