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In this paper a series of numerical simulations of the effect of turbulence on the propagation of
acoustic waves in the atmosphere are presented. First the technique of representing the turbulence
as a set of realizations of a random field generated by a limited number of Fourier modes is
described. Through each individual realization, the acoustic waves are propagated in a wide-angle
parabolic approximation to obtain the sound-pressure level. Ensemble averaging is then performed
to compute the statistical properties of the acoustic field: mean sound-pressure level, intensity
fluctuations, and amplitude distributions. The method is applied first to a nonrefractive atmosphere,
both in the presence of a rigid boundary and of an impedance ground, and then to an upward
refractive atmosphere with an impedance ground. The model, which contains no adjustable
parameters, is tested using the experimental data of Parkin and Scholes, Daigle, and Wiener and
Keast. Good agreement between numerical simulations and experiments is obtained. ©1996
Acoustical Society of America.

PACS numbers: 43.28.Fp, 43.20.Bi, 43.20.Fn, 43.50.Vt@LCS#

INTRODUCTION

Atmospheric turbulence causes random fluctuations in
temperature, wind velocity, pressure, and density. When an
acoustic wave is propagated through a turbulent atmosphere,
its amplitude and phase are significantly affected by the
variations in the value of the refraction index along the
propagation path. The influence of temperature and wind ve-
locity variations has been demonstrated in many experimen-
tal studies.1,2 From these measurements, it is clear that the
effect of turbulence is particularly important in two situa-
tions:

~1! Propagation near the ground at small distances
where the partial loss of coherence between the direct and
the reflected paths induces a reduction of the interferences.
The acoustic levels measured at a minimum can be increased
by 10 dB.3–5

~2! Propagation over long distances when strong nega-
tive vertical sound speed gradients refract sound upward. De-
terministic computations predict the existence of a deep
shadow zone, whereas measurements indicate a nonnegli-
gible sound-pressure level due to the scattering of sound by
turbulence.6

Theoretical analyses of waves, including acoustic
waves, propagating in random media have been extensively
treated, but analytical results are usually limited to the case
of an unbounded medium with an homogeneous determinis-
tic background.7 For a nonrefracting atmosphere, Daigle pre-
sented a model to predict the field of acoustic waves pro-
duced by a point source propagating in a turbulent
atmosphere above a hard5 or a finite impedance boundary.8

Daigle’s analysis is an extension of the weak scattering

theory developed by Chernov9 for homogeneous and isotro-
pic turbulence. An important parameter of this approach is
the correlation coefficient between the direct and reflected
waves which has to be adjusted according to experimental
data. This theory is limited to short-range propagation and
weak fluctuations of the refraction index.

In recent years several authors have taken into account
the effect of turbulence on sound propagation through nu-
merical simulations.10–12The basic idea is to model the tur-
bulence as a set of independent realizations of a random
field; for each realization, deterministic equations are solved
to obtain the acoustic pressure field. Then, the relevant sta-
tistical quantities~mean sound-pressure levels, amplitude
fluctuations, etc.! are computed by averaging over an en-
semble of realizations. In the model of McBrideet al.12 the
atmospheric turbulence is described as an ensemble of ran-
dom spherically symmetric eddies with Gaussian index of
refraction profiles. For each realization, the total sound pres-
sure is calculated by coherently adding the individual scat-
tering contributions of each eddy or ‘‘turbule.’’ The scattered
field of each turbule is obtained using a Born approximation
or a Rytov method for higher frequencies. Even though this
approach is in good agreement with experimental studies re-
ported in the literature, its domain of validity is limited by
the use of scattering theories which break down for long-
range propagation. A different approach to take into account
the atmospheric turbulence is to split the refraction indexn
into two components, i.e., a mean part^n&5c0/c ~c0 is the
reference sound speed andc is the mean local sound speed!
and a random partm related to the fluctuations of the me-
dium. Then, assuming that the time evolution of the turbulent
structures is much greater than the transit time of the acoustic
wave, it is possible to represent the index fluctuationsm as a
set of independent realizations of a spatially random field. In
the model developed by Gilbertet al.,10 the realizations ofm
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are calculated as the output of a filter excited by white noise.
The properties of the filter are chosen according to the tur-
bulent parameters, such as the correlation length, the corre-
lation function of the index fluctuations, and the level of
these fluctuations. Then, the acoustic wave is propagated us-
ing a parabolic equation method. This approach gives useful
predictions for the calculation of turbulent effects in an
upward-refracting atmosphere with long-range propagation
and frequencies above a few hundred Hz.10 An alternative
model of ‘‘cheap’’ turbulence has been introduced by Blanc-
Benonet al.13 The hypothetical turbulent field consists of a
small number of randomly oriented, discrete, Fourier modes
whose amplitudes are chosen to produce a distribution of
temperature or velocity comparable to those found in the
experimental studies. It has been applied successfully to the
random focusing of waves in turbulence,14 the propagation
of waves through homogeneous unbounded turbulent
media,15 and the sound propagation in the atmosphere.16 In
this paper we present a systematic application of the random
Fourier modes technique to sound propagation in the near
ground atmosphere. In Sec. I we outline the basic ideas of
the synthetized turbulence model and the wide-angle para-
bolic equation method. In Sec. II, we present numerical
simulations for a nonrefracting atmosphere. Predictions for
the relative sound-pressure levels are compared with experi-
mental data reported by Parkin and Scholes3,4 and Daigle
et al.5 In Sec. III, we consider the upward-refracting atmo-
sphere case with reference to the experiments of Wiener and
Keast.6 The physical phenomena involved are qualitatively
illustrated by snapshots of the scattered acoustic field in the
shadow zone. Quantitative comparisons are made between
the parabolic computations and data for the relative sound-
pressure level versus range. Finally, some results are pre-
sented for the intensity fluctuations and for the probability
density function of the pressure amplitude. Section IV gives
a summary and conclusions.

I. THEORETICAL BACKGROUND

Our numerical simulation of sound waves through tur-
bulence involves two elements; the generation of a random
field in terms of a superposition of discrete random Fourier
modes and the integration of a deterministic wave equation.
The sound field can then be characterized by ‘‘instanta-
neous’’ maps of the sound-pressure level and by statistical
properties obtained using an ensemble average.

A. Modeling the turbulent field

Here we consider that the temperature fluctuations in the
atmosphere are the only cause of the fluctuations of the
sound speedc. Assuming that the turbulence is frozen in
time, the temperature fluctuationsT8 at a pointx can be
represented by a sum ofN random Fourier modes,

T8~x!5(
j51

N

T ~Kj !cos~Kj–x1w j !. ~1!

Here,T ~Kj! andw j are the amplitude and the phase angle of
the j th Fourier mode andKj is the turbulent wave vector. For
a two-dimensional field, each vectorKj is defined in Fourier

space by its modulusKj and its orientationu j ~see Fig. 1!.
One of the advantages of this technique is its ability to gen-
erate random fields of infinite extent with prescribed spectra.
In addition, since the turbulent fields have been modeled in
terms of a fixed number of discrete Fourier modes, we can
derive analytically the fields and their spatial derivatives at
every pointx. The index of refractionn is then expressed in
terms of a mean part̂n&5c0/c and a fluctuating part
m52T8/2T0 ~T0 is the reference temperature!. We simplify
the problem by assuming that^n& varies only with the height
z above the ground and thatT8~x! is a function ofz and the
horizontal distancer . Although the present work deals with
two-dimensional scalar random fields, its extension to three-
dimensional scalar or vectorial fields presents no special
difficulties.15,17

In this paper the turbulence is considered isotropic and
homogeneous and the spectral density of the turbulent eddies
is modeled with a Gaussian distribution. Even though it is a
simple model for atmospheric turbulence near the ground,
this approximation has been used successfully by Daigle
et al.18,19 to explain outdoor sound propagation experiments.
It has also been introduced in numerical simulations to pre-
dict the effects of turbulence in an upward-refracting atmo-
sphere by Gilbertet al.10 and Havelocket al.20 In a future
paper we will report on the influence of turbulence model in
predicting sound-pressure levels in a refractive shadow zone.

To obtain a statistically homogeneous and isotropic field
T8, anglesu j andw j must be independent random variables
with uniform distribution over@0,2p#. The amplitude of each
mode is picked from a prescribed energy spectrumG(K).
G(K) is related to the two-point temperature correlation
m(r ) by14

G~K !5u2KE
0

1`

rm~r !J0~Kr ! dr, ~2!

whereu2 is the variance of the temperature fluctuations and
J0 is the Bessel function of first kind and zero order. In our
numerical simulations,G(K) is sampled uniformly byN val-

FIG. 1. Sketch of one Fourier mode.
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ues Kj between a minimum valueKmin and a maximum
valueKmax, chosen so that the energy of the turbulent struc-
tures is well represented. In this study, the random field
T8~x! is characterized by a Gaussian correlation function
m(r ):

m~r !5exp~2r 2/L2!, ~3!

where L is related to the integral scale of the turbulence
l int( l int5Ap/2L). The associated energy spectrum is given
by

G~K !5
u2

4
KL2 expS 2

K2L2

4 D . ~4!

In Fig. 2, we present a map of the index fluctuationsm
obtained for a typical realization of a ‘‘Gaussian turbu-
lence.’’ The number of modesN is 100; the minimum value
Kmin and the maximum valueKmax are respectively 0.1/L

and 6/L with L51 m. The rms. value of the refraction index
fluctuations is equal to 1023. The spatial extent of the visu-
alized field is 10L310L. This map shows ‘‘hot’’~red spot!
and ‘‘cold’’ ~blue spot! structures whose size is of the same
order of magnitude as the characteristic lengthL. We note
that the boundary of each of these inhomogeneities is very
smooth, as is the transition between hot and cold structures.

FIG. 3. Correlation coefficient: comparison between the exact~———!
form and our model~-----!.

FIG. 4. Superposition of the direct and the ground reflected waves.

FIG. 5. Sound-pressure level near a rigid boundary, for a nonturbulent~a!
and a turbulent~b! atmosphere~f54000 Hz,hs51.2 m, ^m2&57.731026,
L51.1 m, 50 realizations!.

FIG. 2. One realization of the refraction index field~Kmin50.1/L m21,
Kmax56/L m21 and 100 modes!. The index fluctuationsm are plotted using
a color scale which extends from22 to 2 times the rms. value ofm.
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After averaging over an ensemble of such realizations, the
second-order statistical properties of the turbulence can be
recovered. Figure 3 presents a comparison between the exact
Gaussian correlation@Eq. ~3!# and the estimated one. The
agreement is excellent. Additional details for homogeneity,
isotropy, and correlation length of the turbulent field are
given by Hugon-Jeannin.15

B. The computation of the sound field

For the prediction of the sound field, we have developed
a code based on the parabolic equation method. The para-
bolic equation, first introduced in underwater acoustics, was
originally limited to narrow-angle propagation; in the last
decade it has been improved to handle wide-angle propaga-
tion problems and is now established as an efficient approxi-
mation of the Helmholtz equation.21,22 For atmospheric en-
vironments with a realistic range-dependent description of
the atmosphere, including turbulence and ground effects, the
parabolic equation method has been used first by Gilbert
et al.10 and then by Juve´ et al.16 In this section we briefly
summarize the derivation of the wide-angle equation used in
our model. The details of the method can be found in
Chevret.23

The starting point is the Helmholtz equation for a har-
monic point source of strengthS in an environment with
azimuthal symmetry:

S ]2

]r 2
1
1

r

]

]r
1

]2

]z2
1k0

2n2DP~r ,z!5Sd~x2x0!, ~5!

whereP(r ,z) is the acoustic pressure,k0 is the reference
wave number,x05(r 0 ,z0) is the position of the source,d is
the Dirac function, andn is the index of refraction composed
of a deterministic part̂n& and a random partm. The farfield
approximation of Eq.~5! is

S ]2

]r 2
1

]2

]z2
1k0

2n2Du~r ,z!50, ~6!

whereu is the variableArP(r . 0).10 For weak turbulence
~mrms!1!, the backscattering by index fluctuations is very
small and the acoustic field is dominated by forward propa-
gating waves. The outgoing waves are solutions of the fol-
lowing one-way wave equation:

]

]r
C~r ,z!5 ik0~Q21!C~r ,z!, ~7!

whereC(r ,z) is the envelopeC(r ,z)5u(r ,z)exp(2 ik0r )
andQ is the square root of the linear second-order operator
Q2 defined as

Q25n21
1

k0
2

]2

]z2
511L,

~8!

L5~n221!1
1

k0
2

]2

]z2
.

The main difficulty in solving Eq.~7! is writing an ac-
curate analytical development of the operatorQ. For atmo-
spheric sound propagation, numerical solutions can be ob-
tained using finite-difference discretization,24 a split-step

Fourier algorithm, or a Green’s function method.25 For sound
propagation in a turbulent atmosphere, the computational ef-
ficiency of the Green’s function method can be maintained
using a phase screen method to describe the random compo-
nent of the index of refraction.26 In this paper we decided not
to use this phase screen approach to be sure that the small-
scale structures of the turbulence, which may have signifi-
cant contributions to the scattering of waves for large angular
deviations from the main axis of propagation, will be nu-
merically tracked by the algorithm.

The principle of the method we used was first presented
by Saad and Lee27 for underwater acoustic propagation. The
extension to wide-angle approximation using a higher-order
Padédevelopment was done by Collins.22 Next we outline
the necessary steps of this method. To advance the solution
of C over a short-rangeDr , we assume that the operatorQ
5 A11L is slowly varying with range. Then, locally, the
formal solution to Eq.~7! takes the form

c~r1Dr ,z!5exp@ ik0~Q21!Dr #c~r ,z!. ~9!

The exponential operator is approximated by a rational
approximation. Following Saad and Lee,27 we use a second-
order Pade´ development which yields

exp@ ik0Dr ~A11L21!#;
11p1L1p2L

2

11q1L1q2L
2 , ~10!

where the coefficientsp1 , p2 , q1 , andq2 are expressed in
terms of the parameters5 ik0Dr as

p15
31s

4
, p25

s216s13

48
,

q15
32s

4
, q25

s226s13

48
.

According to the analysis of Saad and Lee,27 the stabil-
ity of the derived numerical scheme is guaranteed by impos-
ing that the numerator and the denominator of the rational
approximation are complex conjugates of each other, so that
the resulting rational function@Eq. ~10!# is always of modu-
lus one. Replacing the approximation~10! for the exponen-
tial term in Eq.~9!, we obtain the formal expression for the
one-way equation:

@11q1L1q2L
2#c~r1Dr ,z!

5@11p1L1p2L
2#c~r ,z!. ~11!

Numerically, this leads to an implicit integration scheme of
the form

@11q1Lh1q2L h
2#ch

n115@11p1Lh1p2L h
2#ch

n .
~12!

HereLh andL h
2 represent the centered difference approxi-

mations to the partial differential operatorsL andL 2 with
respect to the variablez. This corresponds to a linear system
with pentadiagonal matrices. The resolution is performed
with a standard LU decomposition method.28 This second-
order Pade´ scheme can accommodate a propagation angle as
high as 54°, which is a wider angle than existing finite-
difference techniques having similar cost per step~see the
extensive analysis of Saad and Lee27!. We used a vertical
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stepDz of l/4 and a horizontal marching stepDr of l.23 The
ground is modeled as a flat locally reacting plane with a
complex impedance; a nonreflecting boundary condition is
imposed at the top of the computational domain by adding an
absorption layer of several wavelengths thickness, so that no
significant energy is artificially introduced by reflection from
the upper boundary of the mesh. For the initial pressure field
we use a Gaussian starter with adjustable width to simulate
the radiation of a point source. The stability and precision of
our numerical scheme has been tested for sound propagation
along an impedance boundary in an homogeneous medium.
An excellent agreement with the analytical asymptotic solu-
tion of Attenboroughet al.29 has been obtained.

II. COMPARISONS WITH OUTDOOR MEASUREMENTS
IN THE LINE OF SIGHT REGION

When the sound source and the receiver are placed
above a flat ground, in a nonrefractive atmosphere the acous-
tic wave reaches the receiver via two paths:~1! directly from
the source to the receiver and~2! after being reflected from
the ground surface~Fig. 4!. The superposition of the direct
and the reflected waves induces pronounced interferences
which are a function of the frequency; the height of the
source and of the receiver, their horizontal separation, and
the nature of the ground are additional important parameters.
In the case of a wave propagating over a hard boundary,
interferences are only a function of the frequency and of the
path difference between the direct and the reflected rays.
Very low sound-pressure levels are obtained at the receiver
when the phase difference between the two trajectories is
equal to (2m11)p ~m being an integer!. When the ground
surface impedance is finite and complex, phase and magni-
tude changes are observed for the reflected sound field. The
total pressure field also exhibits typical interference patterns.
This qualitative discussion is in agreement with all the ex-
periments conducted in a steady atmosphere. However, if the
atmosphere becomes random, the sound-pressure levels mea-
sured at the exact location of the interference minima are
significantly higher than the values predicted by a determin-
istic computation.1 In this section we compare the predic-
tions of our model for sound-pressure levels in a turbulent
atmosphere with outdoor measurements. This comparison is
completed with analytical and numerical~scatter plots! re-
sults concerning the fluctuations of the acoustic pressure
field. The study is split into two parts: the propagation over a
rigid boundary and the propagation over a finite impedance
ground.

A. Sound propagation over a rigid boundary

In this case extensive measurements have been made by
Daigle et al.5 Here we focus particularly on two series of
their data. For both experiments the source is located at 1.2
m above the ground and the distance between the source and
the receiver is 15 m. In the first series the receiver is placed
at 0.6 m over the ground, and in the second one it is located
at the height of the source, i.e., 1.2 m. According to meteo-
rological measurements reported by Daigleet al.,5 the vari-
ance of the refraction index̂m2& is equal to 7.731026 and
the characteristic lengthL of the turbulent structures is equal

to 1.1 m. The sound-pressure levels have been measured for
a source frequency range between 1 kHz and 6 kHz.

In the absence of a mean sound-speed gradient, the main
effect of the turbulence is to blur the pattern produced by the
interferences between the direct and the reflected waves.
This effect is illustrated in Fig. 5. The frequency is 4 kHz,
the distance of propagation is 200 m, and the height of the
domain is 20 m. For a nonturbulent atmosphere, the interfer-
ence pattern is clearly marked with a reduction of sound-
pressure levels of 60 dB or more in the region of destructive
interferences. For a turbulent atmosphere, the mean pressure
level is computed by averaging over 50 realizations. We note
that as the distance of propagation increases, the characteris-
tic interference pattern disappears; for a distance greater than
100 m the acoustic field is practically homogeneous, as we
demonstrate analytically later@e.g., Eqs.~17! and ~18!#.

For quantitative comparisons with the measurements re-
ported by Daigleet al.,5 we considered the sound-pressure
level at a fixed receiver position with a varying source fre-
quency for two heights of the receiverhr ~0.6 m, 1.2 m!. In
Fig. 6 we have superposed the results for the deterministic
case and the turbulent one; the averaging has been made over
a relatively small number of realizations, i.e., 50. A fast con-
vergence of the results has been observed for all the practical
cases studied.15,23We explain this behavior by the fact that
the acoustic wave propagates over a large number of charac-

FIG. 6. Sound-pressure level spectrum: comparison between Daigle’s mea-
surements~d!, a deterministic calculation~———! and our model~s!
@^m2&57.731026, L51.1 m,r515 m,hs51.2 m,~a! hr50.6 m,~b! hr51.2
m#.
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teristic scalesL, leading to an additional spatial averaging
connected to the cumulative effect of turbulence. The two
plots of Fig. 6 show very good agreement between the data
of Daigle et al.5 and our model for a wide frequency range.
We note especially the filling-in of the interference minima
where an increase in sound-pressure level up to 20 dB is
observed. However, at the first interference minimum in case
~b!, our simulation overpredicts the measured level by more
than 5 dB. The reasons for this discrepancy are not clear but
may involve 3-D effects and small deviations of the experi-
ment spectrum from the Gaussian shape. We point out the
fact that all the meteorological parameters used in our simu-
lations have been taken from outdoor measurements without
any empirical adjustment. However, we have determined that
small deviations~610%! from the given values ofL or ^m2&
have no perceptible effects on the sound-pressure level
spectra.23 In curve~b!, we note also a small reduction of the
predicted level in the regions of constructive interferences.
This reduction increases with frequency as scattering of the
acoustic wave increases; a reduction of 2 dB is obtained for
the highest frequencies.

To complete the interpretation of these results it is inter-
esting to consider the fluctuations of the pressure at a given
point. In Fig. 7 we have plotted two ‘‘scatter’’ plots of the
normalized pressurep/^p&, where^p& is the mean field or
coherent part of the wave. In these plots the coordinates are

the real and the imaginary parts ofp/^p&, as introduced by
McBrideet al.12 The receiver is located at the same height as
the source, 1.2 m, and at a distancer of 15 m. Depending on
the frequency of the source, we obtained a destructive inter-
ference@f54.5 kHz, Fig. 7~a!# or constructive interference
@f53.5 kHz, Fig. 7~b!#. In these diagrams each point is as-
sociated with one realization of the random medium. The
first scatter plot shows a large spreading of data, whereas the
second gives a set of points localized around a circular arc of
radius 1.6. We also note that the points are mainly located in
the half-plane Re(p/^p&)>0. These results can be under-
stood by a simple analytical analysis of the pressure field.
For these experimental data the wave parameterD5r /k0L

2

is equal to 0.15 forf54.5 kHz and to 0.19 forf53.5 kHz.
Thus,D is smaller than 1 and it is possible to evaluate the
mean field̂ p& using a geometric approximation method~see
the Appendix for details!. When the position of the receiver
corresponds to a constructive interference, the modulus of
p/^p& is given by Eq.~A9!:

U p
^p&

U.expSAp

2
^m2&k0

2Lr D . ~13!

In the plane~Re(p/^p&), Im(p/^p&)! this corresponds to
a circle with a radius equal to 1.55 in the case of the data
reported by Daigleet al.5 This result is in very good agree-
ment with our numerical simulation@see Fig. 7~b!#. The sign
of the real part ofp/^p& @Eq. ~A13!# is given by the sign of
the product cos[(Sr1Sd)/2]3cos[(Sr2Sd)/2]. For short
distances~r515 m!, the phase fluctuationsSr and Sd are
small and have the same order of magnitude; consequently
the expression cos[(Sr1Sd)[2]]3cos[(Sr2Sd)/2] will be
positive for almost all of the realizations, as clearly shown on
Fig. 7~b!.

When the position of the receiver corresponds to a de-
structive interference, the differences (Sr2Sd) and (sSr

2

2 sSd
2 ) are small for the experimental configuration and the

modulus ofp/^p& can be approximated by@Eq. ~A11!#:

U p
^p&

U.2 expS sSd
2

2
D uSr2Sdu

usSd
2 2sSr

2 u
. ~14!

As usSd
2 2 sSr

2 u is very small a large variation of the

modulusup/^p&u can be obtained depending on the instanta-
neous phase differenceSr2Sd . This gives a wide spatial
distribution on the scatter plot diagram@see Fig. 7~a!#. The
sign of the real part ofp/^p& @Eq. ~A14!# is governed by the
sign of the product sin[(Sr1Sd)/2]3sin[(Sr2Sd)/2]. This
sign is strongly dependent of the instantaneous phase differ-
ence, as confirmed by the scatter plot@Fig. 7~a!#.

Let us now consider the evolution of the mean-square
pressure with the distance of propagation. In their analytical
analysis, Daigleet al.5 have shown that̂p2& can be written
as

FIG. 7. Scatter plots of the normalized acoustic pressure field~a! in a de-
structive interference,f54500 Hz; ~b! in a constructive interference,
f53500 Hz.~^m2&57.731026, L51.1 m, r515 m,hs5hr51.2 m.!
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^p2&5
2

r dr r
FsA

2

2 S r rr d 1
r d
r r

D 1
r r
2r d

S 12
r d
r r

D 2
111~12sA

2rA!cos@k0~r r2r d!#exp[2sS
2~12rS!] G .

~15!

sA
2 and sS

2 are, respectively, the amplitude and the phase
variance of eachwave~sA

2 . sAr
2 . sAd

2 ; sS
2 . sSr

2 . sSd
2 !.rA

and rS are the amplitude and phase correlation coefficients
between the direct and the reflected paths. As previously, we
assume thatr r /r d.1 andsA

2!1 and we write^p2& in the
form

^p2&5
2

r 2
$11cos@k0~r r2r d!#exp@2sS

2~12rS!#%.

~16!

Depending on the location of the receiver,^p2& will oscillate
between the following values:

^p2&max5
2

r 2
$11exp@2sS

2~12rS!#%, ~17!

^p2&min5
2

r 2
$12exp@2sS

2~12rS!#%. ~18!

The phase variancesS
2 @Eq. ~A8!# increases with the

frequency of the source, and the distance from the source. As
a consequence, as frequency and/or range increases, the
maximum intensity level will decrease for a constructive in-
terference@Eq. ~17!# and increase for a destructive interfer-
ence@Eq. ~18!#. This is in agreement with the results of Fig.
6. For increasing distances, the variancesS

2 becomes large
and the limit value of both expressions~17! and~18! is 2/r 2.
This value corresponds to the incoherent sum of the direct
and the reflected waves. The field becomes homogeneous for
large distances of propagation and high frequencies, as
clearly shown in Fig. 5.

B. Sound propagation over a finite impedance
boundary

In our computations the ground is modeled as a flat
plane with finite complex impedanceZs . Zs is calculated
using the one parameter formula of Delany-Bazley:30

Zs5r0c0F110.05S r0f

s D 20.75

1 i0.077S r0f

s D 20.73G , ~19!

wherer0 is the air density,c0 is the sound speed, ands is the
flow resistivity @formula ~19! is expressed in mks units#. For
our comparisons, we referred to the experimental studies of
Parkin and Scholes3,4 which were made under homogeneous
atmospheric conditions~i.e., no wind and temperature gradi-
ents!. The source and the receiver are, respectively, located
at 1.8 m and 1.5 m above the ground. The frequency is in the
range 100 Hz–3 kHz. The ground is covered with grass~flow
resistivity s533105 Nm24 s!. The turbulence is character-
ized by a variancêm2& of 231026 and a scale of inhomoge-
neitiesL of 1.1 m. These are the estimated values obtained
by Daigle8 in his analysis of the experimental data of Parkin

and Scholes. In Fig. 8 our numerical simulations are com-
pared with a deterministic calculation and experimental data
for two propagation distances:r5200 m andr5350 m. For
both curves, a pronounced minimum occurs between 400 Hz
and 600 Hz. This excess attenuation band becomes larger
and stronger when the distancer increases: 20 dB at 200 m
@Fig. 8~a!# and 25 dB at 350 m@Fig. 8~b!#. The interference
of the direct and ground reflected waves, which depends on
the exact phase relationship between them, is strongly af-
fected by turbulence. For high frequencies~above 400 Hz!,
the deterministic calculations overpredict the attenuation of
the sound pressure. The discrepancy between the measured
points and the solid curve increases with the distance of
propagation to reach 5 dB at 350 m. With our model of
turbulence, a very good agreement between the predictions
and the measured values is obtained. A similar result has
been previously presented by Daigle8 who extended the clas-
sical coherent acoustic theory by taking into account the am-
plitude and phase fluctuations. However, in his model the
partial coherence between the direct and reflected paths is an
adjustable parameter chosen to obtain reasonable agreement
with measurements at all frequencies and distances. For low
frequencies~below 400 Hz!, the fluctuations in phase and
amplitude decrease rapidly and atmospheric turbulence is ex-
pected to have no significant effects on the sound-pressure
level. In Fig. 8 we find that below 400 Hz the numerical

FIG. 8. Relative sound-pressure level spectrum: comparison between Parkin
and Scholes’s measurements~d!, a deterministic calculation~———! and
our model ~s! @hs51.8 m, hr51.5 m, ~a! r5200 m, ~b! r5350 m,
s5300 000 N3m243s, ^m2&5231026, L51.1 m#.

3593 3593J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 Chevret et al.: Model for propagation through turbulence

Downloaded 03 Mar 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



predictions with turbulence~empty symbols! and without
turbulence~solid lines! are identical. We note that these
computations underestimate the level in comparison with the
outdoor measurements. This difference~,5 dB! between
calculated and measured values at low frequencies could be
attributed to the local impedance model which fails when the
effects of ground waves and surface waves are important.
The importance of these waves at low frequencies has been
demonstrated by Daigle8 using the same experimental data.

III. COMPARISONS WITH OUTDOOR
MEASUREMENTS IN AN UPWARD REFRACTING
ATMOSPHERE

We now consider the propagation of acoustic waves in
an upward refracting atmosphere. As illustrated in Fig. 9, an
acoustic shadow zone appears in the vicinity of the ground
when the sound speed gradient, which depends on the tem-
perature and wind speed profiles, is negative. The ray paths
for sound propagating from a source are bent upwards, gen-
erating a caustic which delimits the boundary of the shadow
zone. For a receiver located in this region there is no direct
ray coming from the source, and no direct sound energy can
penetrate beyond the edge of the shadow zone. However, in
a large number of outdoor experiments, the acoustic levels
recorded in the shadow zone are nonnegligible. Sound en-
ergy does penetrate this region due to diffraction~at low
frequency! and turbulent scattering~at high frequency!.10,19

Here we compare our numerical simulations with the experi-
mental data of Wiener and Keast,6 which have been already
discussed by Piercyet al.,1 Daigle et al.,19 and Gilbert
et al.10 In these experiments, the evolution of the relative
sound-pressure level with the distance between the source
and the receiver is usually described by a step function with
three regions associated with different mechanisms of sound
wave propagation. The shape of this curve presents a weak
dependency with the frequency of the source, but a strong
dependency with the degree of upward refraction. First, for
short-range propagation, a series of constructive and destruc-
tive interferences is noted and there is a spherical spreading
of the pressure field. Second, at the edge of the geometric

FIG. 10. Relative sound-pressure level: comparisons between Wiener and
Keast measurements~d!, a deterministic calculation~----! and our model
~———! @hs53.7 m, hr51.5 m, s5300 000 N3m243s, ^m2&5231026,
L51.1 m, f5424 Hz ~a! weak refractive conditions,~b! strong refractive
conditions; f5848 Hz ~c! weak refractive conditions,~d! strong refractive
conditions#.

FIG. 9. Sound propagation in a shadow zone.
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shadow zone, the relative sound pressure decreases abruptly
with range until it reaches a uniform level that is the result of
atmospheric turbulence. In the third region the relative
sound-pressure level follows a plateau at around220 dB to
230 dB. These typical behaviors are shown in Fig. 10,
where we have plotted the experimental data of Wiener and
Keast6 for two frequencies and two profiles of the index of
refraction. As noticed by Daigleet al.19 and by Gilbert
et al.,10 who give the first quantitative interpretations, the
difference between the sound-pressure level in the long-
range region and the prediction using a deterministic compu-
tation including diffraction effects is a consequence of the
scattering of sound by turbulence into the shadow zone.

Wiener and Keast have investigated two situations with
upward refraction. The source and the receiver were located,
respectively, 3.7 m and 1.5 m over a ground covered with
grass ~equivalent flow resistivity of 33105 Nm24 s; this
value has been used by Gilbertet al.10 in their parabolic
equation study of propagation through turbulence!. Here we
particularly focus on measurements obtained for1

3 octave
bands centered at frequencies of 424 Hz and 848 Hz. The
mean sound speed profiles as well as the turbulence charac-
teristics are those previously used by Gilbertet al.:10

c~z!5H c01a ln~z/d!, z>z0 ,

c01a ln~z0 /d!, z,z0 ,
~20!

wherec05340 m s21, z050.01 m, andd5631023 m. The
coefficienta is equal to20.5 m/s for a weak upward refrac-
tion and 22 m/s for a strong upward refraction. For the
turbulent parameters, we used the atmospheric parameters
given in Gilbertet al.,10 e.g., ^m2&5231026 andL51.1 m.
In Fig. 10 we have plotted the relative sound-pressure level
versus the distance of propagation. For each experimental
configuration we compare the Wiener and Keast data with
the relative sound-pressure level calculated with our para-
bolic algorithm for a deterministic computation and a turbu-
lent simulation with averaging over 50 realizations.

For short-range propagation there is no noticeable influ-
ence of turbulence. The deterministic computation gives the
exact values of the outdoor measurements; it confirms the
adequate choice of the mean sound speed profiles. When the
receiver enters the refractive shadow zone, the effects of the
random variations ofm become suddenly important and the
deterministic computations largely underestimate the acous-
tic pressure levels. For long-range propagation the calcula-
tions with our turbulence model give a more or less constant
value of the relative sound-pressure level, as reported by
Gilbert et al.10 for two individual trials. The accuracy of our
predictions is generally very good. In particular we find a
plateau for the sound pressure in the shadow zone with a
correct level except in the cased ~Fig. 10!.

The process of the filling-in of the shadow zone is illus-
trated in Figs. 11 and 12, where two color maps of the
sound-pressure level are shown in the deterministic case, for
a particular realization of the turbulent field. For nonturbu-
lent conditions we note, as expected, that the shadow zone is
deeper and the transition region sharper at high frequencies
@848 Hz; Fig. 12~a!# than at lower frequencies@424 Hz; Fig.
11~a!#. As we can see in Fig. 10, this effect is more pro-

nounced for the case of weak upward refraction than for the
case of strong upward refraction. For the turbulent case, the
principal mechanism is clearly the scattering of sound from
the illuminated region. Especially near the edge of the
shadow zone, scattering occurs for preferential directions
with respect to the boundary of the shadow zone. The turbu-
lent inhomogeneities with dimensions of sizeL participate in
sound scattering through the angleu, satisfying the Bragg
relation u52 sin21(l/2L).7 Consequently, the scattering
angle decreases when the frequency of the incident acoustic
wave increases. So, for low frequencies, the scattered sound
raises the sound level in the shadow zone, including the re-
gion near the ground@Fig. 11~b!#. For higher frequencies,
when the scattered angle is smaller, we clearly note in Fig.
12~b! the slender aspect of the scattered field, and the sound
field near the ground is less influenced by the scattered
sound. In this case of a source frequencyf5848 Hz under
strong upward refraction conditions@Fig. 10~d!#, our numeri-
cal simulation give the global trend of the sound-pressure
level in the shadow zone, but the measured levels are under-
estimated by 5 to 10 dB. Two main factors can explain this
discrepancy:~1! the variability of the atmosphere during out-
door sound propagation experiments;~2! the choice of the
turbulence model. The numerical simulations are sensitive to
the parameters used to describe the mean sound profile~e.g.,
a, z0 , c0 , d! and the atmospheric turbulence~e.g.,^m2&, L!;
however, the sound-pressure levels are perfectly predicted
for short-range propagation~see Fig. 10!, and a variation of
10% of the turbulent variableŝm2& andL induces no signifi-
cant modifications~less than 1 dB!23 so that the variability of
the atmosphere is not a relevant explanation. Concerning the
model of turbulence, the fluctuations have been considered
as scalar and characterized by a single length scaleL; it is
known that the contributions to the scattering cross section of
the temperature and velocity fluctuations are different and
depend on the spectral representation of the turbulence.31 As
our simulations seem to indicate that the computed scattering
angles are too small, we conjecture that a different spectral
representation of the refractive index fluctuations~including
a significant ‘‘inertial’’ range! would be more appropriate.
Preliminary computations have been done to test these
ideas,32,33 and a detailed study of the influence of the model
of turbulence will be presented in a forthcoming paper.

In addition to the mean sound-pressure level, it is of
interest to study the fluctuations which can be measured
around the mean value. In Fig. 13 we have plotted an upper
and lower estimation of these variationsI1 andI2 according
to the formula

I6510 log@^p2&6@^„p22^p2&…2&#1/2#. ~21!

These curves give an idea of the typical mean-square
pressure variations we can obtain in the shadow zone, from
one realization to another one~up to 10 dB in this case!. To
complete this analysis, we calculated the normalized mean-
square pressure fluctuationsp2/^p2& and the probability dis-
tribution of the normalized amplitude fluctuationsA/sA .
When the receiver is located in the line of sight region
~r510 m, Fig. 14!, the effects of the atmospheric turbulence
on sound fluctuations are small. The mean square pressure is
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always of the same order of magnitude as the mean value
(p2/^p2&51), and the amplitude fluctuations are normally
distributed according to the expression

P ~A!5
1

sAA2p
expS 2

~A2^A&!2

2sA
2 D . ~22!

This is in agreement with the previous study of Basset al.34

When the receiver is located in the shadow zone~r5300 m,
Fig. 15!, the instantaneous evolution of the sound level is
totally different. The normalized mean-square pressure
p2/^p2& has an intermittent evolution with a mean level close
to zero and sporadic very high peaks~up to 100 times the
mean value!. The amplitude distribution is no longer a
Gaussian distribution; its evolution is very similar to the be-
havior of the mean square pressure fluctuations measured in
free field35,36beyond the region of caustics formation. In this
case, it has been shown that the Rayleigh–Rice distribution
law,37 valid for a weak turbulence regime, can be extended to
a gamma distribution38 for a strong turbulence regime:

P ~A!5
dp

G~p!
exp~2dA!Ap21, ~23!

whereG is the gamma function. The coefficientsp andd are
obtained from the experimental values of the mean ampli-
tude ^A& and the variancesA

2 by solving the equations

^A&5p/d, sA
25p~p11!/d2. ~24!

In Fig. 15~b! we compare the amplitude distribution ob-
tained from our numerical simulations with the heuristic
gamma distribution, and we note a very good agreement.

FIG. 11. Relative sound-pressure level in strong refractive conditions for a
nonturbulent atmosphere~a! and for one turbulent realization~b! ~f5424
Hz, hs53.7 m,s5300 000 N3m243s, ^m2&5231026, L51.1 m!.

FIG. 12. Relative sound-pressure level in strong refractive conditions for a
nonturbulent atmosphere~a! and for one turbulent realization~b! ~f5848
Hz, hs53.7 m,s5300 000 N3m243s, ^m2&5231026, L51.1 m!.

FIG. 13. Relative sound-pressure level and standard deviation for strong
refractive conditions~———! ^I &, ~----! I1 andI2 ~f5424 Hz,hs53.7 m,
hr51.5 m, ^m2&5231026, L51.1 m!.
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IV. CONCLUSIONS

In this paper we have presented a numerical model to
simulate the propagation of acoustic waves in the atmo-
sphere near the ground, with the combined effects of turbu-
lence and mean sound speed gradients. In our technique, the
turbulence is represented as a set of realizations of a two-
dimensional random field generated by a limited number of
Fourier modes. The spectral characteristics of these Fourier
modes are chosen according to the statistics of the turbu-
lence. This method requires noa priori hypothesis; it only
needs measured physical quantities, such as the spatial cor-
relation scales, the variance, and the spectrum of the refrac-
tive index fluctuations. For each individual realization, we
propagate the acoustic waves using a wide-angle parabolic
equation. The ground effects are modeled by a finite com-
plex impedance.

In the first test we considered the case of sound propa-
gation in a nonrefractive atmosphere above ground. For both
the rigid and nonrigid ground our numerical simulations are
in very good agreement with the experimental data:3–5 in
particular, the mean sound-pressure levels of the minima as-
sociated with destructive interferences are well predicted.
Scatter plots illustrate different behaviors of the acoustic

field when the receiver is located at a point of constructive or
destructive interference.

In the second test we studied the propagation of acoustic
waves in an upward-refracting atmosphere. Two frequencies
were investigated~424 Hz and 848 Hz! as in the experiment
reported by Wiener and Keast for weak and strong upward-
refracting conditions. In the near field of the source, the tur-
bulence has no significant influence. As soon as the receiver
crosses the boundary of the shadow zone, the mean relative
sound-pressure level decreases rapidly and reaches a value
practically independent of the distance. The existence of this
characteristic plateau agrees with the experimental findings;
its level is well predicted, except in one case~strong upward
conditions with a high-frequency source!. One advantage of
our numerical approach is that ‘‘instantaneous’’ parameters
can be obtained, such as amplitude or phase fluctuations.
Two attractive results are that the mean square pressure be-
comes very intermittent in the deep shadow zone, and that
the amplitude fluctuations depart strongly from a normal law,
and are well represented by a gamma distribution.

The results we have obtained can be considered as very
promising; but it must be recognized that the Gaussian model
is oversimplified. Improvements can be made along two di-
rections:~1! choosing a better spectral representation of the
refractive index fluctuations~von Karman spectrum instead

FIG. 14. ~a! Normalized mean square pressure and~b! amplitude distribu-
tion ~———! theoretical law and~s! our computations in the line of sight
region~f5848 Hz,hs53.7 m,hr51.5 m,r.10 m,s5300 000 N3m243s,
^m2&5231026, L51.1 m!.

FIG. 15. ~a! Normalized mean square pressure and~b! amplitude distribu-
tion ~———! theoretical gamma law,~----! theoretical Rayleigh–Rice law
and~s! our computations in the deep shadow zone~f5848 Hz,hs53.7 m,
hr51.5 m, r.300 m,s5300 000 N3m243s, ^m2&5231026, L51.1 m!.
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of a Gaussian derived spectrum!, and ~2! incorporating the
vectorial character of turbulence into our random field gen-
erator to take into account that velocity fluctuations as well
as temperature fluctuations are present in the atmosphere.
Work is currently in progress along these two lines. It is
suggested that in future experiments, temperature and veloc-
ity spectra have to be measured, as well as their relative
contributions to the refractive index fluctuations, so that
comparisons with numerical predictions can be made from
this view point.

APPENDIX

The sound pressurep~x! atR due to a point source atS
placed above a perfectly reflecting boundary~Fig. 4! is the
sum of two terms, respectively, associated with the direct
and the reflected waves:

p~x!5
Ar

r r
exp~ ik0r r1 iSr !1

Ad

r d
exp~ ik0r d1 iSd!. ~A1!

In Eq. ~A1!, Sd , Sr , andAd , Ar denote the phase and am-
plitude of the direct and reflected waves, respectively. When
the wave parameterD5r /(k0L

2) is much smaller than 1, the
mean pressurêp~x!& can be evaluated using the geometric
approximation method~a detailed analysis can be found in
the books of Tatarski7 and Rytovet al.39!. The ratio between
the variance of the amplitude fluctuations and the variance of

the phase fluctuations is of the order ofD2. For the condi-
tions of our computations (D<0.2) this allows us to ignore
amplitude as compared to phase fluctuations. Considering
that the distancesr r and r d are of the same order asr , we
express the pressurep~x! as

p~x!5
A

r
@exp~ ik0r r1 iSr !1exp~ ik0r d1 iSd!#. ~A2!

In the geometric approximation, the phase fluctuations of the
wave follow a normal law; using the formulâexp(iS)&
5exp(2^S2&/2), we obtain the mean pressure^p~x!&:

^p~x!&5
A

r
Fexp~ ik0r d!expS 2

sSd
2

2
D

1exp~ ik0r r !expS 2
sSr
2

2
D G . ~A3!

sSd
2 andsSr

2 are the phase variance of the direct and reflected

waves. From Eqs.~A2! and ~A3!, the normalized pressure
p/^p& is expressed as

p

^p&
5

exp~ ik0r r1 iSr !1exp~ ik0r d1 iSd!

exp~ ik0r d!exp~2sSd
2 /2!1exp~ ik0r r !exp~2sSr

2 /2!
.

~A4!

From Eq.~A4! it is easy to evaluate the modulus ofp/^p&:

U p
^p&

U52 expS sSd
2

2
D ucos@~k0/2!~r r2r d!1~Sr2Sd!/2#u

@11exp~sSd
2 2sSr

2 !12 exp@~sSd
2 2sSr

2 !/2#cosk0~r r2r d!#
1/2. ~A5!

When the receiver is located on a constructive interfer-
ence, the path differencer r2r d is equal to an even multiple
of the wavelength. The modulus ofp/^p& then simplifies to

U p
^p&

U52 expS sSd
2

2
D ucos@~Sr2Sd!/2#u
11exp@~sSd

2 2sSr
2 !/2#

. ~A6!

The terms (Sr2Sd) andsSd
2 2 sSr

2 being very small, this last

expression reduces to

U p
^p&

U.expS sSd
2

2
D . ~A7!

For a medium with single scale inhomogeneitiesL @Eq.
~3!#, the phase variancessSd

2 is given in the geometrical ap-

proximation by39

sSd
2 5Ap^m2&k0

2Lr , ~A8!

so that

U p
^p&

U.expSAp

2
^m2&k0

2Lr D . ~A9!

In the plane~Re(p/^p&), Im(p/^p&)! this corresponds to a
circle for a fixed position of the receiver.

When the position of the receiver corresponds to a de-
structive interference, the path difference (r r2r d) is equal to
an odd multiple of the half-wavelength. Expression~A5! can
be then simplified into

U p
^p&

U52 expS sSd
2

2
D usin@~Sr2Sd!/2#u

u12exp@~sSd
2 2sSr

2 !/2#u
. ~A10!

If the differences (Sr2Sd) and (sSr
2 2sSd

2 ) are small,

expression~A10! can be approximated by

U p
^p&

U.2 expS sSd
2

2
D uSr2Sdu

usSd
2 2sSr

2 u
. ~A11!

Now we are interested in the sign of the real part of
p/^p&. Using the relationp/^p&5(p^p&* )/u^p&2u, we check
the sign of the real part ofp^p&* . Starting from Eqs.~A2!
and ~A3!, we get
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Re$p^p&* %5
A2

r 2
$cosSr1cos@Sd1k0~r r2r d!#%

3expS 2
sSr
2

2
D 1

A2

r 2
$cosSd

1cos@Sr1k0~r r2r d!#%expS 2
sSd
2

2
D .
~A12!

For a constructive interference we can write

Re$p^p&* %52
A2

r 2
cosS Sr1Sd

2
D cosS Sr2Sd

2
D

3FexpS 2
sSr
2

2
D 1expS 2

sSd
2

2
D G. ~A13!

In this case of a destructive interference the expression~A12!
can be simplified as

Re$p^p&* %522
A2

r 2
sinS Sr1Sd

2
D sinS Sr2Sd

2
D

3FexpS 2
sSr
2

2
D 1expS 2

sSd
2

2
D G. ~A14!
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