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This paper is concerned with the investigation of numerical errors in large-eddy simula-
tions by means of two-point turbulence modeling. Based on the eddy-damped quasi-nor-
mal Markovian (EDQNM) theory, a stochastic model is developed in order to predict the
time evolution of the kinetic energy spectrum obtained by a large-eddy simulation (LES),
including the effects of the numerics. Using this framework, the influence of the accuracy
of the approximate space differencing schemes on LES quality is studied, for decaying
homogeneous isotropic incompressible turbulence, with Reynolds numbers Rek based on
the transverse Taylor scale equal to 780, 2500 and 8000. The results show that the discret-
ization of the filtered Navier–Stokes equations leads to differentiation and aliasing errors.
Error spectra are also presented, and indicate that the numerical errors are mainly originat-
ing from the approximate differentiation. In addition, increasing the order of accuracy of
the differencing schemes or using algorithms optimized in the Fourier space is found to
widen the range of well-resolved scales. Unfortunately, for all the schemes, the smaller
scales with wavenumbers close to the grid cut-off wavenumber, are badly calculated and
generate differentiation errors over the whole energy spectrum. The eventual use of expli-
cit filtering to remove spurious motions with short wavelength is finally shown to signif-
icantly improve LES accuracy.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Numerical solutions of turbulent flow problems can be accomplished using various levels of approximation. For direct
numerical simulations (DNS), the full Navier–Stokes equations are solved and, assuming that the time step and the mesh
size are small enough, the whole range of turbulence scales are computed. The method is particularly reliable since it does
not require physical modeling, but on the other hand resolving all the turbulent scales is highly demanding in term of com-
putational cost. An alternative approach needing less computational efforts is large-eddy simulation (LES). In LES, only the
larger scales are solved while the effects of the scales smaller than the mesh size are taken into account through a subgrid
scale (SGS) model [1]. Since the early works of Smagorinsky [2], numerous SGS models have been proposed with the aim of
describing the behaviour of unresolved scales based on the knowledge of the resolved velocity field. The reader may refer to
the review of Lesieur and Métais [3] for an overview of LES techniques for incompressible flows.

A large variety of SGS modeling procedures have been derived by applying physical assumptions to the filtered Navier–
Stokes equations, without mentioning the discretization methods. LES performed using explicit models for the subgrid mo-
tions, and where negligible numerical errors is assumed, are referred to as pure physical LES by Pope [4]. The numerical accu-
. All rights reserved.
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racy in the framework of LES is however a delicate issue. The investigation of discretization errors indeed commonly depends
on the intrinsic properties of the discretization schemes. The formal order of accuracy of a differencing scheme yields the
difference between the exact and the approximate derivatives as the mesh size tends to zero. In a similar manner, the effec-
tive wavenumber provides the errors in the Fourier space introduced for a simple derivative [5]. Considering this, there is
unfortunately no straightforward link between the quality of a LES calculation and the resolution ability of the discretization
tools in simple canonical problems. Grid convergence is for example not ensured. Using a smaller grid size indeed shifts the
cut-off wavenumber to smaller scales which can still carry a significant amount of energy.

The investigation of numerical errors in LES requires the design of accuracy estimators combining the numerical pro-
cedures and the physical model based on the filtered Navier–Stokes equations. A first extensive theoretical framework
allowing quantitative evaluation of numerical errors in LES has been proposed by Ghosal [6] and has been referred to
as static error analysis later on by Park and Mahesh [7]. The static error analysis provides a formal model in the spectral
space of the numerical implementation of a LES. The errors are then given by the deviation of the numerical system from
the exact model, and the error spectra are computed assuming a Gaussian state for the velocity field. Two major sources of
errors, namely approximate differentiation and aliasing, have been identified by Ghosal [6], who also found that 2nd-order
discretization schemes introduce errors larger than the SGS terms. A filter with a filter-size-to-grid-width ratio of 8 then
needs to be implemented to remove poorly resolved scales. Ghosal [6] showed in addition that for eight-order schemes a
filter width twice as large as the grid size is enough to ensure numerical accuracy. High-order algorithms hence turn out
to be more appropriate. This trend has been further supported by the a priori analysis of DNS data achieved by Chow and
Moin [8] for stably stratified homogeneous flows, which concluded that high-order numerical methods allow a wider
range of accuracy in terms of length scales supported by the grid. Similarly, the LES of turbulent channel flows performed
by Krachvenko and Moin [9] indicated that the performance of subgrid scale models can be improved by increasing the
order of the finite-difference schemes.

Even if the static error analysis provides insightful details on numerical errors in LES, the method does not fully reproduce
the variety of phenomena involved in simulations. In particular, as pointed out by Park and Mahesh [7], dynamical interac-
tions cannot be taken into account with a static approach. A dynamic error analysis can nevertheless be performed by apply-
ing the eddy-damped quasi-normal Markovian (EDQNM) set of hypothesis to the LES approach in order to design a so-called
‘‘EDQNM-LES” model [7]. This theoretical framework enables to compute the time evolution of the kinetic energy spectrum
obtained by a LES, including the effects of the numerical methods, for incompressible homogeneous isotropic turbulence. The
EDQNM-LES approach has been used to study numerical errors by Park and Mahesh [7]. Their works are however mainly
based on the Comte-Bellot and Corrsin [10] experiment which is a low Reynolds number flow configuration ðRek ¼ 70Þ,
and briefly deal with LES at high Reynolds number.

The present study is an attempt to provide a parametric study of the influence of the accuracy of the discretization algo-
rithms on numerical errors in LES. Following developments similar to those proposed by Park and Mahesh [7], an EDQNM-
LES model is derived to evaluate the time evolution of kinetic energy spectra obtained from LES performed with numerical
differentiation methods of orders of accuracy from 2 to 14, and with optimized finite-difference schemes [11].

The numerical errors in LES are considered for the three cases with Reynolds number Rek based on the transverse Taylor
scale equal to 780, 2500 and 8000. The classical EDQNM theory, referred to as ‘‘EDQNM-DNS”, is applied to determine ref-
erence kinetic energy spectra. Both static and dynamic analysis are then carried out. Following Ghosal’s works [6], the
numerical errors are first defined and computed by comparing the EDQNM-LES spectra to the EDQNM-DNS spectra (static
error analysis). The results are recast in terms of accuracy limits using the SGS contribution as an acceptable upper bound
for the numerical errors. To take into account the computational cost required by the discretization tools to reach a given
accuracy, efficiency rates are also introduced to yield unbiased estimations of the scheme performance. Based on the study
of Park and Mahesh [7], contributions from the SGS model, the approximate differentiation and aliasing are also introduced
(dynamic error analysis). Their time evolutions are considered to evaluate whether numerical errors have a major impact on
the solution quality. Accuracy improvement using explicit filtering is eventually discussed.

The LES is first considered in the physical space in Section 2 in order to introduce the numerical errors in a more intuitive
manner than in the spectral space. In-depth developments of the numerical errors are carried out in Section 3 using the
EDQNM-DNS and EDQNM-LES models. The reference solutions and the results of the EDQNM-LES calculations are shown
in Section 4. Concluding remarks are finally drawn in Section 5.
2. Differentiation and aliasing errors in physical space

In LES, scale separation is performed so that only the non-universal large turbulent scales are computed. The definition of
these large scales may vary from one model to another depending on how the scale separation is carried out. It can be ex-
plicit or implicit, and can rely on more or less sharp filters.

2.1. Implicit grid filtering

We first focus on LES with scale separation implicitly achieved by the projection of the velocity field on the mesh. The
projection of a flow solution on a grid indeed introduces a spectral filtering of the flow variables at the cut-off wavenum-
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ber kc ¼ p=D where D is the mesh size. Following Domaradzki and Adams [12] a notation explicitly involving this spectral
truncation is proposed. It is denoted by the upper-script L and its complement by S. Flow variables are then decomposed
as
f ¼ f L þ f S: ð1Þ
A generic one-dimensional transport equation is now considered
ou
ot
þ o

ox
FðuÞ ¼ 0; ð2Þ
where u corresponds to the velocity field and F is a nonlinear operator. The full incompressible Navier–Stokes equations are
not used here for notational simplicity but the reasoning given in what follows for Eq. (2) is valid for them. Note nonetheless
that the treatment of the pressure term can give rise to specific numerical errors [13].

The derivation of the formal model underlying the LES of system (2) is performed by applying a filtering operator (L in
the present framework). Assuming that filtering and differentiation commute, the governing equation for the filtered field
reads
ouL

ot
þ o

ox
FðuLÞ ¼ o

ox
½FðuLÞ � FðuÞL�; ð3Þ
where the right-hand side takes into account the effects of the unresolved scales on the resolved ones.
The practical implementation of a LES is nevertheless based on grid functions defined only at some grid points. The dis-

cretization is assumed to be carried out by an operator ½��N which maps a continuous function into a set of discrete values at
the grid nodes. It should be noted that the discretization operator ½��N may generate aliasing errors when it is directly applied
to quantities with a spectral content lying outside the wavenumber range supported by the mesh. The discretization of a
quantity f indeed reads
½f �N ¼ ½f L�N þ ½f S�N: ð4Þ
According to the definition of the projector L, the first term on the right-hand side corresponds to the scales which can be
correctly discretized on the mesh. However, the second term ½f S�N contains only scales with wavenumbers higher than those
supported by the mesh. The discretization of these components will produce aliasing, which will contaminate the resolved
discretized variable ½fL�N by spurious motions. Remark that LES only aim at calculating the resolved discretized field ½f L�N ,
also denoted in what follows by fN .

The grid projection L and the discretization operator ½��N are now applied to the system (2) under consideration. Assum-
ing that time integration is ideal enables to write the governing equation for the resolved discretized velocity field ½uL�N ¼ uN

as
ouN

ot
þ o

ox
FðuÞL

� �
N
¼ 0: ð5Þ
Similarly to the formal model (3), further modeling is required for the nonlinear terms in (5). The commutation of the oper-
ators in the series ½��N , ox, L and F will allow us to express the quadratic interactions in term of uN , but it will also generate
commutation error terms resulting from discretization and modeling biases.

The commutation between the discretization ½��N and the exact differentiation ox requires to introduce an approximate
derivative operator d=dx such as
o

ox
FðuÞL

� �
N

¼ d
dx
½FðuÞL�N �

d
dx
½FðuÞL�N �

o

ox
FðuÞL

� �
N

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RfdðuÞ

; ð6Þ
where RfdðuÞ is the local truncation error.
The grid projection L must then be introduced into the nonlinear terms of Eq. (6), i.e. the substitution of FðuÞL by FðuLÞ is

performed using the relationship
½FðuÞL�N ¼ ½FðuLÞ�N þ ½FðuÞ
L � FðuLÞ�N : ð7Þ
The spectral content of the quantity FðuLÞ is however not limited to the grid resolution. The aliasing errors and the SGS ten-
sor are then both contained in the residual term ½FðuÞL � FðuLÞ�N . It is thus convenient to decompose FðuLÞ into its resolved
and non-resolved parts, FðuLÞL and FðuLÞS, so that the aliasing and the modeling issues can be separated:
½FðuÞL�N ¼ ½FðuLÞ�N þ ½FðuÞ
L � FðuLÞL�N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sgs

þ ½�FðuLÞS�N|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
aliasing

: ð8Þ
In this expression the term ½�FðuLÞS�N indeed takes into account the unresolved part of the nonlinear terms introduced by
½FðuLÞ�N ¼ ½FðuLÞL�N þ ½FðuLÞS�N . In addition, the SGS term compares the resolved fluxes computed with the full velocity
field FðuÞL, with the resolved fluxes obtained with the resolved velocity field FðuLÞL.
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The last step consists in commuting the nonlinear operator F and the discretization ½��N . If the grid is assumed to be col-
located and if finite-difference methods are implemented there is no issue of flux reconstruction and one can write that
½FðuLÞ�N ¼ FNð½uL�NÞ ¼ FNðuNÞ; ð9Þ
where FN is the flux function acting on grid functions. Finally, the time evolution of the resolved discretized velocity field is
given by
ouN

ot
þ d

dx
FNðuNÞ ¼ RsgsðuÞ þ RfdðuÞ þ RalðuÞ ð10Þ
with the residual terms:
RsgsðuÞ ¼
d
dx
½FðuLÞL � FðuÞL�N; ð11Þ

RfdðuÞ ¼
d
dx
½FðuÞL�N �

o

ox
FðuÞL

� �
N
; ð12Þ

RalðuÞ ¼
d
dx
½FðuLÞS�N ð13Þ
corresponding respectively to the SGS contribution, the differentiation errors and the aliasing errors.
As expected, the discrete system (10) and the formal model (3) have a similar left-hand sides but the residual terms are

different. The inclusion of the discretization into the modeling is responsible for the generation of differentiation and aliasing
errors. As pointed out by former studies [6–9,14], this demonstrates that it may be appropriate to make reference to the
numerical methods when LES modeling is developed, or at least to design criteria on discretization algorithms ensuring that
the numerical errors RfdðuÞ and RalðuÞ are not the leadings terms in (10).

2.2. LES with graded filter

The previous section focused on LES with scale separation implicitly achieved by the projection of the solution on the grid.
Graded spatial filters can also be used. Assuming that the filtering operation, denoted �f , commutes with spatial derivatives, it
is straightforward to show that the filtered discretized velocity field, ½uL�N ¼ ½�u�N ¼ �uN , is governed by the equation
o�uN

ot
þ d

dx
FNð�uNÞ ¼ RsgsðuÞ þ RfdðuÞ þ RalðuÞ ð14Þ
with the residual terms:
RsgsðuÞ ¼
d
dx
½Fð�uÞL � FðuÞ�N; ð15Þ

RfdðuÞ ¼
d
dx
½FðuÞ�N �

o

ox
FðuÞ

� �
N
; ð16Þ

RalðuÞ ¼
d
dx
½Fð�uÞS�N: ð17Þ
As pointed out for instance by Lund and Kaltenbach [15], it is worth noting that filtering may be used to reduce numerical
errors. For the finite-differencing errors, if the poorly resolved scales, that are those for which there are large discrepancies
between d=dx and o=ox, are removed by the filter, the differentiation errors RfdðuÞ tend to vanish.

3. Two-point stochastic closure for numerical error analysis of LES

In the following sections the classical EDQNM model, referred to as EDQNM-DNS [7], is presented. In addition, an
EDQNM-LES model is proposed in order to estimate the evolution of the kinetic energy spectrum deduced from a large-eddy
simulation with given numerical methods.

3.1. The eddy-damped quasi-normal Markovian approach

In this section, the derivation of the analytical models of turbulence relying on the eddy-damped quasi-normal Markovian
(EDQNM) approach is shortly described. An extensive overview of the EDQNM theory may be found in Lesieur [16].

Consider an homogeneous isotropic incompressible turbulence. For a wavenumber k the Navier–Stokes equations in the
Fourier space can schematically be written as
o

ot
þ mk2

� �
u ¼ uu; ð18Þ
where m is the viscosity and u the velocity field. Starting from (18) and introducing the ensemble averaging h�i, a series of
equations can be derived for the velocity correlations. In particular, the double and triple correlations are governed by
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o

ot
þ 2mk2

� �
huui ¼ huuui; ð19Þ

o

ot
þ mðk2 þ p2 þ q2Þ

� �
huuui ¼ huuuui: ð20Þ
Eq. (19) is of particular interest since it can be used to determine the evolution of the kinetic energy spectrum Eðk; tÞ. How-
ever, as shown by (20), the triple correlations huuui are unclosed terms which need to be modeled.

For a velocity field close to a Gaussian state, namely using a quasi-normal approximation, the 4th-order moments huuuui
can be expressed as functions of the double correlations huui. To ensure realizability of the kinetic energy spectrum, eddy-
damping is furthermore introduced. Expression (20) hence reads
o

ot
þ mðk2 þ p2 þ q2Þ

� �
huuui ¼

X
huuihuui � ðlk þ lp þ lqÞhuuui; ð21Þ
where lk is the eddy-damping rate for a wavenumber k. The solution of this differential equation is easily deduced by means
of time integration:
huuuiðtÞ ¼
Z t

0

X
huuihuuie�Xkpqt dt ð22Þ
with Xkpq ¼ lk þ lp þ lq þ mk2 þ mp2 þ mq2. The process of Markovianization then enables to further simplify this term.
Assuming that the time scale of the 2nd-order moments huui is large compared to that of the eddy-damping, one can even-
tually evaluate the 3rd-order moments as
huuuiðtÞ ¼ HðtÞ
X
huuihuui; ð23Þ
where HðtÞ is a relaxation time. The time evolution of the kinetic energy spectrum is then computed by introducing the
above closure into (19).

3.2. EDQNM-DNS model

The model is referred in this work to EDQNM-DNS to avoid any confusion with the EDQNM-LES framework defined in the
next section.

For a freely decaying homogeneous isotropic incompressible turbulence, the time evolution of the kinetic energy spec-
trum EðkÞ at a wavenumber k can be written as
o

ot
þ 2mk2

� �
EðkÞ ¼ TðkÞ; ð24Þ
where time dependence of the spectrum is implicit and m stands for the viscosity [16]. The energy transfers due to triadic
interactions read as
TðkÞ ¼
Z Z

Dk

Sðk;p; qÞdpdq; ð25Þ
whose integrand Sðk; p; qÞ is given by
Sðk;p; qÞ ¼ HkpqðtÞ
EðqÞ

q
ðxyþ z3Þðk2EðpÞ � p2EðkÞÞ: ð26Þ
The geometrical coefficients x, y and z are introduced using the following relationships:
x ¼ �piqi

pq
; y ¼ � kiqi

kq
; z ¼ � piki

pk
: ð27Þ
The integration domain Dk, shown in Fig. 1(a), is such as
Dk ¼ fðp; qÞjkþ q P p P jk� qjg ¼ fðp; qÞjjzj 6 1g: ð28Þ
Finally, the triple correlation relaxation time is provided by
HkpqðtÞ ¼
1� exp½�lkpqt � mðk2 þ p2 þ q2Þt�

lkpq þ mðk2 þ p2 þ q2Þ
ð29Þ
with lkpq ¼ lk þ lp þ lq. The eddy-damping rate lk is related to the kinetic energy spectrum using the model proposed by
Lesieur [16]
lk ¼ 0:19C3=2
g

Z k

0
k02Eðk0Þdk0

" #1=2

; ð30Þ



Fig. 1. Sketch in the ðp; qÞ-plane of the integration domains used to compute the nonlinear transfers for the EDQNM-DNS calculations. (a) Full domain, and
(b) separation into a resolved and a non-resolved domain given a cut-off wavenumber kc .
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where the Kolmogorov constant Cg is taken to be equal to 1:4 as in Chollet and Lesieur [17].
For practical resolution of the governing equation (24) a logarithmic wavenumber mesh is designed as
ki ¼ kmin2ði�1Þ=F for i ¼ 1; . . . ;N; ð31Þ
where kmin is the minimum wavenumber of the mesh, F the number of points per decade and N the total number of points.
The integral in (24) giving the energy transfer due to nonlinear interactions is approximated using the algorithm introduced
by Leith [18]. The corrective term introduced by Lesieur [16] is implemented in order to take into account non-local triadic
couplings which are poorly resolved by Leith’s scheme. Adding this term is necessary since the present calculations aim in
particular at evaluating SGS energy transfers. Time integration is performed using the Euler method with a time step deter-
mined using the criterion Dt < 1=ðmk2

NÞ.
The initial spectrum contains most of its energy at small wavenumbers and is prescribed as in [19] by
EðkÞ ¼ 16

ffiffiffiffi
2
p

r
v2

0

k0

k
k0

� �4

exp �2
k
k0

� �2
" #

: ð32Þ
The maximum of energy occurs for the wavenumber k0, and the velocity v0 is related to the total kinetic energy Q ke by
Q ke ’ ð3=2Þv2

0.
The value of the viscosity m is set to obtain a given gap between the energy-containing scales and the Kolmogorov scale

once the initial spectrum (32) has evolved towards a turbulent state. The number of points N of the computation is chosen so
that the Kolmogorov scale remains within the wavenumber mesh.

The Reynolds number is evaluated using the Taylor scale k as Rek ¼ kv0=m and the dimensionless time is defined by
t� ¼ k0v0t.

3.3. EDQNM-LES model

Consider the large-eddy simulation of a freely decaying homogeneous isotropic turbulence with a cut-off wavenumber kc ,
and with scale separation implicitly achieved by the projection of the velocity field on the mesh. The derivation of the
EDQNM-DNS model describing the numerical implementation of the LES and the explicit formulations of the various quan-
tities introduced in this section are provided in Appendix A. The time evolution of the truncated kinetic energy spectrum E�

of the LES velocity field is given by
o

ot
þ 2mtk

2 þ 2mv2
kk2

� �
E�ðkÞ ¼ TnlðkÞ þ TalðkÞ; ð33Þ
where TnlðkÞ corresponds to the energy transfers due to triadic interactions between resolved scales, and TalðkÞ takes into
account aliasing effects occurring when nonlinear terms are discretized. Approximate differentiation is characterized by
the isotropic ratio vk between the norm of the modified wavenumber and the exact wavenumber. SGS modeling is per-
formed in an artificial manner: an eddy-viscosity based SGS model is introduced by imposing a non-zero turbulent viscosity
mtðkÞ defined in the spectral space. The numerical implementation of the model is nonetheless not considered. Numerical
errors and SGS modeling are therefore decoupled and the impact of the discretization can be singly investigated. One
may refer to the works of Park and Mahesh [7] for an EDQNM-LES approach involving the practical implementation of a dy-
namic Smagorinsky model [20].
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The numerical resolution of the integro-differential system (33) relies on the same numerical methods as those used for
the classical EDQNM-DNS calculations, described in Section 3.2.

3.4. Static error analysis

3.4.1. Resolved and non-resolved energy transfers
Consider the EDQNM-DNS model. Following a SGS modeling point of view, a truncation at some wavenumber kc is intro-

duced into Eq. (24):

o

ot
þ 2mk2

� �
EðkÞ ¼ T<ðkjkcÞ þ T>ðkjkcÞ; ð34Þ
where it is assumed that k < kc . The contribution T<ðkjkcÞ from the resolved scales corresponds to the triadic interactions
ðk; p; qÞ such as p and q are lower than kc. The non-resolved transfers T>ðkjkcÞ involving triads ðk; p; qÞwith p or q greater than
the cut-off wavenumber kc. The SGS contribution is hence provided by T>ðkjkcÞ.

The explicit formulations of the resolved and non-resolved energy transfers are obtained by decomposing the full inte-
gration domain Dk in (25) into a set of resolved wavenumbers D<

kjkc
and a set of non-resolved wavenumbers D>

kjkc
defined by
D>
kjkc
¼ fðp; qÞ 2 Dkjp > kc or q > kcg ð35Þ
and D<
kjkc
¼ Dk n D>

kjkc
, so that
T<ðkjkcÞ ¼
Z Z

D<
kjkc

Sðk;p; qÞdpdq; ð36Þ

T>ðkjkcÞ ¼
Z Z

D>
kjkc

Sðk;p; qÞdpdq: ð37Þ
Fig. 1(b) shows a sketch of the domains D>
kjkc

and D<
kjkc

.
The amplitude of the SGS transfers T>ðkjkcÞ will be used in the present investigation as a reference magnitude for the

assessment of the numerical errors [6]. Subgrid modeling in practical situations indeed aims at reproducing the effects of
the unresolved scales. Therefore, when numerical errors are higher than the magnitude of T>ðkjkcÞ, the discretization meth-
ods can be considered as inappropriate.

3.4.2. Numerical error definitions
Numerical errors are defined by comparing the EDQNM-LES model (34) to the EDQNM-DNS formulation (24). Following

the work of Ghosal [6], a static error analysis is performed by assuming that the LES provides the exact kinetic energy spec-
trum (E�ðkÞ ¼ EðkÞ for k < kc). The errors are thus deduced from a direct comparison between the exact and the LES spectra.
Alternative approaches may have been implemented: the approximate differentiation can be considered as an implicit fil-
tering operation as in Salvetti and Beux [21], or the numerical methods can be included into the SGS stress tensor [22]. In
the present work, direct comparison is retained in order to uncouple the issues related to the SGS tensor and those associated
with the numerics.

The difference (34) � (24) between the two governing equations should then remain equal to zero, so that
TnlðkÞ � T<ðkjkcÞ � 2mk2½EðkÞ � v2
k E�ðkÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

differentiation

þ TalðkÞ|fflffl{zfflffl}
aliasing

þ2mtk
2E�ðkÞ � T>ðkjkcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s:g:s

¼ 0: ð38Þ
Numerical errors are hence defined as the magnitude of the above terms. The following quantities are then introduced:
EfdðkÞ ¼ jTnlðkÞ � T<ðkjkcÞj þ j2mk2½EðkÞ � v2
k E�ðkÞ�j; ð39Þ

EalðkÞ ¼ jTalðkÞj; ð40Þ
MsgsðkÞ ¼ jT>ðkjkcÞj: ð41Þ
The differentiation error EfdðkÞ evaluates the inaccuracies due to the approximate differentiation algorithm. It compares
in particular the difference between the approximate evaluation of the triadic interactions within the mesh and the exact
energy transfers T<ðkjkcÞ due to the resolved scales. The aliasing errors EalðkÞ provide the magnitude of the aliasing effects.
Finally, the amplitude MsgsðkÞ of the subgrid scales contribution deduced from the EDQNM-DNS is used in this work as an
acceptable upper bound for the numerical errors [6].

3.4.3. Detailed scale contribution to the errors
Considering the error definitions provided in Section 3.4.2, it is interesting to determine which scales are mainly respon-

sible for the numerical errors.
Let EðkÞ be the spectrum of a numerical error of the form
EðkÞ ¼
Z Z

Dk

sðk; p; qÞdpdq; ð42Þ
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where sðk; p; qÞ is the integrand. In the calculation of EðkÞ, one can restrict the domain of integration to wavenumbers smaller
than a given wavenumber k0. This can be done by replacing the quadrature domain Dk in (42) by D<

kjk0 so that a new quantity
E�ðk; k0Þ is obtained, with
Table 1
Run par

Rek

780
2500
8000

For all
E�ðk; k0Þ ¼
Z Z

D<
kjk0

sðk;p; qÞdpdq: ð43Þ
Taking the derivative with respect to k0 then yields
fðk; k0Þ ¼ o

ok0
½E�ðk; k0Þ�: ð44Þ
This quantity fðk; k0Þ, referred to as the detailed scale contribution, estimates the net effect on the error EðkÞwhen scales with
wavenumbers between k0 and k0 þ dk0 are taken into account in the integral (42).

3.5. Dynamic error analysis

An alternative to the error definitions proposed in Section 3.4.2 has been proposed by Park and Mahesh [7] in order to assess
the global impact of the numerics on the solution. The contribution of approximate differentiation is for instance defined by
rfdðtÞ ¼
R kc

0 jE
�ðk; tÞ � E�fd�ðk; tÞjdkR kc

0 E�ðk; tÞdk
; ð45Þ
where E�fd�ðk; tÞ corresponds to the spectrum provided by the EDQNM-LES model given by Eq. (33) but using spectral meth-
ods with vk ¼ 1. Similarly, the aliasing contribution ralðtÞ is calculated using the spectrum E�al�ðk; tÞ obtained when the ali-
asing energy transfers TalðkÞ are set to zero. Finally, the contribution from the SGS model is denoted by rsgsðtÞ and is
evaluated using the spectrum E�sgs�ðk; tÞ provided by the EDQNM-LES model when the spectral eddy viscosity model is
‘‘turned off”, i.e. mtðkÞ ¼ 0 for all k.

4. Results

4.1. Reference solutions (EDQNM-DNS)

4.1.1. Run parameters
The EDQNM-DNS parameters are presented in Table 1. Three calculations have been performed with Reynolds number

Rek equal to 780, 2500 and 8000.
The EDNQM-DNS calculations have been carried out up to t� ¼ 20 and the results are evaluated once the decay of the ki-

netic energy spectrum has become self-similar. In this section, self-similar decay is assumed to be reached when the eddy
turnover time Q ke=� (� is the dissipation) increases as a power of law with time [16]. The results are therefore provided at
t� ¼ 8 when the decay criterion is fulfilled for all the computations.

This behaviour is illustrated in Fig. 2 where the kinetic energy spectra obtained for Rek ¼ 2500 at time t� equal to 0, 1, 2
and 8 are plotted as a function of the wavenumber k. Starting at t� ¼ 0 from an energy repartition mainly clustered on small
wavenumbers, the kinetic energy spectral density EðkÞ then progressively converges towards a turbulent spectrum with a
well-defined inertial range extending up to the dissipative scales.

4.1.2. Evolved spectra
Evolved kinetic spectra deduced from the EDQNM-DNS calculations at t� ¼ 8 are plotted in Fig. 3 for

Rek ¼ 780; 2500; 8000. The three spectra exhibit typical features of decaying homogeneous isotropic turbulence: a k4 slope
for large scales, an inertial range with a decay close to k�5=3 and a severe decrease of the spectral density in the neighborhood
of the Kolmogorov scale. As expected, the larger the Reynolds number, the wider the gap between the energy-containing
scales and the dissipative scales.

4.1.3. Subgrid scale contribution
As mentioned above, the SGS energy transfers are of special interest in this study. To assess their relevancy, the contri-

butions T>ðkjkcÞ obtained from the residual motions deduced from the EDQNM-DNS are recast in term of the normalized
spectral eddy viscosity [17] defined by
ameters of the EDQNM calculations

m F N

10�4 8 145
10�5 8 165
10�6 8 185

the computations the following quantities remain unchanged: kmin ¼ 1=32, k0 ¼ 1 and v0 ¼ 1. The Reynolds number Rek is evaluated at t� ¼ 8.



Fig. 2. Time evolution of the kinetic energy spectrum EðkÞ provided by the EDQNM-DNS calculations, as a function of the wavenumber k, for Rek ¼ 2500.
–––, Eðk; t� ¼ 0Þ; —, Eðk; t�Þ for t� ¼ 1;2;8; � � �� � �� � �, EðkÞ / k�5=3.

Fig. 3. Evolved kinetic energy spectra at t� ¼ 8 provided by the EDQNM-DNS calculations for Rek ¼ 780;2500;8000. ——, Eðk; t� ¼ 8Þ; � � �� � �� � �, EðkÞ / k�5=3.
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mþt ðk=kcÞ ¼
T>ðkjkcÞ
�2k2EðkÞ

ffiffiffiffiffiffiffiffiffiffiffi
kc

EðkcÞ

s
ð46Þ
and is compared to the fitting function
mþt ðk=kcÞ ¼ 0:441C�3=2
g 1þ 34:467 exp �3:03

kc

k

� �� �
ð47Þ
proposed by Chollet [23].
The normalized spectral eddy viscosity at t� ¼ 8 is presented in Fig. 4 for the calculation with Rek ¼ 2500 as a function of

the wavenumber k=kc for various cut-off wavenumbers (kc ¼ 4;8;16;32). The fitting function (47) is also plotted for compar-
ison. The EDQNM-DNS and theoretical eddy viscosities are in good agreement, independently of the cut-off wavenumber. A
typical plateau-cusp shape is visible: when resolved and non-resolved turbulence scales are well separated, the eddy viscos-
ity is constant, whereas local interactions across the boundary k ¼ kc are responsible for the cusp close to the cut-off [24].

Similar results are obtained for the calculations with Reynolds numbers Rek ¼ 780 and Rek ¼ 2500.

4.2. EDQNM-LES

4.2.1. Run parameters
The EDQNM-LES calculations are performed using the parameters of the EDQNM-DNS. Three Reynolds numbers 780,

2500 and 8000 are considered with cut-off wavenumbers kc equal to 4, 8, 16 and 32. The approximate derivatives are carried
out by standard finite differences of order ranging from 2 to 14.



Fig. 4. Normalized spectral eddy viscosity mþt as a function of the wavenumber k normalized by the cut-off wavenumber kc , provided by the EDQNM-DNS
calculations for Rek ¼ 2500. ——, fitting function of Chollet [23]; . . .�. . .., kc ¼ 4; � � ��� � �, kc ¼ 8; � � �h� � �, kc ¼ 16; � � �j� � �, kc ¼ 32.
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To avoid any discussion about numerical errors during the transient evolution of the spectrum, the EDQNM-LES compu-
tations are initialized at t� ¼ 8 with the spectra deduced from the EDQNM-DNS and truncated at the cut-off wavenumber kc .

4.2.2. Ideal LES – pure physical LES
An ideal LES is first considered to provide a reference of a pure physical LES, where inaccuracies are only due to modeling

errors. An EDQNM-LES calculation is then performed using spectral methods with vk ¼ 1. In addition, the aliasing contribu-
tion TalðkÞ in Eq. (33) is artificially set to zero. The spectral eddy viscosity mt is deduced from the fitting function of Chollet
[23] given by Eq. (47) so that
Fig. 5.
TalðkÞ is
mtðkÞ ¼ mþt ðk=kcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðkcÞ

kc

s
; ð48Þ
where kc is the LES wavenumber cut-off wavenumber.
The kinetic energy spectrum obtained at t� ¼ 16 for Rek ¼ 2500 and kc ¼ 32 with the ideal LES is plotted against the wave-

number in Fig. 5. A very good collapse is observed between the EDQNM-LES results and the reference data for all the resolved
scales.

4.2.3. Practical LES – numerical errors
The practical implementation of LES often involves discretization tools with limited order of accuracy such as finite dif-

ferences. Spectral methods indeed lack of generality because proper orthogonal bases are only available for few simple flow
geometries.
Evolved kinetic energy spectra at t� ¼ 16 provided by the EDQNM-LES calculation for Rek ¼ 2500 and kc ¼ 32, for an ideal LES (spectral methods and
set to zero). ——, Eðk; t� ¼ 16Þ; –––, reference solution at t� ¼ 16 provided by the EDQNM-DNS model. (The dotted line stands for the LES cut-off.)



Fig. 6. Evolved kinetic energy spectra at t� ¼ 16 provided by the EDQNM-LES calculation for Rek ¼ 2500 and kc ¼ 32, for 2nd-order and 10th-order
approximate derivatives, with spectral eddy viscosity. –––, 2nd-order scheme; ——, 10th-order scheme; –�–�–, EDQNM-DNS reference solution. (The dotted
line stands for the LES cut-off.)
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Approximate differentiation operators unfortunately generate numerical errors. This point is illustrated in Fig. 6 where
the evolved kinetic energy spectra obtained with the EDQNM-LES model (33), using the spectral eddy viscosity (48), are plot-
ted at t� ¼ 16, for Rek ¼ 2500 and kc ¼ 32. The results obtained using the 2nd- and 10th-order finite differences, as well as
the reference spectrum of the EDQNM-DNS calculation, are presented.

Discrepancies between the EDQNM-LES and the reference spectra are clearly visible for both orders of accuracy of the finite
differences. The wavenumbers close to the mesh cut-off are particularly poorly resolved with strong underestimations of the
kinetic energy. The larger scales appear to be better calculated. The inaccuracies previously observed are related to the aliasing
errors and to the limited bandwidth of the numerical methods which cannot resolve all the scales supported by the mesh.

As an example, the aliasing and differentiation errors obtained for the 10th-order finite-difference scheme are plotted in
Fig. 7 as functions of the wavenumber, for kc ¼ 32 and Rek ¼ 2500. The magnitude of the SGS contribution jT>ðkjkcÞj is also
provided for comparison. It must be remarked that numerical errors have a cumulative effect since localized errors in the
spectrum progressively contaminate all the resolved scales due to nonlinearities. To avoid any discussion on this point,
the numerical errors are evaluated at the beginning of the runs, i.e. at t� ¼ 8. Considering Fig. 7, one can first observe that
the aliasing error is small compared to the differentiation error and to the SGS contribution. The weak influence of the ali-
asing on the solution was formerly pointed out by Park and Mahesh [7]. On the contrary, the differentiation error exhibits
large values, which are in particular higher than the SGS contributions for small scales in the neighborhood of the grid cut-
off. For 0:02 < k=kc < 0:3, the differentiation error does not vary appreciably and is lower than the SGS contribution. For lar-
ger scales, characterized by k=kc < 0:02, the differentiation error and the SGS contribution display finally close values. Similar
trends are observed for the other finite-difference schemes, especially regarding the low magnitude of the aliasing errors.
The study will therefore now focus on the differentiation errors.
Fig. 7. Differentiation error EfdðkÞ and aliasing error EalðkÞ at t� ¼ 8 as functions of the wavenumber k normalized by the cut-off wavenumber kc , provided
by the EDQNM-LES calculations for Rek ¼ 2500 and kc ¼ 32, with approximate differentiation of order 10. ——, EfdðkÞ; –––, EalðkÞ; –�–, magnitude of the
subgrid scale contribution jT>ðkjkcÞj.



Fig. 8. Differentiation error EfdðkÞ as a function of the wavenumber k=kc for Rek ¼ 2500 and for kc ¼ 32, at t� ¼ 8. Approximate differentiation of order 2, 6,
10 and 14. ——, EfdðkÞ; –�–, magnitude of the subgrid scale contribution jT>ðkjkcÞj.
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4.3. Static error analysis

4.3.1. Order of accuracy
The differentiation error EfdðkÞ is first presented in Fig. 8, where it is plotted against the normalized wavenumber k=kc for

approximate derivatives of order 2, 6, 10 and 14. The results are calculated at the beginning of the run (t� ¼ 8) with
Rek ¼ 2500 and kc ¼ 32. The modulus of the SGS contribution jT>ðkjkcÞj is also represented and used as an acceptable upper
bound. The error curves are found to exhibit similar shapes with large amplitudes close to the grid cut-off wavenumber, a
plateau approximately centered on k=kc ¼ 10�1 and a decrease in k5 as the wavenumber tends to zero. The emergence, for all
the schemes, of this k5 slope as k! 0 is discussed in Appendix B by means of an asymptotic development of the differen-
tiation errors.

One can furthermore observe that increasing the order of accuracy of the discretization method reduces the numerical
errors. The 2nd-order scheme indeed yields large differentiation errors, higher than the SGS energy transfer for most of
the wavenumbers supported by the mesh. The differentiation errors are significantly smaller with schemes of higher order.
Using the 14th-order scheme for instance, the numerical errors are negligible for all wavenumbers except for those close to
the mesh cut-off wavenumber.

It must be however noted that increasing the order of accuracy mainly acts on LES accuracy at high wavenumbers. Indeed
when the formal order increased in Fig. 8, the k5 slope as k! 0 and the plateau level are weakly modified whereas the wave-
number range where differentiation errors are large is severely narrowed. This result is interesting since one could have ex-
pected the formal order to be related to the accuracy at the larger scales.

The relationships between numerical errors and the properties of the approximate differentiation can be interpreted by
studying the detailed scale contribution to the numerical errors. The detailed scale contribution ffdðk; k

0Þ to the differentiation
error EfdðkÞ is plotted as a function of k0=kc in Fig. 9(a) and (b) for k ¼ 1 and k ¼ 4, respectively. The results are evaluated at
t� ¼ 8, for Rek ¼ 2500 and kc ¼ 32, and algorithms of order 2, 6, 10 and 14 are considered. For k ¼ 1 and for the 2nd-order
scheme, the detailed scale contribution shows a maximum in the neighborhood of k0 ¼ k, corresponding here to
k0=kc ’ 0:03. The contribution ffdðk; k0Þ is then seen to slowly decrease when k0 tends to the grid cut-off wavenumber kc. A large
range of wavenumbers therefore contributes to the error. When the formal order of the differentiation algorithm is increased, a
significant decrease of the contributions from the larger scales is observed. At k0=kc ’ 0:03, there is for instance about six orders
of magnitude between the contributions obtained with the 2nd- and the 6th-order schemes. On the other hand, the contribu-
tions from the scales close to the mesh cut-off wavenumber appear to be weakly influenced by the order of accuracy, as shown
by the similar amplitude of ffdðk; k

0Þ in the neighborhood of k0 ¼ kc , for all the algorithms. This generation of differentiation er-
rors from the high wavenumbers could be explained by the gap between the exact and the approximate differentiations close
to the mesh cut-off wavenumber. Indeed, even though long range interactions between the reference wavenumber k ¼ 1 and
the wavelengths close to the cut-off wavenumber with k0 � kc are likely to involve few energy transfers, the inability of the
algorithms to resolve these high wavenumbers still produces significant numerical errors. It can be noticed that, according
to Fig. 9(a), small scales contribution dominates the numerical errors for schemes of order equal or higher than 4.

The same conclusions hold for the reference wavenumber k ¼ 4 in Fig. 9(b). The contribution from the larger scales
(k0=kc � 0:1) is seen to decrease with the order of accuracy, whereas ffdðk; k0Þ exhibits high values in the neighborhood of
the mesh cut-off wavenumber for all the schemes.

4.3.2. Order of accuracy versus modified wavenumber optimization
Increasing the formal order of a discretization scheme is the simplest technique to improve the accuracy of the numerical

method. Larger stencil sizes must however be used and the computational cost is increased. Scheme optimization in the Fou-



Fig. 9. Detailed scale contribution jffdðk; k
0Þj to the differentiation errors EfdðkÞ as a function of the wavenumber k0=kc for Rek ¼ 2500 and kc ¼ 32, and for

various reference wavenumbers k, at t� ¼ 8. Approximate differentiation of order 2, 6, 10 and 14. ——, jffdðk; k
0Þj. Reference wavenumbers. The dotted line

indicates where the reference wavenumber is located on the axis k0=kc .
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rier space [5] is an alternative technique allowing to increase the resolution range of approximate derivatives while keeping
constant the number of points of the algorithm. The formal order is then reduced in order to freely determine some coeffi-
cients of the scheme which can be determined by optimizing the modified wavenumber in the spectral space. The accuracy
at low wavenumbers is lowered but higher wavenumbers, especially those close to the grid cut-off, are better resolved.
According to the investigation of the detailed scale contribution ffdðk; k

0Þ carried out in the previous section, the optimized
schemes are of special interest since the EDQNM-LES showed that most of the numerical errors are generated by the smallest
scales resolved by the mesh.

The differentiation error EfdðkÞ is plotted in Fig. 10 as a function of k=kc for the 4th-order 11-point and 4th-order 13-point
optimized finite differences designed by Bogey and Bailly [11]. The error for the standard 10th-order scheme is also pre-
sented for comparison. The Reynolds number is Rek ¼ 2500 and the mesh cut-off kc ¼ 32. Compared to the 10th standard
scheme, the 11-point optimized algorithm provides lower numerical errors. It is worth noting that due to its higher accuracy
at high wavenumbers, the 11-point optimized scheme results in an error reduction for all the wavenumbers under consid-
eration, including the larger scales with k=kc < 10�2. In a similar manner, the 4th-order 13-point optimized algorithm yields
low differentiation errors over a large interval of wavenumbers. In particular in this case, the range of badly calculated wave-
numbers close to the mesh cut-off is 0:7 < k=kc < 1, which is quite narrow.

4.3.3. Accuracy limit and efficiency rate
The spectrum of the differentiation errors can be used to estimate an accuracy limit for each scheme. In the present work

an arbitrary criterion based on the amplitude of the numerical errors is introduced. The accuracy limit ka is defined as the
smallest wavenumber so that EfdðkaÞ > 10�3. It is evaluated here for Rek ¼ 2500 and for a grid cut-off wavenumber equal to
kc ¼ 32.



Fig. 10. Differentiation error EfdðkÞ as a function of the wavenumber k=kc for Rek ¼ 2500 and for kc ¼ 32, at t� ¼ 8. . . .. . .. . ., 10th standard finite differences;
–––, 11-point optimized scheme [11]; ——, 13-point optimized scheme [11]; –�–, magnitude of the subgrid scale contribution jT>ðkjkcÞj.
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In addition, in order to take into account the computational effort required to achieve a given accuracy, the definition of
an efficiency rate ea is proposed with
ea ¼
1

ð2Ns þ 1Þðkc=kaÞ3
; ð49Þ
where ð2Ns þ 1Þ corresponds to the number of points of the scheme, and ðkc=kaÞ3 represents the increase in grid nodes to
improve the accuracy from ka to kc for a 3D simulation. The rate ea is then related to the inverse of the number of operations
that would be necessary to shift the accuracy limit from ka to kc . Therefore, the higher value of ea, the more efficient the dis-
cretization method.

The accuracy limits ka=kc and the efficiency rates are respectively presented in Fig. 11(a) and (b) as functions of the num-
ber of points ð2Ns þ 1Þ of the schemes, for standard and optimized finite differences. Standard schemes of order up to 20 are
considered. For these schemes, as expected, the accuracy limit monotonically grows with the stencil size and ranges from
ka=kc ¼ 0:15 for the 2nd-order scheme, to ka=kc ¼ 0:7 for the 20th-order algorithm. An increase of ka is furthermore observed
for the optimized schemes compared to the standard schemes with the same number of points.

Consider now the efficiency rate ea in Fig. 11(b). For the standard schemes, the rate ea first becomes higher with the num-
ber of points of the scheme, reaches a maximum for the 13- and 15-point algorithms and then slowly decreases for higher
order schemes. Therefore, when schemes with larger stencil size are used, the gain in accuracy is higher than the increase in
computational cost for 2Ns þ 1 6 15, which is no longer the case for 2Ns þ 1 > 15. Fig. 11(b) nevertheless shows that the effi-
ciency can be increased thanks to scheme optimization in the Fourier space. The 11- and 13-point optimized schemes indeed
exhibit the highest efficiency rates. Compared to the standard schemes with the same number of points, the efficiency rate is
doubled for the 11-point and 13-point optimized algorithms.

4.3.4. Reynolds number
The influence of the Reynolds number on the differentiation errors is now investigated. The differentiation error EfdðkÞ is

represented as a function of k=kc for the standard algorithm of order 10 in Fig. 12 for the Reynolds numbers Rek ¼ 780,
Rek ¼ 2500 and Rek ¼ 8000. The grid cut-off wavenumber is taken to be kc ¼ 32. The differentiation errors estimated for
the different Reynolds numbers are found to collapse very well. Similar results are obtained with the other schemes. The
differentiation errors therefore do not appreciably depend on the Reynolds number.

4.3.5. Grid convergence
The grid convergence is investigated in Fig. 13 where the differentiation error EfdðkÞ is plotted against the wavenumber k,

for the grid cut-off wavenumbers kc ¼ 32, kc ¼ 16 and kc ¼ 8. The Reynolds number is Rek ¼ 2500 and the 10th-order scheme
is considered. For the three cases, the differentiation error exhibits a similar shape: a k5 slope for the larger scales, then a
plateau, and the curves finally reach large values for wavenumbers close to the mesh cut-off wavenumber. Furthermore
the overall magnitude of the differentiation error appears weakly influenced by the grid refinement. It turns out that the
major effect of the grid refinement is to shift the maximum of differentiation error towards smaller scales. The magnitude
of the numerical errors then shows little reduction for small wavenumbers k=kc < 0:5. According to Fig. 13, grid convergence
in LES is hence not ensured since refining the grid does not guarantee the reduction of the numerical errors for the smaller
wavenumbers. As pointed out in Section 4.3.1 where the detailed scale contribution ffdðk; k

0Þ to the differentiation error



Fig. 11. (a) Accuracy limit ka=kc and (b) efficiency rate ea of the standard and optimized finite differences as functions of the number of points 2Ns þ 1 of the
algorithms. Results obtained at Rek ¼ 2500 with a grid cut-off kc ¼ 32. ——, standard schemes; –�–, optimized schemes. Note that efficiency rates are
normalized by the efficiency rate of the 13-point optimized scheme of Bogey and Bailly [11].
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EfdðkÞ is studied, the scales close to the grid cut-off have a major contribution to the numerical errors. In LES at sufficiently
high Reynolds numbers, whatever the mesh size, these high wavenumbers still carry out a non-negligible amount of energy
and are therefore responsible for a significant part of the numerical errors.
Fig. 12. Differentiation error EfdðkÞ as a function of the wavenumber k=kc for kc ¼ 32, and for various Reynolds number Rek , at t� ¼ 8. Approximate
differentiation of order 10. , Rek ¼ 780; , Rek ¼ 2500; , Rek ¼ 8000.
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4.3.6. LES convergence
The LES convergence is eventually considered. A spectral truncation is hence introduced at some cut-off wavenumber kf .

The cut-off wavenumber of the spectral eddy viscosity model is set to kf and the differentiation errors are analyzed for van-
ishing mesh size (kc ! 0) but at fixed filter width (kf ¼ cte).

As an example, the differentiation error EfdðkÞ of a 10th-order scheme is first represented in Fig. 14 as a function of the
wavenumber k=kc for Rek ¼ 2500 and at t� ¼ 8. Various mesh cut-off wavenumbers (kc ¼ 32;64;128;256) are considered.
The spectral cut-off wavenumber kf is kept constant equal to 32. The numerical errors are shown to decrease when the mesh
size is pushed towards smaller scales. There is for instance about 9 orders of magnitude between the differentiation errors
obtained for kc ¼ 32 and kc ¼ 256.

In this situation, when the filter width is kept constant, the rate of decrease of the differentiation errors is indeed linked to
the order of accuracy of the algorithm. To demonstrate this assumption the total differentiation error Q fd is evaluated by
integrating the differentiation errors EfdðkÞ over the resolved wavenumbers:
Fig. 13
differen

Fig. 14.
and wit
Q fd 	
Z kf

0
EfdðkÞdk: ð50Þ
The total differentiation error Q fd is depicted in Fig. 15 as a function of the grid cut-off wavenumber kc for differentiation
algorithms of order 2, 6, 10 and 14, at t� ¼ 8 and Rek ¼ 2500. For all the schemes, the total error is seen to decrease when
the mesh size becomes smaller. The slopes of the error curves are furthermore equal to the order of the algorithms. For in-
stance, a good collapse between the curve Q fd / k�10

c and the total error of the 10th-order scheme is indeed observed when kc

is large enough. The same conclusion holds for the other schemes.
. Differentiation error EfdðkÞ as a function of the wavenumber k=kc for Rek ¼ 2500 and for various mesh cut-off kc , at t� ¼ 8. Approximate
tiation of order 10. , kc ¼ 8; , kc ¼ 16; , kc ¼ 32.

Differentiation error EfdðkÞ as a function of the wavenumber k=kc for Rek ¼ 2500 and for various mesh cut-off wavenumber (kc ¼ 32;64;128;256),
h a constant spectral cut-off wavenumber kf ¼ 32, at t� ¼ 8. Approximate differentiation of order 10.



Fig. 15. Total differentiation error Q fd as a function of the grid cut-off wavenumber kc , for a constant cut-off wavenumber kf ¼ 32, at t� ¼ 8 with Rek ¼ 2500.
Approximate differentiation of order 2, 6, 10 and 14 are represented. ——, Q fd; –––, Q fd / k�10

c .
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We may thus conclude that LES convergence (i.e. when the mesh size goes to zero with the filter width size is kept con-
stant) occurs. The convergence is moreover directly related to the order of accuracy of the approximate differentiation
scheme.

4.3.7. Explicit filtering
Practical discretization tools thus introduce numerical errors over a more or less wider range of wavenumbers depending

on the order of accuracy. Even though low accuracy only occurs for some wavenumbers, it may be appropriate to remove
these wavenumbers. The energy redistribution by the triadic interactions within the resolved scales can indeed lead to a con-
tamination of the full spectrum by the numerical errors.

Filtering of the flow variables at a cut-off wavenumber kf smaller than the grid cut-off wavenumber kc can reduce inac-
curacy spreading within resolved scales [6,15]. This approach is furthermore used, and has been discussed by several re-
search groups [25–28]. Flux filtering [22,30] can be implemented with the same aim in view but will be not considered
in the present work. It has been however for instance shown that such a filtering might generate specific dispersion errors
in the Fourier space [29] that should be taken into account in the assessment of LES based on flux filtering.

Explicit filtering is now briefly illustrated using spectral filters with a cut-off wavenumber that is smaller than the accu-
racy limit ka of the differentiation algorithm. In the framework of the EDQNM-LES model, spectral filtering is equivalent to
setting the kinetic energy spectrum to zero for k > kf , at each time step. Note that in this case the cut-off wavenumber in the
spectral eddy viscosity model (48) is equal to the filter cut-off wavenumber with
Fig. 16. Evolved kinetic energy spectra at t� ¼ 16 provided by the EDQNM-LES calculation for Rek ¼ 2500 and kc ¼ 32, for 10th-order approximate
derivatives, with spectral explicit filtering at kf ¼ kc=2 and with spectral eddy viscosity. ——, 10th-order finite differences; –––, EDQNM-DNS reference
solution. (The dotted line stands for the LES cut-off.)
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mtðkÞ ¼ mþt ðk=kf Þ
ffiffiffiffiffiffiffiffiffiffiffi
Eðkf Þ

kf

s
: ð51Þ
The accuracy improvement using filtering is illustrated by performing an EDQNM-LES run for the 10th-order finite differ-
ences at Rek ¼ 2500, with the spectral eddy viscosity model and a filter-size-to-grid-width ratio such as kc=kf ¼ 2. Waves
discretized by less than 4 points per wavelength are then removed from the calculation. Fig. 16 shows the kinetic energy
spectrum obtained at t� ¼ 16 with the EDQNM-LES model and the reference spectrum of the EDQNM-DNS. A good agree-
ment is observed over the whole range of resolved wavenumbers. The improvement of the resolution is especially visible
when this spectrum is compared to the spectrum of Fig. 6 which is obtained without filtering and shows larger discrepancies.

It should be nonetheless remarked that the use of explicit filtering shifts the effective LES cut-off towards larger scales.
The overall SGS contribution is consequently seen to increase and larger modeling errors may be observed in practical
situations.

4.4. Dynamic error analysis

The influence of the SGS model, approximate differentiation and aliasing is now investigated using the contributions
rfdðtÞ, ralðtÞ and rsgsðtÞ defined in Section 3.5. In what follows, the aliasing contribution will be not discussed since its mag-
nitude has been found to be very low for all the LES configurations considered in the present work.

The SGS contribution rsgsðtÞ and the approximate differentiation contribution rfdðtÞ are plotted as functions of time t� in
Fig. 17(a)–(d) for standard algorithms of order 2, 6, 10 and 14, respectively. The Reynolds number is Rek ¼ 2500 and the LES
cut-off wavenumber is set to kc ¼ 32. It turns out that for all the order of accuracy, the differentiation errors clearly over-
whelm the influence of the SGS model. For example, for the 2nd-order algorithm at t� ¼ 16, there is more than three orders
of magnitude between the SGS contribution and the approximate differentiation contribution. Comparison between Fig.
. Temporal evolution of the contributions of the SGS model, of the approximate differentiation and of the aliasing provided by the EDQNM-LES
ion for Rek ¼ 2500 and kc ¼ 32, for approximate differentiation of order 2, 6, 10 and 14. –––, rsgsðtÞ; ——, rfdðtÞ.
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17(a)–(d) shows that the gap between the SGS and the approximate differentiation contributions may be reduced using
higher-order schemes. Nevertheless, numerical errors are still larger than the SGS contribution by a factor of four for the
14th-order scheme, at t� ¼ 16.

These observations tend to demonstrate that approximate differentiation has a major impact on a the solution, whatever
the order of accuracy of the algorithm may be. Note however that the previous test case is somehow not relevant. Indeed,
according to the definition of the spectral eddy viscosity mtðkÞ provided by Eq. (48) the amplitude of the SGS term is given by
E�ðkcÞ. The model is therefore particularly sensitive to the quality of the solution around k ¼ kc. As shown for instance in Fig.
16, the EDQNM-LES strongly underestimates the magnitude of the kinetic energy spectrum at the grid cut-off wavenumber.
To propose more reliable results, the contributions are also evaluated using a spectral eddy viscosity whose amplitude is gi-
ven by
Fig. 18
provide
mtðkÞ ¼ mþt ðk=kcÞ

ffiffiffiffiffi
Ec

kc

s
: ð52Þ
The parameter Ec is deduced from the EDQNM-DNS reference data, with Ec ¼ EðkcÞ so that the amplitude of the SGS term is
ensured to be correct.

The contributions of the correct SGS model deduced from (52) and of the approximate differentiation for Rek ¼ 2500 and
kc ¼ 32 are provided in Fig. 18(a)–(d) as functions of the time t�, for standard algorithms of order 2, 6, 10 and 14, respectively.
Numerical errors still appear to have a significant influence on the solution quality since the approximate differentiation
contribution rfdðtÞ remains larger or close to the SGS contribution ralðtÞ for all the algorithms. Nevertheless, using the correct
SGS model, the gap between the SGS and the differentiation contributions is seen to decrease when the order of accuracy
increases. For the 14th-order algorithm, the SGS contribution ralðtÞ is even the largest contribution for t� > 10. One may
therefore expect that numerical errors will be easier to curb when high-order filters are implemented.
. Temporal evolution of the contributions of the SGS model (with an amplitude deduced from DNS data) and of the approximate differentiation
d by the EDQNM-LES calculation for Rek ¼ 2500 and kc ¼ 32, for approximate differentiation of order 2, 6, 10 and 14. –––, rsgsðtÞ; ——, rfdðtÞ.



Fig. 19. Temporal evolution of the contributions of the SGS model and of the approximate differentiation provided by the EDQNM-LES calculation for
Rek ¼ 2500 and kc ¼ 32. (a) 2nd-order approximate differentiation with spectral explicit filtering at kf ¼ kc=8 and (b) 10th-order approximate
differentiation with spectral explicit filtering at kf ¼ kc=2. –––, rsgsðtÞ; ——, rfdðtÞ.
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This assumption is further supported when explicit filtering is considered. The SGS and approximate differentiation con-
tributions obtained at Rek ¼ 2500 and kc ¼ 32 are plotted as functions of time t� in Fig. 19(a) for the 2nd-order algorithm
with spectral explicit filtering at kf ¼ kc=8 and in Fig. 19(b) for the 10th-order algorithm with spectral explicit filtering at
kf ¼ kc=2. The filter cut-off wavenumbers correspond to those prescribed by Ghosal [6]. The SGS contribution is seen to
be widely dominant over the whole calculation for both order of accuracy, so that it is ensured that approximate differen-
tiation has negligible impact on the solution quality. There are for instance two orders of magnitude between the contribu-
tions rsgsðtÞ and rfdðtÞ at t� ¼ 16 for the 2nd-order scheme and three orders of magnitude for the 10th-order scheme. Recall
however that the filter cut-off wavenumber kf for the 2nd-order scheme is four times smaller than the one used for the 10th-
order algorithm. The high-order scheme thus allows a wider effective spectral resolution and the computational cost is con-
sequently lowered.

5. Conclusion

A parametric study of the influence on numerical errors of the formal order of the discretization methods in LES has been
performed. The derivation in the physical space of a formal model for the discretized filtered Navier–Stokes equations first
shows that approximate differentiations and aliasing effects generate additional numerical error terms compared to the clas-
sical filtered Navier–Stokes equations. To quantify the numerical errors, an EDQNM-LES model has been developed in order
to evaluate the time evolution of the kinetic energy spectrum obtained by a LES based on approximate differentiation algo-
rithms of given orders. Based on the works of Ghosal [6], a static error analysis has been carried out: comparisons to the ref-
erence spectra provided by a classical fully-resolved EDQNM approach (EDQNM-DNS) allowed us to define and to calculate
the differentiation and the aliasing errors for three cases of decaying incompressible homogeneous isotropic turbulence,
with Reynolds number Rek based on the Taylor scale equal to 780, 2500 and 8000, for differentiation methods of order 2
to 14, and for optimized algorithms [11]. Following Park and Mahesh [7], contributions of the SGS model, approximate dif-
ferentiation and aliasing have been defined with the aim of performing a dynamic error analysis.

The aliasing errors are first observed to be very small. On the contrary, the differentiation errors may dominate the SGS
contribution, especially for low-order schemes. Increasing the order of accuracy reduces differentiation errors, but mainly for
wavenumbers close to the grid cut-off. The detailed scale contribution to the differentiation errors furthermore shows that
the interactions between scales in the neighborhood of the mesh cut-off are responsible for a major part of the numerical
errors, even at low wavenumbers. This trend has been confirmed by considering 11- and 13-point optimized finite differ-
ences. Compared to the standard schemes, the optimized algorithms resolve short wavelengths in a better way, and lead
to a reduction of the differentiation errors has been observed for all wavenumbers. The results have been recast in terms
of accuracy limits and efficiency rates in order to take into account the computational cost required by the discretization
tools to reach a given accuracy. The accuracy limit is seen to increase using schemes of higher order or optimized in the Fou-
rier space. Regarding the efficiency rates, a balance between accuracy and computational cost is achieved for the 15-point
standard finite differences since the efficiency rates of the standard algorithms exhibit a maximum for this scheme. The high-
est efficiency rates have been however reached by the optimized schemes which doubled the maximum rate of standard
algorithms. In addition, the results are shown to be independent of the Reynolds number. Refining the grid has besides a
weak influence on the amplitudes of the numerical errors because reducing the mesh size has been observed to mainly shift
the maximum of error towards smaller scales. Nonetheless, it turns out that refining the grid while keeping the effective
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scale separation at a constant wavenumber using a spectral truncation reduces numerical errors. The rate of convergence is
furthermore directly connected to the order of accuracy of the algorithm. Finally, the dynamic error analysis further supports
the above conclusions: using high-order schemes leads to lower differentiation errors. Moreover, explicit filtering of the flow
solution permits to reduce numerical errors so that the SGS contribution becomes dominant again.

Within the framework of EDQNM-LES, differentiation errors are hence a non-negligible element of the simulation. Using
high order or optimized schemes seems to be appropriate since differentiation errors then occur only for a narrow wave-
number band close to the grid cut-off, so that only a small part of the turbulence spectrum is poorly resolved. Nevertheless,
due to quadratic interactions between wavenumbers, numerical errors spread, and the whole spectrum can be contami-
nated. Explicit filtering is then an interesting alternative. The technique has been briefly discussed in this work for spectral
filters but a deeper investigation would be needed, especially for the case of discrete filters [11,31].

Appendix A. Derivation of the EDQNM-LES closure

This section aims at deriving an EDQNM model describing the evolution of the numerical implementation of a large-eddy
simulation. Note that time dependence of the flow variables (velocities and energy spectrum in particular) has been dropped
out for the sake of simplicity.

Consider the LES of a freely decaying incompressible homogeneous isotropic turbulence on an infinite domain with scale
separation implicitly achieved by the projection of the velocity field on the mesh. The LES cut-off wavenumber is kc and the
set of wavenumbers that can be represented on the grid is
� ¼ ½�kc; kc� 
 ½�kc; kc� 
 ½�kc; kc�: ðA:1Þ
The resolved velocity field provided by the LES is denoted by uNðxÞ and its Fourier component by ûNðkÞ ¼ ðv̂1ðkÞ; v̂2ðkÞ; v̂3ðkÞÞ
for a wavenumber vector k ¼ ðkiÞ.

A.1. Approximate derivatives

The differentiation algorithm is characterized by its modified wavenumber [5], denoted by ~k, and defined so that numer-
ical differentiation in the Fourier space is equivalent to a multiplication by i~k
d$NuN ðkÞ ¼ i~kuNðkÞ; ðA:2Þ
where $N is a discrete approximation of the differential operator $. Such a representation is nonetheless not isotropic since
the mesh axes define particular directions. The modified wavenumber is therefore made isotropic by means of an average
over the sphere of radius jkj for an arbitrary component of ~k. More precisely, the quantity vk is introduced with
vk ¼
1

4p

Z
h2½0;2p�

Z
u2½0;p�

~ka

ka
sinududh; ðA:3Þ
where ka is an arbitrary component of k. For instance, for a ¼ 1, we have ka ¼ k sin u cos h. Numerical differentiation is then
assumed to only introduce an isotropic bias given by
^$NuNðkÞ ¼ ivkkuNðkÞ ðA:4Þ
The numerical evaluation of Eq. (A.3) providing the isotropic ratio vk is performed using the following algorithm:
vk ¼
1

4p
X
hi ;uj

~ka

ka
sin uiDuDh ðA:5Þ
with
hi ¼ ði� 1Þ p
np

for i ¼ 1; . . . ;2np þ 1;

uj ¼ ðj� 1Þ p
np

for j ¼ 1; . . . ;np þ 1
ðA:6Þ
and Dh ¼ Du ¼ p=np. The procedure however is lacking in accuracy for low wavenumbers, especially for high-order schemes.
When k tends to zero, the integration errors in (A.6) indeed exceed the small discrepancies between ~ka and ka. An asymptotic
expression is hence used for small wavenumbers. Assuming that the formal order of the differentiation algorithm is pre-
served by the spherical averaging, one may state that when k is small enough, the isotropic ratio is given by
vk ¼ 1� Akc
; ðA:7Þ
where c is the formal order of the scheme and A is a scaling constant.
The present study makes use of np ¼ 500 for calculating Eq. (A.6) and the asymptotic formulation (A.7) is used when

vk � 1 is smaller than 2
 10�5. This technique is illustrated for the 10th-order standard scheme in Fig. A.1 where the isotro-



Fig. A.1. Isotropic ratio vk between the modified and the exact wavenumber for a 10th-order scheme as a function of k=kc . ——, with asymptotic expression
for small wavenumbers; –––, without asymptotic expression.
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pic ratio vk is plotted against k with and without asymptotic expression for small wavenumbers. The two procedures are
found to yield the same ratio vk for high wavenumbers. Nevertheless, without asymptotic expression, a plateau due to
approximate integration in (A.6) is visible when k tends to zero, and the formal order of the numerical differentiation is
not preserved. On the contrary, using an asymptotic development for small wavenumbers provides the expected conver-
gence rate of the isotropic ratio for small wavenumbers. The isotropic ratios obtained for the 2nd-, 6th-, 10th- and 14th-or-
der algorithms are provided in Fig. A.2.

A.2. Numerical LES in the spectral space

Within the theoretical framework introduced by Ghosal [6] the governing equation of the numerical LES reads in the
spectral space:
Fig. A.2
ov̂i

ot
ðkÞ ¼ vkMimnðkÞ

Z
�

2
v̂mðpÞv̂nðqÞdk�p�q dpdqþ vkMimnðkÞ

X
a2K0

Z
�

2
v̂mðpÞv̂nðqÞdk�p�q�a dpdq� mv2

k k2v̂iðkÞ; ðA:8Þ
where dk is the Dirac function and K0 is the set of aliasing modes of the grid [6]
K0 ¼ faja ¼ ð2pkc;2qkc;2rkcÞ with ðp; q; rÞ 2 f�1; 0; 1g3
; and ðp; q; rÞ 6¼ ð0;0;0Þg: ðA:9Þ
In addition, the projection operators are provided by the relationships
MimnðkÞ ¼ �iPimnðkÞ; ðA:10Þ
PimnðkÞ ¼ ðknPim þ kmPinÞ=2; ðA:11Þ
Pij ¼ dij � kikj=k2

: ðA:12Þ
. Isotropic ratios vk between the modified and the exact wavenumber for approximate differentiation of order 2, 6, 10 and 14 as functions of k=kc .



Fig. A.3. Finite-differencing errors due to the nonlinear and the viscous terms for a 2nd-order scheme as a function of k=kc , for kc ¼ 32 and Rek ¼ 2500. ——,
nonlinear terms; –––, viscous terms.
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Remark that the discretization of the viscous term in (A.8) involves 2nd-order derivative which is modeled by a double appli-
cation of a first derivative (v2

kk2). As shown by Park and Mahesh [7] this point can be questionable for low Reynolds number
(Rek ¼ 70) turbulent field. The present work however focuses on high Reynolds homogeneous isotropic turbulence with
Rek > 700. The finite-differencing errors due to the viscous terms is then several order of magnitudes smaller than the fi-
nite-differencing errors due to the nonlinear terms. This trend is illustrated in Fig. A.3 where the finite-differencing errors
due to the nonlinear terms, jTnlðkÞ � T<ðkjkcÞj in Eq. (39), is compared to finite-differencing errors due to the viscous terms,
namely j2mk2½EðkÞ � v2

k E�ðkÞ�j, for kc ¼ 32 and Rek ¼ 2500. A large difference between differentiation errors associated with
nonlinear and viscous terms is observed over the whole range of wavenumbers. Finite-differencing errors due to viscous
terms are thus a negligible component of numerical errors and their modelization in the EDQNM-LES framework is not
crucial.

A.3. Two-point stochastic closure

Multiplying the LES governing equation (A.8) by v̂ið�kÞ and taking the ensemble average h�i yields the relationship
describing the evolution of the double velocity correlations for the resolved field:
o

ot
þ 2mv2

kk2
� �

hv̂iðkÞv̂ið�kÞi ¼ 2vkMimnðkÞ
Z
�

2
hv̂mðpÞv̂nðqÞv̂ið�kÞidk�p�q dpdq

þ 2vkMimnðkÞ
X
a2K0

Z
�

2
hv̂mðpÞv̂nðqÞv̂ið�kÞidk�p�q�a dpdq: ðA:13Þ
The kinetic energy spectrum of the LES resolved velocity field is introduced using
E�ðkÞ ¼ 2pk2hv̂iðkÞv̂ið�kÞi: ðA:14Þ
This spectrum is truncated at the mesh cut-off kc , with E�ðkÞ ¼ 0 for k > kc . Summing over indices i of the velocity compo-
nents in the previous equation leads to the kinetic energy equation
o

ot
þ 2mv2

kk2
� �

E�ðkÞ ¼ 4pk2vkMimnðkÞ
Z
�2
hv̂mðpÞv̂nðqÞv̂ið�kÞidk�p�q dpdq

þ 4pk2vkMimnðkÞ
X
a2K0

Z
�2
hv̂mðpÞv̂nðqÞv̂ið�kÞidk�p�q�a dpdq

( )
Sk

: ðA:15Þ
It should be noted that isotropy is ensured by replacing the cubic domain of integration � by a spherical one� defined by
� ¼ fkjjkj 6 kcg: ðA:16Þ
In addition, the aliasing terms are averaged over the sphere of radius k. The operation is denoted f�gSk
.

The equation on the triple velocity correlations is obtained by multiplying (A.8) by the appropriate velocity components,
taking the ensemble average and summing. We are finally left with
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o

ot
þ mðv2

kk2 þ v2
pp2 þ v2

qq2Þ
� �

hv̂ið�kÞv̂mðpÞv̂nðqÞi ¼ vkMiabð�kÞ
Z
�2
hv̂aðrÞv̂bðsÞv̂mðpÞv̂nðqÞid�k�r�s drds

þ vkMiabð�kÞ
X
a2K0

Z
�2
hv̂aðrÞv̂bðsÞv̂mðpÞv̂nðqÞid�k�r�s�a drds

( )
Sk

þ vpMmabðpÞ
Z
�2
hv̂aðrÞv̂bðsÞv̂ið�kÞv̂nðqÞidp�r�s drds

þ vpMmabðpÞ
X
a2K0

Z
�2
hv̂aðrÞv̂bðsÞv̂ið�kÞv̂nðqÞidp�r�s�a drds

( )
Sk

þ vqMnabðqÞ
Z
�2
hv̂aðrÞv̂bðsÞv̂mðpÞv̂ið�kÞidq�r�s drds

þ vqMnabðqÞ
X
a2K0

Z
�2
hv̂aðrÞv̂bðsÞv̂mðpÞv̂ið�kÞidq�r�s�a drds

( )
Sk

: ðA:17Þ
The hypothesis of a quasi-Gaussian velocity field allows to express the 4th-order moments as functions of the 2nd-order mo-
ments following:
hv̂mðpÞv̂nðqÞv̂aðrÞv̂bðsÞi ¼ þdpþqdrþsU
�
mnðqÞU

�
abðsÞ þ dpþrdqþsU

�
maðrÞU

�
nbðsÞ þ dpþsdqþrU

�
mbðsÞU

�
naðrÞ; ðA:18Þ
where U�ijðkÞ ¼ PijðkÞE�ðkÞ=ð4pk2Þ is the correlation tensor of the resolved velocity field. Introducing f ðk; pÞ ¼ 1=ð4pkpÞ2 and
using the symmetry of the velocity component implied by isotropy, one may write
o

ot
þ mðv2

kk2 þ v2
pp2 þ v2

qq2Þ
� �

hv̂ið�kÞv̂mðpÞv̂nðqÞi ¼ þ2dk�p�qf�vkMiabðkÞPmaðpÞPnbðqÞf ðp; qÞE�ðpÞE�ðqÞ

þ vpMmabðpÞPiaðkÞPnbðqÞf ðk; qÞE�ðkÞE�ðqÞ þ vqMnabðqÞPmaðpÞPibðkÞf ðk;pÞE�ðkÞE�ðpÞg

þ 2
X
a2K0

dk�p�q�af�vkMiabðkÞPmaðpÞPnbðqÞf ðp; qÞE�ðpÞE�ðqÞ þ vpMmabðpÞPiaðkÞPnbðqÞf ðk; qÞE�ðkÞE�ðqÞ
(

þvqMnabðqÞPmaðpÞPibðkÞf ðk;pÞE�ðkÞE�ðpÞg
o

Sk

: ðA:19Þ
Then, using eddy-damping and the Markovian process assumption, the kinetic energy equation finally reads
o

ot
þ2mv2

kk2
� �

E�ðkÞ¼þ8pk2
Z
�2

HLES
kpqðtÞ½�v2

kMimnðkÞMiabðkÞPmaðpÞPnbðqÞf ðp;qÞE�ðpÞE�ðqÞ

þvkvpMimnðkÞMmabðpÞPiaðkÞPnbðqÞf ðk;qÞE�ðkÞE�ðqÞþvkvqMimnðkÞMnabðqÞPmaðpÞPibðkÞf ðk;pÞE�ðkÞE�ðpÞ�dk�p�q dpdq

þ 8pk2
X
a2K0

Z
�2

HLES
kpqðtÞ½�v2

kMimnðkÞMiabðkÞPmaðpÞPnbðqÞf ðp;qÞE�ðpÞE�ðqÞ
(

þvkvpMimnðkÞMmabðpÞPiaðkÞPnbðqÞf ðk;qÞE�ðkÞE�ðqÞþvkvqMimnðkÞMnabðqÞPmaðpÞPibðkÞf ðk;pÞE�ðkÞE�ðpÞ�dk�p�q�a dpdq
o

Sk

;

ðA:20Þ
where the triple correlation relaxation time is provided by
HLES
kpqðtÞ ¼

1� expð�NkpqtÞ
Nkpq

ðA:21Þ
with
Nkpq ¼ lkpq þ mðv2
kk2 þ v2

pp2 þ v2
qq2Þ ðA:22Þ
and lkpq ¼ lk þ lp þ lq with the eddy-damping model given by (30).
The system is further simplified using the geometric coefficients x, y and z [32] defined by the following relationships:
x ¼ � piqi

pq
; y ¼ � kiqi

kq
; z ¼ �piki

pk
: ðA:23Þ
At this point, the EDQNM-LES model reads
o

ot
þ 2mv2

kk2
� �

E�ðkÞ ¼ TnlðkÞ þ TalðkÞ ðA:24Þ
where the resolved nonlinear terms are defined by
TnlðkÞ ¼
Z Z

D<
kjkc

HLES
kpqðtÞ v2

kL1ðk; p; qÞE�ðpÞE�ðqÞ þ vkvpL2ðk;p; qÞE�ðkÞE�ðpÞ þ vkvqL3ðk;p; qÞE�ðkÞE�ðqÞ
h i

dpdq ðA:25Þ
and the aliasing energy transfers read
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TalðkÞ¼
X
a2K0

Z Z
D<jkþajjkc

k
jkþajH

LES
kpqðtÞ½v2

kL1ðk;p;qÞE�ðpÞE�ðqÞþvkvpL2ðk;p;qÞE�ðkÞE�ðpÞþvkvqL3ðk;p;qÞE�ðkÞE�ðqÞ�dpdq

( )
Sk

ðA:26Þ
with
L1ðk; p; qÞ ¼
k3

2pq
ð1� xyz� 2y2z2Þ; ðA:27Þ

L2ðk; p; qÞ ¼ �
q2

2p
ðxzþ y3Þ; ðA:28Þ

L3ðk; p; qÞ ¼ �
p2

2q
ðxyþ z3Þ: ðA:29Þ
The integration domain D<
kjkc

is defined in Section 3.4.1 and a sketch is provided in Fig. 1.
The last step consists in evaluating the spherical average of the aliasing term TalðkÞ. Introducing
Talðk; aÞ ¼
Z Z

D<jkþajjkc

k
jkþ ajH

LES
kpqðtÞ½v2

kL1ðk;p; qÞE�ðpÞE�ðqÞ þ vkvpL2ðk;p; qÞE�ðkÞE�ðpÞ

þ vkvqL3ðk; p; qÞE�ðkÞE�ðqÞ�dpdq; ðA:30Þ
we have
TalðkÞ ¼
X
a2K0

fTalðk;aÞgSk
: ðA:31Þ
The sum over the aliasing modes a is simplified by evaluating singly the contributions from 1D, 2D and 3D modes [6], so
that
TalðkÞ ¼ f6Talðk; a1DÞ þ 12Talðk; a2DÞ þ 8Talðk;a3DÞgSk
; ðA:32Þ
which is equivalent to
TalðkÞ ¼ 1
4p

Z 2p

0

Z p

0
½6Talðk;a1DÞ þ 12Talðk; a2DÞ þ 8Talðk;a3DÞ� sinudhdu; ðA:33Þ
where k ¼ ðk sin u cos h; k sin u sin h; k cos uÞ and with vectors a chosen arbitrarily. One may take for instance
a1D ¼ ð2kc;0;0Þ; ðA:34Þ
a2D ¼ ð2kc;2kc;0Þ; ðA:35Þ
a3D ¼ ð2kc;2kc;2kcÞ: ðA:36Þ
The calculation of the spherical averaging in (A.33) is performed numerically using the following algorithm:
TalðkÞ ¼ 1
4p

X
hi ;uj

½6Talðk;a1DÞ þ 12Talðk; a2DÞ þ 8Talðk;a3DÞ� sinuiDuDh ðA:37Þ
with
hi ¼ ði� 1Þ p
np

for i ¼ 1; . . . ;2np þ 1;

uj ¼ ðj� 1Þ p
np

for j ¼ 1; . . . ;np þ 1
ðA:38Þ
and Dh ¼ Du ¼ p=np. Such an approach may be demanding in terms of computational resources but it appears that taking
np ¼ 10 is enough to provide accurate results. The aliasing energy transfer TalðkÞ evaluated with (A.37) is for instance shown
in Fig. A.4 as a function of k for np ¼ 10 and for np ¼ 100, for spectral numerical methods (vk ¼ 1 for every k). The two results
are seen to collapse very well, thus ensuring that taking np ¼ 10 is enough to capture the features of the aliasing energy
transfer.

A.4. LES with spectral eddy viscosity

Subgrid scale modeling with spectral eddy viscosity can be easily introduced into the EDQMN-LES since the turbulent
eddy viscosity acts as a diffusive term with a viscosity mt ¼ mtðkÞ depending on the wavenumber. We are then left with
o

ot
þ 2mtk

2 þ 2mv2
kk2

� �
E�ðkÞ ¼ TnlðkÞ þ TalðkÞ: ðA:39Þ



Fig. A.4. Energy transfer TalðkÞ due to the aliasing effects at t� ¼ 8 as a function of k=kc , provided by the EDQNM-LES calculations for Rek ¼ 2500 and kc ¼ 32,
with spectral differentiation. Number of points used for averaging over the shell of radius k: ——, np ¼ 10; , np ¼ 100.
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To avoid any discussion on the interplay between the numerics and the SGS model, it is assumed that the approximate
differentiation and the grid projection do not have any influence on the spectral eddy viscosity term.

Appendix B. Asymptotic development of the differentiation error for small wavenumbers

An asymptotic development of the differentiation error EfdðkÞ is provided in order to account for the decrease in k5 of the
error spectrum for low wavenumbers pointed out in Section 4.3.1.

According to Eq. (39), the differentiation errors are given by
EfdðkÞ ¼ jTnlðkÞ � T<ðkjkcÞj þ j2mk2½EðkÞ � v2
k E�ðkÞ�j; ðB:1Þ
where the resolved energy transfers of the EDQNM-DNS model are provided by
T<ðkjkcÞ ¼
Z Z

D<
kjkc

Sðk;p; qÞdpdq ðB:2Þ
with
Sðk;p; qÞ ¼ HkpqðtÞ½L1ðk;p; qÞEðpÞEðqÞ þL2ðk;p; qÞEðkÞEðpÞ þL3ðk;p; qÞEðkÞEðqÞ�: ðB:3Þ
The above definition for Sðk; p; qÞ is equivalent to the one given by Eq. (26) [16]. It is used here because this expression is
very similar to the equation for the resolved energy transfers TnlðkÞ of the EDQNM-LES model in Appendix A.3:
TnlðkÞ ¼
Z Z

D<
kjkc

HLES
kpqðtÞ½v2

kL1ðk; p; qÞE�ðpÞE�ðqÞ þ vkvpL2ðk; p; qÞE�ðkÞE�ðpÞ þ vkvqL3ðk; p; qÞE�ðkÞE�ðqÞ�dpdq: ðB:4Þ
It is now assumed that the kinetic energy spectrum of the EDQNM-DNS and EDQNM-LES models, as well as the triple relax-
ation correlation times HkpqðtÞ and HLES

kpqðtÞ, are equal.
For the sake of simplicity, an approximate differentiation scheme of infinite order of accuracy is considered. Its isotropic

modified wavenumber ratio is artificially defined by
vk ¼ 1� dk�kc ; ðB:5Þ
where d is the Dirac delta function. Such an algorithm resolves perfectly all the wavenumbers (i.e. vk ¼ 1) apart from the cut-
off wavenumber kc , for which vkc

¼ 0. An infinite order of accuracy numerical method is idealistic but this is however an
interesting limit case of the finite-order finite-difference schemes.

According to (B.5), the differentiation error then reads, for k < kc
EfdðkÞ ¼ jHkkc kc ðtÞEðkÞEðkcÞ½L2ðk; kc; kcÞ þL3ðk; kc; kcÞ�j: ðB:6Þ
The behaviour of EfdðkÞ is now investigated for k! 0. Based on Eq. (29), it is straightforward to demonstrate that the tri-
ple relaxation time Hkkckc ðtÞ converges towards a constant non-zero value when k tends to zero. In addition, the kinetic en-
ergy spectrum is such as EðkÞ � k4 for k� 1 [16], so that
EfdðkÞ � k4jL2ðk; kc; kcÞ þL3ðk; kc; kcÞj ðB:7Þ
with using (A.28) and (A.29)
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L2ðk; kc; kcÞ � xzþ y3; ðB:8Þ
L3ðk; kc; kcÞ � xyþ z3: ðB:9Þ
Applying the scalar product inside the triangle ðk;p;qÞ permits to show that
x ¼ � k2 � p2 � q2

2pq
; ðB:10Þ

y ¼ � p2 � k2 � q2

2kq
; ðB:11Þ

z ¼ � q2 � p2 � k2

2pk
: ðB:12Þ
As a result, for k! 0 and p ¼ q ¼ kc , we have
x � 1; y � k; z � k; ðB:13Þ
so that xz � k and xy � k are the leading terms in L2ðk; kc; kcÞ and L3ðk; kc; kcÞ, respectively.
Finally, for small wavenumbers, the differentiation errors are given by
EfdðkÞ � k5
: ðB:14Þ
This asymptotic development is consistent with the results obtained for the finite-order schemes in Section 4.3.1, and ob-
served for instance in Fig. 8.
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