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Abstract
The use of multichannel measurements is a current practice for source character-

ization in multiple fields. But common to all experimental approaches is the pres-
ence of extraneous noise such as calibration, electronic or ambient noise. However,
signals are supposed to be stationary and performing averaging of cross-spectral
quantities over several time snapshots will concentrate uncorrelated noise along the
cross-spectral matrix (CSM) diagonal. A common practice is thus to set the CSM
diagonal to zero, which is known to improve the dynamic range of the source local-
ization maps, yet this also leads to underestimated source levels. More advanced
techniques have been recently developed to avoid such problems by preserving or
reconstructing source information that lies in the CSM diagonal.

Several existing approaches for CSM denoising are investigated in this paper and
a new one is proposed as well. We consider an unknown number of uncorrelated
sources and no reference background noise. The proposed method is based on the
decomposition of the CSM into a low-rank part and a residual diagonal part attached
to the unwanted noise; the corresponding inference problem is set up within a prob-
abilistic framework which is ideally suited to take the non-deterministic nature of
the estimated CSM into account. This is then solved by computing the maximum
a posteriori estimates of the decomposition by estimating the full a posteriori prob-
ability distribution by running a Markov chain Monte Carlo. For each method,
reconstruction errors are compared in the frame of various numerical experiments,
for different acoustic signals and noise structures.

Introduction

Array systems and multichannel pressure measurements are widely used for source local-
ization and quantification. Measurement noise such as calibration, electronic or ambient
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noise affects the performance of acoustic imaging algorithms. In aeroacoustic applications,
acoustic pressure measurements can be highly disturbed by the presence of flow-induced
noise [10].

Since the 70s, multiple algorithms have exploited the eigenstructures of the measured
cross-spectral matrix (CSM) to extract a signal and a noise part; so does multiple signal
classification (MUSIC) [18], for example. But this subspace identification is possible only
in the cases where the signal-to-noise ratio (SNR) is high and the number of uncorrelated
sources sufficiently low.

In the field of underwater acoustics, Forster and Asté [12] also exploited the CSM
structure to built a projection basis from Hermitian matrix that depends on the array
geometry. In the aeracoustic field, a widespread practice is to set the diagonal entries of
the CSM to zero. It is based on the assumption that flow induced noise has a correlation
length smaller than the microphone inter-spacing. It is known to improve the dynamic
range of source localization maps, but it leads to an underestimation of source levels [9].

More advanced methods have been proposed using wavenumber decomposition to fil-
ter out high wavenumbers associated with turbulent boundary layer noise [2]. Other
techniques make use of a preliminary background noise measurement, based on general-
ized singular value decomposition [5], spectral subtraction [4] or an extension of spectral
estimation method [3].

However, even when available, a background noise reference is not always representative
since the source itself can generate the unwanted noise. The problem addressed in this
paper is the suppression of uncorrelated noise with no reference measurement of the
noise. This problem is stated in the first section of this paper. In the second section,
CSM simulation is detailed, to be used as a reference to compare different denoising
algorithms. In a third section, different approaches are investigated to suppress the noise
and a new one is proposed as well. The denoising problem is set up within a probabilistic
framework and is solved by estimating an a posteriori probability distribution, using a
Markov chain Monte Carlo algorithm. The last section is dedicated to a comparison
based on the numerical simulations that highlights sensitivity of each denoising method
to averaging, noise level and increasing number of sources.

1 Problem statement

We consider measured signals given by M receivers, resulting of a linear combination of K
source signals emitted by uncorrelated monopoles of power c and an independent additive
noise n:

p = Hc+ n. (1)

H ∈ CM×K is the propagation matrix from sources to receivers.
The measured field is supposed to be statistically stationary and an averaging is per-

formed over Ns snapshots. The covariance matrix of measurements is then given by

Spp =
1

Ns

Ns∑
i=1

pip
H
i , (2)
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thereafter called cross-spectral matrix (CSM) because calculations are performed over
Fourier coefficients. The superscript H stands for the conjugate transpose operator.

Using Eq. (1), this measured CSM can be written as the sum of a signal CSM Saa =

HSccH
H , a noise CSM Snn = 1

Ns

∑Ns

i=1nin
H
i and additional crossed terms. As noise

signal is independent of the source signals, crossed-terms tend to zero when the number
of snapshots tends to infinity. Moreover, spatial coherence of noise is supposed to be
smaller than the receiver spacing. In this case, the noise CSM tends to be diagonal when
the number of snapshots increases, which gives:

Spp ≈ Saa + diag
(
σ2
n

)
. (3)

The notation diag (σ2
n) stands for a diagonal matrix whose diagonal entries are the ele-

ments in vector σ2
n.

Denoising methods presented in this paper exploit these properties on Saa and Snn to
solve optimization problems. In order to compare these different denoising methods, each
of them is implemented and tested on simulated noisy CSM.

2 Simulation of CSM

This section explains how CSM are synthesized. First, source spectra is supposed to follow

a Gaussian law: c ∼ NC

(
0, c

2
rms

2
I
)

, with I the identity matrix. Throughout the paper,

the term Gaussian is a shortcut that refers to circularly-symmetric multivariate complex
Gaussian. The acoustic signal is then obtained from source propagation a = Hc, using
Green functions for free field monopoles:

H =
e−jkr

4πr
, (4)

k being the wavenumber and r the distance between sources and receivers. Gaussian noise
is then added, whose covariance is given by a signal-to-noise ratio (SNR) that may vary
between the receivers:

n ∼ NC

(
0,
n2
rms

2
I

)
, with nrms = E{|a|}10−SNR/20 (5)

where E{ · } is the expectation operator.
Finally, the cross-spectral matrix Spp is calculated using Eq. (2). The signal CSM given

by Saa = 1
Ns

∑Ns

i=1 aia
H
i is also calculated in order to be used as a reference for the relative

error calculation:

δ =
‖ diag (Saa)− diag

(
Ŝaa

)
‖2

‖ diag (Saa) ‖2
(6)

where Ŝaa is the signal matrix denoised by means of the different algorithms and ‖ · ‖2 is
the `2 norm. This work is limited to the study of the diagonal denoising and thus errors
are calculated using only diagonal elements of the signal CSM.
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Configuration for the simulated acoustical propagation

The acoustical field produced by a vertical1 line of K uncorrelated monopoles is measured
by M = 93 receivers as shown on Fig. 1. Default values for each parameter are given by
Tab. 1.

Parameter Default value

Frequency f = 15 kHz

Number of monopoles K = 20

Number of receivers M = 93

SNR SNR =10 dB

Number of snapshots Ns = 104

Table 1: Default values for the numerical
simulations.
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Figure 1: Receiver (◦) and source (�) posi-
tions for acoustic field simulations.

3 Denoising methods

3.1 Diagonal reconstruction

In this section, three methods for diagonal reconstruction are presented. The idea of
these methods is to reduce as much as possible the self-induced noise concentrated on
the diagonal elements of the measured CSM. The diagonal is minimized as long as the
denoised CSM stays positive semidefinite. This problem can be written as:

maximize ‖σ2
n‖1 subject to Spp − diag

(
σ2
n

)
≥ 0 (7)

where ‖ · ‖1 the `1 norm. Denoising methods that solve this problem are subsequently
referred as DRec.

Convex optimization

Hald [16] identifies this problem as being a semidefinite program and uses the CVX
toolbox [14, 15] to solve it. In the following, Hald’s formulation is solved with SDPT3
solver implemented in CVX toolbox. This solver uses a specific interior-point method
(Mehrotra-type predictor-corrector methods) to solve that kind of conic optimization
problems [19].

1Source line is tilted of 1 degree from the vertical to break antenna symmetry.
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Linear optimization

Dougherty [8] expresses this problem as a linear programming problem that can be solved
iteratively:

maximize ‖σ2
n‖1 subject to V H

(k−1)

(
Spp − diag

(
σ2
n

)
(k)

)
V(k−1) ≥ 0 (8)

at the kth iteration. V(k−1) are the eigenvectors of Spp − diag (σ2
n)(1,...,k−1), concatenated

from the k− 1 previous iterations. This problem is solved using a dual-simplex algorithm
implemented in the Matlab linprog function.

Alternating projections

Alternating projections method can be used to solve problem (7) by finding the intersec-
tion between two convex sets: the first set is the set of positive semi-definite matrices and
the second is the set of diagonal matrices for the noise matrix. The method is used in
[17] with the following algorithm:

S̄pp(0) := Spp − diag (Spp) . set diagonal to zero
for k do

s(k) := eigenvalues(Spp(k)) . computes eigenvalues

V(k) := eigenvectors(Spp(k)) . computes eigenvectors

s(k) := s+(k) . set negative eigenvalues to zero

Spp(k+1)
:= S̄pp(0) + V H

(k)s(k)V(k) . inject in measured CSM
end for

This algorithm stops when all the eigenvalues of the denoised CSM are nonnegative.

3.2 Comparison of diagonal reconstruction methods

For each of these methods, we study the relative error on the estimated signal matrix Ŝaa
defined by Eq. (6). Three parameters are successively changed:

- the rank of signal matrix Saa by increasing the number of uncorrelated monopoles
from 1 to M ,

- the SNR from -10 to 10 dB,
- the number of snapshots Ns from 10 to 5.104.

When one parameter is changed, the others remain constant, given by Tab. 1. Relative
errors are plotted in Fig. 2.

When the rank of the signal matrix is sufficiently low (below 30), all the three algorithms
have the same performance. In this case, the error decreases linearly when SNR and Ns

increase respectively linearly and logarithmically. When the rank of Saa increases, linear
optimization does not give results as good as convex optimization because its convergence
is slower to reach. In linear optimization algorithm, concatenation of eigenvectors en-
larges V matrix at each iteration, which increases computational time drastically, and
the algorithm has to be stopped before total convergence.
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Figure 2: Error δ on the reconstructed diagonal, for different simulation parameters :
(a) rank of signal matrix Saa, (b) noise level on receivers, (c) number of
snapshots Ns. Diagonal reconstruction methods: convex optimization ( ),
alternating projections ( ) and linear optimization ( ). On (c), the error
is plotted for 20 (black), 80 (blue) and 93 (red) sources.

As expected from reference [16], the error suddenly increases when the number of sources
exceeds a specific value (75 here). It may be interpreted as a threshold beyond which the
problem become poorly conditioned. Note that the minimal error here is near -20 dB,
and not -100 dB as in [16] because noise is slightly correlated due to the finite number of
snapshots.

As convex optimization is faster and gives better results, we choose this method for
comparison with other denoising algorithms presented below.

3.3 Robust principal component analysis

Another strategy to denoise CSM is to use signal and noise structures, as sparsity and
low-rankness. As explained previously, the rank of signal matrix is given by the number of
uncorrelated components that are necessary to reproduce the acoustical field. Considering
that the number of receivers is higher than the number of equivalent monopoles, one can
assume that the signal CSM is low-rank. It is also assumed that the measurement noise has
spatially small correlation length compared to receiver interspacing so that off-diagonal
elements tend to vanish. The noise CSM can then be approximated by a sparse matrix.

Robust Principal Component Analysis (RPCA) aims at recovering a low-rank matrix
from corrupted measurements. It is widely used for data analysis, compression and visu-
alization, written as the following optimization problem:

minimize ‖Ŝaa‖∗ + λ‖Ŝnn‖1 subject to Ŝaa + Ŝnn = Spp (9)

where ‖ · ‖∗ is the nuclear norm (sum of the eigenvalues). This method has been used
in [11] and [1] on aeroacoustic measurements, achieved by an accelerated proximal gra-
dient algorithm developed by Wright et al. [20]. In this formulation, noise CSM is not
constrained to be fully diagonal so weakly correlated noise can theoretically be taken into
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account.

Choosing the regularization parameter

The trade-off parameter λ has to be chosen appropriately given that it may impact greatly
the solution. According to [6, 20], a constant parameter equal to M− 1

2 can be chosen as
far as the rank of the signal matrix is reasonably low. As shown by [1], this parameter is
not always accurate but it is far easier to implement than a trade-off curve analysis. As
shown on Fig. 3, the trade-off curve is very oscillating and its use can be thorny since it
has several maximum curvature points.
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Figure 3: Trade-off curve as a function of λ (for default values from Tab. 1).

Another solution is to chose the regularization parameter that minimizes the reconstruc-
tion error ‖Ŝpp−Spp‖2, excluding the case where Ŝnn is null. In Fig. 4, this regularization

parameter is compared to Wright’s (M− 1
2 ) and to the optimal regularization parameter

that gives the smallest relative error (unknown on non-synthetic case).
On Fig. 4b, grayscale map corresponds to the relative error as a function of the rank

of the signal matrix and the regularization parameter. From this map one can see that
optimal λ (given by the blue curve) has to increase with the rank of Saa, in order to
maintain a balance in Eq. (9). That is why a constant λ gives good results only for very
low rank of Saa. The regularization parameter that minimizes the reconstruction error
gives a very unstable solution mostly far from the optimal solution.
RPCA results highly depend on the choice for λ and it is essential to find an appropriate
way to set this parameter, for any configuration.

3.4 Probabilistic factorial analysis

Probabilistic factorial analysis (PFA) is based on fitting the experimental CSM of Eq. (2)
with the independent and identically distributed (iid) random variables

pi = Lci + ni, i = 1, ..., Ns (10)
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Figure 4: Error δ on the reconstructed diagonal solving RPCA as a function of the rank
of the signal matrix, for three selection methods for the regularization parameter
λ: optimal; minimize reconstruction error; M− 1

2 = 0.1.
(b) Lines highlight the value of the regularization parameter for each selection
method and their associated errors, depending of the rank of the signal matrix.

generated from independent draws of the random coefficients ci,k, k = 1, ..., κ, and of the
noise ni,m , m = 1, ...,M , in the complex Gaussians NC (0, α2

k) and NC (0, σ2
m), respectively.

The parameters in the PFA model are the matrix of factorial weights, L, the factor
strengths α2

k and the noise variances σ2
m. They may be inferred with various methods.

Here, a Bayesian hierarchical approach is followed, where all unknown parameters are
seen as random variables with assigned probability density functions (PDFs), i.e.

Lkl ∼ NC(0, γ2)

σm
2 ∼ IG(aβ, bβ)

α2
k ∼ IG(aα, bα)

as well as the hyperparameter γ2 ∼ IG(aγ, bγ) (IG(a, b) stands for the inverse gamma
PDF with shape parameter a and scale parameter b, which is conjugate to the Gaussian
PDF [13]). This hierarchical model is inferred by using Gibb’s sampling, a Monte Carlo
Markov Chain algorithm, which consists in iterating draws in the marginal conditional
distributions of σ2

m, α2
k, Lkl, and γ2 until convergence. Draws of the CSM are then

obtained as Ŝaa = Ns
−1L(

∑Ns

i=1 cic
H
i )LH . The advantage of this approach is that it

perfectly accounts for statistical variability in the measured CSM due to finite length
records.

The introduction of the independent factor strengths α2
k also enforces sparsity on factors.

Even if the chosen number of factors is higher than the real number of uncorrelated
monopoles, the appropriate number of factors will be set to zero, and the reconstruction
error will not be affected (see Fig. 5). As the number of sources is unknown, we always
choose κ = M .
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Initial values of α are chosen with the normalized decrease of the first κ eigenvalues
of Spp. For σ2

m and γ2, the hyperparameter a is set close to 2 and b is about 1. 1000

iterations are performed and Ŝaa is an averaged value of the 200 last iterations.
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Figure 5: Error on the diagonal of the signal CSM for increasing number of factors in
the PFA model. Error is minimal when the number of factors is equal to the
number of uncorrelated sources (default value is 20).

4 Comparison of the different methods on synthetic data

In this section, diagonal reconstruction are compared, using convex optimization (referred
as DRec), along with RPCA and PFA solutions on data simulated as describe in subsec-
tion 2. In a first part, we show algorithm performance in the situation where the noise
has the same variance on each channel, called homogeneous noise. In a second part, the
noise is heterogeneously distributed on the receivers.

4.1 Homogeneous noise

Previous methods are first compared when the noise is homogeneously added on the
receivers. In Eq. (5), nrms is the same for all the receivers, given by the SNR. Results
for varying number of sources, values of SNR and number of snapshots are shown on
Fig. 6a, 6b and 6c. As previously, when one parameter varies the other remain constant,
given by Tab. 1.

Except when the signal CSM is high rank, the PFA errors are similar to the one given
by RPCA using optimal regularization parameter, while the DRec error are most of the
time 5 dB higher.

Convergence time is not given here, because implementations and solvers are very dif-
ferent from one method to the other. But in general, MCMC are known to be compu-
tationally expensive, compared to the proximal gradient algorithm or the interior-point
method. When the number of snapshots is lower than the number of receivers, MCMC
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convergence greatly depends on the initialization and thus can be slow, as it is the case
here.

4.2 Heterogeneous noise

For aeroacoustical applications, flow-induced noise can impact the antenna non-
homogeneously. We now test the denoising methods on an unfavorable academic case.
Ten receivers randomly chosen are now affected by a strong noise, for which the SNR is
10 dB lower than for the other receivers. Results for different configurations are shown
on Fig. 6d, 6e and 6f.

All the methods provide higher errors when dealing with heterogenous noise. The DRec
method is a bit more affected, increasing of about 4 dB, whereas errors from RPCA and
MCMC increases of about 1 or 2 dB. When the noise is heterogenous, its eigenvalue
spectrum is not flat anymore, which reduces the DRec performance.
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Figure 6: Relative error δ on the diagonal of the signal CSM. Denoising methods:
DRec ( ), RPCA with λopt ( ), RPCA with λ = M− 1

2 ( ) and PFA ( ).
(a,b,c) Noise is added homogeneously to the 93 receivers. (d,e,f) Noise is 10 dB
higher on 10 random receivers. When one parameter varies, the other are con-
stant, given by Tab. 1.
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Conclusion

DRec has the great advantage to be simple and fast to implement, but it appears to
be less reliable than RPCA and MCMC, especially when dealing with heterogeneous
noise. RPCA presents one major difficulty which lies on the choice of the regularization
parameter, especially when the signal CSM is not very low-rank. MCMC only have
priors to be set, but they can be diffuse. Its main drawback is computational time that
could be reduced by lessening the number of iterations, thanks to a precise initialization.
This initialization could be the results of the convex optimization method for example.
Moreover, factorial analysis model offers the flexibility to be easily adapted for a correlated
noise model such as Corcos model [7], a topic which is currently under study.
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