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The in”uence of the “lter shape on the effective scale separation and the numerical accuracy of large-
eddy simulations based on relaxation “ltering (LES-RF) is investigated. The simulation of the turbulent
”ow development of a high-Reynolds number low-subsonic compressible mixing layer is performed
using the LES-RF procedure, for discrete “lters of order 2…10. A reference solution is “rst obtained using
high-order numerical algorithms and shows a good agreement with experimental data found in the lit-
erature. Discrete “lters of order 2, 4, 6, 8 and 10 are then considered to study the in”uence of the “lter
shape on numerical results. The 2nd-order scheme turns out to be too dissipative and prevents the emer-
gence of unsteady motions within the mixing layer. For higher order schemes, from 4th- to 10th-order,
the ”ow solutions are turbulent but exhibit mean ”ows and turbulent intensities depending on the “lter.
The investigation of the one-dimensional kinetic energy spectra then shows that the 4th-order “lter may
still be too dissipative whereas large scales remain unaffected using the 6th-, 8th- and 10th-order “lters.
A further study of the kinetic energy spectra nonetheless demonstrates that the effective spatial band-
width of the LES increases with the order of the “ltering scheme. Simulations using the 6th-, 8th- and
10th-order “lters, with mesh sizes chosen to provide the same effective LES cut-off wavenumber, are per-
formed and yield similar results. It is hence found that the value of the effective LES cut-off wavenumber,
rather than to the “lter shape itself, is mainly responsible for the discrepancies between the ”ow statis-
tics obtained using different “lters. One may conclude that “lter shape independence is consequently
achieved in the present LES of a mixing layer.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical simulations of turbulent motions are capable of pro-
viding comprehensive informations on ”ow “elds [16,23] . The rel-
evance of the results obtained might however be affected by the
discretization methods, and therefore still has to be carefully
examined. Direct numerical simulation (DNS) is so far the most
reliable simulation method since the whole range of turbulence
scales is resolved and no a priori modeling is needed. The use of
suf“ciently small time steps and mesh sizes ensures on one hand
the accuracy of the solution but concurrently dramatically in-
creases the computational cost. Therefore large-eddy simulation
(LES) remains to date the prevailing tool for studying realistic
high-Reynolds number ”ow con“gurations. Low-pass spatial “lter-
ing of the turbulent motions allows the computational efforts to fo-
cus on the resolution of the largest and most energetic vortical
ll rights reserved.
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structures while the effect of the scales smaller than the mesh size
are taken into account through a subgrid-scale (SGS) model.

Since the early works of Smagorinsky [24] , numerous SGS clo-
sures have been derived by applying physical assumptions to the
“ltered Navier…Stokes equations [16] . Reference to the discretiza-
tion methods is seldom made even though evidences of intricate
couplings between the SGS model and the discretization tools have
been highlighted [5,17] . Alternatively, some authors, as for in-
stance Boris et al. [10] , proposed to employ the truncation errors
of the discretization schemes as an implicit SGS model. Within this
modeling framework, the dissipation introduced by approximate
space differentiation operators is used as a functional model repro-
ducing small scale dissipation. Recent works on this topic include,
among others, the approximate local deconvolution model (ALDM)
designed by Hickel et al. [18] . For the ALDM, the dissipation intro-
duced by discretization algorithms is locally adjusted to obtain a
numerical viscosity consistent with the turbulent viscosity ob-
served for homogeneous isotropic turbulence.

One should nonetheless be very careful when using space
discretization schemes exhibiting dissipative properties. Flow
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Fig. 1. Sketch of the computational domain and of the coordinate system (the “gure
is not to scale).

Table 1
Coef“cients of the standard discrete “lters of order 2, 4, 6, 8 and 10. Coef“cients with
negative indices may be retrieved using the relationship d� j = dj.

2N + 1 3 5 7 9 11

d3s
j

� �
d5s

j

� �
d7s

j

� �
d9s

j

� �
d11s

j

� �

d0 1/2 3/8 5/16 35/128 63/256
d1 � 1/4 � 1/4 � 15/64 � 7/32 � 105/512
d2 1/16 3/32 7/64 15/128
d3 � 1/64 � 1/32 � 45/1024
d4 1/256 5/512
d5 � 1/1024
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anisotropy can indeed be arti“cially generated and a “ne tuning of
the dissipation, as achieved by Hickel et al. [18] , implies a drastic
increase of the complexity of the LES implementation. In addition,
the coupling between the numerical methods and the SGS closure
alleviates the control over the governing parameters of the LES
modeling procedure. This issue can be circumvented by taking into
account subgrid dissipation by using an explicit selective “ltering
of the ”ow variables. Within the ILES domain, the sub“eld of
explicitly “ltered LES is indeed a promising approach. The idea is
to minimize the dissipation at the larger scales while diffusing
through the smaller scales the drain of energy due to the turbu-
lence energy cascade. When using low-dissipation or even purely
dispersive schemes, such as centered “nite differences, the “ltering
alone is connected to the subgrid-scale activity and the modeling
efforts focus on the features of the “ltering procedure only. Stolz
and Adams [25] , Mathew et al. [20] , Tantikul and Domaradzki
[27] , Domaradzki [13] as well as Bogey and Bailly [7] designed such
SGS models. In the recent works of Bogey and Bailly [8] , a detailed
description of the methodology, referred to as LES based on relax-
ation “ltering (LES-RF) by the authors, can be found.

Since LES-RF requires to explicitly perform scale separation, it
raises the question of the choice of the “lter. LES theoretical frame-
work imposes few constraints on its properties: its cut-off wave-
number should lie in the inertial range but its shape can be a
priori freely chosen. Some studies have been carried out to evaluate
the impact of the choice of the “lter on SGS modeling [4,11,12,19] .
In particular, Berland et al. [4] demonstrated by using the EDQNM
theory that “lters with sharp cut-off are more appropriate for LES
since they result in a clear separation between resolved and unre-
solved scales. It was also shown that for the second-order “lter,
which has a smoothly graded transfer function, the SGS tensor does
no longer truly represent interactions between scales of the inertial
range so that the universality assumption is no longer ful“lled.
Similar results, supporting the need of using sharp cut-off “lters,
have been obtained by De Stefano and Vasilyev [12] for the “ltered
Burger•s equation. These guidelines have been obtained from stud-
ies of incompressible canonical ”ows and it may be valuable to
now extend these observations to more realistic turbulent con“g-
urations. In particular, compressible ”ows are of special interest
as the use of LES-RF in this community is spreading
[3,8,9,15,20,22] .

The aim of the present study is then to investigate the in”uence
of the “lter shape on compressible LES based on relaxation “lter-
ing. The ”ow con“guration is a low subsonic shear layer. Plane
mixing layers have been greatly studied because of their relative
simplicity in one hand, and because their development are usually
characterized by a ”ow scenario occurring in many con“gurations,
consisting of a laminar breakdown, followed by the emergence of
large scale coherent structures then leading to a fully turbulent
state. The compressible LES-RF of a spatially developing turbulent
mixing layer, with Reynolds number Re dx 0

¼ dx 0
Uc=m¼ 5 � 104

based on the convection velocity Uc and the initial vorticity thick-
nessdx 0

, has been performed with this aim in view using the solver
Code_Safari [14] . Discrete “lters of orders from 2 to 10 have been
implemented to describe the way in which they can affect the solu-
tion. Extensive comparisons have been carried out between the
mean ”ow, the turbulent intensities and the velocity spectra ob-
tained for each “lter shape. The issue of scale separation, related
to the effective LES cut-off wavenumber, has also been studied
based on turbulent kinetic energy spectra. The result analysis has
been complemented by a discussion on the possibility of “lter
independence in LES-RF with the aim of determining whether
the discrepancies observed between the simulations are related
to the “lter shape itself or to the effective LES cut-off wavenumber.

The parameters of the simulation are “rst described in Section 2.
A reference mixing layer solution, obtained using high-order
numerical algorithms, is proposed in Section 3. An investigation
of the in”uence of the “ltering shape is then carried out in Sec-
tion 4. Concluding remarks are “nally drawn in Section 5.

2. Simulation apparatus

2.1. Numerical methods and subgrid-scale modeling

The compressible Navier…Stokes equations, as formulated by
Vreman et al. [29] , are solved using high-order numerical schemes.
To take account of the dissipation provided by the unresolved
scales, a LES based on relaxation “ltering (LES-RF) is performed
[8] . An explicit spectral-like “ltering is therefore applied to the
conservative ”ow variables: the density q, the three components
of the velocity momentum qui and the total energy qe. The method
has been successfully used in various applications [3,7] .

Approximate derivatives are evaluated using low-dispersion
4th-order 11-point explicit “nite differences [6] whose properties
have been optimized in the Fourier space. Explicit “ltering is per-
formed thanks to centered standard discrete “lters [28] whose or-
der ranges from 2 (3-point stencil) to 10 (11-point stencil). Time
integration is carried out by an optimized fourth-order low-storage
Runge…Kutta scheme[2] .

The calculation carried out using the 10th-order “lter, which
exhibits the sharpest spectral cut-off, will be considered to provide
the reference solution.

2.2. Simulation parameters

A high-Reynolds number low-subsonic mixing layer is consid-
ered. As an illustration, a sketch of the computational domain
and of the coordinate system is provided in Fig. 1. The initial con-
ditions are de“ned by an hyperbolic-tangent velocity pro“le

uðyÞ ¼
U1 þ U2

2
þ

U2 � U1

2
tanh

2y
dx 0

� �
ð1Þ

where the two freestream velocities are given by U1 = 50 m s� 1 and
U2 = 100 m s� 1, so that the convective velocity is equal to
Uc = (U1 + U2)/2 = 75 m s � 1, corresponding to a convective Mach
number Mc = 0.22. The initial vorticity thickness of the sheared



Fig. 2. Snapshot of the spanwise vorticity component x zdx 0
=Uc in the whole computational domain obtained for the 10th-order standard “lters. Colorscale from � 0.5 (red) to

� 0.2 (white). From top to bottom: isometric view, side view, top view (coordinates are normalized by the initial vorticity thickness dx 0
). (For interpretation of the references

to color in this “gure legend, the reader is referred to the web version of this article.)

Fig. 3. Mean streamwise velocity �u as a function of the transverse location y/dx
obtained for the 10th-order standard “lters, for various streamwise locations. „„…,
x=dx 0

¼ 100; ………,x=dx 0
¼ 120; � � �� � � , x=dx 0

¼ 140; � , experimental data of Bell and
Mehta [1] .
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region is equal to dx 0
¼ 10� 2 m. The Reynolds number is then

Redx 0
¼ dx 0

Uc=m¼ 5 � 104.
The calculation domain is discretized using Nx � Ny � Nz =

950 � 261 � 101 • 25 � 106 nodes distributed on a structured
Cartesian grid and has physical dimensions of ½0; 200dx 0

� �
½�90dx 0

; 90dx 0
� � ½� 10dx 0

; 10dx 0
�. Within the turbulent ”ow region

the mesh size is uniform with Dy ¼ dx 0
=8 and Dx ¼ Dz ¼ dx 0

=5. Fur-
ther away from the shear layer, the grid is stretched in the y direc-
tion to provide a large extent of the domain in this direction while
keeping the computational cost at a reasonable level. The calcula-
tion domain is periodic in the z direction. The non-re”ecting bound-
ary conditions of Tam and Dong [26] are speci“ed at the boundaries
of the domain. The time step Dt • 3 � 10� 6 s corresponds to a Cou-
rant…Friedrichs…Lewy number equal to 0.8. To ensure statistical
convergence of the ”ow, the simulation is run over approximately
10 ”ow through times, corresponding to 10 5 iterations.

2.3. Turbulence ignition by ”ow excitation

To seed the laminar breakdown of the mixing layer, the ”ow is
excited at the upstream boundary of the calculation domain. An
harmonic forcing at the most unstable frequency fh of the mixing
layer is introduced, while random ”uctuations are also added to
ensure a transition to a fully three dimensional turbulent regime
further downstream. Velocity ”uctuations, referred to as ue, ve

and we, are hence arti“cially introduced at every time step in the
following way:

ue

ve

we

0

@

1

A ¼
Ureu

Urev þ Uh sinð2pfhtÞ
Urew

0

@

1

A � Sðx; y; tÞ ð2Þ
where S(x,y,t) is a shape factor which reads

Sðx; y; tÞ ¼exp � logð2Þ
ðx � x0Þ2 þ ðy � y0Þ2

b2

" #

ð3Þ

The quantities eu, ev and ew are random variables uniformly distrib-
uted on the interval [ � 1,1]. These variables introduce random mo-
tions on the three velocity components. Their magnitude is given by
Ur so that Ur/Uc = 5 � 10� 2. Concerning the harmonic forcing, it is
only applied to the transverse velocity component v. Its amplitude
is so that Uh/Uc = 10� 3. The excitation frequency fh can be deduced
from a linear stability analysis [21] and is equal to



fh ¼ 0:132
Uc

dx 0

ð4Þ

Finally, the shape factor Sallows to apply the excitation only over a
limited ”ow region. The magnitude is modulated in space by a
Gaussian function equal to 1 when ðx; yÞ ¼ ðx0; y0Þ ¼ ð5dx 0

; 0Þ and
for any spanwise location z. Away from the line ( x0,y0,z) the ampli-
tude decreases and eventually reaches zero. The half-width of the
shape factor is related to the parameter b, here chosen to be equal
to dx 0

=2.

2.4. Filter shape modi“cation

Applying a central, 2 N + 1 point stencil discrete “lter on a uni-
form mesh in the x-direction reads as

�f ðxÞ ¼f ðxÞ � r
XN

j¼� N

dj f ðx þ jDxÞ ð5Þ

where dj are the scheme coef“cients and Dx the mesh size [28] . The
same scheme is applied sequentially in the three directions x, y and
z. The “ltering strength r is set to 0.4 in the present simulations.

To avoid any interplay between the “lter shape and the ”ow
excitation at the inlet, the 11-point 10th-order selective “lter has
been used in all simulations in the upstream region of the calcula-
tion domain, for x=dx 0

< 25. Further downstream, for x=dx 0
> 50,

different “lters based on 3-, 5-, 7- and 9-point stencils have been
employed. In the intermediate region, when 25 < x=dx 0

< 50, a lin-
ear transition between the sets of coef“cients used upstream and
downstream is achieved to provide a smooth transition between
the two “lter shapes. The coef“cients dj of the discrete “lter are
therefore de“ned as

djðxÞ ¼ ½1 � vðxÞ�dupstream
j þ vðxÞddownstream

j ð6Þ

where the function v(x) is given by

vðxÞ ¼

0 if x=dx 0
< 25

ðx � 25Þ=25 if 25 < x=dx 0
< 50

1 if x=dx 0
> 50

8
><

>:
ð7Þ

Five calculations have been carried out. For all of them, the upstream
“lter is the 10th-order 11-point scheme, so that dupstream

j ¼ d11s
j , which

are given in Table 1. The reference solution based on the 10th-order
“lter is such as dupstream

j ¼ ddownstream
j ¼ d11s

j . The in”uence of the “lter
shape has then been studied by modifying the set of coef“cients used
for ddownstream

j . For the simulations with discrete “lters of 2nd-, 4th-,
6th- and 8th-order, the coef“cients ddownstream

j are respectively set
to the value given d3s

j ; d5s
j ; d7s

j ; d9s
j , which are given in Table 1.

Remind that the “nite difference scheme is the same for all the
calculations. Only the in”uence of the “ltering is therefore investi-
gated in the present work.

3. Reference simulation

3.1. Unsteady ”ow “eld

A snapshot of the spanwise vorticity x zdx 0
=Uc in the whole cal-

culation domain is provided in Fig. 2. The ”ow pattern is typical of
a spatially developing mixing layer. In the laminar ”ow region
ðx=dx 0

< 5Þ, instabilities are growing, leading to the roll-up of the
mixing interface responsible for the emergence of large-scale orga-
nized structures, whose size are comparable with the transverse
length scale of the ”ow. Such vortices are for instance clearly visi-
ble around x=dx 0

¼ 50. Further downstream, for about x=dx 0
> 100,

the ”ow reaches a fully turbulent state with a large range of

motion scales, especially “ne structures characterizing high-Rey-
nolds number ”ows.

3.2. Mean ”ow results

The consistency of the mean ”ow “eld is now investigated.
Comparisons to experimental data are performed at three stream-
wise locations, x=dx 0

¼ 100; x=dx 0
¼ 125 and x=dx 0

¼ 150, in the
fully turbulent region.

The transverse pro“les of the mean normalized streamwise
velocity ( �u � U1)/Uc are plotted in Fig. 3 as functions of the trans-
verse location y normalized by the local vorticity thickness dx .
The experimental data of Bell and Mehta [1] are also represented.
It is seen that the LES velocity pro“les perfectly collapse, demon-
strating that the mean ”ow is self-similar in the downstream re-
gion of the calculation domain. The agreement between
numerical and experimental data is in addition good.

Further comparisons are carried out in Fig. 4 where the turbu-
lent intensities, ½u0u0�1=2; ½v0v0�1=2 and ½w0w0�1=2 are represented as

(a)

(b)

(c)

Fig. 4. Turbulent intensities as functions of the transverse location y/dx obtained
for the 10th-order standard “lters, for various streamwise locations. „„…,
x=dx 0

¼ 100; ………,x=dx 0
¼ 120; � � �� � � , x=dx 0

¼ 140; � , experimental data of Bell
and Mehta [1] . Turbulent intensities based on: (a) the streamwise, (b) the
transverse, and (c) the spanwise velocity components.
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