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Abstract

An optimized explicit low-storage fourth-order Runge–Kutta algorithm is proposed in the present work for time integration. Dis-
persion and dissipation of the scheme are minimized in the Fourier space over a large range of frequencies for linear operators while
enforcing a wide stability range. The scheme remains of order four with nonlinear operators thanks to the low-storage algorithm.
Linear and nonlinear propagation problems are finally solved to illustrate the accuracy of the present Runge–Kutta scheme.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Past decade works on numerical methods aimed at
designing low-dissipative, low-dispersive and large spec-
tral bandwidth numerical algorithms. Spatial discretiza-
tion schemes have first gained interests: Tam and Webb
[1] gave for instance the explicit DRP schemes, Lele [2]
developed compact finite differences, and recently Bogey
and Bailly [3] built up explicit finite differences and selec-
tive filters accurate for waves down to four points per
wavelength to perform direct computation of aero-
dynamic noise [4]. Time integration has then been opti-
mized with the same aim in view, especially using
Runge–Kutta (RK) algorithms [5].

In computational fluid dynamics applications, stan-
dard third- and fourth-order RK algorithms are com-
monly used because of their large stability range.
Nevertheless, stability considerations are important
but not sufficient when dealing with aeroacoustic pur-
poses. Hu et al. [5] and Bogey and Bailly [3] developed
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RK algorithms optimized for linear operators, whose
coefficients are determined to minimize dispersion and
dissipation errors over a given range of frequencies.
The advantages of the algorithms also include low-stor-
age requirements since only two memory slots are
needed per variable. However, the algorithms used can-
not ensure an order of accuracy higher than two for
nonlinear operators. To allow high order with nonlinear
operators, Williamson [6] first proposed a low-storage
algorithm. Stanescu and Habashi [7] developed more re-
cently RK algorithms including a six-stage RK display-
ing the properties of one of the Hu�s schemes [5] for
linear operators while being of order four with nonlinear
operators, but with weak stability properties.

In the present paper, a low-storage six-stage RK
algorithm, optimized for linear operators, of fourth-or-
der in nonlinear and with a wide stability range is pro-
posed. The calculation of the algorithm coefficients is
first described. Linear and nonlinear propagation test
cases are then solved to illustrate the scheme accuracy.
Finally, concluding remarks are drawn in the last sec-
tion. Note that similar results are to be published by
Calvo et al. [8]. The scheme proposed here is however
built up using another linear optimization method and
is in the continuity of the works of Bogey and Bailly
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[3] and Berland et al. [9]. The test cases are in addition
different. They are especially more relevant to acoustic
problems than those solved by Calvo et al. [8].
2. Low-storage fourth-order six-stage Runge–Kutta

algorithm

Consider the time integration using Runge–Kutta
(RK) algorithms of the following differential equation:

ou
ot
¼ F ðu; tÞ

where the operator F is a function of the unknown u and
of time t. Several formulations of RK schemes have been
built up to improve accuracy and to reduce storage
requirements [3,5,7]. Hu et al. [5] proposed the following
low-storage s-stage algorithm to compute the time inte-
gration from un = u(nDt) to un + 1 = u[(n + 1)Dt]:

unþ1 ¼ un þ
Xs

j¼1

cjDtjF jðuÞ ð1Þ

where F j ¼ F � � � � � F
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{j

, Dt is the time step and cj are the
algorithm coefficients. However, order of accuracy of
the algorithm cannot be greater than two when used
with nonlinear operators. To increase order of accuracy
in nonlinear, Williamson�s [6] formulation, which only
requires two storage locations per variable, is used:

for i ¼ 1 . . . s
xi ¼ aixi�1 þ DtF ðui�1; tiÞ
ui ¼ ui�1 þ bixi

�
ð2Þ

where s is the number of stage, Dt the time step, u0 = un,
un + 1 = us, x0 = 0 and ti = (n + ci)Dt. ai and bi are the
coefficients of the algorithm. For an explicit scheme, a1

is set to zero.
In the present work, an explicit fourth-order six-stage

RK scheme based on algorithm (2) and referred to as
RK46-NL is designed. Its coefficients are computed
using the method proposed by Stanescu and Habashi
[7]: using algorithm (1), a RK scheme is built up by opti-
mizing coefficients cj in the Fourier space for linear oper-
ators. The algorithm, referred to as RK46-L, is of order
four in linear but of order two in nonlinear. Coefficients
cj are then used as a starting point to determine coeffi-
cients ai and bi of the algorithm (2), which permits
Table 1
Coefficients ci of the RK46-L algorithm and coefficients ai and bi and ci of t

i ci ai

1 1 0.0
2 1/2 �0.737101392796
3 1/6 �1.634740794341
4 1/24 �0.744739003780
5 0.007856772044 �1.469897351522
6 0.000959998595 �2.813971388035
fourth-order accuracy whether the operator is linear or
nonlinear.

First assume F is a linear operator which does not de-
pend on the time variable t. Following Hu et al. [5],
applying temporal Fourier transform to (1) gives the
amplification factor of the algorithm:

GðxDtÞ ¼ ûnþ1ðxDtÞ
ûnðxDtÞ ¼ 1þ

Xs

j¼1

cjðixDtÞj

For comparison with the exact amplification factor
exp(ixDt), it is written as jG(xDt)jexp(ix�Dt). At each
time step for an angular frequency x, the amount of dis-
sipation is 1 � jG(xDt)j and the phase error is
xDt � x�Dt.

Coefficients cj of the RK46-L algorithm are provided
in Table 1. They are determined as follows: fourth-order
accuracy is achieved by setting cj = 1/j!, for j = 1 to
j = 4. In the same way as in Bogey and Bailly [3], the
two remaining coefficients c5 and c6 are chosen by
optimizing the dispersion and dissipation for p/16 <
xDt < p/2, for waves between 32 and 4 time steps per
period with T/Dt = 2p/xDt. Note that they are within
2% of the coefficients found by Calvo et al. [8].

Using the cj coefficients and adding order conditions
[7] that ensure fourth-order accuracy for nonlinear oper-
ators give a system of equations leading to the coeffi-
cients ai and bi of the RK46-NL. Nevertheless, one
parameter remains free and must be imposed. The value
of b6 = 0.27 is chosen from nonlinear test cases as
shown in detail in [9]. The coefficients of the RK46-
NL scheme are given in Table 1.

First stability is checked. The stability limits obtained
for an amplification rate jG(xDt)j = 1 are reported in
Table 2 for the standard fourth-order four-stage RK
scheme (RK44), the fourth-order six-stage RK devel-
oped by Stanescu and Habashi [7] (RK46-Stanescu),
the second-order six-stage RK of Bogey and Bailly [3]
(RK26-Bogey) and the present algorithm (RK46-NL).
The stability limit of the RK44 algorithm is about 2 time
steps per period. The RK26-Bogey and RK46-NL algo-
rithms have a similar limit of xDt = 3.9 corresponding
to 1.6 time steps per period. The stability limit of the
RK46-Stanescu algorithm is close to xDt = 1.7, i.e.
about 3.8 time steps per period. The limit of the
he RK46-NL scheme

bi ci

0.032918605146 0.0
0.823256998200 0.032918605146
0.381530948900 0.249351723343
0.200092213184 0.466911705055
1.718581042715 0.582030414044
0.27 0.847252983783



Table 2
Stability, dissipation and dispersion limits of the RK schemes in points
per period T/Dt = 2p/xDt

Stability
jG(xDt)j < 1

Dissipation
1 � jG(xDt)j
< 5 · 10�4

Dispersion
jx�Dt�xDtj/p
< 5 · 10�4

RK44 2.22 9.65 8.40
RK46-Stanescu 3.80 5.32 3.13
RK26-Bogey 1.59 3.29 5.03
RK46-NL 1.65 3.19 4.10

J. Berland et al. / Computers & Fluids 35 (2006) 1459–1463 1461
RK46-NL scheme is thus more than two times larger
than this of the RK46-Stanescu algorithm.

The amount of dissipation 1 � jG(xDt)jand the phase
error jxDt � x�Dtj/p are now represented in logarithmic
scales in Fig. 1 as a function of xDt. The RK44 scheme
is the most dissipative scheme with for instance at least
two orders of magnitude of difference compared to the
RK26-Bogey and RK46-NL algorithms for xDt < p/2,
i.e. for waves with more than four time steps per period.
The amount of dissipation of the RK26-Bogey and
RK46-NL schemes is lower than 5 · 10�4 up to
xDt = p/2. Dissipation improvement with respect to
the RK46-Stanescu algorithm is about one order of
magnitude in this range. For higher pulsations, the
RK46-Stanescu scheme is unstable and the RK46-NL
and RK26-Bogey schemes have similar dissipation
properties. The phase errors of the RK46-Stanescu,
RK46-NL and RK26-Bogey schemes remain similar
for xDt < p/2, they are smaller than 5 · 10�4. For
xDt = p/3 for instance, phase error improvement is
about one order of magnitude compared to the RK44
algorithm.

These results are quantitatively illustrated in Table 2
in terms of accuracy limits. Two criteria of accuracy
in amplitude and phase defined in [3] are used:
1 �jG (xDt)j < 5 · 10�4 and x�Dt � xDt < 5 · 10�4.
The RK44 dissipation limit is about ten points per
period and phase error limit is about eight points per
period. Dissipation limit of the RK46-Stanescu algo-
Fig. 1. Left: dissipation, and right: phase error as functions of the angular
�D�D� RK46-Stanescu, fourth-order six-stage RK of Stanescu and Habash
[3] ; — RK46-NL, present fourth-order six-stage RK.
rithm is about five points per period, and phase error
around three points per period. The RK26-Bogey and
RK46-NL schemes have dissipation limit of about three
points per period and phase error limit close to four
points per period. The RK46-NL algorithm is therefore
able to resolve accurately at least four-point-per-period
waves.
3. Test cases

To illustrate the scheme properties, two test problems
are solved: the linear convection of a 1D wave packet
and the nonlinear propagation of a 1D Gaussian pres-
sure pulse.

In the first test case [3], the convective wave equation

ou
ot
þ c

ou
ox
¼ 0; with c ¼ 1

is solved, with a time step derived from the mesh spacing
as Dt = CFL · Dx/c. The initial disturbance at t = 0 is
defined as

uðxÞ ¼ sin
2px
8Dx

� �
exp � lnð2Þ x

3Dx

� �2
� 	

and plotted in Fig. 2.
Its spectral content is dominated by the wavenumber

kDx = p/4, corresponding to a wave discretized with
eight points per wavelength, and has a large bandwidth
for 0 6 kDx 6 p/2 as shown in [3]. The spatial deriva-
tives are computed with fiftieth-order standard finite dif-
ferences so that numerical errors due to derivative
approximations are negligible compared to time integra-
tion errors. Time integration is performed using the clas-
sical fourth-order four-stage RK scheme (RK44), the
fourth-order six-stage RK developed by Stanescu and
Habashi [7] (RK46-Stanescu), the second-order six-stage
RK of Bogey and Bailly [3] (RK26-Bogey) and the pres-
ent algorithm (RK46-NL). The problem is solved for
CFL numbers between 0.1 and 1.3 up to t = 800, so that
frequency xDt of Æ Æ Æ Æ Æ Æ RK44, standard fourth-order four-stage RK;
i [7] ; ––– RK26-Bogey, second-order six-stage RK of Bogey and Bailly



Fig. 2. Linear convection test case: (a) initial perturbation, (b) error as a function of the CFL number using: Æ Æ Æ Æ Æ Æ RK44, standard fourth-order four-
stage RK; �D�D� RK46-Stanescu, fourth-order six-stage RK of Stanescu and Habashi [7] ; ––– RK26-Bogey, second-order six-stage RK of Bogey
and Bailly [3] ; — RK46-NL, present fourth-order six-stage RK. (d: stability limit for the test case).
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the wave is convected over 100 wavelengths. The error
rate is evaluated with the L1-norm as

Enum ¼
1

N

X
juc � uej

where uc and ue are respectively the computed and the
exact vector solution, and N = 1200 is the number of
mesh points.

The numerical error Enum is plotted in Fig. 2 as a
function of the CFL number. The stability analysis
made in the former Section is confirmed here. The
RK46-Stanescu calculation diverges around CFL =
0.75, whereas the RK44 calculation is stable up to
CFL = 1.2 and the RK26-Bogey and RK46-NL calcula-
tions are stable up to a CFL number of 1.5.

For CFL numbers smaller than 0.6, the error slope is
driven by the order of accuracy. The second-order
RK26-Bogey algorithm has the smallest slope and thus
its error decreases slower than those of the fourth-order
algorithms RK44, RK46-Stanescu and RK46-NL as the
CFL number is lower. Over the interval 0.2 < CFL <
0.6, the RK46-NL and RK46-Stanescu calculations gen-
erate a similar error: accuracy improvement is for in-
stance about one order of magnitude compared to the
RK44 and RK26-Bogey schemes at CFL = 0.2.

For higher CFL numbers, Taylor series method fails
to ensure accuracy since the time step is large and the
error is given by the dissipation and dispersion properties
of the scheme. The RK44 error is thus larger than those
of the RK46-NL and RK26-Bogey algorithms. The
RK26-Bogey error becomes smaller than the RK46-NL
error as the CFL number increases. Nevertheless they re-
main of the same order of magnitude.

The second problem is a nonlinear test case. The one-
dimensional Euler equations are solved in the dimen-
sionless form:

oU

ot
þ oE

ox
¼ 0; with U¼

q

qu

qet

2
64

3
75 and E¼

q

qu2þ p

uðqetþ pÞ

2
64

3
75
where q is the density, u the velocity, p the pressure and
the total energy is given by et = p/(c � 1) + qu2/2 with
c = 1.4. The spatial derivatives are computed with thir-
tieth-order standard finite differences with Dx = 1. The
computational domain contains N = 800 points. To
highlight the need to use the low-storage formulation
of Williamson [6] to ensure fourth-order accuracy when
nonlinear operators are involved, the test case has also
been solved with the RK46-L algorithm.

The initial perturbation is a Gaussian pressure pulse
with high amplitude to induce nonlinear propagation
effects:

q ¼ 1

u ¼ 0

p ¼ 1

c
þ Dp expð�ax2Þ

8>><
>>:
where a = 0.05 and Dp = 0.015. It is propagated up to
t = 300 for various CFL = cDx/Dt numbers, where the
sound speed c = 1. The solution computed for CFL =
0.01 is taken as the reference solution. The initial distur-
bance and the reference solution are plotted in Fig. 3.
Wavefront steepening due to nonlinear phenomena is
clearly visible on the reference solution at t = 300. The
error is then computed with the L1-norm as

Enum ¼
1

N

X
jpc � pref j

where pc is the calculated pressure and pref is the refer-
ence solution.

The numerical error Enum is plotted in Fig. 4 as a
function of the CFL number. As for the linear convec-
tion test case, the RK46-Stanescu algorithm is less stable
than the other algorithms. It becomes unstable around
CFL = 0.8 whereas the other schemes can be used al-
most up to CFL = 1.3.

For CFL < 0.5, the order of accuracy gives the slope
of the error curve. The RK44 error has thus a faster
decrease than second-order RK26-Bogey error as the
CFL number decreases. As expected, the RK46-L



Fig. 3. Left: initial perturbation, and right: reference solution at t = 300 for the nonlinear propagation test case.

Fig. 4. Nonlinear propagation test case: error as a function of the CFL
number using: � � �� � � RK44, standard fourth-order four-stage RK;
�D�D� RK46-Stanescu, fourth-order six-stage RK of Stanescu and
Habashi [7] ; ––– RK26-Bogey, second-order six-stage RK of Bogey
and Bailly [3] ; �+�+� RK46-L, present fourth-order six-stage RK;
— RK46-NL, present fourth-order six-stage RK. (d: stability limit for
the test case).
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scheme is of second order for this test case whereas it
is fourth-order for linear operators. The RK46-NL
and RK46-Stanescu algorithms are of order four
and the more precise algorithms for CFL < 0.5. Differ-
ence in precision is about one order of magnitude
compared to the RK44 algorithm at CFL = 0.3. For
CFL > 0.5, the error is no longer given by the order of
accuracy. This part of the error curve is driven by the
dissipation and the dispersion of the schemes: the
RK46-NL and RK46-L errors are very close to each
other as the two algorithms have similar dispersion
and dissipation properties. In addition, the RK26-Bogey
algorithm becomes slightly more accurate than the
RK46-NL scheme.

For this test problem, the error is observed to be
driven by the order of accuracy in nonlinear for
small CFL numbers and by dissipation and dispersion
properties for high CFL numbers. The RK46-NL
algorithm is therefore accurate on both intervals thanks
to the linear optimization and to its fourth-order
accuracy.
4. Conclusion

An explicit low-storage fourth-order six-stage Runge–
Kutta scheme, optimized in the Fourier space, has been
provided for time integration. The algorithm has a large
stability range, it is stable at least for 1.6-point-per-
period waves. Numerical accuracy has been investigated
through dispersion et dissipation properties: the pro-
posed scheme resolves waves with at least four time steps
per period. In addition, an accuracy of order four is
achieved for linear and nonlinear operators. Linear and
nonlinear propagation test cases have then been solved.
It turns out that for low frequencies, precision of the time
integration is ensured by the fourth-order accuracy and
for high frequencies, the algorithm is still accurate thanks
to the linear optimization.
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