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Numerical Solution of Acoustic Propagation Problems Using
Linearized Euler Equations

Christophe Bailly¤ and Daniel Juvé†

École Centrale de Lyon, 69131 Ecully CEDEX, France

Some numerical solutions of acoustic propagation problems using linearized Euler equations are studied. The
two-dimensional Euler equations are linearized around a known stationary mean � ow. The computed solution is
obtained by using a dispersion-relation-preserving scheme in space, combined with a fourth-order Runge–Kutta
algorithm in time. This numerical integration leads to very good results in terms of accuracy, stability, and low
storage. The implementation of source terms in these equations is studied very carefully in various con� gurations,
inasmuch as the � nal goal is to improve and to validate the stochastic noise generation and radiation model. In
this approach, the turbulent velocity � eld is modeled by a sum of random Fourier modes through a source term
in the linearized Euler equations to predict the noise from subsonic � ows. The radiation of a point source in a
subsonic and a supersonic uniform mean � ow is investigated. The numerical estimates are shown to be in excellent
agreement with the analytical solutions. Then, the emphasis is on the ability of the method to describe correctly
the multipolar structure of aeroacoustic sources. The radiation of dipolar and quadrupolar extended sources is,
thus, studied. Next, a typical problem in jet noise is considered with the propagation of acoustic waves in a sheared
mean � ow. The numerical solution compares favorablywith ray tracing. Finally,a nonlinear formulationof Euler’s
equations is solved to limit the growth of instability waves excited by the acoustic source terms.

I. Introduction

S OUND generationand propagationin a turbulent � ow is a dif� -
cult numerical problem.1, 2 Acoustic � uctuations are very small

by comparisonto the aerodynamic� elds, and tremendousnumerical
dif� culties must be overcome in a direct calculation, in particular
for high Reynolds subsonic � ows. Lighthill’s analogy3 is one of the
classical approachesto solve this problem. The equationsof motion
are rewritten as an inhomogeneouswave equation:

@2 q 0

@t 2
¡ c2

1 r 2 q 0 =
@2Ti j

@xi @x j
(1)

where q 0 is the acoustic density � uctuation, c1 the ambient speed
of sound, and Ti j Lighthill’s tensor. This source term is usually ex-
pressedas a functionof theaerodynamic� eldvariablesTi j ’ q u i u j ,
where q and u i are the density and the velocity components, re-
spectively. However, this formulation suffers from limitations be-
cause refraction effects are included in the source term. In addition,
Green’s function must be known to obtain an integral formulation.
Hence, only simple geometric con� gurations can be studied when
the turbulent velocity � eld is known or modeled. The case of the
noise generated in a duct obstructed by a diaphragm is one of the
most complex geometries investigated in the literature.4

The linearized Euler equations (LEEs) are a natural extension
to Lighthill’s analogy in computational aeroacoustics (CAA) and
provide accurate numerical solutions by only dealing with pertur-
bations.Refractioneffectsof soundwaves inducedby the mean � ow
are taken into account,andLEEs are easier to solvenumericallythan
a third-order differential equation such as Lilley’s wave equation.5

Recent numerical studies have focused on a two-step calculation
where the mean � ow� eld is provided by analytical, experimen-
tal, or Reynolds-averagedequations.Viswanathan and Sankar6 and
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Mankbadi et al.7 introduced disturbances into the � ow� eld to cal-
culate instability-waveradiation for supersonicjet noise. Full Euler
equationsare solved in Ref. 6, whereas in Ref. 7 LEEs are used.An-
other hybrid method was proposed by Morris et al.,8, 9 where a very
large eddy simulationprovided the acoustic and � uctuatingaerody-
namic � elds. A set of nonlinear disturbance equations is solved by
using the Smagorinsky eddy viscosity model as turbulenceclosure.
Rectangularand circularsupersonicjets havebeen investigatedwith
this approach. In the previous investigations, sound generation and
propagationare simultaneouslycalculated to predict radiated noise
inasmuchas large turbulencestructuresare themain noise sourcesof
supersonic jets.10 Noise generatedby subsonichigh Reynolds num-
ber � ows is quite different.Hardin and Pope11 performeda two-step
calculationwith an acousticanalogyto compute the soundgenerated
by low Mach number � ows. A two-step calculation is also carried
out in the stochastic noise generationand radiation (SNGR) model.
In the � rst step, a stationarymean � ow� eld is calculatedby solving
the Reynolds-averagedNavier–Stokes equations. Euler’s equations
are then linearizedaroundthis mean � ow, and in a second step, these
equations are solved with a turbulent source term on the right-hand
side. In the SNGR model, a space–time turbulent velocity � eld was
modeled by a sum of random Fourier modes. A � rst application
was carried out to calculate the noise of an axisymmetric subsonic
jet.12 –14 However, some dif� culties remain concerning the axisym-
metric calculation of the propagation because the acoustic sources
are completely correlated in the azimuthal direction. The numeri-
cal algorithm relied on a weak formulation of the two-dimensional
linear equations,15 and an extension of this numerical method to
a three-dimensional geometry would be dif� cult. Therefore, a full
three-dimensionalcalculationusing theSNGR model requiresa new
solver.

The aim of this study is to improve this approach using a new
algorithm, described in Sec. II. In addition, the implementation of
source terms in the linearized Euler equations is carefully investi-
gated. The case of source radiation in a subsonic and a supersonic
uniform mean � ow is treated in Sec. III, and the numerical esti-
mates are compared to analytical solutions. It is shown in Sec. IV
that the multipolar nature of a source distribution is preserved in
solvingLEEs, a crucial point in aeroacoustics.Section V deals with
propagation in a sheared mean � ow, and the numerical solution is
compared to ray tracing. Finally, a nonlinear formulation is devel-
oped in Sec. VI to limit the growth of instabilitywaves that are also
supported by the linearized equations.
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II. Numerical Algorithm
A. Governing Equations

The density q 0 , the velocityu 0 = (u 0 , v 0 ), and the pressure p 0 rep-
resent small perturbations superimposed on a mean � ow of density
q o, velocity u0 = (u0, v0), and pressure p0 , respectively.The Euler
equations linearized around a stationary mean � ow may be written
as16

@U
@t

+
@E
@x

+
@F
@y

+ H = S (2)

where U = [q 0 , q 0u 0 , q 0v 0 , p 0 ]T is the unknown vector and E and F
are the two-dimensional � ux vectors. The vector H contains terms
related to the gradients of the mean � ow, which are equal to zero
when the mean � ow is uniform. The vector S represents possible
unsteady sources in the � ow.

B. Numerical Scheme
All of the variables are made dimensionless with the following

reference scales: D x for the length scale, c 1 for the velocity scale,
D x / c1 for the timescale, q 1 for the density scale, and q 1 c2

1 for the
pressure scale, where D x = D y is the mesh step size. The seven-
point stencil, dispersion-relation-preserving (DRP) scheme of Tam
and Webb16 is used for the spatial � ux derivations of system (2):

@Ui

@t
= ¡

3

^
l = ¡ 3

al (Ei + l, j + Fi, j + l) ¡ Hi, j + Si, j

These authors chose the coef� cients1 , 16 al of their spatial discre
tization by requiring that the effective wave number k̄ provided by
the � nite difference scheme be a close approximation to the actual
wave number. This optimized fourth-order scheme is better than a
nonoptimized sixth-order scheme using the same seven-point sten-
cil. By the use of the criterion j k ¡ k̄ j < 0.005, the resolution for
these standardcentral� nitedifferences(CFDs) in termsof pointsper
wavelength is summarized in Table 1. Note that 7 mesh points per
wavelength are necessary for the DRP scheme of Tam and Webb16;
the standard six-order scheme requires 10 mesh points per wave-
length. In some cases it is necessary to remove spurious numerical
oscillations due to nonlinearitiesor mismatches with the boundary
conditionsor the initial conditions.These shortwaves can be � ltered
by an arti� cial selectivedamping proposedby Tam and Shen.17 The
damping terms are added to the right side of system (2) to obtain

Di, j = ¡
1
Rs

3

^
l = ¡ 3

dl (Ui + l , j + Ui, j + l)

where Rs is the mesh Reynolds number, which is usually taken
in the interval [5; 10]. The notation Rs = 1 designates a calcu-
lation without arti� cial damping. The coef� cients1 , 17 d j are cho-
sen to damp only the short waves and not the long waves cor-
responding to an accurate resolution of the DRP scheme. The
Fourier transformof the dampingfunctioncollapsesto the Gaussian
function exp{¡ 2[(k ¡ p ) / r ]2} with a half-width r = 0.2p
for the linearized Euler equations. The time integration is per-
formed by a four-step Runge–Kutta algorithm because of its high-
stability limit and its low-storage requirement.The solution at time
step n + 1 is obtained by the following algorithm: Up

i, j =Un
i, j +

a p D tK p ¡ 1
i, j for p =1, . . . , 3, with K0

i, j =Kn
i, j . The last step is

Un + 1
i, j = Un

i, j + a 4 D t (K3
i, j + Dn

i, j ) (3)

Table 1 Resolution of the CFD scheme and the DRP
scheme using the criterion jj k ¡ Åk jj < 0.005

Scheme Wave number Wavelength

CFD second order k · 0.30 k ¸ 21.3
CFD fourth order k · 0.67 k ¸ 9.3
CFD sixth order k · 0.96 k ¸ 6.6
7-point DRP scheme k · 1.16 k ¸ 5.4

with

Kk
i, j = ¡

3

^
l = ¡ 3

al(E
k
i + l, j + Fk

i, j + l) ¡ Hk
i, j + Sk

i, j

Dn
i, j = ¡

1
Rs

3

^
l = ¡ 3

dl(Un
i + l, j + Un

i, j + l)

The coef� cients a p are chosen to obtain fourth-orderaccuracy in
time when the spatial operator is linear.18 In this case, the stability
limit correspondsto a Courant–Friedrichs–Lewy (CFL)number less
than 1.73, and the accuracy limit is CFL < 0.73. Two other time-
integration schemes have been investigated19 in the case of a non-
linear propagation, but the differencesbetween these time schemes
are too small to be noticed.

C. Boundary Conditions
The boundary conditions are very important in CAA.1 Indeed,

because of the high quality of the numerical algorithm, any distur-
banceof smallamplitudecanpropagatein thecomputationaldomain
contaminating the numerical solution. The boundary conditions of
Tam and Webb16 are implemented because the radiation boundary
conditionfor outgoingacousticwaves is basedon an asymptotic so-
lution of the LEEs. In polar coordinates(r, h ) centeredat the source
position, we have

[@

@t
+ V ( h )

@

@r
+

V ( h )
2r ]U = 0

when r ! 1 . V is the group velocity of acoustic waves used in
geometrical acoustics, de� ned by

V = u0 ¢ er + Ï c2
0 ¡ (u0 ¢ e h )2

where er and e h are the unit vectors in the r and h directions.For an
out� ow boundary condition, the pressure disturbance is an acoustic
� uctuation, which is not the case for the velocity and density dis-
turbances. For these last two variables, Euler’s equations are used.
This yields a set of compatible � rst-order differential equations.16

The spatial derivatives are computed with optimized backward dif-
ference stencils10, 16 for the threeghost points surroundingthe com-
putational domain.

For two-dimensional calculations, the code requires 4.7 l s per
time step and per mesh point on a Cray C98. Several test problems
may be found in the literature to evaluate numerical algorithms in
CAA20 , 21 and have been investigated19 with numerical algorithm
(3). In the next sections, the study focuseson the implementationof
source terms in the LEEs.

III. Source Radiation in a Uniform Mean Flow
This section deals with the radiationof a source in a subsonicand

a supersonicmean � ow. The analyticsolutionis known for these two
problems. A monopole source is implemented by using the vector
S in system (2), which yields

S(x , y, t ) = f (x , y) sin x t £ [1, 0, 0, 1]T (4)

where f (x , y) = ² exp{¡ a [(x ¡ xs)2 + (y ¡ ys)2]}with a = 2/2.
The source term is made dimensionless with [q 1 c 1 / D x ,
0, 0, q 1 c3

1 / D x]T . The amplitude is taken as ² =0.5, and the angu-
lar frequencyis x = 2p /30. The arti� cial mesh Reynolds number is
Rs =10, and the time step is givenby the condition D t = 1/ (1 + M),
corresponding to a CFL number of 1. The source is located at
xs = ys =0 over the computational domain ¡ 200 · x , y · 200,
yieldinga regularmesh of 401 £ 401 points, and the radiationbound-
ary conditions are used because this problem deals with acoustic
� uctuations only. The analytical solution is given by the convolu-
tion product p(x , y, t ) = f (x , y) ¤ d G / dt (x , y, t ), where the two-
dimensionalGreen function G is providedby expression(A3) in the
Appendix.Figure1 shows the time evolutionof pressureisocontours
for a subsonic mean � ow at M = 0.5. The pressure pro� le along
the axis y = 0 is plotted in Fig. 2 and is compared to the analytical
solution. Two acoustic waves propagate upstream and downstream
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Fig. 1 Harmonic source in a uniform subsonic � ow at M = 0.5: pres-
sure isocontours at times t = 90, 150, 210, and 270 with the values ——,
10¡ 1, 10¡ 2, 10¡ 3; – – –, 10¡ 4; and ¢ ¢ ¢ ¢ , 10¡ 5.

Fig. 2 Harmonic source in a uniform subsonic � ow at M = 0.5 where
pressure pro� le is plottedalongaxisy = 0at time t = 270:——, numerical
solution, and – – –, analytical solution.

at the velocity 1 § M with an apparent wavelength k c = (1 § M ) k ,
where k =30. Excellent agreement is found between the computed
pressure pro� le and the analytical solution. The supersonic case
is investigated for Mach number M =1.5 and a source located at
xs = ¡ 50 and ys =0. The calculation is performed with a higher
selective damping Rs =4 to remove small oscillations produced at
the limits of the computationaldomain near the Mach cone. Indeed,
there is a discontinuityof the boundary conditionsdue to the Mach
cone de� ned by M sin h = 1, that is, h ’ 41.8 deg. This � ltering
is applied to short waves only, without consequence for resolved
signals. Figure 3 shows the time evolution of pressure isocontours
and the Mach cone. The radiated � eld is quite different from that of
the subsoniccase becauseboth acousticwaves now propagate in the
downstream direction at the velocity M § 1 and interfere with one
another.The pressurepro� le along the axis y =0 is plotted in Fig. 4
and is compared to the analytical solution obtained by a convolu-
tion product with the two-dimensional Green function [Eq. (A4)]
de� ned in the Appendix. Good agreement between the calculation
and the referencesolution is again found except in the left-handside
of the source domain, for xs ¡ 4 · x · xs . With reference to many
other numerical tests, the problemcould be attributedto the calcula-
tion of the convolutionproduct of the analytical solution rather than
the computed solution. These cases were previously examined by

Fig. 3 Harmonic source in a uniform supersonic � ow at M = 1.5: pres-
sure isocontours at times t = 114, 190, 266, and 343 with the values ——,
10¡ 1, 10¡ 2; – – –, 10¡ 3; and ¢ ¢ ¢ ¢ , 10¡ 4.

Fig. 4 Harmonic source in a uniform supersonic � ow at M = 1.5; pres-
sure pro� le is plotted alongthe axisy = 0 at time t = 304:——, numerical
solution, and – – –, analytical solution.

Candel and Crance,22 and the present results are consistent with
those obtained by Fourier synthesis.

IV. De� nition of a Multipolar Source
The multipolar feature of a source S in system (2) is clearly iden-

ti� ed by writing the wave equation correspondingto the LEEs. The
LEEs take the simpli� ed form

@q 0

@t
+ q 0

@u 0
i

@xi
= 0, q 0

@u 0
i

@t
+

@p 0

@xi
= Si (5)

for an homogeneousmedium at rest, and the associatedwave equa-
tion is

@2 q 0

@t 2
¡ c2

0 r 2 q 0 = ¡ r ¢ S (6)

Thus, a dipole distribution Si = Fi in wave equation (6) is de� ned
by

*
V

@Fi

@xi
dx = *

S

ni Fi dS = 0
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Fig. 5 Dipole distribution
Si = Fi; density isocontours
at time t = 640D t: ——,
positive values, from 0.001
to 0.011 with a step size of
0.001; and ¢ ¢ ¢ ¢ , negative
values.

with

*
V

Fi dx 6= 0

whereas a quadrupole distribution Si =@Ti j /@x j is de� ned as

*
V

@2Ti j

@xi @x j
dx = 0, *

V

@Ti j

@x j
dx = 0

With regard to aerodynamicnoise applications, it is important to
check that the solution of the LEEs preserves the multipolar nature
of the sources. First, a dipole distribution Fi is investigated, given
by

F1 = ² cos[( p / 10)x]e ¡ a y2
sin( x t ), F2 = 0

where (x , y) 2 [ ¡ 5; 5] £ IR. The angular frequency is taken as
x = 2 p / 60, the amplitude of the source is ² = 0.01, and the coef� -
cient a is equal to ( 2) / 5. Figure 5 shows the density isocontours,
and it appears that the dipole directivity is well illustrated. An ac-
curate reference solution can be obtained in deriving the analytical
solution. For the dipole distribution,wave equation (6) can be writ-
ten as

@2 q 0

@t 2
¡ c2

0 r 2 q 0 = ¡ r ¢ F

where spatial derivatives of the source term (5) appear. Therefore,
this problem is dif� cult for noise generation23 because the size of
the source domain is of the order of magnitude of the wavelength.
The exact solution is given by the convolutionproduct q 0 = ¡ F1 £
@G / @x , where Green’s function is given by

G(x, t ) = {(i / 4c2
0 ) H (1)

0 [( x /c0)r] e ¡ i x t } (7)

with x = (x , y) and r =
p

(x2 + y2), and H (1)
0 denotes the zeroth-

order Hankel function of the � rst kind. A comparison between the
calculated density pro� le along the axis y = 0 and the analytical
solution is plotted in Fig. 6 at two instants. The acoustic � eld is
calculated very accurately, without spurious oscillations near the
source domain. For these computations,the mesh Reynolds number
of the damping is Rs =5, the computationdomain is again ¡ 200 ·
x , y · 200, and the CFL number is 1. A quadrupoledistributionTi j

in system (5) is also investigated. Its expression is chosen such that

Ti j = [ ¡ cos[( p / 20)x] e ¡ a y2
0

0 cos[( p / 20)y] e ¡ a x2 ] £ 20
p

² sin( x t )

in (x , y) 2 [ ¡ 10; 10] £ [ ¡ 10; 10]; thus, the radiated � eld is now
governed by the following wave equation:

@2 q 0

@t 2
¡ c2

0 r 2 q 0 = ¡ r ¢ ( r ¢ T)

Figure 7 shows the acoustic � eld radiated by the quadrupole dis-
tribution, where the expected directivity is again well retrieved.

Fig. 6 Dipole distribution Si = Fi; two density pro� les are plotted along
the axis x2 = 0 at times t = 560D t and 720D t: ——, numerical solution,
and - - - -, analytical solution.

Fig. 7 Quadrupole distri-
bution Si = @Tij/@xj; den-
sity isocontours at time
t = 640D t: ——, positive
values, from 0.001 to 0.011
with a step size of 0.001;
and - - - -, negative values.

Fig. 8 Quadrupole distribution Si = @Tij/@xj; two density pro� les are
plotted along the axis x2 = 0 at times t = 560D t and 720D t: ——, nu-
merical solution and - - - -, analytical solution.

The analytical solution takes the form of a sum of two convolution
products

q 0 = ¡
@Tx x

@x
¤

@G

@x
¡

@Tyy

@y
¤

@G

@y

where Green’s function is given by expression (7). Two compar-
isons between computations and the exact solution are shown in
Fig. 8. Unlike the dipole distribution, small oscillations near the
sourceare present. Indeed,in the quadrupoledistribution,the source
term in system (5) is not zero on the boundaries. Another test has
been carried out in setting the source term Si = @Ti j / @x j in a
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two-dimensional jet. The multipolar nature of the source is again
clearly identi� able.24

It is shown in this section that the multipolar nature of source
distributionsis preserved by LEEs. This is important because LEEs
have to use this property to de� ne multipolar turbulent sources. In
the following two sections, propagation in a sheared mean � ow is
investigated.We know that three modes are supportedby the LEEs,
namely, the acoustic waves, the entropy mode, and the vorticity
mode. Two mean � ow con� gurations have been investigated: in
Sec. V, only acoustic perturbations can develop with the chosen
parameters, and in Sec. VI, instability waves can also develop.

V. Source Radiation in a Sheared Mean Flow
Refraction effects strongly modify the directivity pattern of a

source. As an example we consider the radiation of a source placed
on the axis of a fully developed two-dimensional jet modeled with
a Bickley’s pro� le given in a dimensionless form by

u0 =
0.5

cosh2[(1 +
p

2)y /b]
(8)

The axial Mach number is M = 0.5, the half-width b of the
jet is taken as b = 10, and the source term is again given by ex-
pression (4). The width of the source is a = 2/9, the ampli-
tude is ² = 0.01, and the angular frequency is x = 2 p /9. The
wavelength of the source is of the same order of magnitude as the
half-width of the jet producing strong refraction effects. This corre-
sponds to a high-frequency radiation because the Strouhal number
based on the jet diameter D = 2b and the jet velocity u j = 0.5
is Sr = f D /u j ’ 4.4. The same computational domain is used,
but the source is now located at xs = ¡ 100 and ys = 0. The cal-
culation is performed with CFL = 1, and the arti� cial selective
damping is Rs = 10. Figure 9 shows the computed pressure � eld
isocontours.The radiation pattern is strongly modi� ed by the mean
� ow gradients.The acoustic level reaches a peak in the downstream
direction near the angle h given by the relation cos h = 1/ (1 + M).
For smaller angles, the amplitude decreases, and a shadow zone is
observed. In the upstream direction, acoustic waves are con� ned in
the jet � ow. The � nal time calculation corresponding to Fig. 9 is
equal to 100 times the period of the acoustic wave, and the number
of mesh pointsper wavelength is equal to 6 in the upstreamdirection
and 14 in the downstream direction.

These results are in agreement with the geometrical acoustics
approximation valid for high frequencies. Indeed, the ray-tracing
equations25 can be solved to obtain a reference solution. The ray
tracing in Fig. 10 shows that the radiation features are well illus-
trated. The angle of the shadow zone, h ¼ 48 deg, can be easily
seen. From 0 · h · p , 26 rays are plotted, and two wave fronts

Fig. 9 Radiation of a source point in a sheared mean � ow; instanta-
neous pressure contours at time t = 900: ——, isolines from 0.001 to
0.01 (increment 0.001), and – – –, isoline 10¡ 4 .

Fig. 10 Ray tracing for the radiation of a point source in the sheared
mean � ow [Eq. (8)].

Fig. 11 Bickley jet pro� le (8): spatial growth rate kib as a function of
the frequency !b/uj for the sinuous mode (——) and the varicose mode
(- - - -).

are marked by the symbol. The computed pressure � eld obtained
by solving LEEs is superimposed on the ray-tracing plot, and ex-
cellent qualitativeagreement is found. The radiation patterns of the
two calculationsare fully consistent.The wave fronts have the same
characteristicoval shapewithout any differencein phase.A compar-
ison of acoustic levelswould be possibleby computingthe evolution
of the ray tube cross section.25 This would give some indications
on the limit of application of geometrical acoustics as a function
of the frequency. Thus, this example shows the good behavior of
numerical algorithm (3).

It is well known that the LEEs support acoustic, entropy, and vor-
ticity modes. The vorticity mode is generated by instability waves
that may develop in the presence of acoustic sources in a sheared
� ow. In our case, the sinuous mode and the varicose mode of the
Bickley jet [Eq. (8)] are not able to developwith the chosen value of
the sourcefrequency.The velocityperturbationcanbedescribedbya
stream function w (x , y, t ) = u (y)ei (kx ¡ x t) , where k = kr + iki 2 C
is the complex wave number and x 2 IR is the angular frequency
(see Fig. 11). Thus, these aerodynamic perturbations grow when
the imaginary part of k is negative. The spatial growth rate ki b
of the perturbations is plotted as a function of the frequency pa-
rameter x b/ u j in Fig. 11. The two curves are obtained by solving
the Rayleigh stability equation26 with symmetric and antisymmet-
ric boundary conditions yielding the stability characteristics of the
sinuousmode and the varicose mode, respectively.Figure 11 shows
that the reducedfrequencyis too high in our case becausethe growth
rate is positive ki b > 0 for the value x b/ u j ’ 13.9.
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VI. Nonlinear Propagation
To observe instability waves and acoustic waves, the mean � ow

is chosen now in the form of an hyperbolic tangent pro� le:

u0 = 1
2 ((1 + tanh{(H /2 d h )[1 ¡ ( j y j / H )]})) (9)

where H is the thickness of the jet shear layer and d h its momen-
tum thickness. The slow divergence of real jet � ows is not taken
into account in this study, which is limited to a strictly parallel
� ow. These parameters are taken as H =9 and d h =1. The angu-
lar frequency is x = 2p /40 and corresponds to a Strouhal number
Sr = f D / u j ’ 1.4. The two shear layers of the jet pro� le [Eq. (9)]
can be considered as independent because the ratio d h / H · 0.08
is very small. Thus, the stability characteristics of a single hy-
perbolic tangent pro� le can be used. The frequency parameter is
x d h / uo ’ 0.314 yielding an axial wave number 2 d h kr ’ 0.678,
as shown in Fig. 12 (see Ref. 27). The corresponding theoreti-
cal wavelength is k th ’ 18.5. The descriptions of the computa-
tional domain and the source term are identical to those provided in
Sec. V. The time evolution of the pressure along y =0 is plotted
in Fig. 13 and shows the exponential growth of instability waves
produced by the acoustic source term. The apparent or convected
instabilitywavelengthprovidedby the calculationis k a ’ 30,which
corresponds to a real wavelength k such as k a = (1 + M) k , that is,
k ’ 20. Thus, this result is in good agreement with the linear sta-
bility theory.

A nonlinear formulation has been developed to saturate the
growth of these instability waves. The linear propagation governed
by Eqs. (2) becomes

@U
@t

+
@E
@x

+
@F
@y

+
@Enl

@x
+

@Fnl

@y
+ H = S (10)

where the � ux vectors Enl and Fnl contain all of the nonlinear
terms. The in� uence of nonlinear terms may be illustrated by the
following example. If we assume that the perturbation velocity
has the form w (x , y, t ) = u (y) eik (x ¡ ct ) with (k, c) 2 C , then the
square of the perturbationamplitude A = w w w satis� es the equation
@A /@t = 2kci A, where c = cr + ici . Perturbationsare unstableif the
imaginary part of the speed c is positive, that is, ci > 0. The effect
of including nonlinear terms may be seen in the following model
equation:

@A

@t
= 2kci A ¡ bA2

where b is a constant. The perturbation amplitude is then given by

1/ A = b/ 2kci + b e ¡ i2kci t

Fig. 12 Hyperbolic tangent pro� le u = uj[1 + tanh( y/(2±µ)]: real part
of the wave number 2kr±µ (- - - -), spatial growth rate 2ki±µ (——) as a
function of the frequency parameter !±µ/ uj, and values calculated by
Michalke27 symbols.

a)

b)

Fig. 13 In� uence of the nonlinear terms; pressure pro� le plotted along
the axis y = 0 at different time intervals: a) plot obtained without using
the nonlinear terms [Eq. (2)] and b) plot obtained using the nonlinear
terms [Eq. (10)], where ¢ ¢ ¢ ¢ , t = 600; – – –, t = 700; and ——, t = 800.

Fig. 14 Nonlinear formulation, comparison of the pressure pro� le
along the line x = y from the point source (xs, ys ) at time t = 500: ——,
with nonlinear terms, and - - - -, without nonlinear terms.

where b is an integration constant. Thus, the growth of the velocity
perturbation is limited by taking into account nonlinear terms.

Figure 13b shows the pressure pro� le along the axis y = 0 ob-
tained by solvingEq. (10). The time evolutionof the pressure shows
the signal deformation and wave form steepening due to nonlinear
effectsand the saturationof thegrowthof theinstabilitywaves.How-
ever, the nonlinear formulation does not change the radiated pres-
sure � eld signi� cantly. The pressure pro� les along the line x = y
from the source point (xs , ys) are plotted in Fig. 14. No signi� cant



28 BAILLY AND JUVÉ

difference is observed between numerical results obtained by solv-
ing Eqs. (2) and (10), respectively.

In these computations, the boundary conditions given in Sec. II
are still used. However, instability waves are now convected by the
mean � ow, and better results should probably be obtained with the
out� ow boundary condition of Tam and Dong28 for nonuniform
mean � ows.

VII. Conclusions
Computing sound propagation by solving the LEEs provides ac-

curate solutions with very good performances in terms of stability,
low storage,and computationtime. Implementationof source terms
has been investigated in various con� gurations, and the provided
analytical solutions can be used to check accuracy of numerical
simulations in CAA. In addition, the multipolarnature of the source
is preserved by the numerical scheme, a crucial point for aerody-
namic noise predictions. The growth of instability waves that are
supported by LEEs can be limited by taking into account nonlinear
terms without altering the evaluation of sound waves. All of the
results presented have been obtained with a two-dimensional ge-
ometry. An extension of the propagation code to three dimensions
has been recently achieved,and the SNGR model is currently being
used to compute the noise radiated by a subsonic jet.

Appendix: Analytical Solutions
We brie� y derive the analytic expression of the radiation of an

harmonic monopole source in a subsonic or supersonic uniform
mean � ow such as (u0 , 0). The LEEs reduce to

du 0

dt
+

1
q 0

r p 0 = 0

dp 0

dt
+ c p0 r ¢ u 0 = 0

where
d

dt
=

@

@t
+ u0

@

@x
(A1)

The wave equation associated to this system for Green’s function G
is

d2 G
dt 2

¡ c2
0 r 2 G = d (x , y)e ¡ i x t

To solve this equation,we introducea coordinate system moving
with the mean � ow. By setting t̃ = t , x̃ = x ¡ u0t , and ỹ = y, the
wave equation becomes

@2 ˜G
@t̃ 2

¡ c2
0

˜r 2 ˜G = d ( x̃ + u0 t̃ , ỹ)e ¡ i x t̃

where ˜G ( x̃ , ỹ, t̃ ) = G (x , y, t ). Thus, the exact solution can be con-
structedby introducingthe two-dimensionalfree-spaceGreen func-
tion. With the primitive variables, one � nds

G (x , y, t ) =
e ¡ i x t

2 p c0
*

D

ei x s

Ï c2
0 s 2 ¡ (x ¡ u0 s )2 ¡ y2

d s (A2)

where the integral is de� ned over the domain D:

D = {g( s ) = s 2 ¡
(x ¡ u0 s )2 + y2

c2
0

> 0 and s ¸ 0}
To perform the integrationof Eq. (A2), we have to determine the

sign of the two roots s ¡ and s + , with s ¡ · s + , of the polynomial
g( s ), as a function of the Mach number M = u0 / c0 . For a subsonic
mean � ow, M < 1, the function g can be factorized as g( s ) = (1 ¡
M2)( s ¡ s + )( s ¡ s ¡ ), where the two roots are given by

s § =
1
c0

¡ x M § Ï x2 + (1 ¡ M2)y2

1 ¡ M2

The integrationis carriedout over the domain D = [s + , 1 [. This
interval of integrationcan be made symmetrical by introducing the
new variable s such that

s =
s + ¡ s ¡

2
s +

s + + s ¡

2

Thus, with the use of an integral representation29 of the zeroth-
order Hankel function of the � rst kind H (1)

0 , we have

G (x, y, t) =
exp( ¡ i x t )

2 p c2
0

p
1 ¡ M 2

exp(i x
s + + s ¡

2 )
£ * 1

1

exp(i x
s + ¡ s ¡

2
s) ds

p
s2 ¡ 1

=
exp( ¡ i x t)

2p c2
0

p
1 ¡ M2

exp(i x
s + + s ¡

2 )
£ * 1

0
exp(i x

s + ¡ s ¡

2
cosh u)du

=
exp( ¡ i x t)

2p c2
0

p
1 ¡ M2

exp(i x
s + + s ¡

2 ) i p

2
H (1)

0 (x
s + ¡ s ¡

2 )
It can be shown that

G (x, y, t) =
i

4

1

c2
0

p
1 ¡ M2

H (1)
0 [k Ï x2 + (1 ¡ M2)y2

1 ¡ M2 ]
£ exp(¡ i

M

1 ¡ M2
kx ¡ i x t) (A3)

For a supersonicmean � ow, M > 1, the function g can be written
now as g( s ) = (M2 ¡ 1)( s + ¡ s )( s ¡ s ¡ ) yielding the integration
domain [s ¡ , s + ] for the integral (A2). As in the subsonic case, by
the introducingof an integral representation29 of the Bessel function
of zero order, J0, one � nds

G (x, y, t) =
exp( ¡ i x t )

2 p c2
0

p
M2 ¡ 1

exp(i x
s + + s ¡

2 )
£ *

+1

¡ 1
exp(i x

s + ¡ s ¡

2
s) ds

p
1 ¡ s2

=
exp( ¡ i x t )

p c2
0

p
M 2 ¡ 1

exp(i x
s + + s ¡

2 )
£ *

p /2

0
cos(x

s + ¡ s ¡

2
cos h )d h

=
exp( ¡ i x t )

p c2
0

p
M 2 ¡ 1

exp(i x
s + + s ¡

2 ) p

2
J0 (x

s + ¡ s ¡

2 )
Hence, Green’s function is

G (x, y, t) =
1

2

1

c2
0

p
M2 ¡ 1

J0 [k Ï x2 ¡ (M2 ¡ 1)y2

M 2 ¡ 1 ]
£ exp(¡ i

M

M2 ¡ 1
kx ¡ i x t) (A4)

for the points located in the Mach cone C de� ned as

C = {(x , y) 2 D / x2 ¡ (M 2 ¡ 1)y2 · 0 and x · 0}

A more classical expression of C in cylindrical coordinates is
M sin h > 0, where h is the angle between the x axis and the
observer. There is no radiation outside the cone D.

Expressions(A3) and (A4) are in agreement with those provided
by Candel and Crance22 for a similar radiation problem. We now
consider a source term in the continuity equation of LEEs (11):

du 0

dt
+

1
q 0

r p 0 = 0,
dp 0

dt
+ c p0 r ¢ u0 = Q

where Q = f (x , y) e ¡ i x t . The expression of the radiated pres-
sure � eld is then obtained by the space convolution product
p = f £ d G / dt , where Green’s function G has been calculated for
a subsonic [Eq. (A3)] and a supersonic [Eq. (A4)] mean � ow.
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