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Summary. A round free jet at Reynolds number ReD = 11000 is computed by
Large Eddy Simulation on a grid of 44 million nodes containing a part of the self-
similarity region of the flow. Turbulence properties in this region, including second-
and third-order moments of velocity, pressure-velocity correlations and kinetic en-
ergy budget, are calculated. They are compared to, and complement, the experimen-
tal results of Panchapakesan & Lumley [1] for a jet at the same Reynolds number.

1 Introduction

The turbulent round jet is a model flow that has been extensively investi-
gated experimentally since fifty years. Two flow regions have been displayed:
the initial-development region and, farther downstream, the self-preservation
region where the flow profiles are self-similar. Turbulence in the first region
was studied in some detail in the sixties by Sami [2]. Turbulence in the self-
similar region was also characterized by Wygnanski & Fiedler [3] for a jet
at Reynolds number ReD = 105 (ReD = ujD/ν where uj and D are the
jet nozzle-exit velocity and diameter, and ν the molecular viscosity). In the
zone where self-preservation was observed, some 70 diameters downstream of
the nozzle, Wygnanski & Fiedler [3] measured many flow quantities including
mean velocity, turbulence stresses and triple correlations, and calculated the
kinetic energy balance across the jet. Despite some uncertainties in the mea-
surements and the different processes involved in the evaluation of the energy
terms, their results were fairly accurate. They were reference solutions, un-
til the early nineties and the experimental data obtained by Panchapakesan
& Lumley [1] and Hussein et al. [4] in the self-similarity regions of jets at
respectively ReD = 1.1× 104 and ReD = 105.
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Panchapakesan & Lumley [1] and Hussein et al. [4] (hereafter referred to
as P&L and HC&G) reported careful measurements of the second- and third-
order moments of velocity, and used them to evaluate the energy balance
across the jet self-similarity region. However some turbulence quantities, such
as the pressure-velocity correlations or the moment <v′w′2> (v′ and w′ are
the fluctuating radial and azimuthal velocities and < . > is the statistical
average), could not be measured, and the energy dissipation could not be
directly calculated. Therefore P&L neglected the pressure diffusion in the
energy budget and obtained the dissipation profile as the closing balance,
whereas HC&G estimated energy dissipation from measurements assuming
isotropy or axisymmetry of small scales, and obtained the pressure diffusion
as the remaining term.

Considering these experimental weaknesses, numerical simulations may
appear as one appropriate way to describe exhaustively the turbulence de-
veloping in jets, because they give access to all flow quantities. The limita-
tions in this case are due to the computational resources, and might originate
from the numerical methods and the turbulence models involved in the sim-
ulations. Direct Numerical Simulation (DNS) can be used for flows at low
Reynolds numbers, as shown by Mansour et al. [5] for a turbulent channel
flow. However, for flows at higher Reynolds numbers, typically those investi-
gated experimentally, one must make use of Large Eddy Simulation (LES),
where only the turbulent scales larger than the grid size are calculated. De-
joan & Leschziner [6] for example recently computed in this way the energy
budget in a plane turbulent wall jet at a moderate Reynolds number.

In the present work, a circular jet at Mach number M = uj/c0 = 0.9
(c0 is the sound speed in the ambient medium) and at Reynolds number
ReD = 1.1 × 104 is simulated by LES. This Reynolds number corresponds
exactly to the Reynolds number of the experimental jet of P&L. The LES is
performed using numerical schemes with low dissipation and low dispersion [7],
and is based on the use of selective filtering as subgrid modelling [8, 9, 10].
The computational domain includes 44 million nodes, and is sufficiently large
to contain a part of the jet self-similarity region. The aim is to investigate
the turbulence properties in this region by calculating, directly from the LES
data, turbulence quantities such as the second- and third-order moments of
velocity fluctuations, the pressure-velocity correlations, and all the terms in
the kinetic energy budget. The present results are systematically compared to
the P&L data, when those are available. This will allow us to assess the LES
accuracy, and to discuss the assumptions made by P&L, as well as by HC&G,
for evaluating the energy terms across the jets. Reliable informations on jet
turbulence physics are also expected to be obtained.
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2 Simulation parameters

An isothermal round jet at Mach and Reynolds numbers M = uj/c0 = 0.9
and ReD = 1.1 × 104 is simulated. The LES is performed on a Cartesian
grid using numerical schemes with spectral-like properties [7], optimized in
the wavenumber space to be low-dissipative and low-dispersive for waves dis-
cretized by more than four grid points. The spatial discretization is taken
into account by explicit finite-differences and selective filtering, using both
eleven-point stencils. The time advancement is carried out using a six-stage
low-storage Runge-Kutta algorithm. The selective filtering is applied explicitly
every second iteration to remove the grid-to-grid oscillations without affect-
ing the resolved scales, but also to provide the effects of the subgrid energy-
dissipating scales. The LES approach based on explicit filtering has been suc-
cessfully used by different authors for various flows [8, 11, 12, 13]. It has been
shown in particular that the filtering does not artificially decrease the effective
flow Reynolds number unlike subgrid models based on eddy-viscosity [9]. The
effects of the filtering have been also investigated from the energy budget [10].

The computational domain is discretized by a Cartesian grid of 651×261×
261 nodes, and extends up to 182 radii in the axial direction and to 33 radii
in the transverse directions. As in our previous simulations [8], the boundary
conditions are non-reflective. A sponge zone is used at the outflow, restricting
the physical part of the domain to 150 radii downstream. This is illustrated by
the vorticity snapshot of Figure 1, where the development of the flow in axial
direction is also clearly visible. As for the jet initial conditions, mean velocity
profiles are imposed at the jet inflow, while random velocity disturbances are
added to seed the turbulence. The axial mesh spacing is ∆x = r0/4, and
the transverse mesh spacing is ∆y = ∆y0 = r0/8 near the centreline, but
∆y = r0/4 for y ≥ 7r0. The time step is ∆t = 0.85∆y0/c0.

In the present study, all the terms in the energy budget are calculated
explicitly from the LES data as in [14]. For their statistical convergence, the
simulation time is necessarily important. The results presented in this paper
are obtained from a simulation of 350000 time steps, leading to a physical
time of Tuj/D = 16700. The statistics are computed during the final 270000
time steps, or Tuj/D = 12900. Note finally that the present LES required
22.4 Gb of memory and 2100 CPU hours using a Nec SX5.

3 Results

The development of the jet flow towards self-similarity is investigated in fi-
gure 2 where centreline profiles of mean and turbulence quantities are repre-
sented. In the self-preserving jet, the centreline mean velocity uc and the jet
half-width δ0.5 are indeed respectively given by uc/uj = B ×D/(x− x0) and
δ0.5 = A × (x − x0), where B and A are two constants, and x0 denotes a
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Fig. 1. Snapshot of the vorticity field in the plane z = 0. Representation of the two
contours associated with the magnitudes of the vorticity norm |ω| × x/uj = [4, 40].

virtual origin. The self-similarity of the turbulent flow is also reached when
the turbulence intensities display constant values on the jet axis.

The variation along the jet axis of the mean axial velocity is shown in
figure 2(a). For x ≥ 50r0, the centreline velocity appears to decrease following
the x−1 law, with a decay constant of B = 6.4. A fair agreement with the
results of P&L is also observed, which, however, reflect a slightly lower decay
constant of B = 6.06. For brevity, the evolution of the jet half-width is not
presented here, but note that it is found to increase linearly for x ≥ 50r0, at
the spreading rate A = 0.086. For comparison, P&L obtained A = 0.096.

The axial variations of turbulence intensities are shown in figure 2(b).
Both the axial and the radial components appear to increase up to about
x = 100r0, where self-similar values of u′

rms/uc = 0.24 and v′

rms/uc = 0.2
seem to be reached. These evolutions along the jet axis compare well with
the data of P&L, which are also plotted in the figure and exhibit self-similar
values of u′

rms/uc = 0.24 and v′

rms/uc = 0.19.
The present profiles support that, for the simulated jet, the self-similarity

of the mean flow is observed for x ≥ 50r0, but that the similarity of the
turbulent flow is found farther downstream, for x ≥ 100r0. This trend agrees
with experimental results of Wygnanski & Fiedler [3] or of P&L.

The profiles across the jet of the mean axial and radial velocities nor-
malized with uc, obtained over the range 70r0 ≤ x ≤ 130r0, are shown in
figures 3(a) and (b). The LES mean axial velocity agrees very well with the
self-similarity profile measured by P&L. A good similarity is also seen for the
mean radial velocity profile predicted by the LES and the profile obtained by
P&L from the mean axial velocity using the continuity equation. The negative
values of the mean radial velocity for large distances from the axis indicate
the entrainment of the surrounding fluid into the jet flow.

The radial profiles of turbulence intensities, computed over the range
100r0 ≤ x ≤ 140r0, are presented in figure 4. Both their shapes and their
magnitudes compare well with the results of P&L in the self-preserving jet.
The agreement is in particular very good for the axial component u′

rms and
for the Reynolds stress <−u′v′>.
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Fig. 2. Variations along the jet centreline. (a) Inverse of mean axial velocity, uj/uc:
LES, o P&L. (b) Turbulence intensities, u′

rms/uc: LES, M P&L,
and v′

rms/uc: LES, O P&L.
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Fig. 3. Mean velocity profiles across the jet, (a) axial velocity, and (b) radial ve-
locity: LES, o P&L. The LES profiles are averaged over 70r0 ≤ x ≤ 130r0,
δ0.5 is the jet half-width.

For the evaluation of the different terms in the energy budget, LES provides
all turbulent quantities that are necessary, including those that are often not
available from the experiments. Two examples are given in figure 5 with the
pressure-velocity correlations and third-order moments of velocity.

The radial profiles of pressure-velocity correlations <p′u′> and <p′v′>,
computed from the LES data, are shown in figure 5(a). These results are of
interest since these correlations cannot be measured experimentally, and are
therefore usually evaluated thanks to turbulence models. They are for instance
estimated in HC&G from the energy dissipation curves assuming isotropic or
axisymmetric turbulence.

The third-order moments of velocity fluctuations <v′3 > and <v′w′2 >
computed by LES are presented in figure 5(b). The profile of <v′3> across
the jet is found to be very close to the P&L measurements. The profile of
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Fig. 4. Turbulence intensities of the velocity fluctuations across the jet, (a) u′

rms/uc,
(b) v′

rms/uc, (c) w′

rms/uc, and (d) <−u′v′>1/2/uc: LES, o P&L. The LES
profiles are averaged over 100r0 ≤ x ≤ 140r0.
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Fig. 5. Variations across the jet. (a) Pressure-velocity correlations obtained by LES:
<p′u′>/(ρcu

3

c), <p′v′>/(ρcu
3

c). (ρc and uc are the mean centerline
density and velocity.) (b) Third-order moments of velocity fluctuations, <v′3>/u3

c:
LES, o P&L, <v′w′2 >/u3

c : LES. The LES profiles are averaged
over 100r0 ≤ x ≤ 140r0.
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<v′w′2> shows a similar shape, but has a magnitude which is about half of
the magnitude of the previous moment. With this result in mind it may be
useful mentioning that the assumption <v′w′2>=<v′3> is frequently made
in calculations of the turbulent diffusion term in the energy budget using
experimental data.

The budget of the turbulent kinetic energy in the jet self-similarity region
is now presented. All the terms of the budget, including those derived from
the filtered compressible Navier-Stokes equations [10] and those due to the
explicit selective filtering [14], are computed directly from the LES fields. The
profiles across the jet of the main energy terms are shown in figure 6. These
terms correspond to mean flow convection, production, dissipation, turbulent
diffusion and pressure diffusion, the dissipation term being here the sum of
the viscous dissipation and of the filtering dissipation.

The LES results are compared to the experimental results of P&L for a jet
at the same Reynolds number. There is an excellent agreement for the four
curves associated with convection, production, dissipation and turbulent dif-
fusion. The pressure-diffusion term calculated by LES, albeit not negligible, is
found to be small with respect to the other energy terms. The P&L hypothesis
that this term can be neglected in the evaluation of the energy budget then
appears relevant. The present results finally cast doubt on the energy budget
obtained experimentally by HC&G for a jet at a higher Reynolds number
where, using various turbulence modellings, dissipation is found to be about
twice as large as in P&L, and pressure diffusion is of the order of mean flow
convection.
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Fig. 6. Kinetic energy budget across the jet: mean flow convection ( LES,
o P&L), production ( LES, M P&L), dissipation ( LES, O P&L),
turbulent diffusion ( LES, P&L), and pressure diffusion ( LES).
The curves are normalized by ρcu

3

cδ0.5, and averaged over 100r0 ≤ x ≤ 140r0.
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4 Concluding remarks

The first LES results of a round jet at Reynolds number ReD = 11000, that
is being performed to investigate the self-similarity region of the flow, are
presented in this paper. These results, including mean flow and turbulence
properties, are shown to compare very well with the measurements of P&L
for a jet at the same Reynolds number. The agreement is particularly striking
for the turbulent kinetic energy budget, for which P&L used different assump-
tions. By providing all flow quantities, LES gives us an opportunity to evaluate
the turbulent features, such as pressure-velocity correlations, that might not
be available experimentally. The computational cost is however quite high,
and the present simulation is to be continued to have fully converged triple
correlations of velocity and energy terms. Further results will also deal with
the component energy budgets.
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