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In this work, the performance of large-eddy simulation (LES) based on the relaxation-
filtering (RF) technique has been investigated quantitatively. In RF-based LES, the
velocity field is filtered each nth time step, using a standard finite-difference filter,
characterized by a specific order of accuracy m, and a fixed filtering strength σ . Hence,
the procedure dissipates the amount of energy related to the residual stresses, and thus
models the dissipative effect of the unresolved scales on the resolved scales. Since
the order m and strength σ are related to the spectral distribution and the magnitude of
the dissipation, respectively, these predefined parameters are crucial for the success of the
method. Here, their influence is systematically investigated for the Taylor–Green vortex
flow at a Reynolds number of 3000. First, the effects of m and σ are studied a priori
in Fourier space. Further, 36 LESs are performed, each with a different combination
of order m = 4, 6, 8, 10, 12, 14 and strength σ = 0.15, 0.2, 0.4, 0.6, 0.8, 1, and the
turbulent statistics are compared with those of a direct numerical simulation, filtered
at identical resolutions. The a priori, as well as the a posteriori results indicate that,
for low filter orders m ≤ 4, the LES accuracy is rather poor and depends strongly on
the filtering strength σ . However, for higher order filters, i.e. m ≥ 8, the accuracy is
quite good and the results, including the resolved and subgrid dissipation rates, are
nearly independent of the strength σ for σ ≥ 0.4. In this case, the spectral dissipation-
distribution, determined by m, turns out to be the dominant parameter, whereas the
dissipation strength, determined by σ , is of minor importance.

Keywords: large-eddy simulation; subgrid modeling; relaxation filtering; error land-
scapes; Taylor–Green vortex

1. Introduction

In large-eddy simulation (LES) of a turbulent flow, the most significant scales of motion,
i.e., the largest and most significant scales in the energy-containing range and inertial
range, are resolved in order to obtain a statistically sufficiently accurate prediction of the
flow. Since the small scales in the dissipation range are not resolved, their effects must be
accounted for by a dissipation mechanism, in order to avoid pile-up of energy at the cutoff
wavenumber imposed by the computational grid. This is usually done by replacing the
residual stress tensor in the filtered Navier–Stokes equations with an eddy-viscosity model,
such as the well-known Smagorinsky model, or by relying on the numerical dissipation
induced by some specific discretization schemes of the convective term as in implicit LES
methods. For a more detailed survey of these models, we refer to books by Sagaut [1]
and Geurts [2], or reviews by Lesieur and Métais [3], Grinstein and Fureby [4], and
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Domaradzki [5]. Domaradzki et al. [6–8] and Bogey and Bailly [9,10] pointed out that the
global amount of dissipation, as well as its spectral distribution, may be difficult to control
in these methods. This has led to the development of other LES methodologies relying on
high-order dissipation mechanisms, such as hyper-viscosity models [11,12], the relaxation
term in the approximate deconvolution model (ADM) [13], or spectral-like/selective spatial
filters [14].

In recent years, relaxation filtering (RF) has been proposed by Visbal and Rizzetta [15],
Rizzetta et al. [16], Mathew et al. [17], and Bogey et al. [18–20], among others, as a
novel technique to account for the dissipative effect of the residual stresses in LES. It
is interesting to note that the RF method as described by Mathew et al. [17] is actually
inspired on the ADM of Stolz, Adams, and Kleiser [13], who already suggested the use
of explicit RF. In RF-based LES, the velocity field is filtered every nth time step and in
each Cartesian direction, using a standard finite-difference filter, characterized by a specific
order of accuracy m, and a fixed filtering strength σ ∈ [0, 1]. Such a procedure is very
successful in dissipating the energy related to the residual stresses, and thus models the
dissipative effect of the unresolved scales on the resolved scales. To obtain the appropriate
amount of energy dissipation, criteria were developed to adjust dynamically the filtering
frequency and strength σ to the flow features, e.g., in Tantikul and Domaradzki [21].

However, since such dynamic procedures are often cumbersome and computationally
expensive, the filtering is usually applied at a fixed frequency, using a predefined finite
difference filter with order m, and filtering strength σ (typically σ � 1). Since, the order
m and strength σ determine the spectral distribution and the global magnitude of the dissi-
pation, respectively, these predefined parameters are crucial for the success of the method.
Indeed, it can be understood that the selected filter must provide sufficient dissipation to the
smallest resolved scales, leaving the largest scales mostly unaffected. Hence, the influence
of the spectral distribution, determined by the order m, is expected to be most important,
whereas the influence of the filtering strength σ should be less important. Because of this
we expect that the amount of energy, dissipated by the relaxation filter, should not depend
significantly on the precise value of σ . This hypothesis is supported by the results of Bogey
and Bailly [10,18] in LES of turbulent jets. They noticed that the dissipation rates did not
change significantly when decreasing the relaxation filter frequency. The latter is equiva-
lent to reducing σ for a fixed filtering frequency. Nevertheless, a systematic quantitative
assessment of the RF approach, and in particular the influence of σ , is necessary, as pointed
out in recent work of Berland et al. [22].

In this paper, we investigate in detail the performance of the RF method, using standard
finite difference filters with adjustable strength, as modeling-approach for LES. As a rep-
resentative test case, the Taylor–Green vortex flow is selected. The viscous Taylor–Green
vortex flow, introduced in 1937 by Taylor et al. [23], is considered as a prototype system that
describes the production of small-scale eddies due to the mechanism of vortex-line stretch-
ing in homogeneous isotropic turbulence [24]. It is one of the simplest environments to
study the breakdown process of large-scale vortices into successively smaller ones, and the
resulting homogeneous isotropic turbulence [24,25]. In the past decade, the Taylor–Green
vortex has become a popular reference case, used in a series of studies on LES methods, e.g.,
by Fauconnier et al. [25], Drikakis et al. [26], Chandy and Frankel [27], Johnsen et al. [28],
Adams [29], and Gassner and Beck [30]. We select the Reynolds number Re = 3000, which
is large enough so that natural transition into small-scale homogeneous isotropic decaying
turbulence occurs.

The paper is organized as follows. After a brief introduction concerning the Taylor–
Green vortex case at Reynolds Re = 3000, the setup for the direct numerical simulation

D
ow

nl
oa

de
d 

by
 [

E
co

le
 C

en
tr

al
e 

de
 L

yo
n]

 a
t 2

0:
48

 0
8 

Ja
nu

ar
y 

20
13

 



24 D. Fauconnier et al.

(DNS) of this case is specified. The reference solution, obtained via DNS on a 3843

computational grid, is presented and compared to the DNS results on a 2563 grid and
to the DNS data of Brachet et al. [24]. Further, the RF method for LES is introduced,
followed by the setup for the parametric study in which the filter order m and the filter
strength σ are the parameters of interest. More specific, the parametric study involves 36
RF-based LESs of the Taylor–Green vortex, each one performed on a 643 computational
grid, using various combinations of standard filters of order m and filtering strength σ . For
the quality assessment of the RF method for LES, the 36 LES datasets are compared with the
filtered DNS reference data. We analyze the instantaneous energy spectra as well as the
time evolutions of the kinetic energy and dissipation rate. The latter are determined based
on LES and DNS data, filtered in post-processing to an effective resolution of 643, 323,

and 163 nodes. This allows to isolate the effects of the RF on a large scale subset of the
original data. In order to analyze and visualize the dependency and sensitivity of the RF
method to both parameters, the deviation between the LES and DNS solutions, filtered
at identical resolution, are presented as function of the filtering order m and strength σ

in an error-landscape, following, e.g., Meyers et al. [31]. More importantly, we aim to
validate the a priori expectations that the results should not vary significantly provided that
the order of the relaxation filter is sufficiently high, and the strength is not unreasonably
low.

2. Taylor–Green vortex

According to Brachet et al. [24], the generalized Taylor–Green vortex is defined as the
periodic three-dimensional incompressible flow, governed by the Navier–Stokes equations
and the continuity equation

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂x2
j

, (2)

which develops from the initial solenoidal velocity field u (x, t = 0) (in non-dimensional
form)

u1 (x, 0) = sin (x1) cos (x2) cos (x3) ,

u2 (x, 0) = − cos (x1) sin (x2) cos (x3) ,

u3 (x, 0) = 0.

(3)

The initial pressure field p (x, t = 0), that follows from the initial solenoidal velocity field,
is obtained by solving the Poisson equation, yielding

p (x, 0) = p0 + 1

16
[2 + cos (2x3)] [cos (2x1) + cos (2x2)] , (4)

where the arbitrary mean pressure component p0 is set to zero in this work.
By taking the Fourier transform of the initial velocity field (3), it can be shown

that the initial condition (3) corresponds to eight Fourier modes, located at the positions
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κ = (±1, ±1, ±1). Hence, condition (3) represents a single vortex scale which is located at
the spherical wavenumber-shell with radius |κ| = √

3. The total amount of kinetic energy
and dissipation rate in the initial flow are obtained as

k (t = 0) = 1

8π3

∫∫∫ 2π

0

1

2
uiuidx = 1

8
, (5)

ε (t = 0) = 1

8π3

∫∫∫ 2π

0
ν

∂ui

∂xj

∂ui

∂xj

dx = 3

4

1

Re
. (6)

Brachet et al. [24] defined the Reynolds number as Re = 1/ν, noting that the length and
velocity scales of the initial flow (3) are of order 1. In the initial stages of the simulation, the
large-scale vortex flow is highly organized and, thus, characterized as laminar. However, the
convective terms in the Navier–Stokes equations (2) start to generate successively smaller
structures which interact with the large scales. If the Reynolds number is large enough,
this results into a process of vortex-stretching and eventually into breakdown of the large
scales into smaller ones which is interpreted as turbulence. Therefore, the Taylor–Green
flow is believed to describe the fundamental process of natural transition into isotropic
turbulence. This transitional behavior is determined entirely by the choice of the Reynolds
number. Brachet et al. [24] observed that for Re ≥ 500 the small-scale structures in the
Taylor–Green flow undergo profound changes. For high Reynolds numbers, say Re ≥ 1000,
the turbulent flow becomes nearly isotropic with no memory of the initial conditions. Once
Re ≥ 1000, an inertial range is observed in the energy spectrum. For t → ∞, the isotropic
turbulence decays due to viscosity.

We select the Reynolds number Re = 3000. This corresponds to a maximum Taylor
Reynolds number based on the transversal Taylor micro-scale Reλ ≈ 111. The resulting
turbulent flow field is, thus, expected to exhibit a clear inertial range that corresponds to
the −5/3 Kolmogorov scaling. In the following, the setup of the DNS and the LESs of
the selected Taylor–Green vortex is discussed. The DNS-solution will serve as a reference
solution against which the various LES-solutions are compared.

3. Direct numerical simulation

For the DNS of the Taylor–Green vortex flow at Re = 3000, the Equations (1) and (2)
are solved on a computational grid of 3843 nodes yielding a maximum wave number
κmax = 192. The equations are solved in Fourier space by a pseudo-spectral method [25]
with anisotropic 2/3-de-aliasing for the nonlinear convective terms. Further, a pressure-
correction algorithm is applied in combination with an explicit low-storage six-stage low-
dissipation Runge–Kutta method [32]. A time-step 	t = 0.005 was applied, such that the
corresponding Courant-Friedrichs-Lewy number does not exceed 0.3. The flow is simulated
up to t = 20, requiring 4000 time steps.

Figure 1 gives an illustration of the vortex evolution of the flow, using the λ2 criterion of
Jeong and Hussain [33]. It is clear from these images that well-organized large-scale flow
develops into turbulence characterized by a wide range of small-scale structures. The tem-
poral development of the energy spectrum related the resolved velocity field u (x, t = tj )
is shown in Figure 2(a). It is seen that the energy spectrum develops from a single char-
acteristic Fourier mode, i.e., a single large-scale vortex, toward an entire range of modes,
representing a spectrum of turbulent scales. The energy spectrum obtained at the peak of
the dissipation rate, i.e., at time t = 9, as will be shown below, is presented in Figure 2(b).
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26 D. Fauconnier et al.

Figure 1. DNS of a Taylor–Green vortex at Re = 3000 on a 3843 grid. Turbulent vortex structures
obtained with the λ2 criterion of Jeong and Hussain [33], and colored by z-vorticity (a) t = 0, (a)
t = 9, (c) t = 18.

This figure also includes the results, obtained from the DNS on a computational grid of 2563

nodes. The latter grid resolution corresponds with that of Brachet et al. [24]. The figure
shows the presence of a κ−5/3 inertial range in the energy spectrum. The temporal evolution
of the decaying kinetic energy and the dissipation rate are shown in Figure 3. One observes
that the dissipation rate ε (t) rises relatively sharply around t ≥ 4 and reaches a maximum
at t = 9. Brachet et al. [24] reported that the Taylor–Green flow pattern becomes heavily
distorted around t = 7, which may be interpreted as turbulence. The coherent structure
itself, finally breaks down around t = 8. Therefore, it is expected that for t ≥ 9, the flow is
fully turbulent and nearly-isotropic [25].

It is verified that the evolution of the dissipation rate ε (t) and the kinetic energy k (t),
obtained from our 3843 DNS, are in close agreement with those obtained by Brachet
et al. [24] obtained from a 2563 DNS at the same Reynolds number. However, the kinetic
energy is slightly higher and the dissipation rate is visibly lower in the 3843 DNS. To
discuss the origin of these discrepancies, the results obtained from a 2563 DNS, carried
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Figure 2. DNS of a Taylor–Green vortex at a Reynolds number of 3000: (a) time evolution of energy
spectra obtained from the 3843 DNS; (b) energy spectra obtained at t = 9 from DNS using
2563 and 3843 nodes. The dotted line represents a κ−5/3 decay.
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Figure 3. Time evolution of (a) the kinetic energy k and (b) the dissipation rate ε obtained from the
present 2563 and 3843 DNS, � the 2563 DNS by Brachet et al. [24].

out using our pseudo-spectral solver, are shown in Figure 3. They nearly collapse with the
data of Brachet et al. [24]. This agreement demonstrates the validity of our DNS solver
while suggesting that a 2563 node resolution may not be fully sufficient for the DNS of
the Taylor–Green vortex at Re = 3000. Therefore, the 3843 DNS results will be used as
reference solutions in the following sections. In order to compare the DNS results with the
LES results, for the same range of resolved scales, both the DNS data and the LES data (if
necessary) will be filtered in post-processing to an identical effective resolution of 83, 163,

or 643 computational nodes, using an anisotropic sharp Fourier filter (Fourier modes for
which κi > κmax, i = 1, 2, 3 are set to zero). The filtered DNS data are shown in Figure 4.

4. Large-eddy simulation

The governing equations for the LES are obtained by applying a convolution filter to the
Navier–Stokes equations (1) and (2). In the current context of the Taylor–Green flow in a
homogeneous periodic box, the sharp cutoff filter G (x, κc) is favored, with κc being the

Figure 4. (a) Filtered DNS-energy spectra at t = 9; (b) Time evolution of the filtered DNS kinetic
energy; (c) Time evolution of the filtered DNS dissipation rate. 3843 DNS data (−−−−−); DNS data
filtered at resolution 643 (−−−); DNS data filtered at resolution 323 (−·−·); DNS data filtered at
resolution 163 (· · ·).
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28 D. Fauconnier et al.

cutoff wavenumber. The filtered Navier–Stokes equations (1) and (2) are then obtained as

∂ui

∂xi

= 0, (7)

∂ui

∂t
+ ∂uiuj

∂xj

+ ∂τij

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂x2
j

, (8)

where p (x, t) denotes the filtered pressure field and τij = uiuj − uiuj denotes the residual-
stress tensor. Since the smallest dissipative motions remain unresolved in LES, their sta-
tistically dissipative effect on the larger resolved scales, represented by the residual stress
tensor τij must be taken into account by means of a proper dissipative model or mechanism.
If not, an energy pile-up will occur around the cutoff wavenumber κc, due to the spectral
blockage of the computational grid, making the simulation unreliable and even unstable.

4.1. Relaxation filtering

In the present work, the RF approach is used to account for the residual stresses. As
described in the introduction, the energy in the residual stresses is relaxed, by filtering each
LES-velocity component every nth time step in each Cartesian direction, using a standard
finite difference filter, characterized by a specific order of accuracy m, and a fixed filtering
strength σ .

The smooth three-dimensional anisotropic convolution filter kernel G (x, σ ), with σ the
filter strength, can be written as a the convolution product of three one-dimensional filter
kernels, such that

G (x, σ ) = G (x1, σ ) ∗ G (x2, σ ) ∗ G (x3, σ ). (9)

The one-dimensional filtering operation of a generic variable ϕ in Cartesian direction
i = 1, 2, 3 is then defined as

ϕ̃ (xi) = ϕ (xi) − σ

n∑
j=−n

dj ϕ(xi,j ), σ ∈ [0, 1] , (10)

where ϕ̃ denotes the filtered variable, and dj = −d−j represents the weighting coefficients
that determine the dissipative contribution of the (2n + 1)-point symmetric finite difference
filter. Note that the stencil width (2n + 1) determines the order of the filter m. It is obvious
that for σ = 0, the filter operator reduces to the identity operator, whereas for σ = 1, the
full filter strength is engaged. Assume that RF is applied to the velocity field components
each τ time levels, in order to eliminate or model the residual-stress tensor, and obtain the
desired LES solution ui . Hence, the corresponding 2-step algorithm at time level T can be
written as

u∗
i = uT

i − 	t

{
∂uT

i uT
j

∂xj

+ ∂pT

∂xi

− ν
∂2uT

i

∂x2
j

}
, (11)

uT +1
i = G (x, σ, χd ) ∗ u∗

i , (12)
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in which the discrete relaxation frequency function χd (T , θ ) is unity at time levels where
the RF must be applied, and remains zero at other times. This algorithm may be interpreted
as a predictor–corrector method. Indeed, in the first step a prediction of the velocity field u∗

i

at the new time level is obtained, by integrating the momentum equations without taking the
residual stress force into account. Because the residual stresses are neglected, u∗

i displays
a slight energy pile-up near the cutoff wavenumber. This is remedied in the subsequent
correction step. The predicted velocity field u∗

i is corrected by applying the relaxation filter
G (x, σ, χ ), resulting in the velocity field uT +1

i at time level T + 1. In order to illustrate the
relation with traditional LES models, we decompose the smooth filter kernel as

G (x, σ ) = I − χd (T , θ ) D (x, σ ) , (13)

in which I and D (x, σ ) denote the identity operator and the dissipative kernel of the
three-dimensional filter kernel G (x, σ ), respectively. The discrete function χd (T , θ ) can
be formulated mathematically as a discrete Dirac-Comb, yielding

χd (T , θ ) =
∑

k

δ (T − kθ ) =
{

1 T = kθ, ∀k ∈ N

0 T = kθ, ∀k ∈ N
. (14)

It is easily understood that at time levels T = kθ, k ∈ N, the dissipative kernel D (x, σ )
is engaged and RF is, thus, applied with unity magnitude, whereas for time levels T =
kθ, k ∈ N, the relaxation filter reduces to the identity operator I .

Using relation (13), it is possible to reconstruct the original equations for LES from the
discrete predictor–corrector formulation (11)-(12), yielding

∂ui

∂t
= −∂uiuj

∂xj

− ∂p

∂xi

+ν
∂2ui

∂x2
j

+ lim
	t→0

χd (T , θ )

	t
D (x, σ )∗u∗

i . (15)

Using the scaling property of the Dirac function, the residual stress force is transformed to
time space as

∂τij

∂xj

= lim
	t→0

∑
k

δ (T − kθ )

	t
D (x, σ ) ∗ u∗

i (16)

= lim
	t→0

∑
k

δ (T 	t − kθ	t)D (x, σ ) ∗ u∗
i (17)

=
∑

k

δ (t − kτ ) D (x, σ ) ∗ ui (18)

= χc (t, τ ) D (x, σ ) ∗ ui. (19)

Hence, the discrete relaxation frequency function χd (T , θ ) becomes the discontinuous
relaxation frequency function χc (t, τ ), in which the continuous time t = T 	t and analo-
gously physical time-scale τ = θ	t . Note that expression (19) is independent of the time
step 	t , but relies on the predefined time-scale τ that determines the models filtering fre-
quency. Expressions (15) and (19) suggest a relation between the subgrid force due to RF,
the penalization term in the ADM of Stolz et al. [1,13], and hyperviscosity models.

Indeed, although expression (19) for the residual stresses is a discontinuous time-
function, implying that the dissipative operator is engaged after each time-scale τ at full
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30 D. Fauconnier et al.

strength, it is possible to redefine the model into a continuous time-function, such that the
operator is applied constantly at a reduced strength χ . This strength χ is obtained as the
time-average of the relaxation frequency function χc (t, τ ), i.e.

χ = 1

τ

∫ (k+1/2)τ

(k−1/2)τ
χc (t, τ ) dt = 1

τ
. (20)

Using expressions (10) and (20), the residual stress force (19) is then worked out as

∂τ t
ij

∂xj

= χ {σ [D (x1) + D (x2) + D (x3)] ∗ ui + σ 2[D (x1) ∗ D (x2)

+ D (x2) ∗ D (x3) + D (x1) ∗ D (x3) ] ∗ ui

+ σ 3 [D (x1) ∗ D (x2) ∗ D (x3)] ∗ ui } . (21)

The relaxation frequency χ can, thus, be interpreted as applying the filter with kernel
[I − D (x, σ )] every 1/χ	t time steps. Such a formulation is entirely equivalent to the
penalty term of Stolz et al. [1,13], which is a well accepted residual-stress model. It was
shown by these authors, that the sensitivity of the numerical results to the precise value of
the relaxation frequency χ , and thus τ , is rather weak. We emphasize that the relaxation
time-scale τ is a pre-defined physical model-parameter, which is not directly related to the
choice of the time step. However, it is obvious that for a chosen value of τ , decreasing
the time step 	t in the algorithmic expressions (11) and (12) must be compensated by a
proportional increase of θ , and vice versa. Since θ ≥ 1, τ is bounded as τ ≥ 	t .

It is also possible to reformulate the relaxation frequency χ as a combination of the
grid spacing 	 and a constant artificial or turbulent viscosity νt , such that

νt = 	2χ. (22)

Substitution of this into the expression (21) for the residual stress force, yields

∂τ t
ij

∂xj

= νt

{
σ

[D (x1) + D (x2) + D (x3)]

	2
∗ ui

+ σ 2 [D (x1) ∗ D (x2) + D (x2) ∗ D (x3) + D (x1) ∗ D (x3)]

	2
∗ ui

+ σ 3 [D (x1) ∗ D (x2) ∗ D (x3)]

	2
∗ ui

}
, (23)

which is readily recognized as a eddy-viscosity-type model. However, the spatial filtering
operators acting on the intermediate velocity field u∗

i are obviously more complex than
the typical Laplacian operator found in traditional eddy-viscosity models. Indeed, formal
Taylor-series expansion of the dissipative operators D (xi) , i = 1, 2, 3 in the first term of
expression (23), yields

D (x1) + D (x2) + D (x3)

	2
∗ ui =

∑
k

βk	2k−2 ∂2kui

∂x2k
j

, (24)
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in which βk denotes the Taylor-series-coefficients. Expansion (24) clearly contains a sum
of high-order Laplacians, similarly to hyperviscosity models. However, in addition to these
high-order Laplacians, multiple terms, involving σ 2 and σ 3, arise, which contain mixed
derivatives. This is clearly different than for traditional hyperviscosity models. However,
dissipative operators as (23) are often used as an Artificial Selective Damping in numerical
simulations of aeroacoustics problems [34,35]. We note that for the lowest filter-order used
in this work, m = 4, the dominant terms in series expansion (24) scale as 	2. This implies
that for an infinitely fine grid with 	 → 0, the dissipation due to RF vanishes. In case of
DNS resolution, the partial derivatives in Equation (24) become very small, making the
residual stress dissipation negligible in comparison with the molecular dissipation.

Further, it is clear from expressions (21) and (23) that the filtering strength σ influences
the magnitude of dissipative operator. However, in contrast to, e.g., the filtering frequency
χ , it influences the magnitude of the different dissipative operators in expressions (21) and
(23), in a nonlinear way.

Although the described predictor–corrector strategy (11)–(12) is closely related to the
ADM, and hyperviscosity models, it has two advantages over these classic approaches. The
major advantage of the described method is its simplicity and computational efficiency.
Indeed, the two-step algorithm, and in particular the filtering action at each τ time steps,
is a much easier and more efficient implementation than, e.g., the evaluation of the ADM-
penalty term each Runge–Kutta sub-step, especially if the Van Cittert procedure would be
used to construct a dissipative operator through iterative deconvolution. Second, the current
implementation implicitly allows to model flow anisotropy, since in theory, the strength of
each filter kernel G (x1, σ ), G (x2, σ ), or G (x3, σ ) can be chosen independently of each
other. Although this is not the subject of this study, it is an advantage over more classic
methods which often implicitly assume isotropy.

The objective in this work is now to find an appropriate smooth relaxation filter kernel
G (x, σ ), by varying the filter order m and the strength σ , such that the spectral distribution
and the global amount of dissipation in the RF method corresponds well to that of the
residual stresses. Moreover, the sensitivity of the RF to variations of σ and m is investigated.
We emphasize that the focus of this work is specifically on the role of m and σ . Since the
influence of the RF frequency χ on the results is found to be very similar to that of σ despite
their different origin (see Appendix B), we do not explicitly discuss this parameter. Stolz
et al. [1,13] stated that in order to guarantee stability, the upper bound of the relaxation
frequency should be close to the inverse time-step based on the CFL criterion. Muller
et al. [36] identified the transfer function and the relaxation frequency in order to recover
the theoretical spectral eddy viscosity. Nevertheless, Stolz et al. [13] showed that the
sensitivity of the result to the specific value of the relaxation frequency χ is rather limited
for the ADM. Hence, we define a priori τ = 	t , implying that θ = 1 or that the relaxation
filter is applied every time step. Note that χ remains invariant in the current study. Since
the effect of χ appears to be similar to that of σ , we expect that the value of σ will be of
minor importance.

4.2. Parametric study

In the present work, 36 LESs of the Taylor–Green vortex flow at Re = 3000 (Reλ ≈ 111)
are performed, each using an explicit standard centered finite-difference filter with different
order m and different strength σ . The RF of the velocity components is applied every
time step, so τ = 1 in the correction step (12). The 6 × 6 simulations are determined by
various combination of filter orders m = 4, 6, 8, 10, 12, and 14 with the filtering strengths
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Figure 5. Transfer functions of the relaxation filters G (x, σ ) as a function of the wave number
κ/κmax : filter orders ◦ 4, � 6, � 8, � 10, � 12, � 14, for a filtering strength (a) σ = 1, (b) σ = 0.20.

σ = 0.15, 0.2, 0.4, 0.6, 0.8, and 1. The weighting coefficients dj used in relation (10),
which determine the dissipative contribution of the standard symmetric finite difference
filters of orders m = 4, 6, 8, 10, 12, and 14, are given in Table A1 in Appendix A. The
transfer functions of the various relaxation filters, for σ = 0.20 and 1 are displayed in
Figure 5. It can be understood from these plots that altering the magnitude of the filtering
strength σ , both influences the smoothness of the filters and the effective filter cutoff. Indeed,

the filter smoothness, determined by ∂Ĝ (κ,σ )
∂κ

decreases in the entire wavenumber range when
σ decreases. On the other hand, the effective filter cutoff, i.e., the wavenumber above which
Ĝ (κ, σ ) departs a predefined fraction from unity, increases when decreasing the strength
σ . Each LES is performed on a uniform computational grid with 643 nodes and with grid
cutoff wavenumber κmax = π/	 = 32. The LES-Equations (7) and (8) are solved with the
same pseudo-spectral solver, used for the DNS. We note that in this work, the relaxation
filter is assumed to take dealiasing into account. Hence, no explicit dealiasing filter was
applied for the LESs. The time stepping is performed again with the explicit low-dissipation
6-stage Runge–Kutta method using a time step 	t = 0.025, such that CFLmax = 0.25. The
relaxation filters are implemented in Fourier space, making use of their known transfer
functions. In order to illustrate the absolute performance of the RF methods in comparison
with more traditional methods, results obtained with a dynamic Smagorinsky model are
also included in the plots. We used a sharp Fourier filter with cutoff κc = 0.5 κmax as test-
filter for the dynamic procedure, and the skew-symmetric form of the convective terms was
used. We emphasize that the dynamic procedure is most appropriate when dealing with a
transitional flow such as Taylor–Green, as the constant is adapted according to the spectral
content of the solution.

4.3. Post-processing

Before assessing the performance of the RF method for LES of the Taylor–Green vortex
flow, an appropriate and consistent evaluation method must be defined that allows to quantify
the modeling errors. The modeling error can be obtained by comparing the DNS results
with the LES results, both filtered at identical resolutions. In this perspective, the filtered
DNS plays the role of an ideal LES, obtained with a perfect residual stress model. This
method was first introduced by Vreman et al. [37].
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To characterize the turbulence features in the LES and DNS during the flow transition
from the initial Taylor–Green vortex to isotropic small-scale structures, the instantaneous
isotropic energy spectra E (κ, t) are analyzed and compared to each other, as well as the
time evolutions of the resolved kinetic energy kr (t), the resolved viscous dissipation rate
εr (t), and the total dissipation rate εtot (t). The resolved kinetic energy for both DNS and
LES is calculated from the three-dimensional energy spectrum as

kr (t) = 1

8π3

∫∫∫ κc

0
E (κ, t) dκ, (25)

whereas the resolved dissipation rate is evaluated as

εr (t) = 1

8π3

∫∫∫ κc

0
2νκ2E (κ, t) dκ . (26)

The subgrid dissipation rate and the total dissipation rate in LES are obtained using follow-
ing relations for turbulent flows in a periodic box

− dkr

dt
(t) = εr (t) + εsgs (t) = εtot (t). (27)

In order to study the accuracy of the RF method for different scale ranges in the solution, the
cutoff wavenumber κc in expressions (25) and (26) is set to κc = κmax = 32, κc = κmax/2 =
16 and κc = κmax/4 = 8, corresponding to the effective grid resolutions 163, 323, and 643,
respectively. In this way it is possible to isolate the performance of the RF for large-scale
statistics, and small-scale statistics of the flow. For instance, for κc = 8, we only focus on
the accuracy of the largest resolved scales at κ ≤ 8, whereas for κc = 16 the focus is on
large and medium scales at wavenumbers κ ≤ 16. For κc = 32, the focus is on the accuracy
of all resolved scales in the LES.

To quantify the LES accuracy, and its sensitivity to the RF parameters, error landscapes
are computed as function of the filtering order m and strength σ . We define the following
error norms on the Longitudinal Integral Length scale 	L11 (t), the resolved kinetic energy
	kr (t) , and the resolved dissipation rate 	εr (t).

	L11 (t)= 3π

4

∣∣∣∣∫∫∫ κc

0
κ−1

[
Edns(κ, t)

kdns(t)
− Eles(κ, t)

kles(t)

]
dκ

∣∣∣∣ , (28)

	k (t)= 1

8π3

∣∣∣∣∫∫∫ κc

0
[Edns(κ, t) − Eles(κ, t)] dκ

∣∣∣∣ , (29)

	ε (t)= 1

8π3

∣∣∣∣∫∫∫ κc

0
2νκ2 [Edns(κ, t)−Eles(κ, t)] dκ

∣∣∣∣ . (30)

Just like before, the cutoff wavenumber κc in these expressions is set to κc = 8, κc = 16,

and κc = 32, corresponding to the effective grid resolutions 163, 323, and 643.
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5. Results and discussion

5.1. A priori assessment of relaxation filtering

The quality of the LES is first investigated via a one-dimensional a priori analysis, in which
the transfer functions of the viscous contribution in the Navier–Stokes equations with that
of the residual stress force that corresponds with the relaxation filtering, are compared
in Fourier space. This approach, proposed by Bogey et al. [20] enables to determine a
demarcation scale at which the residual stress force becomes influential and allows to study
the spectral distribution of the residual stress dissipation in comparison with the molecular
dissipation. Such an analysis is equivalent with evaluating the ratio of the spectral turbulent
viscosity to the molecular viscosity, which is common practice in case of traditional eddy-
viscosity type models. For the sake of completeness, we also compare the transfer functions
of the residual stress force with the transfer function related to the spectral eddy-viscosity
model of Chollet and Lesieur [38]. The one-dimensional equivalent of the transfer function
of the viscous contribution is given by expression

Gν = νκ2 = ν
π2κ2

κ2
max

1

	2
, (31)

whereas the one-dimensional transfer function of the spectral eddy-viscosity yields

Gν,e = νeκ
2 = C

− 3
2

k

[
0.441 + 15.2e−3.03 κc

κ

] √
E (κc, t)

κc

π2κ2

κ2
max

1

	2
, Ck = 1.5. (32)

Here, the cutoff wavenumber is chosen as κc = 32, in conformity with the LES simulations
in this work, whereas the energy content of the cutoff Fourier mode E (κc, t) is obtained
from the DNS data at t = 9. The one-dimensional equivalent of the transfer function of the
residual stress force (19) can be written as

Grf = σ

τ
D̂

(
π2κ2

κ2
max

)
, (33)

with D̂ (κ) the dissipative part of the relaxation filter in Fourier space. Note that there is
no dispersive part of the filter due to its symmetric kernel. The one-dimensional transfer
functions Gν , Gν,e, and Grf are presented in Figure 6 for the relaxation filters of order
4 → 14 and strengths σ = 0.2 and σ = 1. Except for the fourth-order filter, the dissipation
due to the relaxation filtering remains smaller than the molecular dissipation in the low-
wavenumber region, i.e., for the largest scales in the flow. Moreover, the largest dissipation
is only applied to the small scales in the high-wavenumber region, as expected. However,
in comparison with the transfer function of the spectral eddy viscosity, which has a similar
scaling as the molecular viscosity, the relaxation filtering induces too much dissipation
on the small scales, and too little on the large scales. Similar conclusions can be drawn
analyzing the nonlinear energy transfer T (κ, t), which arises in the spectral energy balance
in LES due to unresolved triadic interactions. With E (κ, t) denoting the LES energy
spectrum, the spectral energy balance is written as

∂E (κ, t)

∂t
= −2νκ2E (κ, t) + T (κ, t) , (34)
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Figure 6. Transfer functions of the dissipation mechanisms in the LES as a function of the wavenum-
ber κ/κmax : molecular viscosity, −·−· spectral eddy viscosity, and relaxation filtering of
order ◦ 4, � 6, � 8, � 10, � 12, � 14, for a filtering strength (a) σ = 0.2 and (b) σ = 1.

in which T (κ, t) is defined as

T (κ, t) = � (−iκl τ̂kl û
∗
k

)
, (35)

and û and τ̂ denote, respectively, the Fourier-transformed velocity field and residual stress
tensor. Based on the a priori available DNS data of the Taylor–Green vortex, the exact
nonlinear energy transfer T (κ, t) due to the unresolved triadic interactions can be recon-
structed. Assuming expression (19) for T (κ, t), the energy drain for the relaxation filtering
model is reconstructed using the DNS data, and also a similar evaluation can be done
when assuming the constant Smagorinsky model. In addition, the spectral cross-correlation
coefficient ρi (κ, t), based on the correlation between the true residual stress force fi with
standard deviation σfi

and the modeled stress force f ′
i with standard deviation σf ′

i
and

defined as

ρi (κ, t) = f̂ ∗
i (κ) f̂ ′

i (κ)

σfi
σf ′

i

, i = 1, 2, 3 (36)

is calculated. As shown in Figure 7, the relaxation filtering subgrid force displays a similar
tendency as in Figure 6 when compared with the molecular dissipation, i.e., negligible
dissipation for the largest scales in contrast to significant dissipation on the smallest scales.
However, since the exact nonlinear energy transfer T (κ, t) resembles the profile of the
molecular dissipation, one concludes that the relaxation filtering provides too much dissi-
pation on the small scales and too little on the large scales. On the other hand, the constant
Smagorinsky model displays a similar spectral distribution as the true subgrid stress, al-
though the standard Smagorinsky constant Cs = 0.17 obviously results in an overestimation
of the global dissipation. Although the subgrid force of the relaxation filtering method is
less correlated with the true subgrid force than the Smagorinsky at lower wavenumbers,
it is better correlated than the Smagorinsky force for the higher wavenumbers, according
to this a priori analysis. Integrating ρ (κ, t) over the wavenumber space leads to a global
cross-correlation coefficient of 0.0735 for the Smagorinsky model and coefficients within
the range [0.23, 0.34] for the different relaxation filters. Hence, the latter method is globally
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Figure 7. Nonlinear energy transfer T (κ, t = 9) as a function of the wave number κ/κmax (a) and
spectral cross-correlation coefficient ρx (κ, t = 9): exact reconstruction, −·−· Smagorinsky
model (Cs = 0.17), −−− molecular viscosity, and relaxation filtering with strength σ = 0.2 and
order ◦ 4, � 6, � 8, � 10, � 12, � 14, for a filtering strength, (b) σ = 1.

better correlated with the true residual stress force. Since the relaxation filtering is closely
related to the approximate deconvolution method and hyperviscosity models, those meth-
ods most likely display very similar behavior. Although these a priori results are somewhat
disappointing, a much better behavior is observed when evaluating the models a posteriori,
as will be shown further in the text. Such discrepancy between a priori and a posteriori
analysis, is not uncommon in the field of turbulence modeling. Indeed it is well known that
a good a priori correlation does not imply proper a posteriori results and vice versa.

Based on Figures 6(a) and 7, one notices that the critical wavenumber above which
the subgrid dissipation exceeds the molecular dissipation depends on the precise choices
of the filter order m and filtering strength σ . The figures seems to indicate that the filter
order m is more important than the value of σ . In order to analyze the latter observation in
more detail, we determine an effective cutoff wavenumber ratio κe/κmax at the intersection
of the molecular and subgrid dissipation, as a function of σ and m. As mentioned earlier,
this cutoff wavenumber indicates a demarcation scale at which the residual stress model
becomes influential. This is depicted in Figure 8(a). In the same way, the effective cut-
off wavelength normalized by the grid size P P We = λe/	 is shown in Figure 8(b). These
graphs indicate that the dependency of the dissipation on the filtering strength σ is relatively
small, especially once σ ≥ 0.4. In contrast, the dependency on the filter order m is much
larger, although the effect decreases with increasing filter order. Finally, these figures suggest
that in order to limit the dissipation to the small scales in the upper half of the wavenumber
range, one has to select a filter of order m ≥ 8. The effective cut-off wavelengths are
indeed around P P We = 32 for order m = 4, and P P We = 10 for order m = 6, but they
are smaller than P P We = 8 for higher orders.

5.2. A posteriori assessment of relaxation filtering

5.2.1. Energy spectra

Figure 9 shows the energy spectra E (κ, t = 9) at the peak of the dissipation rate, for
all LESs and the DNS. In Figure 9(a), the energy spectra of the LES obtained with the
fourth-order relaxation filter are seen to vary strongly with the filtering strength σ , and
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Figure 8. Variations with the filtering strength σ using RF of order ◦ 4, � 6, � 8, � 10, � 12, � 14
of the (a) the cut-off wavenumber κe/κmax and (b) the cut-off wavelength P P We = λe/	.

differ significantly from the DNS spectrum. More precisely, the energy of the small scales,
at wavenumbers κmax/8 ≤ κ ≤ κmax is obviously underestimated, whereas the energy of
the large scales at wavenumbers κ ≤ κmax/8 and thus discretized by more than 16 points
per wavelength, seems overestimated. Hence, the fourth-order filtering not only appears to
damp the small turbulent scales excessively, but also keeps the very large scales too strong
and coherent, and prevents them from breaking up into smaller scales. Because the energy
transfer from the large to small scales is disturbed, just like in a bottleneck, the very large
scales suffer from an energy build-up.
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Figure 9. Energy spectra E (κ, t) at t = 9 from the 3843 DNS, and from the 643 LES
using the dynamic Smagorinsky model (−−−) and the relaxation filters of order (a) 4, (b) 6, (c) 8,
(d) 10, (e) 12, and (f) 14, at strength � σ = 0.2, � σ = 0.4, � σ = 0.6, � σ = 0.8, and ◦ σ = 1.
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Figure 10. Energy spectra E (κ, t) at (a) t = 12, (b) t = 15, and (c) t = 18 from the 3843

DNS, and from the 643 LES using the dynamic Smagorinsky model (−−−) and the relaxation filters
of order 10 at strength � σ = 0.2, � σ = 0.4, � σ = 0.6, � σ = 0.8, and ◦ σ = 1.

When going to higher-order relaxation filters, the dissipation on the small scales de-
creases, whereas the bottleneck effect vanishes. In Figure 9(c), for the filter at order m = 8,
for instance, the LES spectra seem nearly independent of the filtering strength for σ ≥ 0.4,
and they correspond well to the DNS spectrum up to κ � κmax/2, that is around four points
per wavelength. A similar agreement between LES and DNS spectra is noticed for the filter
at order m = 10, 12, and 14. Note also that, when high-order filters are used with very low
values of strength σ , typically σ ≤ 0.2, the energy contained by wavenumbers close to κmax

is significant, as found for an example given in Figure 9(f). The dissipation provided by the
filtering may be insufficient in this case, which might lead to an energy pile-up around the
grid cutoff wavenumber, and hence to numerical instability.

Comparison of the DNS spectra with the spectra obtained with the dynamic Smagorin-
sky model, clearly reveals that this traditional eddy-viscosity-type model dissipates too
much energy at the large and medium scales, i.e. κ ≤ 0.5 κmax , in contrast to the relaxation
filtering method with m ≥ 6. On the other hand, the Smagorinsky model does not seem to
damp the smallest resolved scales, and even a small energy pile-up may be witnessed around
the grid cutoff κ ≈ κmax . This is quite different from the relaxation filtering method which
significantly reduces the amplitude of those smallest resolved scales. From a mathematical
point of view, scales near the grid cutoff should be damped in order to respect the Nyquist
criterion. In that perspective, the use of linear modeling operators, such as the relaxation
filters, might be considered advantageous.

In order to illustrate the long-time spectral behavior of the LES models, Figure 10 shows
the energy spectra of the tenth-order relaxation filter at times t = 12, t = 15, and t = 20,
that is during the stages of turbulence decay. At least for t = 12 and t = 15, the tenth-order
relaxation filtering tends to outperform the dynamic Smagorinsky model for the prediction
of the energy at the large and medium scales. It is witnessed that at t = 20, the energy of
the medium scales is too high. Indeed, it is verified further in the text (Figure 15) that due
to the moderate Reynolds number, the length of the inertial range decreases systematically
with time due to energy decay and the absence of an external forcing. For t > 13, the
inertial range becomes so short that the fixed LES cutoff κc is located at the beginning of
the dissipation range. Because the filter coefficients are not adjusted dynamically in order
to account for the “shifted” position of the cutoff wavenumber, the relaxation filter becomes
too dissipative for the small scales, leading to a spectral blockage at the medium scales and
thus an energy pile-up.
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Figure 11. Time evolution of the resolved kinetic energy obtained from the 3843 DNS
data, the 3843 DNS data filtered to the LES resolution, the dynamic Smagorinsky model
(−−−) and the 643 LES using RF of order (a) 4, (b) 8, (c) 14, at strength � σ = 0.2, � σ = 0.4,
� σ = 0.6, � σ = 0.8, and ◦ σ = 1. First row κc = 32, second row κc = 16, and third row κc = 8.

5.2.2. Turbulence statistics

The resolved kinetic energy kr (t) and the resolved dissipation rate εr (t) for the LES
cases with relaxation filters of order m = 4, m = 8 and m = 14 and for three different
cutoff wavenumbers κc = 32, κc = 16 and κc = 8, are presented in Figures 11 and 12,
respectively.

In Figure 11(a), as expected from the energy spectra, the excessive damping of the
turbulent scales in the range [κmax/8, κmax] due to the low-order relaxation filtering results
in a too fast decay of kinetic energy in comparison with the filtered DNS reference solution.
Comparison of the results for different post-processing cutoff wavenumbers, i.e. κc =
8, 16, 32, indicates that the energy of the very large scales (κ ≤ 8) decays much slower
then the energy of the medium and small scales (κ > 8). In other words, the energy drain
from the smaller scales, is too large. Going to higher-order relaxation filters, the decay of
kinetic energy agrees well with the filtered DNS data in Figures 11(b) and 11(c), and at
larger times, it becomes even slightly overestimated. On the other hand, the Smagorinsky
model severely underestimates the resolved kinetic energy in comparison with the other
RF results, regardless of the value of κc. This indicates that the subgrid dissipation of the
Smagorinsky model is too high.
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Figure 12. Time evolution of the resolved dissipation rate obtained from the 3843 DNS
filtered to the LES resolution, and the 643 LES using the dynamic Smagorinsky model (−−−) and
RF of order (a) 4, (b) 8, and (c) 14, at strength � σ = 0.2, � σ = 0.4, � σ = 0.6, � σ = 0.8, and
◦ σ = 1. First row κc = 32, second row κc = 16, and third row κc = 8.

Similar observations are seen when looking at the resolved dissipation rate in Figure 12.
Indeed, the use of low-order relaxation filters (m = 4) results in a substantial underesti-
mation of εr (t) in comparison with the filtered DNS results in Figure 12(a). Isolating
the medium scales and large scales, by reducing κc to κc = 16 and κc = 8, respectively,
indicates that although the resolved dissipation rate is mostly affected by errors on the
medium and small scales, the large-scale errors also contribute. This implies that even the
large scales at wave numbers κ ≤ 16 are affected by the relaxation filtering rather than by
molecular viscosity. As a consequence, their dynamics are influenced by the subgrid dis-
sipation model, and the effective Reynolds number of the flow may be artificially lowered.
In Figures 12(b) and 12(c), for the LES performed with relaxation filters of order m = 8
and m = 14, the resolved dissipation rate clearly improves, and reducing κc to κc = 16 and
κc = 8 reveals that the error on εr (t) is now only affected by small-scale errors. Hence, the
behavior of the large and medium scales is mostly determined by molecular viscosity,which
is in agreement with the a priori assessment of relaxation filtering presented previously.
Surprisingly, the dynamic Smagorinsky model approaches the resolved dissipation rate
of the total solution quite well for κc = 32, and even outperforms the relaxation filtering
method. However, when considering only the dissipation on medium and large scales, i.e.,
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Figure 13. Time evolution of the subgrid-scale dissipation rate obtained from the 3843

DNS filtered to the LES resolution, and the 643 LES using the dynamic Smagorinsky model (−−−)
and RF of order (a) 4, (b) 8, and (c) 14, at strength � σ = 0.2, � σ = 0.4, � σ = 0.6, � σ = 0.8,
and ◦ σ = 1.

κc = 16 and κc = 8, it becomes obvious that the Smagorinsky model dissipates too much
energy, and is outperformed by the higher-order relaxation filters.

The results of kr (t) and εr (t) thus demonstrate that in contrast to the Smagorinsky
model, the relaxation filtering seems to have a limited impact on the large resolved scales,
if the order m is high enough. Moreover, the dependency of the statistics on the filtering
strength σ is substantial when low-order relaxation filters, such as m = 4, are used, but
vanishes rapidly for high-order relaxation filters.

Using relation (27), it is possible to reconstruct the subgrid dissipation rate εsgs (t) due
to the relaxation filtering and the total dissipation rate εtot (t). The evolutions of εsgs (t) and
εtot (t) are shown in Figures 13 and 14, respectively, for the LES cases with relaxation filters
of orders m = 4, 8, and 14, and the dynamic Smagorinsky model. The post-processing cutoff
wavenumber here is κc = κmax = 32, that is the LES grid cutoff wavenumber. Figures 13(a)
and 14(a) clearly show that for the fourth-order relaxation filter, both the resulting subgrid
dissipation and the total dissipation increase too quickly, resulting in a too fast decay of
kinetic energy. This is even worse for the dynamic Smagorinsky model, where the dynamic
procedure clearly engages the model too soon and too strong during the transitional stages,
resulting in a severe underestimation of the kinetic energy profiles, as witnessed earlier.
Using higher-order relaxation filters leads to a much better prediction of the subgrid and
total dissipations. The subgrid dissipation, shown in Figures 13(b) and 13(c), is indeed
close to the ideal subgrid dissipation, reconstructed from the DNS.
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Figure 14. Time evolution of the total dissipation rate obtained from the 3843 DNS, and
the 643 LES using the dynamic Smagorinsky model (−−−) and RF of order (a) 4, (b) 8, and (c) 14,
at strength � σ = 0.2, � σ = 0.4, � σ = 0.6, � σ = 0.8, and ◦ σ = 1.
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Figure 15. Time evolution of the ratio between the subgrid-scale dissipation rate obtained from the
643 LES and the 3843 DNS filtered to the LES resolution: dynamic Smagorinsky model
(−−−) and RF of order (a) 4, (b) 8, and (c) 14, at strength � σ = 0.2, � σ = 0.4, � σ = 0.6,
� σ = 0.8, and ◦ σ = 1. The time interval in which the inertial range is sufficiently developed is
indicated by the vertical dashed lines.

It also interesting to investigate the ratio between the true subgrid-scale dissipation rate
from the various LES simulations and the subgrid-scale dissipation rate, reconstructed from
the filtered DNS data. This is shown in Figure 15. It is verified that the mean ratio between
the sgs dissipation rate obtained in the LES and the one from DNS evolves from unity at
time t = 9, i.e., at peak dissipation rate when the inertial range is fully established, up to
a value near 2 for t = 20. Because of the moderate Reynolds numbers, the length of the
inertial range is maximal at t = 9, thus at peak dissipation rate, but decreases systematically
with time due to energy decay and the absence of an external forcing. This implies that
the inertial range is only fully developed for t = 9 → ±13, as indicated on the figures.
It is seen that the mean ratio is relatively close to unity in this interval. For t > 13, the
predetermined LES cutoff κc = 32 is located at the beginning of the dissipation range.
As a consequence, the relaxation filters are too dissipative resulting in a larger ratio since
the final filter coefficients, responsible for the subgrid dissipation, are not adjusted by a
dynamic procedure in contrast to the Smagorinsky model. As mentioned in the introduction,
the objective in this work is to investigate the performance of finite difference filters with
predefined coefficients, and as shown in previous figures, good agreement with the filtered
DNS is obtained.

5.2.3. Role of the filtering strength

In the previous paragraphs, we demonstrated the role of the order m of the relaxation filter. It
was observed that this factor plays a very important role in the performance of the relaxation
filtering method for LES. Results also indicated that the filtering strength σ is an important
parameter using low-order relaxation filters, while suggesting that it has a rather limited
impact using high-order filters. In this paragraph, the variations of the LES results with the
filtering strength σ and the filter order m are quantified. The resolved kinetic energy kr and
the resolved dissipation rate εr obtained in the LES and the DNS at time t = 9, i.e., when
the flow is fully turbulent, are shown in Figures 16(a) and 16(b), for three different cutoff
wavenumbers κc = 32, κc = 16, and κc = 8. The subgrid activity in the LES, defined as
the ratio between the subgrid dissipation and the total dissipation

Asgs (t) = εsgs

εr + εsgs

(37)
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Figure 16. Variations with the filtering strength σ in the 643 LES using RF of order ◦ 4, � 6, � 8,
� 10, � 12, � 14 of the: (a) resolved kinetic energy, (b) resolved dissipation, and (c) sgs activity. The
gray lines indicate the values obtained in the 3843 DNS. First row κc = 32, second row κc = 16, and
third row κc = 8.

is also shown at time t = 9 in Figure 16(c). It is obvious from these figures that the filtering
strength σ of the relaxation filter, which determines mainly the global dissipation magnitude,
only has a minor influence on the resolved kinetic energy, the resolved dissipation rate,
and the subgrid activity. Only for low values of σ , the results indicate a slight dependency
of kr , εr , and Asgs to this parameter. However, once σ ≥ 0.4, the results become nearly
independent. Further, the figures demonstrate that the influence of the order m of the
relaxation filter, which determines mainly the spectral distribution of the dissipation, is the
dominant parameter in the method. Although the impact on the resolved kinetic energy is
rather limited, it becomes significant when looking at the resolved dissipation rate and the
subgrid activity. This confirms the observations from the a priori study. Finally, reducing the
post-processing cutoff wavenumber to κc = 16 and κc = 8, shows that the influence of both
parameters diminishes rapidly when looking at only the large scales in the flow. This implies
that the subgrid dissipation of the relaxation filter, only influences the small scales, leaving
the large scales unaffected, unless the order of the filter becomes too low, i.e., m ≤ 6. The
quality of the LES methodology is further demonstrated by the comparisons between LES
and DNS results. There is a good agreement in Figure 16(a) for the resolved kinetic energy
obtained at the three resolutions considered, provided that m ≥ 10 for κc = κmax = 32, that
m ≥ 8 for κc = 16, and that m ≥ 6 for κc = 8. This is expected from the filtering cutoff
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44 D. Fauconnier et al.

Figure 17. Error landscapes as function of filtering order m and strength σ for (a) the resolved
longitudinal integral length scale, (b) kinetic energy, and (c) dissipation rate, at t = 9. First row
κc = 16 and second row κc = 8.

wavenumbers presented in Figure 8(a). Similar agreement is observed for the resolved
dissipation in Figure 16(b) for κc = 16 and κc = 8. For κc = 32, the resolved dissipation is
lower in the LES than in the DNS, which is natural because in the LES the wavenumbers
close to κmax are dissipated by the relaxation filtering, and hence cannot contribute to the
resolved dissipation as is the case in the DNS.

5.2.4. Error landscapes

Figure 17 shows the error landscapes for 	L11, 	k, and 	ε computed between LES and
DNS results at time t = 9, i.e., at maximum dissipation rate, as functions of the order m

and strength σ of the relaxation filter for two different cutoff wavenumbers κc = 16 and
κc = 8 corresponding to four and eight points per wavelength in the LES, respectively. The
error landscapes support the former conclusions. Indeed, the use of low-order filters leads
to significant errors that depend severely on the filtering strength σ . Applying a relaxation
filter of order m = 4, results in large errors, even for very small values of the filtering
strength, e.g., σ = 0.15. Increasing the order of the relaxation filter to m = 6, reduces the
errors substantially, but they are still significant if σ ≥ 0.6. Once the filter order m ≥ 8,
the LES results display good accuracy, regardless of the value of the filtering strength σ .
Hence, we conclude once again that the precise value of the filtering strength σ is not
crucial if the order m of the relaxation filter is large enough, say m ≥ 8. Note that the error
landscapes exhibit optimal error-valleys, located at 8 ≤ k ≤ 10. Although the errors are
nearly independent of the filtering strength σ , they depend strongly on the filtering order.
Hence, the use of eighth- or 10th-order filters seems optimal for the selected test case. The
use of even higher-order filters, i.e., m ≥ 10 slightly deteriorates the results, leading to a
reduction of the accuracy. Since such high-order filters (m ≥ 10) are only effective near the
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grid-cutoff wave number, the reduced accuracy stems likely from the increased contribution
of aliasing errors.

6. Conclusion

In this work, a quantitative assessment of the LES method based on relaxation filtering,
using standard finite difference filters with order m and adjustable strength σ , has been
conducted. The Taylor–Green vortex at Re = 3000 is selected as a representative test case.
Based on the spectral a priori analysis, it was seen that the chosen class of relaxation filters,
induce a negligible amount of dissipation on the largest resolved scales in contrast to a
significant amount of dissipation on the smallest resolved scales. The spectral dissipation–
distribution does not correlate well with the reconstructed subgrid force at the largest scales,
although for the smallest scales, the correlation was good. Moreover, the a priori analysis
indicated that the filter order m is more influential than the filtering strength σ . Indeed,
a posteriori comparison with filtered DNS data, using so-called error landscapes, shows
that the accuracy of the LES results depends essentially on the choice of a sufficiently
sharp filter, such that the dissipation is mostly concentrated to the smallest resolved scales.
Considering only fixed-coefficient standard finite difference filters, in the present study,
it was found that the performance of the relaxation filtering method is very good, if the
filter order m is sufficiently high, say m ≥ 8. More precisely, optimal agreement between
the DNS results and the LES results was found when using relaxation filters with order
8 ≤ m ≤ 10. Furthermore, the study revealed that the performance of the relaxation filtering
method is nearly independent of the filtering strength σ , provided that the filtering order m

is sufficiently high, i.e., m ≥ 8, and provided that the value of σ is not chosen unreasonably
low, say σ ≥ 0.4. Note that since the relaxation filtering frequency χ and the filtering
strength σ have a similar influence on the results, the conclusions can be transfered to
χ straightforwardly, i.e., the influence of the filtering frequency is almost negligible, for
relaxation filters with sufficiently high order of accuracy.

In future work, a similar analysis will be done, taking into account the influence of the
numerical discretization and de-aliasing. Using error landscapes, it is possible to quantify
the interactions between modeling and numerical errors and to find optimal combinations
of the filter order and the spatial discretization of the LES equations. It is obvious that
the optimal error valleys of the relaxation filters, found in such a future study, will not
necessarily be identical to those obtained in this work.
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Appendix A. Dissipation weighting coefficients
The filtering operation applied to a generic variable ϕ in Cartesian direction i = 1, 2, 3, using a
standard finite difference filter, is defined by the convolution product

ϕ̃ (xi) = ϕ (xi) −
n∑

j=−n

dj ϕ(xi,j ), (A1)

where ϕ̃ denotes the filtered variable, and dj = −d−j represents the weighting coefficients that
determine the dissipative contribution of the (2n + 1)-point standard symmetric filter with order
m = 2n. The coefficients d±j are given in Table A1 for various filter orders m.

Appendix B. Influence of the filtering frequency
Figure B1 displays the energy spectrum, the kinetic energy, and the resolved dissipation rate for a
fourth- and 10th-order relaxation filter with particular combinations of the filtering strength and the
integer filtering interval θ (see Equation (14)). It is observed that doubling the filtering interval θ
while keeping the strength σ constant appears to be equivalent to halving the filtering strength, while
keeping θ constant. This means that the filtering frequency χ has a very similar influence on the
results as the filtering strength σ . Although the effect of the frequency χ is significant for low-order
filters, e.g., m = 4, the influence diminishes when increasing the filter order. For the 10th-order filter,
the influence of χ is obviously very small, which confirms the findings of Stolz et al. [13].
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Figure B1. Energy spectra at t = 9 (a), evolution of kinetic energy filtered at κc = 16 (b), and
evolution of resolved dissipation rate filtered at κc = 16 (c) for the the 3843 DNS, and the
643 LES using RF of order 4 (first row) and 10 (second row), with filtering strength σ = 1.0 and
θ = 1 (◦), σ = 1.0 and θ = 2 (�), and σ = 0.5 and θ = 1 (�).
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