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In this paper a series of numerical simulations of the effect of turbulence on the propagation of
acoustic waves in the atmosphere are presented. First the technique of representing the turbulence
as a set of realizations of a random field generated by a limited number of Fourier modes is
described. Through each individual realization, the acoustic waves are propagated in a wide-angle
parabolic approximation to obtain the sound-pressure level. Ensemble averaging is then performed
to compute the statistical properties of the acoustic field: mean sound-pressure level, intensity
fluctuations, and amplitude distributions. The method is applied first to a nonrefractive atmosphere,
both in the presence of a rigid boundary and of an impedance ground, and then to an upward
refractive atmosphere with an impedance ground. The model, which contains no adjustable
parameters, is tested using the experimental data of Parkin and Scholes, Daigle, and Wiener and
Keast. Good agreement between numerical simulations and experiments is obtainé896©
Acoustical Society of America.

PACS numbers: 43.28.Fp, 43.20.Bi, 43.20.Fn, 43.50L\aS]

INTRODUCTION theory developed by Chernbfor homogeneous and isotro-
At heric turbul d fluctuati . pic turbulence. An important parameter of this approach is
mospheric turbuience causes random TUCtUalions 1y, . reation coefficient between the direct and reflected

temperature, wind velocity, pressure, and density. When Aaves which has to be adjusted according to experimental

acoustic wave is propagated through a turbulent atmospher . R : i
its amplitude and phase are significantly affected by thegata' This theory is limited to short-range propagation and

variations in the value of the refraction index along theweak fluctuations of the refraction index.

ropagation path. The influence of temperature and wind ve- In recent years several authors have taken into account
bropag path. P the effect of turbulence on sound propagation through nu-

locity variations has been demonstrated in many experimen- ~ . . . 10-12 . i
tal studies-? From these measurements, it is clear that the"€1ca! simulations® ~The basic idea is to model the tur-
ulence as a set of independent realizations of a random

effect of turbulence is particularly important in two situa- . L L .
tions: field; for each realization, deterministic equations are solved

(1) Propagation near the ground at small distanced® obtain the acoustic pressure field. Then, the relevant sta-

where the partial loss of coherence between the direct angptcal gquantities(mean sound-pressure levels, amplitude
the reflected paths induces a reduction of the interferencefuctuations, etg.are computed by averaging OvVet an en-
The acoustic levels measured at a minimum can be increasé§Mple of realizations. In the model of McBrigeal.™” the

by 10 dB3-5 atmospheric turbulence is described as an ensemble of ran-

(2) Propagation over long distances when strong negadom spherically symmetric eddies with Gaussian index of

tive vertical sound speed gradients refract sound upward. D&gfraction profiles. For each realization, the total sound pres-
terministic computations predict the existence of a deeUre 1S calculated by coherently adding the individual scat-
shadow zone, whereas measurements indicate a nonnegtf?-ring contributions of each eddy or “turbule.” The scattered
gible sound-pressure level due to the scattering of sound bfjeld of each turbule is obtained using a Born approximation
turbulencé or a Rytov method for higher frequencies. Even though this
Theoretical analyses of waves, including acousticPProach isin good agreement with experimental studies re-
waves, propagating in random media have been extensiveﬂprted in the literature, its domain of validity is limited by
treated, but analytical results are usually limited to the caséhe use of scattering theories which break down for long-
of an unbounded medium with an homogeneous determinigange propagation. A different approach to take into account
tic background. For a nonrefracting atmosphere, Daigle pre-the atmospheric turbulence is to split the refraction index
sented a model to predict the field of acoustic waves prointo two components, i.e., & mean pamh =co/c (c, is the
duced by a point source propagating in a turbulenteference sound speed aads the mean local sound spged
atmosphere above a hardr a finite impedance boundafy. and a random park related to the fluctuations of the me-
Daigle’s analysis is an extension of the weak scatteringlium. Then, assuming that the time evolution of the turbulent
structures is much greater than the transit time of the acoustic
dpresently at: CPE Lyon, LISXCNRS EPO09ZLASSSO, Laboratoire wave, _It Is possible to rgpr(_asent the mde_x fluctuatlpms_ a
d'Acoustique, Systees, Signaux et SOnar, 25 rue du Plat, 69288 Lyon S€t of independent realizations of a spatially random field. In
Cedex 02, France. the model developed by Gilbeet al,'° the realizations ofx
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are calculated as the output of a filter excited by white noise. A
The properties of the filter are chosen according to the tur-
bulent parameters, such as the correlation length, the corre-
lation function of the index fluctuations, and the level of
these fluctuations. Then, the acoustic wave is propagated us-
ing a parabolic equation method. This approach gives useful
predictions for the calculation of turbulent effects in an
upward-refracting atmosphere with long-range propagation
and frequencies above a few hundred iAn alternative o; 3
model of “cheap” turbulence has been introduced by Blanc-
Benonet al*®* The hypothetical turbulent field consists of a
small number of randomly oriented, discrete, Fourier modes
whose amplitudes are chosen to produce a distribution of 0
temperature or velocity comparable to those found in the
experimental studies. It has been applied successfully to the ) K1, X

random focusing of waves in turbulentethe propagation

of waves through homogeneous unbounded turbulent

medial® and the sound propagation in the atmospHie.

this paper we present a systematic application of the random

Fourier modes technique to sound propagation in the near FIG. 1. Sketch of one Fourier mode.
ground atmosphere. In Sec. | we outline the basic ideas of

the synthetized turbulence model and the wide-angle Parapace by its moduluk; and its orientatiors; (see Fig. 1
bolic equation method. In Sec. Il, we present numericalone of the advantages of this technique is its ability to gen-
simulations for a nonrefracting atmosphere. Predictions fograte random fields of infinite extent with prescribed spectra.
the relative sound-pressure levels are compared with expefjn addition, since the turbulent fields have been modeled in
mental data reported by Parkin and Schdfeand Daigle terms of a fixed number of discrete Fourier modes, we can
etal” In Sec. Ill, we consider the upward-refracting atmo- gerive analytically the fields and their spatial derivatives at
sphere case with reference to the experiments of Wiener ar@/ery pointx. The index of refractiom is then expressed in
Keast® The physical phenomena involved are qualitativelyterms of a mean parfn)=cy/c and a fluctuating part
illustrated by snapshots of the scattered acoustic field in th,g: —T'/2T, (T, is the reference temperatiiréVe simplify
shadow zone. Quantitative comparisons are made betwegRe problem by assuming thét) varies only with the height
the parabolic computations and data for the relative sound; gpove the ground and thd@t (x) is a function ofz and the
pressure level versus range. Finally, some results are preprizontal distance. Although the present work deals with
sented for the intensity fluctuations and for the probabilitytwo-dimensional scalar random fields, its extension to three-
density function of the pressure amplitude. Section IV givesgimensional scalar or vectorial fields presents no special

Kz, Y
=l

v

a summary and conclusions. difficulties %17
In this paper the turbulence is considered isotropic and
|. THEORETICAL BACKGROUND homogeneous and the spectral density of the turbulent eddies

is modeled with a Gaussian distribution. Even though it is a
Our numerical simulation of sound waves through tur-simple model for atmospheric turbulence near the ground,
bulence involves two elements; the generation of a randorthis approximation has been used successfully by Daigle
field in terms of a superposition of discrete random Fourieret al¥1°to explain outdoor sound propagation experiments.
modes and the integration of a deterministic wave equationt has also been introduced in numerical simulations to pre-
The sound field can then be characterized by “instantadict the effects of turbulence in an upward-refracting atmo-
neous” maps of the sound-pressure level and by statisticalphere by Gilberet all® and Havelocket al?° In a future
properties obtained using an ensemble average. paper we will report on the influence of turbulence model in
A. Modeling the turbulent field predicting spund—pr(_asgure levels in a refractive _shadO\_/v zone.
To obtain a statistically homogeneous and isotropic field
Here we consider that the temperature fluctuations in the’ anglesd; and ¢; must be independent random variables
atmosphere are the only cause of the fluctuations of thgjith uniform distribution ovef0,2s]. The amplitude of each
sound speect. Assuming that the turbulence is frozen in mode is picked from a prescribed energy specti@fi).
time, the temperature fluctuatior’s' at a pointx can be G(K) is related to the two-point temperature correlation
represented by a sum df random Fourier modes, m(r) by**
N .
T'(x)= 2, 7(K;)cogK;-X+ ;). (1) G(K)=02Kf rm(r)Jo(Kr) dr, 2
=1 0
Here,.7(K;) and¢; are the amplitude and the phase angle ofwhere ¢ is the variance of the temperature fluctuations and
thejth Fourier mode and is the turbulent wave vector. For J, is the Bessel function of first kind and zero order. In our
a two-dimensional field, each vectsy is defined in Fourier numerical simulationsG(K) is sampled uniformly byN val-
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FIG. 4. Superposition of the direct and the ground reflected waves.

FIG. 2. One realization of the refraction index fie{l ;;=0.1L m™2, and 6L _Wlth _L: 1 m. The rms. value _Of the refraction |r?dex
Kmac=6/L m~* and 100 modés The index fluctuationg. are plotted using ~ fluctuations is equal to 10. The spatial extent of the visu-
a color scale which extends from2 to 2 times the rms. value qf. alized field is 1@ X 10L. This map shows “hot"(red spot
and “cold” (blue spot structures whose size is of the same
order of magnitude as the characteristic lengthwe note

\L;leu 5}1( bet\/\(/:ei:](zr;ei ;?;?;:2;1?1;:::;(@%?&0'8 ?urrl;]mmusrt?uc that the boundary of each of these inhomogeneities is very
max: 9y mooth, as is the transition between hot and cold structures.

tures is well represented. In this study, the random fieldS
T'(x) is characterized by a Gaussian correlation function

m(r): 20
m(r)=exp(—r?/L?), )

where L is related to the integral scale of the turbulence
lin(line= V/7/2L). The associated energy spectrum is given

by

Height (m)

4

In Fig. 2, we present a map of the index fluctuations
obtained for a typical realization of a “Gaussian turbu-
lence.” The number of modeN is 100; the minimum value
Kmin @and the maximum valu&,,,, are respectively 0.1/

02 2L2
G(K)=ZKL2 exp(— ) (4)

1.0

Height (m)

05

Correlation coefficient

0 Ranga (m) 200

3 60 il

Normalized distance (x/L) Sound pressure level (dB)

0.0

FIG. 5. Sound-pressure level near a rigid boundary, for a nonturb(dgnt

FIG. 3. Correlation coefficient: comparison between the exast—) and a turbulentb) atmospherdf=4000 Hz,hs=1.2 m, (u?)=7.7<10"°,
form and our model-—-). L=1.1 m, 50 realizations
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After averaging over an ensemble of such realizations, th&ourier algorithm, or a Green'’s function methodzor sound
second-order statistical properties of the turbulence can bgropagation in a turbulent atmosphere, the computational ef-
recovered. Figure 3 presents a comparison between the exdtiency of the Green’s function method can be maintained
Gaussian correlatiofEqg. (3)] and the estimated one. The using a phase screen method to describe the random compo-
agreement is excellent. Additional details for homogeneitynent of the index of refractioff In this paper we decided not
isotropy, and correlation length of the turbulent field areto use this phase screen approach to be sure that the small-
given by Hugon-Jeannitr. scale structures of the turbulence, which may have signifi-
cant contributions to the scattering of waves for large angular
deviations from the main axis of propagation, will be nu-
merically tracked by the algorithm.

For the prediction of the sound field, we have developed  The principle of the method we used was first presented
a code based on the parabolic equation method. The pargy Saad and L&€ for underwater acoustic propagation. The
bolic equation, first introduced in underwater acoustics, wagxtension to wide-angle approximation using a higher-order
originally limited to narrow-angle propagation; in the last padedevelopment was done by CollifSNext we outline
decade it has been improved to handle wide-angle propagée necessary steps of this method. To advance the solution
tion problems and is now established as an efficient approxief ¥ over a short-rangar, we assume that the operatQr
mation of the Helmholtz equatici:** For atmospheric en- = 1+ 7 is slowly varying with range. Then, locally, the
vironments with a realistic range-dependent description oformal solution to Eq(7) takes the form
the atmosphere, including turbulence and ground effects, the .
parabolic equation method has been used first by Gilbert ~#(F +AT.2)=exiiko(Q—1)Ar]y(r.2). 9
et al’® and then by Juvet al® In this section we briefly The exponential operator is approximated by a rational
summarize the derivation of the wide-angle equation used impproximation. Following Saad and L&ewe use a second-
our mot(ZJIBeI. The details of the method can be found inorder Padelevelopment which yields
Chevret:

B. The computation of the sound field

. _ , . _ 1+pLL+p, 2
The starting point is the Helmholtz equation for a har- exlikoAr(V1+ 2 —1)]~——-—— s, (10)
monic point source of strengt in an environment with 1+a: 2+ 7
azimuthal symmetry: where the coefficientg,, p,, q;, andq, are expressed in
P2 1 - terms of the parameter=ikoAr as
(W+Fﬁ+ﬁ+k0” )P“'Z)—SW‘XO)’ ® 340 o?+60+3
. . . Pi=—7%— P2=— g
where P(r,z) is the acoustic pressuré, is the reference
wave numberx,=(ry,Zy) is the position of the sourcéis 3— o 2= 6o+3
the Dirac function, and is the index of refraction composed W=7 %= (g
of a deterministic parfn) and a random payt. The farfield
approximation of Eq(5) is According to the analysis of Saad and 1%¢he stabil-
2 R ity of the derived numerical scheme is guaranteed by impos-
—+ —2+k§n2)u(r,z)=0, (6) ing that the numerator and the denominator of the rational
are oz approximation are complex conjugates of each other, so that

whereu is the variableJrP(r > 0).1° For weak turbulence the resulting rational functiofEq. (10)] is always of modu-
(ume<1), the backscattering by index fluctuations is verylus one. Replacing the approximati¢h0) for the exponen-
small and the acoustic field is dominated by forward propatial term in Eq.(9), we obtain the formal expression for the
gating waves. The outgoing waves are solutions of the folone-way equation:

lowing one-way wave equation: [14qyZ+0, % 2]e(r + Ar,2)
d o
o Y(r.2)=iko(Q-1)¥(r,2), 7) =[1+p1 L+ P22 ?1Y(r,2). (11)

) ) Numerically, this leads to an implicit integration scheme of
where¥(r,z) is the envelope¥ (r,z)=u(r,z)exp(—ikgr) the form

andQ is the square root of the linear second-order operator

Q2 defined as [1+01%n+ a2 Blgh =11+ pr%nt P2’ ] h- 1
(92
Q?=n%+ Pl 1+ %, Here #,, and.# 2 represent the centered difference approxi-
092 mations to the partial differential operata#s and %2 with
92 tS) respect to the variable This corresponds to a linear system
L=(n?-1)+ 22 with pentadiagonal matrices. The resolution is performed
0

with a standard LU decomposition meth®dThis second-
The main difficulty in solving Eq(7) is writing an ac-  order Padescheme can accommodate a propagation angle as
curate analytical development of the operafarFor atmo-  high as 54°, which is a wider angle than existing finite-
spheric sound propagation, numerical solutions can be oldifference techniques having similar cost per stepe the
tained using finite-difference discretizatith,a split-step extensive analysis of Saad and E&eWe used a vertical
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stepAz of M4 and a horizontal marching stég of \.2 The - - ————
ground is modeled as a flat locally reacting plane with a
complex impedance; a nonreflecting boundary condition is 220
imposed at the top of the computational domain by adding an
absorption layer of several wavelengths thickness, so that no L
significant energy is artificially introduced by reflection from
the upper boundary of the mesh. For the initial pressure field
we use a Gaussian starter with adjustable width to simulate
the radiation of a point source. The stability and precision of
our numerical scheme has been tested for sound propagation
along an impedance boundary in an homogeneous medium.
An excellent agreement with the analytical asymptotic solu-
tion of Attenboroughet al?® has been obtained.

Il. COMPARISONS WITH OUTDOOR MEASUREMENTS
IN THE LINE OF SIGHT REGION

essure Level (dB)

When the sound source and the receiver are placeds i
above a flat ground, in a nonrefractive atmosphere the acous2
tic wave reaches the receiver via two pattig:directly from
the source to the receiver afi@) after being reflected from
the ground surfacéFig. 4). The superposition of the direct L
and the reflected waves induces pronounced interferences
which are a function of the frequency; the height of the 60
source and of the receiver, their horizontal separation, and 1000
the nature of the ground are additional important parameters. Frequency (Hz)

In the case of a wave propagating over a hard boundary,
interferences are only a function of the frequency and of the
path difference between the direct and the reflected rays.
Very low sound-pressure levels are obtained at the receivef/C- 6 Sound-pressure level spectrum: comparison between Daigle’s mea-
. . . surements(@®), a deterministic calculatiort ) and our model(O)
when the phase difference between the two trajectories i§,2_7 710, L=1.1m,r=15 m,h,=1.2 m,(a h,=0.6 m,(b) h,= 1.2
equal to (2n+1)7 (m being an integgr When the ground m].
surface impedance is finite and complex, phase and magni-
tude changes are observed for the reflected sound field. The
total pressure field also exhibits typical interference patterngo 1.1 m. The sound-pressure levels have been measured for
This qualitative discussion is in agreement with all the ex-a source frequency range between 1 kHz and 6 kHz.
periments conducted in a steady atmosphere. However, if the  In the absence of a mean sound-speed gradient, the main
atmosphere becomes random, the sound-pressure levels me#fect of the turbulence is to blur the pattern produced by the
sured at the exact location of the interference minima arénterferences between the direct and the reflected waves.
significantly higher than the values predicted by a determinThis effect is illustrated in Fig. 5. The frequency is 4 kHz,
istic computatiort. In this section we compare the predic- the distance of propagation is 200 m, and the height of the
tions of our model for sound-pressure levels in a turbulentlomain is 20 m. For a nonturbulent atmosphere, the interfer-
atmosphere with outdoor measurements. This comparison gnce pattern is clearly marked with a reduction of sound-
completed with analytical and numeric@catter plotsre-  pressure levels of 60 dB or more in the region of destructive
sults concerning the fluctuations of the acoustic pressuriterferences. For a turbulent atmosphere, the mean pressure
field. The study is split into two parts: the propagation over devel is computed by averaging over 50 realizations. We note
rigid boundary and the propagation over a finite impedancéhat as the distance of propagation increases, the characteris-
ground. tic interference pattern disappears; for a distance greater than
100 m the acoustic field is practically homogeneous, as we
demonstrate analytically lat¢e.g., Eqs(17) and(18)].

In this case extensive measurements have been made by For quantitative comparisons with the measurements re-
Daigle et al® Here we focus particularly on two series of ported by Daigleet al.® we considered the sound-pressure
their data. For both experiments the source is located at 1[2vel at a fixed receiver position with a varying source fre-

m above the ground and the distance between the source agdency for two heights of the receivier (0.6 m, 1.2 n). In

the receiver is 15 m. In the first series the receiver is place#ig. 6 we have superposed the results for the deterministic
at 0.6 m over the ground, and in the second one it is locatedase and the turbulent one; the averaging has been made over
at the height of the source, i.e., 1.2 m. According to meteoa relatively small number of realizations, i.e., 50. A fast con-
rological measurements reported by Daigteal.® the vari-  vergence of the results has been observed for all the practical
ance of the refraction indegu?) is equal to 7.¥10 % and  cases studiet?’?® We explain this behavior by the fact that
the characteristic length of the turbulent structures is equal the acoustic wave propagates over a large number of charac-

Sou

-40

A. Sound propagation over a rigid boundary

3591 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 Chevret et al.: Model for propagation through turbulence 3591

Downloaded 03 Mar 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



5 — the real and the imaginary parts pf(p), as introduced by
L + (a) McBride et al? The receiver is located at the same height as
N 1 : . | the source, 1.2 m, and at a distamoaf 15 m. Depending on
T I ’ . the frequency of the source, we obtained a destructive inter-
i .o ’{'ﬁ.". e i ference[f =4.5 kHz, Fig. 7a)] or constructive interference
i ‘e il 5‘_’,. o [f=3.5 kHz, Fig. Tb)]. In these diagrams each point is as-
0+ = £ E*.“&—." a sociated with one realization of the random medium. The
- 3 E‘: . 3{“' . first scatter plot shows a large spreading of data, whereas the
- .+ e . ':.- g second gives a set of points localized around a circular arc of
L Ioeteest o radius 1.6. We also note that the points are mainly located in
R . _:_ K3 i the half-plane Rq{/(p))=0. These results can be under-
5 T I T stood by a simple analytical analysis of the pressure field.
~ s 0 5 For these experimental data the wave paramBterr/k,L>
- 9 . . is equal to 0.15 fof =4.5 kHz and to 0.19 fof =3.5 kHz.
EEL ”,’:.,, (b) Thus, D is smaller than 1 and it is possible to evaluate the
P . Ty '.,'g" mean field(p) using a geometric approximation meth@te
g L i ' ‘ep the Appendix for details When the position of the receiver
= IR corresponds to a constructive interference, the modulus of
g _i_ ' .:‘ﬁ p/{p) is given by Eq.(A9):
OoF-——4-- — — b oaaR -
[ o '
SR ok i
L ,.. ._:_ . ....'!:3? J ) exp (pmAHkglr . (13
* .. I...'.“. ~
'2_2 l (I) ' 2 In the plang(Re(p/{p)), Im(p/{p))) this corresponds to
Real part a circle with a radius equal to 1.55 in the case of the data

reported by Daigleet al® This result is in very good agree-
ment with our numerical simulatigrsee Fig. T)]. The sign

FIG. 7. Scatter plots of the normalized acoustic pressure (&lth a de- of the real part Ob/< p> [Eq' (A13)] is given by the sign of

structive interferencef=4500 Hz: (b) in a constructive interference, the product cos[$ + S;)/2] Xcos[(S,—Sy)/2]. For short

f=3500 Hz.((u®)=7.7x10"% L=1.1 m,r=15 m,hg=h,=1.2 m) distances(r =15 m), the phase fluctuationS, and S; are
small and have the same order of magnitude; consequently

teristic scaled, leading to an additional spatial averaging the expression cos§{+ S;)[2]] Xcos[(S; — S;)/2] will be

connected to the cumulative effect of turbulence. The twdositive for almost all of the realizations, as clearly shown on

plots of Fig. 6 show very good agreement between the dathig- 7(b). N )

of Daigle et al® and our model for a wide frequency range. ~ When the position of the receiver corresponds to a de-

We note especially the filling-in of the interference minima Structive interference, the difference$, ¢ S;) and (@5

where an increase in sound-pressure level up to 20 dB is a%d) are small for the experimental configuration and the

observed. However, at the first interference minimum in casenodulus ofp/(p) can be approximated H¥Eq. (A11)]:

(b), our simulation overpredicts the measured level by more

than 5 dB. The reasons for this discrepancy are not clear but

may involve 3-D effects and small deviations of the experi- D gg IS, — Sy

ment spectrum from the Gaussian shape. We point out the —‘ =2 exr{ d) d

fact that all the meteorological parameters used in our simu- (p)

lations have been taken from outdoor measurements without

any empirical adjustment. However, we have determined that

small deviationg+10%) from the given values of or (u?) As |0%d - ‘Té,| is very small a large variation of the

have no perceptible effects on the sound-pressure levehodulus|p/(p)| can be obtained depending on the instanta-

spectre?® In curve (b), we note also a small reduction of the neous phase differencg, —S;. This gives a wide spatial

predicted level in the regions of constructive interferencesdistribution on the scatter plot diagrasee Fig. 7a)]. The

This reduction increases with frequency as scattering of theign of the real part op/(p) [Eq. (A14)] is governed by the

acoustic wave increases; a reduction of 2 dB is obtained fosign of the product sinf, + S;)/2] Xsin[(S,— Sy)/2]. This

the highest frequencies. sign is strongly dependent of the instantaneous phase differ-
To complete the interpretation of these results it is inter-ence, as confirmed by the scatter dlBig. 7(a)].

esting to consider the fluctuations of the pressure at a given Let us now consider the evolution of the mean-square

point. In Fig. 7 we have plotted two ‘“scatter” plots of the pressure with the distance of propagation. In their analytical

normalized pressurp/(p), where(p) is the mean field or analysis, Daigleet al> have shown tha¢p?) can be written

coherent part of the wave. In these plots the coordinates ais

> 14

Tz _ 2
|<Tsd_<75r|
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2 [d2(r, r r rq)? 10—
=i 3 e [ |
o
+1+(1_O'E\PA)COS{ko(rr_rd)]eXp[_U'é(l_Ps)]}-
(15 -10 +
o2 and o2 are, respectively, the amplitude and the phase
variance of eachwaves = o = o} ; 05= 0§ = 05)-pa 20 L

and pg are the amplitude and phase correlation coefficients
between the direct and the reflected paths. As previously, we~ I (a)

assume that,/r;=1 ando3<1 and we write(p?) in the B 30 Lowsru e -
form g 10
2 —
(p)= 1z {1+ cogko(r,—rq)Jexd — o&(1-ps)I}- 5
e £ or ’
Depending on the location of the receivép?) will oscillate =2
between the following values: § 210 F 4
2 2 2 g
<p >max:r_2 {l'f‘eX[{—O'S(l—pS)]}, (17) ES:
T 20 | .
A~
2 2 2
(PP)min=rz {1~ extl ~o&(1-pg)]}- (18 " . |
The phase variance? [Eq. (A8)] increases with the 100 Frequency (Hzl)OOO

frequency of the source, and the distance from the source. As

a consequence, as frequency and/or range increases, the
maximum intensity level will decrease for a constructive in- _ . _ _

terference g, (17)] and increase for a destucive inerfer- 1 &, S S s e s conparion oeves rn
ence[Eq. (18)]. This is in agreement with the results of Fig. our model (O) [h,=1.8 m, h,=1.5 m, (@ r=200 m, (b) r=350 m,

6. For increasing distances, the variancgbecomes large =300 000 N<m™*xs, (4?=2x10"% L=1.1 .

and the limit value of both expressiof?) and(18) is 2/ 2.

This value corresponds to the incoherent sum of the dire¢ind Scholes. In Fig. 8 our numerical simulations are com-
and the reflected waves. The field becomes homogeneous fggred with a deterministic calculation and experimental data
large distances of propagation and high frequencies, agr two propagation distances=200 m and =350 m. For
clearly shown in Fig. 5. both curves, a pronounced minimum occurs between 400 Hz
and 600 Hz. This excess attenuation band becomes larger
and stronger when the distanceéncreases: 20 dB at 200 m
[Fig. 8@] and 25 dB at 350 nmiFig. 8b)]. The interference
of the direct and ground reflected waves, which depends on
In our computations the ground is modeled as a flathe exact phase relationship between them, is strongly af-
plane with finite complex impedancg;. Z; is calculated fected by turbulence. For high frequenciedove 400 Hy,
using the one parameter formula of Delany-BaZiy: the deterministic calculations overpredict the attenuation of
pof | ~078 pof| ~07 the sound pressure. The discrepancy between the measured
1+0.0%—) +i0.077(—) T (19

B. Sound propagation over a finite impedance
boundary

points and the solid curve increases with the distance of
propagation to reach 5 dB at 350 m. With our model of
wherep, is the air densityc, is the sound speed, amds the  turbulence, a very good agreement between the predictions
flow resistivity [formula (19) is expressed in mks unjtsFor  and the measured values is obtained. A similar result has
our comparisons, we referred to the experimental studies dieen previously presented by Daftjleho extended the clas-
Parkin and Scholé$ which were made under homogeneoussical coherent acoustic theory by taking into account the am-
atmospheric condition§.e., no wind and temperature gradi- plitude and phase fluctuations. However, in his model the
entg. The source and the receiver are, respectively, locategartial coherence between the direct and reflected paths is an
at 1.8 m and 1.5 m above the ground. The frequency is in thadjustable parameter chosen to obtain reasonable agreement
range 100 Hz-3 kHz. The ground is covered with gfflesv ~ with measurements at all frequencies and distances. For low
resistivity c=3x10° Nm™*s). The turbulence is character- frequencies(below 400 Hz, the fluctuations in phase and
ized by a variancéu?) of 2x10 ¢ and a scale of inhomoge- amplitude decrease rapidly and atmospheric turbulence is ex-
neitiesL of 1.1 m. These are the estimated values obtainegected to have no significant effects on the sound-pressure
by Daiglé® in his analysis of the experimental data of Parkinlevel. In Fig. 8 we find that below 400 Hz the numerical

Zs=poCo
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FIG. 9. Sound propagation in a shadow zone.

predictions with turbulencéempty symbols and without
turbulence(solid lineg are identical. We note that these
computations underestimate the level in comparison with the
outdoor measurements. This difference5 dB) between &
calculated and measured values at low frequencies could b
attributed to the local impedance model which fails when the 3
effects of ground waves and surface waves are important.g
The importance of these waves at low frequencies has beery
demonstrated by Daidlaising the same experimental data.

IIl. COMPARISONS WITH OUTDOOR
MEASUREMENTS IN AN UPWARD REFRACTING
ATMOSPHERE

Relative sound pre

We now consider the propagation of acoustic waves in
an upward refracting atmosphere. As illustrated in Fig. 9, an
acoustic shadow zone appears in the vicinity of the ground
when the sound speed gradient, which depends on the tem-
perature and wind speed profiles, is negative. The ray paths
for sound propagating from a source are bent upwards, gen-
erating a caustic which delimits the boundary of the shadow
zone. For a receiver located in this region there is no direct
ray coming from the source, and no direct sound energy can
penetrate beyond the edge of the shadow zone. However, in
a large number of outdoor experiments, the acoustic levels
recorded in the shadow zone are nonnegligible. Sound en-
ergy does penetrate this region due to diffractian low
frequency and turbulent scatterinat high frequency!®*®
Here we compare our numerical simulations with the experi-
mental data of Wiener and Kedsiyhich have been already
discussed by Piercyet al,! Daigle etal.’® and Gilbert
et all® In these experiments, the evolution of the relative
sound-pressure level with the distance between the source
and the receiver is usually described by a step function with
three regions associated with different mechanisms of sound
wave propagation. The shape of this curve presents a weak

500

1000 1500
Range (m)

dependency W_ith the frequency of the source, but a strong. 10, Relative sound-pressure level: comparisons between Wiener and
dependency with the degree of upward refraction. First, fOKeast measurement®), a deterministic calculatiot---) and our model

short-range propagation, a series of constructive and destrug=——) [hs=3.7 m,h;=1.5 m, 0=300 000 Nxm~*xs, (x*=2X10"°,

tive interferences is noted and there is a spherical spreadi

of the pressure field. Second, at the edge of the geometrigngitiong
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shadow zone, the relative sound pressure decreases abruptigunced for the case of weak upward refraction than for the
with range until it reaches a uniform level that is the result ofcase of strong upward refraction. For the turbulent case, the
atmospheric turbulence. In the third region the relativeprincipal mechanism is clearly the scattering of sound from
sound-pressure level follows a plateau at arow®D dB to  the illuminated region. Especially near the edge of the
—30 dB. These typical behaviors are shown in Fig. 10shadow zone, scattering occurs for preferential directions
where we have plotted the experimental data of Wiener andith respect to the boundary of the shadow zone. The turbu-
Keas?f for two frequencies and two profiles of the index of lent inhomogeneities with dimensions of sizgarticipate in
refraction. As noticed by Daigleet al!® and by Gilbert sound scattering through the angle satisfying the Bragg
et al,'° who give the first quantitative interpretations, the relation ¢=2 sin }(\/2L).” Consequently, the scattering
difference between the sound-pressure level in the longangle decreases when the frequency of the incident acoustic
range region and the prediction using a deterministic compuwave increases. So, for low frequencies, the scattered sound
tation including diffraction effects is a consequence of theraises the sound level in the shadow zone, including the re-
scattering of sound by turbulence into the shadow zone. gion near the groundlFig. 11(b)]. For higher frequencies,
Wiener and Keast have investigated two situations withwhen the scattered angle is smaller, we clearly note in Fig.
upward refraction. The source and the receiver were located,2(b) the slender aspect of the scattered field, and the sound
respectively, 3.7 m and 1.5 m over a ground covered witHield near the ground is less influenced by the scattered
grass (equivalent flow resistivity of $10° Nm™*s; this  sound. In this case of a source frequericy848 Hz under
value has been used by Gilbest all® in their parabolic  strong upward refraction conditiofiSig. 10(d)], our numeri-
equation study of propagation through turbulend¢¢ere we cal simulation give the global trend of the sound-pressure
particularly focus on measurements obtained jooctave level in the shadow zone, but the measured levels are under-
bands centered at frequencies of 424 Hz and 848 Hz. Thestimated by 5 to 10 dB. Two main factors can explain this
mean sound speed profiles as well as the turbulence charagiscrepancy(l) the variability of the atmosphere during out-
teristics are those previously used by Gilbetal:'° door sound propagation experimentg) the choice of the
turbulence model. The numerical simulations are sensitive to
_ (20) the parameters used to describe the mean sound pi@fije
Cotaln(zy/d), z<z,, a, zy, Cy, d) and the atmospheric turbulenteg.,(u?), L);
wherecy,=340 m %, z,=0.01 m, andd=6X 10~ m. The however, the sound-pre_ssure Ie_vels are perfect_ly_predicted
for short-range propagatiaisee Fig. 18 and a variation of

Cotaln(z/d), z=z,,
c(z)=

coefficienta is equal to—0.5 m/s for a weak upward refrac- : 2 . L
tion and —2 m/s for a strong upward refraction. For the 10% of the turbulent variablgg:“) andL induces no signifi-

turbulent parameters, we used the atmospheric parametet gnt Tod|f|(;]at|on_$les? thanl 1 dBi S0 lthattt_he Vg”ab'“ty.Of th
given in Gilbertet al,'® e.q.,(u%=2x10" andL=1.1 m. e atmosphere is not a relevant explanation. Concerning the

In Fig. 10 we have plotted the relative sound-pressure Ievélmdel of turbulence, the fluctuations have been considered

versus the distance of propagation. For each experiment scalar and chara.cterllzed by a single Ilength scale IS
configuration we compare the Wiener and Keast data wit nown that the contributions to the scattering cross section of

the relative sound-pressure level calculated with our parat—he temperature and velocity fluctuations are different and

bolic algorithm for a deterministic computation and a turbu-depe_nCI on _the spectral representation of the turbul¥née. .
lent simulation with averaging over 50 realizations. our simulations seem to indicate that the computed scattering

For short-range propagation there is no noticeable influf’mgles are too small, we conjecture that a different spectral

ence of turbulence. The deterministic computation gives théepresg_ntatlo‘r)_ of the”refractlve index ﬂuctuancémn:ludmg
exact values of the outdoor measurements; it confirms thE S|gn!f|cant inertial _range) would be more appropriate.
adequate choice of the mean sound speed profiles. When t eI'TZ'g?ry computations have bee_n done to test these
receiver enters the refractive shadow zone, the effects of tHgeas, and a.detalled study O.f the mfluencg of the model
random variations oft become suddenly important and the of turbulence will be presented in a forthcoming paper.

deterministic computations largely underestimate the acous- In addition to the mean sound-pressure level, it is of

tic pressure levels. For long-range propagation the calcuidlMterest to study the fluctuations which can be measured

tions with our turbulence model give a more or less constan‘"flr(:julnd the n:_eant_valu?.trl]n Fig. 1.3 t\.’\(;e havglplotted ‘Zr.] upper
value of the relative sound-pressure level, as reported b ndlower estimation ot these variationsandl . according

Gilbert et al 1 for two individual trials. The accuracy of our '°© the formula

predictions is generally very good. In particular we find a |.=10 lod(p2)+ 2_(p2y)2y72/2. 21
plateau for the sound pressure in the shadow zone with a  ~ d (P =LP* = (PN @)
correct level except in the cask(Fig. 10. These curves give an idea of the typical mean-square

The process of the filling-in of the shadow zone is illus- pressure variations we can obtain in the shadow zone, from
trated in Figs. 11 and 12, where two color maps of theone realization to another orjap to 10 dB in this cageTo
sound-pressure level are shown in the deterministic case, f@omplete this analysis, we calculated the normalized mean-
a particular realization of the turbulent field. For nonturbu-square pressure quctuatiop%/(p2> and the probability dis-
lent conditions we note, as expected, that the shadow zone isbution of the normalized amplitude fluctuatiods o, .
deeper and the transition region sharper at high frequencié&hen the receiver is located in the line of sight region
[848 Hz; Fig. 12a)] than at lower frequencig€l24 Hz; Fig.  (r=10 m, Fig. 14, the effects of the atmospheric turbulence
11(a)]. As we can see in Fig. 10, this effect is more pro-on sound fluctuations are small. The mean square pressure is
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FIG. 11. Relative sound-pressure level in strong refractive CO”dEiO"S for &G, 12. Relative sound-pressure level in strong refractive conditions for a
nonturbulent atmospher@) and for one turbulent realizatiof) (f=424 nonturbulent atmospher@ and for one turbulent realizatiofb) (f =848

Hz, hy=3.7 m, =300 000 NKm"*xs, (u)=2x10°%, L=1.1 m. Hz, he=3.7 m, =300 000 N<m*xs, (u3=2x10", L=1.1 m.

always of the same order of magnitude as the mean value
(p?/{p?)=1), and the amplitude fluctuations are normally ~ (A)=p/d, oa=p(p+1)/d> (24)
distributed according to the expression
) In Fig. 15b) we compare the amplitude distribution ob-
AN = 1 exd — (A—(A)) ) (22) tained from our numerical simulations with the heuristic
oA\/ﬂ 2(TAz gamma distribution, and we note a very good agreement.

This is in agreement with the previous study of Bassl3*
When the receiver is located in the shadow zre300 m,
Fig. 19, the instantaneous evolution of the sound level is Eg
totally different. The normalized mean-square pressure=
p?/(p?) has an intermittent evolution with a mean level close
to zero and sporadic very high pealtg to 100 times the
mean valug The amplitude distribution is no longer a
Gaussian distribution; its evolution is very similar to the be-
havior of the mean square pressure fluctuations measured i
free field>*®beyond the region of caustics formation. In this
case, it has been shown that the Rayleigh—Rice distribution
law,*" valid for a weak turbulence regime, can be extended to
a gamma distributiolf for a strong turbulence regime: 50 . .
9P 0 500 1000 1500

- _ p—1 Range (m)
(o) exp(—dA)AP (23

wherel is the gamma function. The coefficieqisandd are , -

. . _FIG. 13. Relative sound-pressure level and standard deviation for strong
obtained from the experm;ental vallues of the mean amplifefractive conditiong ) (1), (=) I, and|_ (f=424 Hz,h,=3.7 m,
tude(A) and the variancer; by solving the equations h,=1.5 m,(u?)=2x107% L=1.1m.
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FIG. 15. (a) Normalized mean square pressure @pdamplitude distribu-
tion ( ) theoretical gamma law(----) theoretical Rayleigh—Rice law
and(O) our computations in the deep shadow z¢he 848 Hz,h,=3.7 m,
h,=1.5 m,r=300 m,c=300 000 N\xm*Xs, (u?)=2X10"% L=1.1 m).

FIG. 14. (a) Normalized mean square pressure @mdamplitude distribu-
tion ( ) theoretical law andO) our computations in the line of sight
region(f =848 Hz,h;=3.7 m,h,=1.5 m,r =10 m,c=300 000 Nxm™“xs,
(uH=2x10"6 L=1.1 m.

field when the receiver is located at a point of constructive or
IV. CONCLUSIONS destructive interference.
In the second test we studied the propagation of acoustic
In this paper we have presented a numerical model tavaves in an upward-refracting atmosphere. Two frequencies
simulate the propagation of acoustic waves in the atmowere investigated424 Hz and 848 Hras in the experiment
sphere near the ground, with the combined effects of turbureported by Wiener and Keast for weak and strong upward-
lence and mean sound speed gradients. In our technique, thefracting conditions. In the near field of the source, the tur-
turbulence is represented as a set of realizations of a twdsulence has no significant influence. As soon as the receiver
dimensional random field generated by a limited number otrosses the boundary of the shadow zone, the mean relative
Fourier modes. The spectral characteristics of these Fouriesound-pressure level decreases rapidly and reaches a value
modes are chosen according to the statistics of the turburactically independent of the distance. The existence of this
lence. This method requires rapriori hypothesis; it only characteristic plateau agrees with the experimental findings;
needs measured physical quantities, such as the spatial cdts level is well predicted, except in one casé&rong upward
relation scales, the variance, and the spectrum of the refraconditions with a high-frequency soujc®©ne advantage of
tive index fluctuations. For each individual realization, weour numerical approach is that “instantaneous” parameters
propagate the acoustic waves using a wide-angle parabol@an be obtained, such as amplitude or phase fluctuations.
equation. The ground effects are modeled by a finite comTwo attractive results are that the mean square pressure be-
plex impedance. comes very intermittent in the deep shadow zone, and that
In the first test we considered the case of sound propahe amplitude fluctuations depart strongly from a normal law,
gation in a nonrefractive atmosphere above ground. For bothnd are well represented by a gamma distribution.
the rigid and nonrigid ground our numerical simulations are ~ The results we have obtained can be considered as very
in very good agreement with the experimental dafain promising; but it must be recognized that the Gaussian model
particular, the mean sound-pressure levels of the minima ass oversimplified. Improvements can be made along two di-
sociated with destructive interferences are well predictedrections:(1) choosing a better spectral representation of the
Scatter plots illustrate different behaviors of the acoustiaefractive index fluctuationgvon Karman spectrum instead
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of a Gaussian derived spectrynand (2) incorporating the the phase fluctuations is of the order Bf. For the condi-
vectorial character of turbulence into our random field gentions of our computationsi{=<0.2) this allows us to ignore
erator to take into account that velocity fluctuations as wellamplitude as compared to phase fluctuations. Considering
as temperature fluctuations are present in the atmospherthat the distances, andry are of the same order as we
Work is currently in progress along these two lines. It isexpress the pressupgx) as
suggested that in future experiments, temperature and veloc- A
ity spectra have to be measured, as well as their relative (x)=— [exp(ikor, +iS,) + explikorg+iSg)].  (A2)
contributions to the refractive index fluctuations, so that r
comparisons with numerical predictions can be made fromy, the geometric approximation, the phase fluctuations of the
this view point. wave foIIo;/v a normal law; using the formuléexp(S))
APPENDIX exp(—(S°)/2), we obtain the mean pressuEXx)):

The sound pressumg(x) at R due to a point source & (p(x)) = ﬁ
placed above a perfectly reflecting boundéyg. 4) is the r
sum of two terms, respectively, associated with the direct

2
. Os,
and the reflected waves: +exp(ik0r,)exp( — 7) .

Ar . . Ad . .
PO) = xXplikol  +iSo) + =" explikorq +1Sq). (AL) o§, andof are the phase variance of the direct and reflected
waves. From Eqs(A2) and (A3), the normalized pressure
p/(p) is expressed as

| 7%,
explikgrg)exp — >

(A3)

In Eq. (A1), S4, S, andA,, A, denote the phase and am-
plitude of the direct and reflected waves, respectively. Whe
the wave parameteEB:r/(koLZ) is much smaller than 1, the p exp(ikor, +iS,) +exp(ikor g+iSg)

mean pressurép(x)) can be evaluated using the geometricy \ = : — 2 : — 2o
approximation methoda detailed analysis can be found in (P explikorg)expt crsd/2)+exp(|k0rr)exq Usrlz)
the books of Tatarskiand Rytovet al39). The ratio between (A4)
the variance of the amplitude fluctuations and the variance dfrom Eq.(A4) it is easy to evaluate the modulus pf p):

‘i—Zexp{U_%d |cog (Ko/2)(r, —r4) + (S, — Sy)/2]|
(Pl 2 |[1+expo§,—05)+2 exd (a5, — 0§ )/2]coske(r, —1g) ]V

(A5)

When the receiver is located on a constructive interfer- ~ When the position of the receiver corresponds to a de-
ence, the path differenae—r 4 is equal to an even multiple structive interference, the path difference-ry) is equal to
of the wavelength. The modulus pf{p) then simplifies to an odd multiple of the half-wavelength. Expressi@®) can

2 be then simplified into
‘ p p(ffsd |cog (S —Sw/2
—|=2exg 5
(p) 2

. A6
1+exf (o5~ 08 )/2] (A6)
T 2 ]
The terms 6, —Sy) ando§, — 0§ being very small, this last _‘ _s ex;{ ﬁ) |Slr[(3r;Sd)/22]| . (A10)
expression reduces to (p) 2 |1_exq(‘78d_‘78,)/2]|
p o
d
—|=exp —|. A7
‘(p) p( 2 ) (A7) If the differences §,—S;) and (o-gr—agd) are small,
For a medium with single scale inhomogeneitiefEq. ~ €XPression/A10) can be approximated by
(3)], the phase variancarséd is given in the geometrical ap-
proximation by® )
7s4| IS =Sl
2 = () kELe v |l F(_) 1SS
T (o , 2 ex . All
5 : ®) 2| (%, o] AL
so that
p . . . .
@ =exp - (uoHkgLr |. (A9) Now we are interested in the sign of the real part of
p/(p). Using the relatiorp/(p) = (p(p)*)/|(p)?|, we check
In the plane(Re(p/{p)), Im(p/{p))) this corresponds to a the sign of the real part gi(p)*. Starting from Eqs(A2)
circle for a fixed position of the receiver. and(A3), we get
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A2
Re{p(p)*}= ra {cos S, +cog Sy+Ko(r —rg)l}

LAY
X exX —7 +r—2{COSSd

2
o

2

~

+005{Sr+ko(rr—rd)]}exp(

(A12)
For a constructive interference we can write
A2 a+sd) S —Sy
*\—9___
Relp(p)*}=2"2 COS( 5|08 5
% o8,
X|ex 5 +ex /] (A13)

In this case of a destructive interference the expres#idg)
can be simplified as

A? +S -S
Re{p(p)*}=—2r—2sin(sr2 d)sin(sr2 d)
% 4
X |ex —TF +ex —Td . (A19)
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