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SUMMARY

We consider the third-order Claerbout-type wide-angle parabolic equation (PE) of underwater acoustics in
a cylindrically symmetric medium consisting of water over a soft bottom B of range-dependent topography.
There is strong indication that the initial-boundary value problem for this equation with just a homogeneous
Dirichlet boundary condition posed on B may not be well-posed, for example when B is downsloping.
We impose, in addition to the above, another homogeneous, second-order boundary condition, derived by
assuming that the standard (narrow-angle) PE holds on B, and establish a priori H2 estimates for the
solution of the resulting initial-boundary value problem for any bottom topography. After a change of the
depth variable that makes B horizontal, we discretize the transformed problem by a second-order accurate
finite difference scheme and show, in the case of upsloping and downsloping wedge-type domains, that the
new model gives stable and accurate results. We also present an alternative set of boundary conditions that
make the problem exactly energy conserving; one of these conditions may be viewed as a generalization
of the Abrahamsson–Kreiss boundary condition in the wide-angle case. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper we shall study an initial-boundary value problem (ibvp) for the third-order partial
differential equation (pde) that represents a wide-angle parabolic approximation to the Helmholtz
equation, when the latter is written in cylindrical coordinates, in the presence of azimuthal
symmetry. The problem will be posed in a domain whose boundary varies with the time-like
independent variable.

Parabolic equations (PEs) have long been in use as approximations of outgoing solutions of the
Helmholtz equation in waveguides in the far-field, paraxial regime [1, 2]. (In this paper we have in
mind their applications in underwater acoustics.) We shall consider a simple wide-angle extension
of the ‘standard’ PE of [2]. Wide-angle equations [1, 3] provide a more accurate description of
the long-range acoustic field, in that they suffer from smaller discrepancies in approximating the
Helmholtz equation and provide better simulation of propagating modes that interact strongly with
bottom layers.

The wide-angle PE that will be studied here is

[
1+q�(z,r)+ q

k20
�2z

]
vr = i(p−q)k0

[
1

k20
vzz+�(z,r)v

]
(1)

where v=v(z,r) is a complex-valued function of the depth z and range r (distance from the
source), representing the acoustic field generated in a single-layer fluid medium (‘water’) by a
time-harmonic point source of frequency f placed on the z-axis, cf. Figure 1(a). In (1) k0=2� f/c0
is a reference wave number associated with a constant reference speed of sound c0, and �=�(z,r)
is a smooth function given by �(z,r)=n2(z,r)−1, where n(z,r) is the range-dependent index of
refraction defined as (c0/c(z,r))(1+ i�), where c(z,r) is the speed of sound in the medium and
� is a small nonnegative quantity intended to model attenuation of sound in the water column.
Consequently, we will assume that the function � is complex-valued with nonnegative imaginary
part. The coefficients p, q are such that the rational function (1+ px)/(1+qx) is an approximation
to

√
1+x near x=0. The choice p=1/2, q=0 yields the standard (narrow-angle) PE [2], while

the (1,1)-Padé approximation to
√
1+x , given by p= 3

4 , q= 1
4 , yields the Claerbout equation [3].

In general, we shall take p and q complex [4], p−q= 1
2 and Imq�0; such a choice has certain

theoretical and numerical advantages, as will be seen in the sequel.
The pde (1) is obtained as an approximation to the pseudo-differential operator equation, whose

formal steps are outlined e.g. in [1, 5], wherein the expression
√
1+x is approximated by the

Figure 1. Domains of the ibvp’s for (a) the wide-angle PE (1) and (b) the transformed wide-angle PE (5).
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ON AN IBVP FOR A WIDE-ANGLE PE IN A WAVEGUIDE 1521

rational function (1+ px)/(1+qx). It may be viewed as the first-order member of a family of
higher-order wide-angle equations obtained by approximating

√
1+x by rational functions with

numerator and denominator of higher degree [1, 6], and which have found widespread use in
underwater acoustics [7]. In addition, three-dimensional extensions of (1) and its higher-order
analogs for use in problems with azimuthal dependence have received a lot of attention in recent
years [7–10].

We shall pose (1) in a single fluid layer of constant density occupying the domain 0�z�s(r),
r�0, where z=0 is the free surface and z=s(r) is a positive smooth function representing a
bottom of variable topography, cf. Figure 1(a). We supplement (1) by an initial condition modelling
the source

v(z,0)=v0(z), 0�z�s(0) (2)

where v0(0)=v0(s(0))=0, and the homogeneous Dirichlet boundary conditions

v(0,r)=0, v(s(r),r)=0, r�0 (3)

modelling, respectively, the behavior of the acoustic field at the free surface and at the bottom
(considered to be acoustically soft). In the case of a horizontal bottom s(r)=s(0), r�0, it is known
that the ibvp (1)–(3) is well-posed, provided that the operator 1+q�+(q/k20)�

2
z , acting on vr in

the left-hand side of (1), is invertible under the boundary conditions (3), cf. [11, 12]. (As will be
seen in Lemma 2.3 in the sequel, invertibility of this operator is guaranteed e.g. if Imq<0 or if
Im� �=0 or if k0s(0) is sufficiently small.)

When the problem is posed in a waveguide with range-dependent bottom z=s(r), one may
perform the change of variables

y= z/s(r), t=r, w(y, t)=v(z,r) (4)

which maps the bottom onto the horizontal line y=1, cf. Figure 1(b), and the domain 0�z�s(r),
r�0, onto the strip 0�y�1, t�0. The wide-angle PE (1) is then transformed to[

1+q�(y, t)+ q

k20s
2(t)

�2y

](
wt − y

ṡ(t)

s(t)
wy

)

= i(p−q)k0

[
1

k20s
2(t)

wyy+�(y, t)w

]
, 0�y�1, t�0 (5)

where ṡ=ds/dt , �(y, t) :=�(y s(t), t). The initial condition (2) becomes

w(y,0)=w0(y) :=v0(ys(0)), 0�y�1 (6)

while the homogeneous Dirichlet boundary conditions (3) are preserved

w(0, t)=0, w(1, t)=0, t�0 (7)

The pde (5) has now, in addition to wyyt , the third-order derivative term wyyy and, since the
problem is posed in the finite y-interval [0,1], an extra boundary condition may be required for
well-posedness. We shall propose in the sequel one such extra boundary condition at the bottom.
We point out that the need for analogous extra conditions at interfaces for the wide-angle equation
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1522 V. A. DOUGALIS, F. STURM AND G. E. ZOURARIS

posed in multi-layered waveguides with range-dependent interfaces has already been recognized
by Godin [13]. (No extra conditions are required when the interfaces are horizontal; in this case
the standard interface conditions of acoustics suffice for well-posedness [12].) To motivate the
particular extra boundary condition that we shall use, consider for the moment the associated
standard (narrow-angle) PE, i.e. (1) with p= 1

2 , q=0, in the original, variable domain 0�z�s(r),
r�0, i.e.

ur = i

2k0
uzz+ ik0

2
�(z,r)u (8)

posed with the bottom boundary condition

u(s(r),r)=0, r�0 (9)

Assuming, using continuity, that (8) holds at the bottom z=s(r), differentiating with respect to r
the boundary condition (9) to obtain ur (s(r),r)+ ṡ(r)uz(s(r),r)=0, and using this last equation
in (8) at z=s(r), yields that

ṡ(r)uz(s(r),r)+ i

2k0
uzz(s(r),r)=0

holds for r�0. This is not, of course, an additional boundary condition for the PE (8), but merely
a compatibility relation that holds at the smooth boundary z=s(r). However, it may serve as
an additional boundary condition for the higher-order wide-angle PE (1). Under the change of
variables (4), this condition becomes

wyy(1, t)=2ik0s(t)ṡ(t)wy(1, t), t�0 (10)

In Section 2 of the paper at hand we study the ibvp’s (5)–(7) and (5)–(7), (10) on finite ‘temporal’
intervals [0,T ]. For the first ibvp, i.e. in the presence of only the two boundary conditions (7),
we show, if q and � are real-valued, ṡ(t)�0 in [0,T ], i.e. in the case of upsloping bottoms, and if
k0max0�t�T s(t) is sufficiently small (i.e. under a small-frequency/‘shallow-water’ assumption),
that an a priori H1 estimate holds for the solution of (5)–(7) on [0,T ]. This implies uniqueness
of solutions of this ibvp under the stated assumptions. When the third boundary condition is
added, we show, for complex-valued q and �, and general bottom profiles s(t), that an a priori
H2 estimate holds on [0,T ] for the solution of the ibvp (5)–(7), (10), provided the operator
1+q�(y, t)+(q/(k20s

2(t)))�2y (that occurs in the left-hand-side of (5)) is invertible under the
boundary conditions (7). In Lemma 2.3 we prove that this holds if, for example, Imq<0 or Im� �=0
or, in case q and � are real, if k0max0�t�T s(t) is sufficiently small. This a priori H2 estimate is
the basic step on which a proof of well-posedness of this ibvp may be constructed. In Section 3
we derive two finite difference schemes of second order of accuracy in y and t for discretizing
the two ibvp’s mentioned above. We demonstrate, by means of numerical experiment, that the
finite difference scheme approximating the solution of the ibvp (5)–(7) (called FDI) is stable and
convergent in domains with upsloping bottom but that it does not converge in downsloping bottom
cases. On the other hand, if the third boundary condition (10) is also discretized and incorporated
into the numerical method, then the new scheme (called FDII) is stable and convergent in the
presence of downsloping and also for general bottom profiles. In Section 4 we consider some
realistic underwater acoustic problems, including the upsloping and downsloping ASA wedge
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ON AN IBVP FOR A WIDE-ANGLE PE IN A WAVEGUIDE 1523

benchmarks [14], and compare the results of FDII with those obtained by a wide-angle finite
difference PE code that approximates the solutions of the ibvp (1)–(3) in the original physical
domain 0�z�s(r), r�0, using a ‘staircase’ (piecewise constant) discretization of the bottom. We
observe good agreement between the two codes; this is a strong indication that the new boundary
condition put forth in this paper furnishes a physically acceptable solution to the ibvp under
consideration. We close the paper with a section of conclusions, in which, among others, we point
out alternative boundary conditions that may be used in place of (10) to some advantage, and which
are the subject of ongoing investigation. A preliminary version of the present paper appeared in
the proceedings of the Eighth European Conference on Underwater Acoustics [15].

2. A PRIORI ESTIMATES

For ease of exposition, we re-write here the ibvp’s under consideration. (In (5) we take p−q=
1
2 .) We seek a complex-valued function w=w(y, t), defined for (y, t)∈[0,1]×[0,T ] for some
0<T<∞, satisfying the wide-angle PE

[
1+q�(y, t)+ q

k20s
2(t)

�2y

](
wt − y

ṡ(t)

s(t)
wy

)

= ik0
2

[
1

k20s
2(t)

wyy+�(y, t)w

]
, 0�y�1, 0�t�T (11)

We supplement (11) with the initial condition

w(y,0)=w0(y), 0�y�1 (12)

and the homogeneous Dirichlet boundary conditions

w(0, t)=0, w(1, t)=0, 0�t�T (13)

We also consider the additional boundary condition

wyy(1, t)=2ik0s(t)ṡ(t)wy(1, t), 0�t�T (14)

We write q=qR+ iqI, �(y, t)=�R(y, t)+ i�I(y, t) to denote the real and imaginary parts of q and �.
We assume that qR>0, qI�0, �I�0, that s(t)>0, t ∈[0,T ], and that the functions �, w0, s are smooth
enough as required by the estimates to be derived below. In the sequel we let ( f,g)=∫ 10 f g dy
denote the inner product on L2= L2(0,1) and ‖·‖ the associated norm. For positive integers k,
we denote by Hk =Hk(0,1) the usual (complex) Sobolev spaces of order k with associated norm
‖·‖k . The symbol C will denote generic constants, not necessarily the same in any two places. In
the present section we shall derive, under certain restrictive hypotheses on the data, an a priori H1

estimate for the solution of the ibvp (11)–(13), and, under minimal hypotheses, an H2 estimate
for the ibvp (11)–(14). We start by establishing an energy identity that the solution of (11)–(12)
satisfies when only the two boundary conditions (13) are present.
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1524 V. A. DOUGALIS, F. STURM AND G. E. ZOURARIS

Lemma 2.1
If w satisfies (11)–(13), then, for 0�t�T ,

|q|2
2k20s

2

d

dt
‖wy‖2− 1

2k20s
3
[|q|2ṡ|wy(1, t)|2+(|q|2ṡ+qIk0s)‖wy‖2]

−
∫ 1

0
(qI−|q|2�I) Im(wtw) dy−

∫ 1

0
(qR+|q|2�R)Re(wtw) dy

=−Re

(
(1+q�)y

ṡ

s
wy,qw

)
−Re

(
ik0
2

�w,qw

)
(15)

Proof
Take the real part of the L2 inner product of both sides of (11) with qw to obtain

Re((1+q�)wt ,qw)+ |q|2
k20s

2
Re(wyyt ,w)−Re

(
(1+q�)y

ṡ

s
wy,qw

)

−|q|2ṡ
k20s

3
Re(�2y(ywy),w)−Re

[
iq

2k0s2
(wyy,w)

]
−Re

(
ik0
2

�w,qw

)
=0 (16)

We have

Re((1+q�)wt ,qw) =Re
∫ 1

0
(q+|q|2�)wtw dy

=
∫ 1

0
(qR+|q|2�R)Re(wtw) dy+

∫ 1

0
(qI−|q|2�I) Im(wtw) dy

In addition, using the boundary conditions (13) we obtain by integrating by parts

(wyy,w) = −‖wy‖2

Re(wyyt ,w) = −Re(wyt ,wy)=−1

2

d

dt
‖wy‖2

Re(�2y(ywy),w) = −Re(�y(ywy),wy)=− 1
2 (‖wy‖2+|wy(1, t)|2)

Substituting these expressions in (16), we obtain (15). �

The presence of the Im(wtw) term in (15) prevents deriving an H1 estimate of w from (15).
However, if qI=0 and �I=0, the integral containing this term vanishes and one may obtain an H1

estimate in the upsloping bottom case, under a small-frequency/shallow-water assumption, as the
following proposition shows.

Proposition 2.1
Suppose w satisfies (11)–(13), and that qI=0, �I=0, ṡ(t)�0 for t ∈[0,T ], and k0maxt∈[0,T ] s(t)
is sufficiently small. Then there exists a constant C such that for 0�t�T we have

‖wy‖�C‖w′
0‖ (17)
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ON AN IBVP FOR A WIDE-ANGLE PE IN A WAVEGUIDE 1525

Proof
Under our assumptions, (15) yields

qR
2k20s

2

d

dt
‖wy‖2− 1

2

d

dt

∫ 1

0
(1+qR�R)|w|2 dy+ 1

2

∫ 1

0
qR�R,t |w|2 dy

�− ṡ

s

∫ 1

0
(1+qR�R)yRe(wyw) dy

Therefore, using Poincaré’s inequality ‖w‖�‖wy‖, we have

d

dt

[
‖wy‖2− k20s

2

qR

∫ 1

0
(1+qR�R)|w|2 dy

]
�C‖wy‖2, 0�t�T

Integrating both sides of the above inequality with respect to t , and using Poincaré’s inequality
yields, for 0�t�T ,

(1−Ck20s
2)‖wy‖2�C

[
‖w′

0‖2+
∫ t

0
‖wy(�)‖2 d�

]

Hence, if k0maxt∈[0,T ] s(t) is sufficiently small, (17) follows from the above inequality and
Gronwall’s lemma. �

The estimate (17) and Poincaré’s inequality show, in particular, that the solution of (11)–(13)
for real q and � in upsloping, low-frequency/shallow-water problems is unique.

We proceed now to establish a basic identity involvingwyy that the solution of the ibvp (11)–(14),
i.e. with all three boundary conditions, satisfies.

Lemma 2.2
If w satisfies (11)–(14), then, for 0�t�T ,

|q|2
2k20s

2

d

dt
‖wyy‖2− 2|q|2ṡ3

s
|wy(1, t)|2− 1

2k20s
3
(3|q|2ṡ+qIk0s)‖wyy‖2

+Re

(
(1+q�)

(
wt − y

ṡ

s
wy

)
,qwyy

)
+ k0

2
Im(�w,qwyy)=0 (18)

Proof
Take the L2 inner product of both sides of (11) with qwyy and then real parts. Observe that

Re

(
q

k20s
2
wyyt ,qwyy

)
= |q|2

k20s
2
Re(wyyt ,wyy)= |q|2

2k20s
2

d

dt
‖wyy‖2 (19)

In addition, note that

(�2y(ywy),wyy)=(ywyyy+2wyy,wyy)=2‖wyy‖2+ I
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where I :=(ywyyy,wyy). Integration by parts yields

I =|wyy(1, t)|2−
∫ 1

0
wyy(wyy+ ywyyy) dy=|wyy(1, t)|2−‖wyy‖2− I

From these relations it follows that

Re(�2y(ywy),wyy)= 3
2‖wyy‖2+ 1

2 |wyy(1, t)|2
Hence, taking into account the third boundary condition (14), we conclude that

Re

(
− q

k20s
2
�2y

(
y
ṡ

s
wy

)
,qwyy

)
= −|q|2ṡ

k20s
3

(
3

2
‖wyy‖2+2k20s

2ṡ2|wy(1, t)|2
)

= −3

2

|q|2ṡ
k20s

3
‖wyy‖2− 2|q|2ṡ3

s
|wy(1, t)|2 (20)

Finally, since

Re

{
ik0
2

(
1

k20s
2
wyy,qwyy

)}
= qI

2k0s2
‖wyy‖2

we conclude from (11), (19), and (20) that (18) holds. �

Our aim is to use the energy identities (15) and (18) to derive an a priori estimate for ‖w‖2. To
do this, we need to control the terms involving wt in these equations. For this reason we write (11)
in the form −Lwt=Mw, whereL is the linear operatorL :H2∩H1

0 →L2 defined for 0�t�T by

Lu :=−
(
1+q�+ q

k20s
2
�2y

)
u, u∈H2∩H1

0 (21)

We first study the invertibility of L on its domain H2∩H1
0 , i.e. the question whether Lw=0,

w∈H2∩H1
0 , implies w=0. The lemma that follows gives sufficient conditions for L to be

invertible:

Lemma 2.3
If one of the following conditions holds, then L is invertible for 0�t�T :

(i) qI<0,
(ii) qI=0, and for each t ∈[0,T ], �I �≡0,
(iii) qI=0, �I=0, and k0maxt∈[0,T ] s(t) is sufficiently small.

Proof
Fix t ∈[0,T ] and let Lw=0 for some w∈H2∩H1

0 . Then (Lw,w)=0. Taking the real and
imaginary part of this equation we obtain, respectively,

‖w‖2+
∫ 1

0
(qR�R−qI�I)|w|2 dy− qR

k20s
2
‖w′‖2 = 0 (22)

∫ 1

0
(qI�R+qR�I)|w|2 dy− qI

k20s
2
‖w′‖2 = 0 (23)

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1519–1540
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(i) If qI<0, eliminating ‖w′‖2 from the above yields

qI‖w‖2=|q|2
∫ 1

0
�I|w|2 dy

from which, since �I�0, it follows that w=0.
(ii) If qI=0, (23) yields that

∫ 1
0 �I|w|2 dy=0. If �I is positive on an interval in (0,1), then

w vanishes in that interval and we may continue it by zero to [0,1] by solving the initial-value
problem for the ordinary differential equation Lw=0 with zero initial conditions. Hence (ii)
follows.

(iii) If qI=0, �I=0, (22) yields

‖w‖2+qR

∫ 1

0
�R|w|2 dy− qR

k20s
2
‖w′‖2=0

from which, by Poincaré’s inequality and the hypothesis that k0s is sufficiently small, it follows
that w=0. �

We remark that if L is invertible for 0�t�T , then, from standard elliptic pde theory and the
Fredholm alternative [16], we may infer that given f ∈L2(0,1), then L−1 f ∈H2∩H1

0 and

‖L−1 f ‖2�C‖ f ‖ (24)

for some positive quantity C=C(t) independent of f . Since the coefficients of L are smooth, we
may take C to be a continuous function on [0,T ].

The next result is the required estimate of ‖wt‖ in terms of ‖w‖2. This estimate holds if we
only assume the boundary conditions (13).

Lemma 2.4
If w satisfies (11)–(13), and L is invertible for 0�t�T , then there exists a constant C such that
for 0�t�T

‖wt‖�C‖w‖2 (25)

Proof
In addition to the operator L defined by (21), we consider its ‘maximal’ extension T :H2→L2

defined by

Tu :=−
(
1+q�+ q

k20s
2
�2y

)
u, u∈H2

With this notation, taking into account (13) we rewrite the wide-angle PE (11) as

−Lwt + ṡ

s
T(ywy)= i

2k0s2
wyy+ ik0

2
�w

i.e. as

wt = ṡ

s
L−1T(ywy)− i

2k0s2
L−1wyy− ik0

2
L−1(�w) (26)
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Because of the estimate (24) we immediately have that there exists a constant C such that for
0�t�T

‖L−1wyy‖�C‖wyy‖ (27)

and

‖L−1(�w)‖�C‖w‖ (28)

In order to handle the L−1T(ywy) term in the right-hand side of (26), fix t ∈[0,T ] and for
f ∈L2, consider the problem

Lu= f (29)

which, because of our hypothesis, has a unique solution u∈H2∩H1
0 . Define for g∈L2 its H−2

norm as the quantity

‖g‖−2= sup
v∈H2∩H1

0 ,v �=0

|(g,v)|
‖v‖2

which is obviously well-defined. We will show that from (29) it follows that there exists a constantC
such that

‖u‖�C‖ f ‖−2=C‖Lu‖−2 (30)

To see (30), consider the problem

L∗v=u (31)

where u is the solution of (29) and L∗ is the adjoint of L given on H2∩H1
0 by L∗v=−(1+

q �+(q/(k20s
2))�2y)v. It is easy to check that L∗ is invertible whenever L is, and that as in (24)

‖v‖2�C‖L∗v‖ for v∈H2∩H1
0 . Therefore, from (31), (29), and the definition of the H−2 norm

we have

‖u‖2 = (L∗v,u)=(v,Lu)=(v, f )

� ‖v‖2‖ f ‖−2�C‖L∗v‖‖ f ‖−2=C‖u‖‖ f ‖−2

from which the desired estimate (30) follows. We may take again C in (30) to depend only on T
for 0�t�T .

Returning to (26) and using the definition of T we have

T(ywy)=−(1+q�)ywy− 2q

k20s
2
wyy− q

k20s
2
ywyyy

Therefore,

‖L−1T(ywy)‖�‖L−1[(1+q�)ywy]‖+C‖L−1wyy‖+C‖L−1(ywyyy)‖ (32)

Because of (24), we have

‖L−1[(1+q�)ywy]‖�C‖(1+q�)ywy‖�C‖wy‖ (33)
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For the second term in the right-hand side of (32) we have already noted that (27) holds. To treat
the third term, consider the problem

L�= ywyyy, �∈H2∩H1
0

Using the estimate (30) we have

‖�‖=‖L−1(ywyyy)‖�C‖ywyyy‖−2=C sup
v∈H2∩H1

0 ,v �=0

|(ywyyy,v)|
‖v‖2

But for v∈H2∩H1
0 using integration by parts we obtain

|(ywyyy,v)|=|−(wyy, (yv)y)|�C‖wyy‖‖v‖1
We conclude therefore that

‖L−1(ywyyy)‖�C‖wyy‖ (34)

Hence, (32), (33), (27), and (34) give

‖L−1T(ywy)‖�C(‖wy‖+‖wyy‖) (35)

which, combined with (26), (27), and (28), yields (25). �

We are now in a position to prove the main result of this section.

Theorem 2.1
If w satisfies (11)–(14), and L is invertible for 0�t�T , then there exists a constant C such that

‖w‖2�C‖w0‖2 (36)

holds for 0�t�T .

Proof
The first energy identity (15) yields by Sobolev’s theorem, the Cauchy–Schwarz inequality and
(25),

d

dt
‖wy‖2�C‖w‖22, 0�t�T (37)

Using now analogous estimates in the second energy identity (18) we obtain for 0�t�T that

d

dt
‖wyy‖2�C‖w‖22 (38)

Of course, by (25) we see that

d

dt
‖w‖2=2Re(wt ,w)�C‖w‖22, 0�t�T (39)

From (37)–(39) we get (36) using Gronwall’s lemma. �

In summary, Proposition 2.1 gives us an H1 a priori estimate for the solution of the ibvp
(11)–(13) for real q and � in the case of upsloping domains with k0max0�t�T s(t) sufficiently
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small. Addition of the boundary condition (14) yields an a priori H2 estimate for the solution
of (11)–(14) for any type of bottom provided L is invertible for 0�t�T . As Lemma 2.3 shows,
this latter condition is fulfilled for qI<0 or in the presence of absorption or for k0max0�t�T s(t)
sufficiently small in the case of real q and �.

3. FINITE DIFFERENCE SCHEMES

In this section we shall construct and test numerically two finite difference schemes that we call
FDI and FDII. Both schemes are Crank–Nicolson-type discrete analogs of the wide-angle PE
(11) supplemented with the initial condition (12) and the surface boundary condition w(0, t)=0.
Furthermore, scheme FDI takes into account only the homogeneous Dirichlet bottom boundary
condition w(1, t)=0, while FDII incorporates, in addition to w(1, t)=0, a discretization of the
third boundary condition (14) as well.

Let J and N be positive integers and consider a uniform partition of [0,1] defined by the nodes
{y j }J+1

j=0 given by y j := jh, for j =0, . . . , J+1, where h :=1/(J+1). Let {tn}Nn=0 be a partition

of the interval [0,T ] defined by tn :=nk, n=0, . . . ,N , where k :=T/N . Let tn+1/2 := tn+k/2,
0�n�N−1, and define

Xh :={z=(z0, . . . , z J+1)
T ∈CJ+2 : z0= z J+1=0}

We shall construct Wn ∈ Xh for n=0, . . . ,N such that for each n∈{0, . . . ,N } Wn
j approximate

the values of w(y j , tn), 0� j�J+1, of the solution of (11) under the given initial and boundary
conditions. To this end, we define the difference operator �2h : Xh → Xh by

�2hv j := v j+1−2v j +v j−1

h2
, j =1, . . . , J, v∈ Xh

and the difference operator �1h : Xh → Xh by

�1hv j := v j+1−v j−1

2h
, j =1, . . . , J, v∈ Xh

Thus, if v is a smooth function on [0,1] and v j :=v(y j ), then �1hv j and �2hv j are the usual
centered difference quotient approximations to, respectively, the first derivative v′(y j ) and the
second derivative v′′(y j ) at the interior nodes y j , j ∈{1, . . . , J }. We also define the difference
operator �3I,h : Xh → Xh by

�3I,hv j :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v3−3v2+3v1−v0

h3
, j=1

v j+2−2v j+1+2v j−1−v j−2

2h3
, j =2, . . . , J−1

vJ+1−3vJ +3vJ−1−vJ−2

h3
, j = J
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for v∈ Xh . In addition we let �3II,h(t) : Xh → Xh be defined for t ∈[0,T ] and v∈ Xh by

�3II,h(t)v j := �3I,hv j , j =1, . . . , J−1

�3II,h(t)vJ := 1

2h3

⎡
⎢⎣ h�(t)

1− h

2
�(t)

vJ+1−
⎛
⎜⎝ h�(t)

1− h

2
�(t)

+1

⎞
⎟⎠vJ +2vJ−1−vJ−2

⎤
⎥⎦

where �(t) :=2ik0ṡ(t)s(t). For �=(�0, . . . ,�J+1)
T ∈CJ+2 and z∈ Xh , define �⊗z∈ Xh by (�⊗

z) j :=� j z j , j =1, . . . , J . Let �n+1/2
j :=�(y j , tn+1/2) for n=0, . . . ,N−1 and j =1, . . . , J . Finally,

given {V n}Nn=0⊂Xh , let V n+1/2 := 1
2 (V

n+V n+1) and �V n :=(1/k)(V n+1−V n) for n=0, . . . ,N−1.
With this notation in place, we are now in a position to define the finite difference schemes FDI

and FDII

(i) FDI
Step 1: Set W 0

j =w0(y j ), j =0, . . . , J+1.

Step 2: For n=0, . . . ,N−1 compute Wn+1∈ Xh , such that

[1+q�n+1/2
j ]

(
�Wn

j − y j
ṡ(tn+1/2)

s(tn+1/2)
�1hW

n+1/2
j

)

+ q

k20s
2(tn+1/2)

{
��2hW

n
j − ṡ(tn+1/2)

s(tn+1/2)
[�3I,h(Y ⊗Wn+1/2) j −�2hW

n+1/2
j ]

}

= i(p−q)k0

[
1

k20s
2(tn+1/2)

�2hW
n+1/2
j +�n+1/2

j Wn+1/2
j

]
, j =1, . . . , J

where Y j := y j for j =0, . . . , J+1.
(ii) FDII

Step 1: Set W 0
j =w0(y j ), j =0, . . . , J+1

Step 2: For n=0, . . . ,N−1 compute Wn+1∈ Xh , such that

[1+q�n+1/2
j ]

(
�Wn

j − y j
ṡ(tn+1/2)

s(tn+1/2)
�1hW

n+1/2
j

)
+ q

k20s
2(tn+1/2)

×
{

��2hW
n
j − ṡ(tn+1/2)

s(tn+1/2)

[
y j

�3II,h(t
n+1)Wn+1

j +�3II,h(t
n)Wn

j

2
+2�2hW

n+1/2
j

]}

= i(p−q)k0

[
1

k20s
2(tn+1/2)

�2hW
n+1/2
j +�n+1/2

j Wn+1/2
j

]
, j =1, . . . , J
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Both schemes are implicit, of Crank–Nicolson-type in t , and require solving pentadiagonal complex
systems of linear equations for each n. If v is a smooth function on [0,1], we may check, using
straightforward Taylor expansions, that the difference quotient �3I,hv j used in FDI approximates
(if v j :=v(y j )) the third derivative v′′′(y j ) to O(h2) at the nodes y j , 2� j�J−1, and to O(h)

at y1 and yJ . Note that the difference quotient �3II,h(t)v j used in FDII is identical to �3I,hv j
at j =1, . . . , J−1. At j = J it is designed to incorporate the boundary condition (14), i.e. the
condition vyy(1)=�(t)vy(1), and approximate v′′′(yJ ) to O(h). Thus, both schemes are formally
O(k2+h2) accurate at (y j , tn) for 2� j�J−1, and O(k2+h) at (y1, tn) and (yJ , tn). A further

difference between the two schemes lies in the way that the term �2y(ywy) (cf. (11)) is handled. In

FDI we view this term as �3y(yw)−wyy and discretize the third derivative by �3I,h , while in FDII

we discretize the analog of �2y(ywy)= ywyyy+2wyy using �3II,h for �3y . This was done for stability
and accuracy purposes.

It is not our intention in this paper to prove rigorous error estimates for these difference schemes.
Instead, we shall check their accuracy and stability by means of numerical experiments. As a test
problem we employ an artificial, nonhomogeneous version of (1), i.e. an equation, which in the
original variable domain 0�r�R, 0�z�s(r), is of the form[

1+q�(z,r)+ q

k20
�2z

]
vr = i(p−q)

k0
vzz+ i(p−q)k0�(z,r)v+ f (z,r) (40)

where we take q=1+ i, p−q=1, k0=1, �(z,r)=1+(1/2)sin(zr/s(r)), and define f so that the
exact solution of (40) is v(z,r)=(1+ i)sin(zr/s(r)). (We will make below several choices for the
bottom profile s(r).) We supplement (40) with the initial condition

v0(z)=0, 0�z�s(0) (41)

the free surface boundary condition

v(0,r)=0, r�0 (42)

and the bottom boundary conditions

v(s(r),r)=g1(r), r�0 (43)

and

ṡ(r)vz(s(r),r)+ i

2k0
vzz(s(r),r)=g2(r), r�0 (44)

These conditions are now nonhomogeneous and the functions g1(r), g2(r) are compatible with
the chosen exact solution. After the change of variables y= z/s(r), t=r we solve the problem
numerically using the nonhomogeneous analog of the scheme FDI to discretize the ibvp obtained
by transforming (40)–(43) and (the nonhomogeneous analog of) FDII for the ibvp that we get by
transforming (40)–(44).

In all the examples below we took T =1 and used h=1/(J+1) and k=T/N with J =N . In
the tables the values of J and the maximum norm ‖ε‖∞ of the error of the numerical solution
computed over all points (y j , tn), 0� j�J+1, 0�n�N are shown. Also shown are the observed
rates of convergence 	 of the error as h decreases, assuming that ‖ε‖∞ ≈Ch	.
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Table I. Example 1 (left) and Example 2 (right).

Upsloping, FDI Downsloping, FDI

J ‖ε‖∞ Rate J ‖ε‖∞ Rate

10 1.212851e−03 — 10 7.323060e−04 —
20 2.999388e−04 2.015 20 1.216307e−03
40 7.610642e−05 1.978 40 2.656963e−04
80 1.910357e−05 1.994 80 2.038290e−04
160 4.777279e−06 1.999 160 1.874397e−04
320 1.194376e−06 1.999 320 1.778468e−04
640 2.985521e−07 2.000 640 1.727810e−04

6000 2.991996e−04

Table II. Example 3 (left) and Example 4 (right).

Upsloping, FDII Downsloping, FDII

J ‖ε‖∞ Rate J ‖ε‖∞ Rate

10 2.180255e−03 — 10 7.841872e−04 —
20 3.820216e−04 2.512 20 2.148323e−04 1.867
40 8.411472e−05 2.183 40 5.244569e−05 2.034
80 1.957920e−05 2.103 80 1.334829e−05 1.974
160 4.809866e−06 2.025 160 3.369580e−06 1.986
320 1.196289e−06 2.007 320 8.568883e−07 1.975
640 2.986845e−07 2.001 640 2.133469e−07 2.005

• Example 1 (upsloping, FDI). Here we take s(r)=10−3r . The errors and rates of convergence
appear in Table I. FDI is apparently stable and second-order accurate in this upsloping case.

• Example 2 (downsloping, FDI). In this example, s(r)=10+3r3. It is clear that FDI is not
convergent in this case, cf. Table I.

• Example 3 (upsloping, FDII). In this example, s(r)=10−3r . Table II shows that FDII is
apparently stable and of second-order of accuracy for this example.

• Example 4 (downsloping, FDII). For this example we took s(r)=10+3r3. The results of
Table II show that FDII, i.e. the finite difference scheme incorporating the second bottom
boundary condition as well, is apparently stable and second-order accurate.

• Example 5 (general s(r), FDII). In this example we took the oscillating bottom profile s(r)=
5+sin(10r) and computed with FDII. The scheme is apparently stable and second-order
accurate as shown in Table III.

We conclude from these examples, and from other similar ones that we ran, that FDII, i.e. the
scheme incorporating the pressure-release bottom boundary condition w(1, t)=0 and, in addition
to it, the bottom boundary condition (14), appears to be unconditionally stable and of second-order
of accuracy for any type of bottom profile. On the other hand, FDI appears to be stable and
convergent only in the presence of upsloping bottoms. It is interesting to note that in upsloping
environments and for sufficiently small values of k and h, the two schemes FDI and FDII yield
numerical approximations that are very close to each other. This may be seen e.g. in the results of
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Table III. Example 5.

General s(r), FDII

J ‖ε‖∞ Rate

10 1.403489e−03 —
20 4.615283e−04 1.604
40 1.309232e−04 1.817
80 3.310404e−05 1.983
160 8.757484e−06 1.918
320 2.047834e−06 2.096
640 5.025428e−07 2.026

Examples 1 and 3 (Tables I and II), where for J�320, the errors of the two schemes are equal to
three significant digits.

4. NUMERICAL EXPERIMENTS ON UNDERWATER ACOUSTICS PROBLEMS

In this section we consider three more realistic problems in the context of which we test
the validity of the ibvp (11)–(14), discretized by the finite difference scheme FDII, as a
wide-angle underwater sound propagation model. In (11) we used the complex coefficients
q=(0.252252311,−1.35135138e−02) (this value was used by Collins in [4] to obtain a stable
higher-order elastic PE model), and p=q+ 1

2 . Our first test case was the standard ASA upsloping
wedge example [14], with a pressure-release bottom given by s(r)=200(1−r/4000) (distances
in meters). The bottom thus decreases linearly from s(0)=200m at r =0 to zero at r =4000m,
and makes an angle with a constant value of 2.86◦ with respect to the horizontal surface. The
time-harmonic point source emits at a frequency f =25Hz and is located at r =0 at a depth
zS =100m. We assume that there is no attenuation in the water layer, i.e. that Im�=0, and that
c0=c=1500m/s, so that Re�=0 as well. The computation was carried out up to a maximum
range value of 3300m using the FDII scheme with 4000 intervals of equal length in y and
k=0.83475m. As initial condition at r =0 we used a normal mode starter corresponding to the
sum of the propagating modes present at the source location, i.e.

v0(z)= i
√
2�

M∑
m=1


m(zS)
m(z)√
kr,m

, 0�z�s(0) (45)

where 
m , 1�m�M , denote the depth-dependent mode-shaped functions defined for each
m∈{1, . . . ,M} by 
m(z) :=�m sin(m�z/s(0)), 0�z�s(0), with �m such that

∫ s(0)
0 |
m(z)|2 dz=1.

In (45) kr,m is the horizontal wave number associated with mode m, defined by kr,m :=√
(2� f/c)2−(m�/s(0))2. The test case studied here is characterized by the presence of six

propagating modes (M=6) at the source range. Note that the source is placed at mid-depth, which
corresponds exactly to a null of modes 2, 4, and 6. Only three propagating modes are thus excited
at r =0 (mode 1, mode 3, and mode 5). Figure 2 shows the resulting transmission loss (TL)
contour plot (referred back to the original z, r coordinates). The TLs were computed by using
the formula TL=−20log10(|v(z,r)|/√r). The minima and maxima that appear distinguishably
in Figure 2 are due to interference patterns of the (only) three propagating modes present in
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Figure 2. Transmission loss as a function of z and r . Upsloping ASA wedge test case, FDII.

the waveguide. The interference patterns exhibit three different sections in the contour plot,
corresponding mainly to the propagation of three modes (modes 1, 3, and 5), two modes (modes 1
and 3) and only one single mode (mode 1).

For this example, we compared the results of FDII with those obtained by a code that solves the
wide-angle equation (1) in the original variables using a ‘staircase’ approximation for the bottom
and pressure-matching across the vertical part of the stairs, as is quite customary in underwater
acoustics. (In this ‘staircase’ PE code we simulated the pressure-release bottom boundary condition
v=0 by placing a homogeneous, artificial fluid sediment layer under the bottom; this layer was
assumed to have a very high sound speed of 1010m/s and a very low density of 0.1kg/m3 as
suggested in [14]. The false bottom was placed at a depth of 1000m. The boundary-value problem
was then treated as an interface problem with two layers.) Figure 3 shows the one-dimensional
TL versus r plots for both codes at depth z=30m. We observe overall a good agreement between
the two codes; we shall comment below on the discrepancy observed. In Figure 4 we compare the
results of FDII for the same test problem with those of COUPLE implemented with a pressure-
release bottom. COUPLE is a standard code in underwater acoustics that solves the full Helmholtz
equation by a coupled normal mode technique [17]. (We compare here with the outgoing component
of the field given by COUPLE as the wide-angle equation (1) is valid for one-way propagation
only.) We observe a rather good overall agreement between the results of the two models. (We
used different axis scales in Figure 4 in order to fit the whole field in the picture.) The small-
amplitude oscillatory behavior of FDII in the vicinity of 2.5 km is due to the fact that the wide-angle
equation (1) represents a low-order formal approximation of the outgoing component of the full
Helmholtz equation corresponding to a rational approximation (1+ px)/(1+qx) of

√
1+x with

linear numerator and denominator. Use of higher-order accurate rational approximations [1, 6],
suppresses these wiggles. (Of course, rational approximations with higher-order polynomials lead
to higher-order wide-angle pde’s for which additional boundary conditions have to be provided so
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Figure 3. Transmission loss as a function of r at receiver depth z=30m. Upsloping ASA wedge
test case, FDII versus ‘staircase’ PE.
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Figure 4. Transmission loss as a function of r at receiver depth z=30m. Upsloping ASA
wedge test case, FDII versus outgoing field of COUPLE.

that they yield well-posed variable-bottom problems. In practice, one may suppress the wiggles
by using a higher-order analog of the ‘staircase’ PE.)

We now examine a second example, that of a ‘downsloping wedge’, corresponding to s(r)=
200(1+r/4000). The properties of the medium, the coefficients of (1), the initial condition, and
the discretization parameters of the FDII scheme were taken as before. In Figure 5 we show the
TL field computed by the FDII scheme for this example, while in Figure 6 we compare the FDII
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Figure 5. Transmission loss as a function of z and r . Downsloping wedge, FDII.
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Figure 6. Transmission loss as a function of r at receiver depth z=30m.
Downsloping wedge, FDII versus ‘staircase’ PE.

results, in the case of a typical one-dimensional TL plot, with those obtained by the ‘staircase’ PE
code. Again the observed agreement is very good.

Finally, in Figure 7 we show the TL field obtained by FDII in a similar waveguide having
a sinusoidal bottom given by s(r)=200−50sin(2�r/2000). The change-of-variable technique
enables one to easily discretize problems with general variable bottoms like this.
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Figure 7. Transmission loss as a function of z and r . Sinusoidal bottom, FDII.

As a final note of interest, we remark that the proposed new ibvp, as discretized by FDII, seems
to furnish physically improved results, when compared with the staircase discretization for the
wide-angle equation (1). This is evident from the TL graphs of Figures 3 and 6. Indeed, it is
well-known that a model that is not energy conserving tends to lose energy in upsloping and gain
energy in downsloping environments. It has also been documented that any ‘staircase’ PE model
employing a pressure-matching condition across the vertical step of the staircase is not energy
conserving [18]. Examination of the two curves in Figures 3 and 6 reveals that the new model is
more energy conserving than the staircase approximation.

5. CONCLUSION

In this paper we formulated an ibvp for the wide-angle PE (1) in a domain with variable bottom
z=s(r). The solution of (1) satisfies homogeneous Dirichlet boundary conditions at the water
surface and at the ‘pressure-release’ bottom. The problem was transformed by a range-dependent
change of variables into an equivalent one posed in a horizontal strip, cf. (11)–(13). In addition to
the zero Dirichlet boundary condition at the bottom, it was found that it is necessary in general to
pose another boundary condition there. The specific additional condition used in this paper, i.e. (14)
in the transformed variables, is obtained by assuming that the lower-order standard PE (8) holds
along the bottom surface. For upsloping bottoms, i.e. when ṡ(t)<0, uniqueness of solutions and
a priori H1 estimates thereof may be proved under some additional assumptions for the original
ibvp if we assume only the original Dirichlet condition at the bottom. However, in the presence of
general bottom topography, adding the new boundary condition allows one to derive an a priori
H2 estimate under some additional assumptions (e.g. if q in (1) is complex with Imq<0).
We also discretized the two ibvp’s by simple finite difference schemes that were experimentally

found to be of second order of accuracy. The scheme FDII that approximates the ibvp (11)–(14), i.e.
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with all three boundary conditions present, appears to be unconditionally stable and second-order
accurate in domains with general bottom topographies and yields accurate results in the case of
realistic examples of underwater sound propagation. On the other hand, the finite difference scheme
FDI, which approximates the ibvp (11)–(13), fails to converge in downsloping environments.
(Indeed, in numerical examples, we have on occasion observed that in such environments FDI
is unstable.) It is worthwhile to note that the numerical results that FDI yields in problems with
an upsloping bottom are very close to those produced by FDII. (We observed this not only in
‘artificial’ problems like the test cases of Section 3, but also in more realistic underwater sound
propagation problems posed over upsloping bottoms.)

The numerical experiments and theoretical estimates presented in this paper lead us to the
conjecture that the pde (11) is probably of ‘hyperbolic’ character, in the sense that when accom-
panied by only the two boundary conditions (13) it yields a well-posed ibvp in domains where
ṡ(t)�0, while it seems to need an additional boundary condition in case where ṡ is positive in
some interval of t . It also seems, at least in the cases of the numerical examples that we have tried,
that the additional boundary condition (14) is apparently ‘compatible’ with the equation and the
rest of the data in upsloping domains, and does not contribute much to the solution of (11)–(13)
in such cases.

We conclude the paper with two remarks.

(i) Computing with a complex q with Imq<0 was found to be essential for stabilizing the
numerical results of FDII. Indeed, when we took real-valued q in the underwater sound
propagation problems of Section 4 (where �=0) we observed small oscillations that grew
as t increased. (Recall that Imq<0 is also a sufficient condition for the invertibility of L,
cf. Lemma 2.3, and hence, for the validity of the estimate of the solution of (11)–(14).)

(ii) The additional boundary condition (14) is just an example of a third boundary condi-
tion needed, in conjunction with (13), for well-posedness in a general domain. Other sets
of boundary conditions may be derived that could also render well-posed problems. For
example, consider (1) in the original variable domain 0�z�s(r), r�0, and pose it as an ibvp
with a given initial condition v(z,0)=v0(z), 0�z�s(0), with the pressure-release surface
boundary condition v(0,r)=0 and the boundary condition vr (s(r),r)=0 for r�0. Assume
for example that the bottom is upsloping and, for simplicity, that q and � are real. Then,
under the usual low-frequency/shallow-water assumption, one may prove that for some
constant C , the H1 estimate

∫ s(r)

0
|vz(z,r)|2 dz�C

∫ s(0)

0
|v′

0(z)|2 dz (46)

holds for 0�r�R. This implies the uniqueness of v for such problems. It is interesting to
note that if, in addition, we also impose the boundary condition

vz− ik0ṡ(r)

2(p−q)
v+ iq

k0(p−q)
vr z =0 at z=s(r), r�0 (47)

then, we may show, under no sign assumptions on ṡ(r), that

∫ s(r)

0
|v(z,r)|2 dz=

∫ s(0)

0
|v0(z)|2 dz (48)
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i.e. that the associated ibvp (with three boundary conditions) conserves the L2 norm
(the ‘energy’) of the solution. When p=1/2, q=0, (47) reduces to the well-known
Abrahamsson–Kreiss bottom boundary condition vz− ik0ṡ(r)v=0 [19], which is a ‘parab-
olized’ Neumann boundary condition for the standard PE (8). Research for studying the
well-posedness, the physical relevance, and numerical approximations of these new ibvp’s
is under way.
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