Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise

Christophe Bogey* and Christophe Bailly†
Ecole Centrale de Lyon, 69134 Ecully, France

Large-eddy simulations of a circular jet with a Mach number $M = 0.9$ and a Reynolds number $Re_D = 4 \times 10^5$ are performed to investigate the effects of the inflow conditions on flow development and the sound field. Three parameters are varied in the jet inflow: the forcing amplitude, the shear-layer thickness, and the use of the first modes in the ring vortex excitation involving several azimuthal modes. The most significant modifications in the jet features are found in the latter case: When the first four azimuthal modes are removed from the forcing, the jet develops much more slowly with reduced turbulence intensities, and the jet is quieter. Moreover, links between the sound levels and the turbulence intensity peaks are observed. The downstream sound levels vary like the peak amplitudes of the centerline turbulence intensity, and the sideline sound levels vary like those of the fluctuating radial velocity in the shear layer.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>sound velocity</td>
</tr>
<tr>
<td>D</td>
<td>jet diameter</td>
</tr>
<tr>
<td>d</td>
<td>distance between sound source and observation point</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>Re_D</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>R_{pp}</td>
<td>azimuthal correlation function of fluctuating pressure</td>
</tr>
<tr>
<td>R_{uv}</td>
<td>azimuthal correlation function of fluctuating velocity</td>
</tr>
<tr>
<td>r_0</td>
<td>jet radius</td>
</tr>
<tr>
<td>Sr</td>
<td>Strouhal number</td>
</tr>
<tr>
<td>T</td>
<td>simulation time</td>
</tr>
<tr>
<td>u, v</td>
<td>axial and radial velocities</td>
</tr>
<tr>
<td>u_c</td>
<td>centerline mean axial velocity</td>
</tr>
<tr>
<td>u_f</td>
<td>inflow jet velocity</td>
</tr>
<tr>
<td>x, r, ϕ</td>
<td>cylindrical coordinates</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Cartesian coordinates</td>
</tr>
<tr>
<td>x_c</td>
<td>potential core length</td>
</tr>
<tr>
<td>x_0</td>
<td>axial location of forcing</td>
</tr>
<tr>
<td>α</td>
<td>forcing amplitude</td>
</tr>
<tr>
<td>Δy</td>
<td>transverse grid spacing in shear layer</td>
</tr>
<tr>
<td>δ_{lu}</td>
<td>shear-layer momentum thickness</td>
</tr>
<tr>
<td>δ_{lw}</td>
<td>shear-layer vorticity thickness</td>
</tr>
<tr>
<td>θ</td>
<td>angle from jet axis</td>
</tr>
<tr>
<td>v</td>
<td>kinematic molecular viscosity</td>
</tr>
<tr>
<td>$</td>
<td>\alpha</td>
</tr>
<tr>
<td>$\langle \rangle$</td>
<td>time averaging</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ring</td>
<td>unit vortex ring</td>
</tr>
<tr>
<td>$'$</td>
<td>fluctuating value</td>
</tr>
</tbody>
</table>

I. Introduction

At the end of the 1970s, experiments were conducted to reduce jet noise through artificial shear-layer excitation. Crighton observed contradictory results, including that the broadband noise was suppressed below a Reynolds number Re_D of about 10^5, but amplified for higher Reynolds numbers Re_D. The presence of such a barrier Reynolds number was clarified by noting that its value corresponds to a limit below which the jet exit shear layer is fully laminar. This demonstrates that jet noise mechanisms depend on the shear-layer initial state. These works dealing with excited jets illustrate that jet noise may change according to the initial conditions. This issue must still be investigated to better understand the physics of sound generation. It must also be taken into account for the modeling of inflow conditions in jet noise simulations.

Experimentally, the influence of initial conditions on jet flow has mostly been studied for jets with Reynolds numbers about $10^5 < Re_D < 5 \times 10^5$. In this range, the exit shear layer is expected to be transitional, but the use of tripping devices in the nozzle can make it go fully turbulent. Hill et al. showed that flow characteristics of plane jets were sensitive to changes in the apparatus in the initially laminar case, but not in the turbulent case. A similar sensitivity was found for round jets by Gutmark and Ho, who reported that initial conditions of laminar shear layers were changed by extremely low-level spatially coherent disturbances in the facility. Measures of axisymmetric free shear layers were documented by Hussain and Zedan, Husain and Hussain, and Hussain and Husain for different initial conditions. The parameters in the self-preserving region were shown to be essentially dependent on whether the initial shear layer is transitional or turbulent, whereas the distance required for reaching this region depends noticeably on the initial shear-layer thickness. As for the effects of the initial shear-layer state on the flow itself, they were investigated for round jets by Raman et al. and Xu and Antonia. The jet development was found to be much more rapid in the initially transitional case than in the turbulent case.

The influence of jet exit conditions on subsonic jet noise has also been studied. Bridges and Hussain reported that a circular jet at $Re_D = 1.5 \times 10^5$ was 2.5 dB quieter when its initial shear layer was tripped. Devices acting on the noise-producing region have been tested with the aim of sound reduction. Simovich et al. used tabs for a circular jet at $Re_D = 1.7 \times 10^5$ to enhance near-field jet mixing, whereas Arakeri et al. used microjets at $Re_D = 5 \times 10^5$ and observed significant lowering in the near-field turbulent intensities. In the two cases, the sound levels decreased by about 2 dB.

Copyright © 2004 by Christophe Bogey and Christophe Bailly. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/05 $10.00 in correspondence with the CCC.

CNRS Research Scientist, Laboratoire de Mecanique des Fluides et d’Acoustique, UMR Centre National de la Recherche Scientifique 5509, Centre Acoustique, 36, Avenue Guy de Collongue; christophe.bailly@ec-lyon.fr.

†Professor, Laboratoire de Mecanique des Fluides et d’Acoustique, UMR Centre National de la Recherche Scientifique 5509, Centre Acoustique, 36, Avenue Guy de Collongue; christophe.bailly@ec-lyon.fr. Member AIAA.
In simulations, real exit conditions cannot be reproduced because the discretization of the shear layers leads to a prohibitive number of grid points. Initial conditions must, therefore, be modeled. For jets, the classical approach consists of introducing random perturbations near the inflow to seed the turbulence. These can be issued from a synthetic turbulent field, or be based on the jet azimuthal modes. Their amplitudes are usually set to low values, particularly in noise simulations where spurious waves must be minimized. Great care must be taken to ensure that the artificial inflow conditions do not bias the results, as pointed out by Bodony and Lele observing forcing using only the first three azimuthal modes of a circular jet. Moreover, whereas Chyczewski et al. observed that the forcing amplitude did not significantly alter the development of a rectangular supersonic jet, Stanley and Sarkar clearly presented the influence of the inflow turbulence intensity and of the shear-layer thickness for a plane subsonic jet. The dependence of the similarity parameters on the initial velocity profile was also shown by Boersma et al. for a circular jet.

In the present paper, the effects of artificial inflow conditions on the plume development and the radiated sound field of a Mach number \(M = 0.9\) circular jet are investigated. A Reynolds number of \(Re_M = 4 \times 10^5\) is chosen to be above the barrier Reynolds number of 103, in the range of transitional jets where the exit shear layers are not fully turbulent. Such a jet was recently simulated using a vortex ring inflow forcing involving the first 16 azimuthal modes. The flow and the sound field obtained directly by large-eddy simulation (LES) were described in detail and compared to relevant measurements. Both correspond to what is expected at a high Reynolds number, supporting the idea that the LES preserves the Reynolds number given by the initial jet conditions. (See, for instance, the study reporting the effects of the subgrid modeling.)

In the present work, LES with inflow parameters modified with respect to the earlier simulation are performed. The investigated parameters are the forcing amplitude, the initial shear-layer thickness, and the use of the first four azimuthal modes when synthesizing the forcing disturbances. Effects on the jet flow and the noise are shown, and an attempt to discuss noise sources is conducted from the LES data.

In Sec. II, the main features of the numerical procedure and the specifications of the different inflow conditions are given. Snapshots of vorticity and pressure are also presented. The flowfields are shown in Sec. III, with two subsections devoted to the shear-layer zone and to the jet development. The acoustic fields are reported in Sec. IV, and possible links with the flow properties are suggested. Finally, conclusions are drawn in Sec. V.

II. Simulation Parameters

A. Numerical Procedure

The numerical algorithm is identical to that of the earlier simulation referred to as LESac in three new simulations: The amplitude \(\alpha\) is halved in the LESsample simulation, the shear layer is significantly thinner in the LESshear simulation with \(\delta_0 = 0.03\), and the first four modes from \(i = 0\) to \(3\) are removed in the forcing of the LESmode simulation.

C. Instantaneous Vorticity and Pressure

Figures 1 and 2 present snapshots of the vorticity norm and of the fluctuating pressure for the four simulations. The flow development from transitional shear layers to turbulent jets appears to be fairly similar, but also more or less rapid according to the inflow conditions. The jet seems to develop faster in the LESshear simulation and slower in the LESmode simulation. These observations are supported by the mean centerline axial velocities \(u_j\), to be shown later, and by the potential core lengths \(x_c\) defined here by \(u_j(x_c) = 0.95u_j\), which are given in Table 2 but which will be discussed further.

Table 1 Inflow conditions of the different simulations

<table>
<thead>
<tr>
<th>Reference</th>
<th>(\delta_0/r_0)</th>
<th>(\alpha)</th>
<th>Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>0.05</td>
<td>0.007</td>
<td>3</td>
</tr>
<tr>
<td>LESample</td>
<td>0.05</td>
<td>0.0035</td>
<td>0</td>
</tr>
<tr>
<td>LESshear</td>
<td>0.03</td>
<td>0.007</td>
<td>0</td>
</tr>
<tr>
<td>LESmode</td>
<td>0.05</td>
<td>0.007</td>
<td>4</td>
</tr>
</tbody>
</table>

B. Definition of Inflow Conditions

Initial conditions are defined for an isothermal round jet with a centerline velocity \(u_j\) and a diameter \(D = 2r_0\) yielding a Mach number \(M = u_j/c_e = 0.9\) and a Reynolds number \(Re_M = u_j D/\nu = 4 \times 10^5\). The mean profiles of velocities, pressure, and density are imposed at the inflow boundary. The axial velocity is given by a hyperbolic-tangent profile describing an annular shear layer of radius \(r_0\) and of momentum thickness \(\delta_0\). Radial and azimuthal modes are set to zero, pressure is set to the ambient pressure, and the mean density profile is obtained from a Crocco-Buseman relation. All mean inflow profiles are imposed at the Cartesian grid nodes as described in previous work. They are expected to be well resolved given the accuracy of the numerical schemes used.

To start the turbulence transition, disturbances are added to the velocity profiles in the shear-layer zone. They are divergence free and have a low amplitude to minimize spurious acoustic waves. The inflow forcing is based on a combination of the jet azimuthal modes, and it modifies the axial and radial velocities every time step in the following way:

\[
\begin{align*}
\left(u_i^{\text{ing}} \right) & = \frac{2r_0}{\Delta y} \exp \left(-\frac{\Delta(x, r)^2}{\Delta y^2} \right) \left(r - r_0 \right) \\
\left(v_i^{\text{ing}} \right) & = 0
\end{align*}
\]

where \(\Delta(x, r)^2 = (x - x_0)^2 + (r - r_0)^2\), \(\Delta y\) is the transverse grid spacing, and the axial location is \(x_0 \approx r_0\). Note that a large part of the forcing disturbances is damped because of the random updating. This forcing procedure was first used for a moderate Reynolds number jet with \(\alpha = 0.01\), \(n = 0\), and \(m = 9\).

In the present study, four simulations are carried out with the inflow conditions listed in Table 1. The parameters \(\delta_0 = 0.05\), \(\alpha = 0.007\), \(n = 0\), and \(m = 15\) of the simulation referred to as LESac are changed in three new simulations: The amplitude \(\alpha\) is halved in the LESsample simulation, the shear layer is significantly thinner in the LESshear simulation with \(\delta_0 = 0.03\), and the first four modes from \(i = 0\) to \(3\) are removed in the forcing of the LESmode simulation.
Table 2 Potential core lengths obtained for the different simulations

<table>
<thead>
<tr>
<th>Reference</th>
<th>x_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>10.2r_0</td>
</tr>
<tr>
<td>LESampl</td>
<td>10.6r_0</td>
</tr>
<tr>
<td>LESshear</td>
<td>9.8r_0</td>
</tr>
<tr>
<td>LESmode</td>
<td>11.9r_0</td>
</tr>
</tbody>
</table>

Fig. 1 Snapshots of vorticity |ω| in the flow and of fluctuating pressure p' outside, in x−y plane at z=0 for simulations: a) LESac and b) LESampl; color scales are from 0 to 8 × 10^4 s⁻¹ for vorticity and from −70 to 70 Pa for pressure.

Changes in the radiated sound fields are also visible in the pressure snapshots. Whereas the sound radiations for the LESac and for the LESampl simulations seem not to differ significantly, the radiations for the LESshear and for the LESmode simulations appear to be, respectively, enhanced and reduced, particularly in the sideline and upstream directions.

III. Flow Properties

A. Shear Layer Development

The streamwise variations of the shear-layer vorticity thickness δω are shown in Fig. 3 for the different simulations. This characteristic thickness is calculated from the mean axial velocity ⟨u⟩ using δω = u_j / max(|∂⟨u⟩/∂y|), and it is related to the momentum thickness for a hyperbolic-tangent profile by δω = 4δθ. For the three simulations LESac, LESshear, and LESampl, the shear layer spreads earlier with the smaller initial thickness as observed experimentally by Hussain and Zedan⁵ and later with the decreased forcing amplitude. Similar growth rates, dδω/dx, are found, with a value of about 0.22 in the range of the higher rates provided in the literature.⁴ Therefore, the discrepancies in their respective core lengths reported in Table 2 can be attributed mainly to the shifted locations of the spreading starting points. For the LESmode simulation, the shear layer appears to develop even later and more slowly. Two regions of spreading are visible: The vorticity thickness grows rapidly up to x ≃ 8r_0, then the rate of growth progressively decreases to reach dδω/dx ≃ 0.18 for 10r_0 ≤ x ≤ 12r_0. This behavior and this rate are in good agreement with the measurements by Husain and Hussain⁶ for transitional axisymmetric shear layers.

Fig. 2 Snapshots of vorticity and of fluctuating pressure for simulations: a) LESshear and b) LESmode; see Fig. 1 caption for details.

Fig. 3 Axial evolution of vorticity thickness δω: ——, LESac; ·····, LESampl; – – –, LESshear; and −·− ·, LESmode.

Fig. 4 u' velocity spectra for x = 3r_0 and r = r_0 are presented in Fig. 4 to investigate the preliminary stage of the shear-layer development. They are marked by the instability waves growing in the inflow velocity profiles. The peak for LESshear is found at a Strouhal number of Sr ≃ 0.9 and those for LESac and LESampl at Sr ≃ 0.6. These values compare favorably with the Strouhal numbers, Sr = 1.13 and 0.68, associated with the most unstable axisymmetric modes of the inflow shear layers predicted by the linear instability theory. The discrepancies could be due to nonlinear
effects and to the differences between the velocity profiles at the inflow and at $x = 3r_0$. The peak amplitude is higher for the thinner initial shear layer, which illustrates that the instability amplification is stronger as δ_0 decreases.\(^8\) By the use of a smaller forcing magnitude in LESampl, the peak amplitude with respect to LESac is reduced, without affecting its frequency, suggesting that the same development occurs. For LESmode, a less pronounced peak is observed for a lower Strouhal number of $Sr \simeq 0.45$. This indicates that the initial shear-layer development may not be governed by the same instability modes in the two cases.

To study the azimuthal turbulence structures, the cross-correlation functions $R_{u\phi}(\phi)$ of the u^\prime velocity are calculated in the shear layer for $r = r_0$ at an axial distance $x = 6r_0$. They are presented in Fig. 5 for an azimuth $0 \leq \phi \leq 45$ deg. For the three simulations using the same modal excitation, the correlation is higher for LESampl and lower for LESshear, where the shear-layer transitions occur later and earlier, respectively. These observations suggest that the azimuthal correlation decreases as the turbulence transition continues. The results obtained for LESmode seem to disagree with this trend because the correlation is much lower than that for the three previous simulations, with yet a later shear-layer development. However, the results clearly show that the turbulence generated using the forcing involving only the higher modes $i \geq 4$ has a more three-dimensional structure than that using the forcing with all of the modes $i \geq 0$.

The streamwise profiles for $r = r_0$ of the rms fluctuating velocity and radial velocities are presented in Fig. 6. The axial locations and the magnitudes of their peaks are investigated. For each of the three simulations LESshear, LESac, and LESampl, the u_{rms} and the v_{rms} peaks occur at similar streamwise distances, respectively, at $x \simeq 4.5r_0$, $x \simeq 6r_0$, and $x \simeq 7r_0$, according to the shifts in shear-layer development observed earlier. For the LESmode simulation, however, the two peaks do not coincide: Here, u_{rms} reaches its maximum value at $x \simeq 6r_0$ whereas v_{rms} does so farther downstream at $x \simeq 7r_0$.

Table 3 RMS peak values of the fluctuating velocity profiles for $r = r_0$

<table>
<thead>
<tr>
<th>Reference</th>
<th>$(u_{rms})_p/\bar{u}_j$</th>
<th>$(v_{rms})_p/\bar{u}_j$</th>
<th>$(v'_{rms})p/(u'{rms})_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>0.203</td>
<td>0.186</td>
<td>0.92</td>
</tr>
<tr>
<td>LESampl</td>
<td>0.209</td>
<td>0.190</td>
<td>0.91</td>
</tr>
<tr>
<td>LESshear</td>
<td>0.212</td>
<td>0.196</td>
<td>0.92</td>
</tr>
<tr>
<td>LESmode</td>
<td>0.200</td>
<td>0.168</td>
<td>0.84</td>
</tr>
</tbody>
</table>

*Subscript p used for peak.

The magnitudes of the peaks are listed in Table 3. Similar peak values are found for the axial velocity, in fairly good agreement with measurements by Hussain and Zedan\(^5\) reporting $(u_{rms})_p/\bar{u}_j \simeq 0.19$ in transitional axisymmetric shear layers. The peak values obtained for the radial velocity are more scattered and are all higher than the $(v_{rms})_p/\bar{u}_j \simeq 0.13$ measured by Hussain and Husain\(^7\). The ratios between the v_{rms} and u_{rms} peak magnitudes are also provided in Table 3. A ratio of about 0.92 is noted for the simulations LESac, LESampl, and LESshear, whereas a smaller ratio is found for LESmode.

These results indicate that the turbulent shear layers have an identical structure for the three simulations using the same modal forcing. The magnitudes of velocity fluctuations are only slightly enhanced when the initial shear-layer thickness is smaller or when the forcing amplitude is decreased. For the LESmode simulation, the turbulent shear layer displays quite different properties, with a significant reduction of the magnitude of the radial fluctuating velocity.

B. Jet Development

The influence of the inflow conditions on the jet development just after the potential core is now investigated. The streamwise evolutions of the mean centerline velocity u_c and of the jet half-width $\delta_{0.5}$ are presented in Fig. 7 for the different simulations. The potential core lengths x_c, arbitrarily defined by $u_c(x_c) = 0.95u_j$, are about $10r_0$ for LESac, LESampl, and LESshear, but are $12r_0$ for LESmode (Table 2). The core lengths compare favorably with those observed for untripped jets at similar Reynolds numbers by Raman et al.\(^3\) and Arakeri et al.\(^12\) that is, $x_c \simeq 10r_0$ and $x_c \simeq 14r_0$, respectively.
Table 4 RMS peak values of centerline fluctuating velocity profiles

<table>
<thead>
<tr>
<th>Reference</th>
<th>((\bar{u}{rms}){p}/\bar{u}_j)</th>
<th>((\bar{v}{rms}){p}/\bar{u}_j)</th>
<th>((\bar{v}{rms}){p}/(\bar{u}{rms}){p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>0.131</td>
<td>0.118</td>
<td>0.90</td>
</tr>
<tr>
<td>LESampl</td>
<td>0.137</td>
<td>0.124</td>
<td>0.91</td>
</tr>
<tr>
<td>LESshear</td>
<td>0.122</td>
<td>0.113</td>
<td>0.91</td>
</tr>
<tr>
<td>LESmode</td>
<td>0.120</td>
<td>0.106</td>
<td>0.88</td>
</tr>
</tbody>
</table>

*Subscript \(p\) used for peak.

respectively. They are all smaller than those found for higher Reynolds number, turbulent jets\(^{24,25}\) yielding \(x_c \approx 14r_0\). This result is in agreement with experiments by Raman et al.\(^8\), showing that the potential core is shorter in an initially transitional jet than in an initially turbulent jet.

The effects of the shear-layer thickness and of the forcing amplitude on the centerline velocity decay and on the jet spreading are similar to the direct numerical simulation (DNS) results documented by Stanley and Sarkar\(^13\) for a low Reynolds number plane jet. The jets for LESac and for LESampl using a smaller forcing amplitude develop at nearly the same rate. The decrease in the shear-layer thickness for LESshear has a more significant impact on the jet development, which clearly occurs at a lower rate than in LESac. For the LESmode using the higher-mode excitation, the jet develops even more slowly. When experimental observations\(^8\) that the spreading rate is higher in an initially transitional jet than in the other three jets. Note that no decay or spreading rate is provided here because these rates are significant only in the self-similarity region that is reached farther downstream.\(^{18,19,26}\)

The rms values of the axial and radial fluctuating velocities on the jet axis are shown in Fig. 8. For each of the four simulations, the peaks for \(u'_{rms}\) and for \(v'_{rms}\) are found at the same streamwise distance, at around five radii downstream from the end of the potential core, as observed experimentally in Ref. 12, for instance. The peak values are listed in Table 4. They agree well with the experimental data, both for the axial and the radial velocities. For \(u'_{rms}/u_j\), maxima of 0.13 and 0.12 were measured for similar Reynolds number, untripped jets\(^8,12\) and maxima of 0.14 and 0.13 were measured for \(Re_D = 10^6\) turbulent jets\(^{24,25}\). For \(v'_{rms}/u_j\), peak values of 0.11 and 0.1 were reported in the latter cases.

The effects of the inflow conditions on the centerline turbulence peak values are clearly visible. The use in LESampl of a forcing amplitude smaller than in LESac enhances the turbulence peaks, whereas that of a thinner initial shear layer in LESshear leads to a reduction, in accordance with the trends found in the DNS by Stanley and Sarkar.\(^13\) The forcing using higher modes in LESmode decreases the peak values both for \(u'_{rms}\) and for \(v'_{rms}\). The ratios between the \(v'_{rms}\) and the \(u'_{rms}\) maxima are provided in Table 4. They are found to be 0.88 in LESmode and about 0.92 in the other simulations, which shows that the turbulence structure just after the potential core differs according to the modes involved in the inflow disturbances. The influence of the forcing modal properties on turbulence anisotropy appears, however, to be weaker than it is earlier in the shear-layer zones.

IV. Acoustic Fields

A. Overall Sound Pressure Levels

The profiles for \(r = 15r_0\) of the sound pressure levels given directly by the LES are presented in Fig. 9. The effects of the inflow
The sound levels in LES-reduced farther downstream for jet noise prediction by LES. The sound pressure levels are used to demonstrate the validity of a correlation function in the downstream and sideline directions where two distinct noise components are likely to be dominant. A significant noise reduction of about 2 dB is obtained in the LESmode simulation using a higher mode excitation. This result corresponds well to the behavior found by Bodony and Lele, who reported that forcing using only the first three azimuthal modes is not sufficient and yields overestimated noise levels. At this point, note that the sound levels are shown to depend appreciably on the different inflow parameters. Because they also appear to be dependent on the subgrid modelings, great care is to be taken when the sound pressure levels are used to demonstrate the validity of a jet noise prediction by LES.

B. Downstream Noise Properties

Spectra and azimuthal correlation functions of the acoustic fields are calculated for \(x = 29r_0 \) and \(r = 12r_0 \), as in earlier papers.

They are presented in Fig. 10. The shapes of the spectra are quite similar, with peaks observed for Strouhal numbers \(Sr \approx 0.3 \) in agreement with experimental data. The very close peak frequencies in the four simulations suggest that the source mechanism of the downstream noise is the same for all of the inflow conditions. This is also supported by the cross-correlation functions of the fluctuating pressure \(R_{pp}(\phi) \), which display no significant differences according to the initial conditions. These correlation functions are typical of measurements at angles of \(\theta \approx 30 \) deg from the jet axis. Also note that the more correlated the sound field, the higher the peak amplitude of the sound spectra.

The sound levels calculated from the spectra at \(x = 29r_0 \) and \(r = 12r_0 \) are listed in Table 5. The levels are higher for LESampl and lower for LESshear and LESmode, as was already observed on the sound spectra. For a simple comparison with experiments, the sound levels are extrapolated at a distance of \(d = 60 \) from an origin taken as \(x = 10r_0 \) and \(r = 0 \), using \(1/d \) decay law.

C. Sideline Noise Properties

The properties of the sound fields in the sideline direction are now investigated. For high Reynolds number jets, they differ significantly from those in the downstream direction, in terms of spectral contents and azimuthal correlations. This important behavior was shown to be obtained in the present LES.

Sound spectra and cross-correlation functions are calculated for \(x = 11r_0 \) and \(r = 15r_0 \) and are presented in Fig. 11. The four spectra display similar broadband shapes with peaks for Strouhal numbers \(Sr \approx 0.6-0.7 \). The azimuthal correlation functions show for \(0 \leq \phi \leq 60 \) deg are also very close, which supports that the same sound-generation mechanisms take place in the four simulations. The decrease of the shear-layer thickness in LESshear enhances the sideline high-frequency noise, which is to be expected because this noise component is mainly generated in the shear layers just after the nozzle exit. The use of a smaller forcing amplitude in LESampl slightly also increases the acoustic levels. However, the most striking change with respect to LESac is obtained from the LESmode simulation with a significant noise reduction.

The levels calculated from the previous spectra are given in Table 6. They are roughly extrapolated in the far field, using the \(1/d \) decay law of acoustic waves from an arbitrary source region. After a careful examination of the snapshots of pressure fields in Figs. 1 and 2, the origin is chosen to be at \(x = 7r_0 \) on the jet axis. It defines an angle of sound emission from the jet axis of \(\theta \approx 75 \) deg. The sound levels extrapolated at a distance \(d = 60 \) from an origin taken as \(x = 10r_0 \) and \(r = 0 \), using \(1/d \) decay law.

<table>
<thead>
<tr>
<th>Reference</th>
<th>(x = 29r_0)</th>
<th>(d = 60r_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>125.2</td>
<td>116.7</td>
</tr>
<tr>
<td>LESampl</td>
<td>126.5</td>
<td>118</td>
</tr>
<tr>
<td>LESshear</td>
<td>124.5</td>
<td>116</td>
</tr>
<tr>
<td>LESmode</td>
<td>124.5</td>
<td>116</td>
</tr>
</tbody>
</table>

*Left: \(x = 29r_0 \) and \(r = 12r_0 \), and right: \(\theta \approx 30 \) deg at a distance \(d = 60 \) from an origin taken as \(x = 10r_0 \) and \(r = 0 \), using \(1/d \) decay law.
transition is more rapid and turbulence intensities are increased in
the shear layer, but the jet development is slower and the intensities
are decreased after the potential core. As a result, noise is enhanced
in the sideline direction but reduced in the downstream direction.

The most important changes in the flow features are obtained with
the removal of the first four jet azimuthal modes in the construc-
tion of the inflow disturbances: The jet develops much later and
more slowly, and turbulence intensities and noise levels are notably
reduced. This work demonstrates the importance of the modeling
of the inflow conditions for high Reynolds number jets. In partic-
ular, initial conditions are still to be tested that reduce the sideline
pressure levels that are currently overestimated with respect to ex-
perimental data. This discrepancy has been connected to the high
intensity of the radial fluctuating velocity in the shear layer.

Strong links between the turbulence and the sound radiation are
indeed suggested by the present simulations. The levels of the down-
stream noise dominated by an $Sr \approx 0.3$ peak can be related to the
maxima of centerline intensities just after the potential core, which
suggests that the associated noise source is effectively located in
this zone. The amplitudes of the sideline noise are also found to
be connected to the peak values of the radial velocity fluctuations
in the shear layer. The broadband noise generated in the sideline
direction for jets at high Reynolds numbers is, thus, shown to be
directly associated to the development of the shear-layer turbulence.

Acknowledgments

This work was supported by the European Union Research pro-
gram Jet Exhaust Aerodynamics and Noise, Contract G4RD-CT-
2000-00313, and by the French program Recherche Aeronaute-
sur le Supersonique, Ministere de la Recherche. Computing time
was supplied by the Institut du Developpement et des Ressources
en Informatique Scientifique, Centre National de la Recherche
Scientifique.

References

1Crighton, D. G., “Acoustics as a Branch of Fluid Mechanics,” Journal
2Zaman, K. B. M. Q., “Far-field Noise of a Subsonic Jet Under Con-
3Hill, W. G., Jr., Jenkins, R. C., and Gilbert, B. L., “Effects of the Initial
Boundary-Layer State on Turbulent Mixing,” AIAA Journal, Vol. 14, No. 11,
1976, pp. 1513, 1514.
4Gutmark, E., and Ho, C.-M., “Preferred Modes and the Spreading Rates
5Hussain, A. K. M. F., and Zedan, M. F., “Effects of the Initial Condition
on the Axisymmetric Free Shear Layer: Effects of the Initial Momentum
6Husain, Z. D., and Hussain, A. K. M. F., “Axisymmetric Mixing Layer:
Influence of the Initial and Boundary Conditions,” AIAA Journal, Vol. 17,
No. 1, 1979, pp. 48–55.
7Husain, A. K. M. F., and Husain, Z. D., “Turbulence Structure in the
Axisymmetric Free Mixing Layer,” AIAA Journal, Vol. 18, No. 12, 1980,
p. 1462–1469.
8Raman, G., Rice, E. J., and Reshotko, E., “Mode Spectra of Natural Dis-
turbances in a Circular Jet and the Effect of Acoustic Forcing,” Experiments
9Xu, G., and Antonia, R. A., “Effects of Different Initial Conditions
on a Turbulent Free Jet,” Experiments in Fluids, Vol. 33, No. 5, 2002,
pp. 677–683.
10Bridges, J. E., and Hussain, A. K. M. F., “Roles of Initial Conditions
and Vortex Pairing in Jet Noise,” Journal of Sound and Vibration, Vol. 117,
11Simonich, J. C., Narayanan, S., Barber, T. J., and Nishimura, M., “Aero-
coustic Characterization, Noise Reduction, and Dimensional Scaling Effects
12Arakerti, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B., and
Lourenco, L., “On the Use of Microjets to Suppress Turbulence in a Mach
0.9 Axisymmetric Jet,” Journal of Fluid Mechanics, Vol. 490, 2003,
pp. 75–98.
13Stanley, S. A., and Sarkar, S., “Influence of Nozzle Conditions and
Discrete Forcing on Turbulent Planar Jets,” AIAA Journal, Vol. 38, No. 9,
14Boege, C., Bailly, C., and Juve, D., “Noise Investigation of a High Sub-
sonic, Moderate Reynolds Number Jet Using a Compressible LES,” Theo-

Table 6 Sound pressure levels in decibels

<table>
<thead>
<tr>
<th>Reference</th>
<th>$x = 11r_0$</th>
<th>$d = 60r_0$</th>
<th>$r = 15r_0$</th>
<th>$\theta \approx 75$ deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESac</td>
<td>124.1</td>
<td>112.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LESsampl</td>
<td>124.7</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LESshear</td>
<td>125.2</td>
<td>113.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LESmode</td>
<td>121.8</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aLeft: $x = 11r_0$ and $r = 15r_0$, and right: $\theta \approx 75$ deg at a distance $d = 60r_0$ from an origin taken as $x = 7r_0$ and $r = 0$, using $1/d$ decay law.

Fig. 11 For $x = 11r_0$ and $r = 15r_0$, a) sound pressure spectra in linear scales as function of Strouhal number $Sr = fD/u_j$ and b) azimuthal cross correlations of fluctuating pressure: ———, LESac; ···, LESsampl; ———, LESshear; and ———, LESmode.

Because the shear-layer turbulence is expected to contribute ap-
preciably to the sideline noise, it seems natural to relate the present
overestimated sound levels to the excessive magnitudes of the ra-
dial velocity fluctuations in the shear layer. It is found that the sound
levels of Table 6 vary accurately as the maxima of v_{lm} presented in
Fig. 6 and listed in Table 3. The sideline noise is shown to be linked
to the intensity of the radial velocity disturbances in the shear layer.
For proper prediction of sideline noise levels in numerical simula-
tions, it appears necessary to continue to define an inflow forcing
that reduces this quantity. The results from the LESmode simulation
suggest, however, that the first jet modes should not be involved
when synthesizing the initial perturbations.

V. Conclusions

This paper describes effects of the inflow conditions for a high
subsonic, $Re_D = 4 \times 10^6$ circular jet simulated by LES. Both the
flow development and the emitted sound are shown to depend ap-
preciably on the initial parameters chosen to model the inflow of
this transitional jet.

The reduction of the amplitude of the initial disturbances is found
to alter the flow and sound properties only weakly and in the follow-

nway: The jet development occurs slightly downstream with
higher turbulence intensities and, consequently, results in an in-
creased radiated noise. The use of a thinner shear-layer momentum
thickness leads to more significant and complex modifications. The

W. Ng
Associate Editor