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The accuracy of the multi-domain Chebyshev pseudospectral method is investigated for
wave propagation problems by examining the properties of the method in the wavenumber
space theoretically in terms of dispersion and dissipation errors. For a number of (N + 1)

points in the subdomains used in the literature, with N typically between 8 to 32,
significant errors can be obtained for waves discretized by more than π points per
wavelength. The dispersion and dissipation errors determined from the analysis in the
wavenumber space are found to be in good agreement with those obtained in test cases.
Accuracy limits based on arbitrary criteria are proposed, yielding minimum resolutions of
7.7, 5.2 and 4.0 points per wavelength for N = 8, 16 and 32 respectively. The numerical
efficiency of the method is estimated, showing that it is preferable to choose N between
16 and 32 in practice. The stability of the method is also assessed using the standard
fourth-order Runge–Kutta algorithm. Finally, 1-D and 2-D problems involving long-range
wave propagation are solved to illustrate the dissipation and dispersion errors for short
waves. The error anisotropy is studied in the 2-D case, in particular for a hybrid Fourier–
Chebyshev configuration.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Long-range wave propagation problems require accurate numerical differentiation schemes, which must generate very
low dispersion and dissipation errors. Among the available methods, pseudospectral (PS) methods are well-established ap-
proaches [1], and have been extensively used for wave propagation problems in time domain in several fields of physics
(see Refs. [2–7]). Using pseudospectral methods, contrary to finite-difference methods, the derivative of a variable at a single
point is computed from its values at all grid points [8]. Two types of pseudospectral methods are usually distinguished. For
periodic problems, Fourier PS methods are generally used, with equally spaced collocation points. The accuracy is however
poor for non-periodic problems, due to Gibbs oscillations [8]. In that case, PS methods based on the Chebyshev polynomials
or other orthogonal polynomials are preferred. For these methods, the collocation points, which are usually chosen as the
Gauss–Lobatto points, are unevenly spaced.

Despite their wide use, little is known about the properties of the pseudospectral methods in the wavenumber space.
They are particularly of interest when the number of grid points (N + 1) is small. Indeed, for PS methods, the differenti-
ation error for well-behaved functions [9] decreases exponentially with the number of points. For Fourier PS method, the
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parameter N takes large values in applications, typically greater than 128 (e.g. see [10,11]), ensuring a satisfactory accuracy
for waves down to two points per wavelength, which corresponds to the limitation of the Nyquist–Shannon sampling theo-
rem. For Chebyshev PS method, due to the non-uniform grid, accuracy is satisfactory for large N only for waves discretized
down to π points per wavelength (e.g. see [9]). Moreover, the distribution of the Gauss–Lobatto collocation points implies
that the minimum grid size decreases quadratically with increasing N , which can lead to severe restriction on the time step
when using explicit time-integration methods. For wave propagation applications, it is thus common to split the domain
into subdomains to relax the time step limitation [12–14]. The number of points (N + 1) in each subdomain can take low
values, with N typically between 8 and 32. For such values, the numerical error is expected to be significant for short
wavelengths.

The main objective of this paper is to study the numerical errors introduced by the multi-domain PS Chebyshev method
in the wavenumber space. The corollary is to provide accuracy limits, on which future work could rely. In the literature,
similar studies have been performed concerning the spectral element method by Hu et al. [15], Gassner and Kopriva [16]
and Melvin et al. [17]. This method differs from the multi-domain pseudospectral method by the use of the variational
principle [8]. Numerical errors have also been investigated for two other spectral methods, which are the spectral difference
method [18] and the spectral volume method [19]. However, few studies have been devoted to the multi-domain pseu-
dospectral approach. One can mention for instance the work of Kopriva [20], in which the convection of a 1-D wave has
been examined. It has been shown that the dispersion and dissipation errors, which are respectively the error on the phase
and on the amplitude of the computed wave, both decrease exponentially with the number of points. Besides, Wasberg and
Gottlieb [21] have carried out an analysis on the optimal decomposition for a multi-domain spectral method. However, that
work is based on the truncation error of the Chebyshev expansion of the sine function and does not take into account inter-
face treatment that plays a role on the accuracy of the method. All these studies show that significant errors are generated
for waves close to the limit of π points per wavelength, in particular for small values of N . For instance, Boyd [8] suggested
as a rule-of-thumb to use a resolution of 3.5 points per wavelength to reach a 5% accuracy. However, no systematic study
of the typical number of points per wavelength required to obtain accurate solutions at long range for wave propagation
problems has been proposed in the literature. This is one of the objectives in this paper.

For finite-difference methods, the dispersion and dissipation properties of the numerical schemes have been quantified
in a number of studies [22–24]. For that, the eigenfunctions of the first derivative finite-difference operator, which are
the Fourier modes u(x) = exp(ikx), are considered. The associated eigenvalues are denoted by ik∗ , where k∗ is referred
to as the effective wavenumber. A comparison can then be made with the exact eigenvalues ik of the derivative oper-
ator. In the present study, the eigenvalues of the multi-domain Chebyshev PS derivative operator for the 1-D advection
equation are investigated. A theoretical analysis is carried out to determine the dispersion and dissipation errors. The ob-
tained values are compared to those estimated in test cases. The paper is organized as follows. In Section 2, the effective
wavenumber obtained using the multi-domain Chebyshev PS method is introduced. The dispersion and dissipation errors
are discussed depending on the value of N , and accuracy limits are proposed. The stability of the method is assessed, using
the standard fourth-order Runge–Kutta algorithm. Several test cases are resolved to verify the theoretical analysis. In Sec-
tion 3, applications of the multi-domain Chebyshev PS methods are performed to illustrate the previous study. In particular,
a multi-dimensional problem is considered to examine the variations of the errors with the direction of wave propagation.

2. Analysis of the Chebyshev PS method in the wavenumber space

In the same way as in the studies performed by Hu et al. [15] and Gassner and Kopriva [16] for the discontinuous
Galerkin spectral element method, the 1-D advection equation for a variable p is considered:

1

c

∂ p

∂t
+ ∂ p

∂x
= 0 (1)

where c is the propagation speed. The equation is solved on a numerical domain divided into subdomains Il = [xl, xl+1] of
uniform length δ = xl+1 − xl . The spatial derivative is approximated using the Chebyshev pseudospectral derivative operator.
For a given subdomain, the coordinate transformation:

x(ξ) = (xl−1 + xl)

2
+ δ

2
ξ (2)

is introduced to scale the problem to the interval [−1, 1]. On each subdomain, the solution is discretized on the (N + 1)

Gauss–Lobatto points located at ξi = − cos(iπ/N), for 0 � i � N . The average mesh size is � = δ/N . At the interfaces,
conditions are imposed to transfer information through the subdomains. Denoting by p− and p+ the respective values of p
at the left and right hand sides of an interface, the boundary conditions are written as a linear combination:

p± = (1 − γ )p+ + γ p− (3)

with γ a real number between 0 and 1. In particular, the case γ = 1 corresponds to the method of the characteristics. Using
matrix-vector notation leads to the following equation on the subdomain Il:

δ ∂ p|Il + Dp|Il + Ep|Il−1 + Fp|Il+1 = 0 (4)

2c ∂t
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where the matrix D contains the information of the subdomain Il and the matrices E and F provide the information from the
left and the right adjacent subdomains, respectively. The matrix D is closely related to the Chebyshev differentiation matrix C
with Cij = (l j)ξ (ξi) [9], where (l j)0� j� N denotes the Lagrange interpolating polynomials associated with the Gauss–Lobatto
points. For the interior points 0 � i � N and 1 � j � (N − 1), one obtains Dij = Cij . At the boundary points, based on (3),
the rows of the matrix are equal to Di0 = (1 − γ )Ci0 and DiN = γ CiN , for 0 � i � N . Concerning the matrices E and F, all
the rows are null except for the boundary points, yielding EiN = γ Ci0 and Fi0 = (1 − γ )CiN , for 0 � i � N .

A harmonic-wave type solution is now considered:

p(ξ, t)|Il = p̂(ξ) exp(iklδ − iωt) (5)

for a wavenumber k and an angular frequency ω. Time integration is here assumed to generate no error. Introducing
solution (5) into Eq. (4) provides:

−ik̃δ

2
p̂ + Dp̂ + exp(−ikδ)Ep̂ + exp(+ikδ)Fp̂ = 0 (6)

with k̃ = ω/c. In the following, the average mesh size � is used as the reference length scale instead of δ. The eigenvalue
problem A(k�)p̂ = k̃(k�)�p̂ is obtained, with the matrix:

A(k�) = −2iN
�
D + exp(−ik�N)E + exp(+ik�N)F

�
(7)

For a given value of N , the eigenvalues and the eigenmodes depend on the wavenumber k, as well as the conditions at the
interfaces, hence on γ . The first and last columns of matrix A are linearly dependent, because the same values are imposed
at both sides of the interfaces. Consequently, for a given value of k�, there is a maximum of N non-zero eigenvalues k̃,
corresponding to numerical wavenumbers associated with the N modes.

Some properties of the wavenumbers of the modes can be deduced from the expression of matrix A. First, if the complex
conjugate of matrix A is denoted by A, the relation A(k�) = −A(−k�) is found. This implies that the set of wavenumbers

obtained for −k� is related to that obtained for k� by k̃(−k�) = −k̃(k�). Secondly, since the matrix A depends only on
exp(±ik�N), the matrix is periodic as a function of k� of period 2π/N . As a result, the spectrum of the matrix A(k�) is
also periodic of period 2π/N , hence:

k̃

�
k� + 2π

N

�
= k̃(k�) (8)

In what follows, the method of the characteristics is used at the interfaces of the subdomains. As proposed by Hu et
al. [15], the physical mode is defined as the mode whose wavenumber best approximates the exact dispersion relation k̃ = k
over a non-trivial range of wavenumbers. The wavenumber associated with the physical mode is referred to as the effective
wavenumber and is denoted by k∗ . The other modes are considered as numerical modes.

An analytical expression for k∗ can be obtained for N = 1 and for N = 2. For N = 1, the effective wavenumber is:

k∗� = sin(k�) − i
�
1 − cos(k�)

�
(9)

which corresponds to the effective wavenumber of the first-order upwind finite-difference scheme. For N = 2, the expression
of the effective wavenumber for k� ∈ [0,π ] is:

k∗� =
�

7 − 22 exp(−2ik�) − exp(−4ik�)

4
− i

�
3 + exp(−2ik�)

4

�
(10)

Based on a Taylor expansion of k∗� around k� = 0, it can thus be shown that the multi-domain Chebyshev PS method
is third-order accurate for N = 2. It can also be noted that the expression for the effective wavenumber in (10) does not
correspond to that of any finite-difference scheme, which is written as a sum of sine and cosine functions. For N � 3, the
effective wavenumber is determined numerically. Fig. 1 shows the real and imaginary parts of the wavenumbers of the
modes obtained for N = 4 as functions of the exact wavenumber k�. The effective wavenumber is clearly distinct from the
wavenumbers associated with the numerical modes. In particular, for small values of |k�|, its real part is superimposed on
the line Re(k̃)� = k� and its imaginary part is very close to zero.

The effective wavenumber shows other particular properties. First, it satisfies k∗(−k�) = −k∗(k�) for all values of N .
The real part of k∗ is then antisymmetric, and its imaginary part is symmetric. This is seen for the case N = 4 in Fig. 1.
Moreover, for N � 51, it is observed that k∗(k�) is a periodic function with period 2π . For N = 52 to N = 256, k∗(k�) is still
periodic but with a smaller period, equal to 2π(N − 2)/N . As an example, the real and imaginary parts of the wavenumbers
of different modes are shown in Fig. 2 for N = 52 as functions of the exact wavenumber k�. As for N = 4, for small values
of |k�|, the real part of the effective wavenumber is superimposed on the line Re[k̃�] = k� and its imaginary part is very
close to zero. It appears also that the period of k∗� is smaller than 2π . In all cases, it is thus sufficient to consider the real
and imaginary parts of k∗� on the interval k� ∈ [0,π ].
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Fig. 1. (a) Real and (b) imaginary parts of the wavenumbers k̃� of the modes obtained for N = 4 as functions of the exact wavenumber k�: effective
wavenumber and wavenumbers associated with the numerical modes.

Fig. 2. (a) Real and (b) imaginary parts of the wavenumbers k̃� of different modes obtained for N = 52 as functions of the exact wavenumber k�:
effective wavenumber, 2π/N-periodic numerical wavenumbers and an example of numerical wavenumber corresponding to the effective

wavenumber shifted along the k�-axis.

Concerning the numerical modes, for N � 51, their wavenumbers correspond to the effective wavenumber shifted along
the k�-axis by multiples of 2π/N . This is the case in Fig. 1 for N = 4, where the shift is equal to π/2. From N = 52 to
N = 256, two modes are distinct from the other ones. Their wavenumbers are periodic with period 2π/N , and have the
largest real parts among all numerical wavenumbers. This is observed in Fig. 2 for N = 52. It is also found that one of
these two wavenumbers has positive real parts, whereas the second one has negative real parts. Their imaginary parts are
large, with Im[k̃�] < −2, over the whole range of wavenumbers. For the other modes, k̃(k�) corresponds to the effective
wavenumber k∗ shifted along the k�-axis by multiples of 2π/N . An example is displayed in Fig. 2 for N = 52 with a shift
equal to π/2.

2.1. Dispersion error

The error related to the phase, namely the dispersion error, is characterized by plotting the real part of the effective
wavenumber in Fig. 3(a) as a function of the exact wavenumber k� for different values of N , between N = 2 and N = 128.
For low wavenumbers, typically k� < π/4, all curves are superimposed on the line Re[k∗�] = k�. For higher wavenumbers,
the curves begin to deviate from this line at different values. As an example, the error | Re(k∗)� − k�| becomes larger than
1% for k� = 1.4 for N = 8, and for k� = 1.86 for N = 16. For N > 16, the relation Re[k∗�] = k� is nearly satisfied up to
k� = 2. For k� > 2, the errors are however large even with increasing N . This limit of k� = 2 corresponds to the classical
restriction of π points per wavelength for the Chebyshev PS method [9]. The variations of Re[k∗�] close to k� = π are
finally shown in Fig. 3(b). A large overshoot increasing with N is observed. This behavior has previously been found for
discontinuous Galerkin spectral element methods in [15] and [16].

Fig. 4 displays the dispersion error given by | Re(k∗�) − k�|/π . At low wavenumbers, the dispersion error is significant
for small values of N . For instance, for N = 4, it is higher than 10−5 for k� > π/10. Increasing N leads to a considerable
reduction of the dispersion error for small k�. Thus, for values of N larger than 32, it is lower than 10−5 up to k� = π/2.
Finally, the dispersion error is important for k� > 2 for all values of N .
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Fig. 3. (a) Real part of the effective wavenumber k∗� as a function of the exact wavenumber k� and (b) view on the overshoots for k� ∈ [2;π ], for
N = 4, N = 8, N = 16, N = 32, N = 64 and N = 128.

Fig. 4. Dispersion error | Re(k∗�) − k�|/π as a function of the exact wavenumber k�, obtained for N = 4, N = 8, N = 16, N = 32,
N = 64 and N = 128.

2.2. Dissipation error

The dissipation error, which is the error on the amplitude of the solution, results from the imaginary part of the effective
wavenumber. In Fig. 5(a), the imaginary part of k∗� is plotted as a function of the exact wavenumber for different values of
N . It is close to zero for small wavenumbers, and takes negative values decreasing when k� increases. It is significant for the
case N = 8 from k� = π/3. In addition, Im[k∗�] is close to zero over a broader range of wavenumbers with increasing N .
Fig. 5(b) shows the values of Im[k∗�] for k� between 2 and π . As observed for Re[k∗�] in Fig. 3(b), the imaginary part of
the effective wavenumber is large near k� = π for all values of N , and its minimum value decreases with increasing N .

Fig. 5. (a) Imaginary part of the effective wavenumber k∗� as a function of the exact wavenumber k�, and (b) view on the interval k� ∈ [2,π ], for
N = 4, N = 8, N = 16, N = 32, N = 64 and N = 128.

For N � 3, the imaginary part of Im[k∗�] is positive over a narrow range of wavenumbers, as is observed in Fig. 6. For
N = 4, for example, this is the case approximately over π/8 � k� � 3π/8. Waves whose wavenumbers lie in this range are
consequently amplified. The maximum values of Im[k∗�] are however small, typically lower than 5 × 10−3, yielding low
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Fig. 6. Close-up on the positive values of the imaginary part of the effective wavenumber k∗�, as a function of the exact wavenumber k�, for N = 4,
N = 8, N = 16, N = 32, N = 64 and N = 128.

amplification rates. Moreover, it is observed that the maximum value of Im[k∗�] decreases generally with increasing N . It
is equal to 2 × 10−4 for N = 32, 6 × 10−5 for N = 64 and 5 × 10−6 for N = 128. The amplification due to the positive value
of Im[k∗�] implies some stability issues which are discussed in Section 2.5.

Fig. 7 shows the dissipation error, given by the relation |1 − exp[Im(k∗�)]|, as a function of the exact wavenumber k�.
As expected, the dissipation error decreases with increasing N . For N < 8, it takes significant values for small wavenumbers.
For instance, for N = 4, the dissipation error is larger than 10−5 for k� > π/13. For values of N greater than 32, it is
smaller than 10−5 up to k� = π/2, which is comparable to values obtained for the dispersion error. Furthermore, as for
the dispersion errors, the dissipation errors are large for k� > 2 and do not decrease notably with increasing N in that
particular range of wavenumbers.

Fig. 7. Dissipation error |1 − exp(Im(k∗�))| as a function of the exact wavenumber k�, for N = 4, N = 8, N = 16, N = 32, N = 64
and N = 128.

2.3. Test cases

In this section, the 1-D advection equation (1) is solved using the multi-domain Chebyshev PS method. Results
are compared with those obtained theoretically above. An initial value problem is considered, with an initial solution
p(x, t = 0) = exp(ikx), which can be expanded, on a subdomain Il , as a sum of the eigenmodes Vm:

p(x, t = 0)|Il = exp(ikx)|Il =
N	

m=1

λm Vm(k, x) (11)

where λm are expansion coefficients. Denoting by k̃m the wavenumber associated with the eigenmode Vm , the solution of
the problem reads [15]:

p(x, t)|Il =
N	

m=1

λm Vm(k, x) exp(−ik̃mct) (12)

Thus, the solution corresponds to a sum of exponentially decaying or increasing functions with time. At long time, the
eigenmode whose wavenumber has the largest imaginary part is dominant.

In what follows, the propagation speed is equal to c = 1. The numerical solution is advanced to t = 120�, where �

denotes the average mesh size, using the six-stage fourth-order Runge–Kutta algorithm of Berland et al. [25] for time
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Fig. 8. Real part of the numerical solution for k� = π/4 and for N = 8 as a function of x/� (a) at t = 0 and (b) at t = 120�.

Fig. 9. Real part of the numerical solution for k� = 5π/8 and for N = 8 as a function of x/� (a) at t = 0 and (b) at t = 120�.

integration. The time step is chosen as 0.05� in order to generate negligible time-integration errors. The parameter N
related to the number of points in the subdomains (N + 1) is set to N = 8. The changes of the variable p between the initial
time and the final time depending on the value of k� are highlighted in Figs. 8 and 9 for initial waves with k� = π/4
and 5π/8, respectively. In the first case, for k� = π/4, the numerical solution at the final time shows little dissipation and
dispersion. This can be related to the theoretical values of the dispersion and dissipation errors which are small, lower than
10−4, as seen in Figs. 4 and 7. Here, the leading mode is the physical mode. In the second case, for k� = 5π/8, the solution
at the final time has a much smaller amplitude and a larger wavelength than the initial solution, suggesting that the leading
mode is not the physical mode. To support this claim, it can be noticed that, as visible in Fig. 5(a), the imaginary part of the
effective wavenumber has a large value for k� = 5π/8 and N = 8, i.e. Im[k∗�] = −0.12, which implies that the physical
mode is strongly attenuated at t = 120�. Therefore, the leading mode corresponds in this case to a numerical mode.

Calculations are now performed for wavenumbers over the range k� ∈ [0,π ]. From (12), assuming that there is a leading
mode at long time, the numerical solution can be expressed as p(x, t) = λV (k, x) exp(−ik̃ct). The real and imaginary parts
of the wavenumber of the leading mode can be deduced from the time variations of the phase and of the amplitude of the
solution with:

arg
�
p(x, t)

� ∝ − Re[k̃]t (13)

log



 p(x, t)




 ∝ Im[k̃]t (14)

Thus, the solution is recorded at a single grid point in the numerical domain from t = 80� to t = 120�. Using a least
squares approach, the phase and the logarithm of the amplitude of the solution are fitted by lines. From (13) and (14),
the real and the imaginary parts of the wavenumber of the leading mode are then estimated from the slopes of the two
lines. As an example, the time variations of the phase of p and of the logarithm of |p| are displayed in Fig. 10 for an
initial wave with wavenumber k� = π/4, for which the solutions at the initial and final times are shown in Fig. 8. It is

Fig. 10. Time variations of (a) the phase of p and (b) of the logarithm of |p| for k� = π/4 and for N = 8: numerical solution and linear regression
line.
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