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Two semi-implicit six-stage Runge–Kutta algorithms are developed for the simulation of wall-bounded flows. Using
these schemes, time integration is implicit in the wall-normal direction, and explicit in the other directions, to relax the
time step constraint due to the fine mesh near the wall. The explicit subscheme is a six-stage fourth-order low-storage
Runge–Kutta scheme. Based on analysis in Fourier space and results obtained for propagation test cases, the semi-
implicit schemes are shown to be of order 3 and, for waves discretized by a number of points per period between 4 and
16, to be as accurate as, or more accurate than, the standard explicit fourth-order Runge–Kutta algorithm in terms of
dissipation and dispersion. The large-eddy simulation of a compressible turbulent channel flow at a friction Reynolds
number of 360 and a Mach number of 0.1 is then carried out with one of the proposed algorithms. The computational
time is reduced by a factor 1.33 with respect to a large-eddy simulation using the explicit subscheme in all directions.
Wall-pressure and velocity spectra from the large-eddy simulation are presented to give insights into the flow
turbulent structures. In particular, wave number–frequency spectra are calculated. Acoustic components appear to
be identified in these spectra.

I. Introduction

I N THE field of computational aeroacoustics (CAA), the
development of direct noise computations (DNCs) has drawn

attention to the need of highly accurate numerical schemes for spatial
and temporal discretizations. The DNC approach indeed consists in
computing both the aerodynamic and acoustic fields, by solving the
compressible Euler or Navier–Stokes equations. Given that the
acoustic fluctuations are by several orders of magnitude lower than
the mean flow, and that they propagate over long distances, the
numerical methods must be accurate and generate low dissipation
and low dispersion, in order to avoid the corruption of the acoustic
field. These constraints become more stringent for wall-bounded
flows, which are of significant interest in CAA. The attention has in
particular been drawn to wall-pressure fluctuations because they are
responsible for the noise indirectly radiated inside the cabin of
vehicles such as cars or aircraft, as well as the noise emitted directly in
the flow over a solid boundary [1].

In the development of methods for CAA problems, the usual
approach is to consider the spatial and time discretization separately.
Spatial discretization methods for aeroacoustics have been proposed,
among others, by Tam and Webb [2], Lele [3], and Bogey and Bailly
[4]. When a discretization scheme is applied to the spatial derivatives
of the Euler or Navier–Stokes equations, they reduce to the so-called
semidiscretized form, which corresponds to an ordinary differential
equation (ODE) of the form du�dt � F�u�, where u is the flow
variablevector. Since the early papers of Runge [5] and Bashforth and
Adams [6], two main families of methods have emerged to solve
ODEs: the linear multistep methods and the Runge–Kutta (RK)
methods. Both are used in CAA, but it can be noted that several
explicit RK methods have been developed during the last decade, for

instance by Bogey and Bailly [4], Hu et al. [7], Stanescu and Habashi
[8], Calvo et al. [9], and Berland et al. [10]. The properties of these
methods have been optimized in the Fourier space in order to
minimize dissipation and dispersion errors up to frequencies close
to the cutoff frequency imposed by the time step. They can be applied
to many flow configurations. In wall-bounded simulations, however,
the mesh is usually strongly refined close to the wall, which might
lead to a severe reduction of the time step to avoid stability problems.
To mention three examples, the ratios between spanwise and wall-
normal mesh spacings are equal to 15 in the large-eddy simulation
(LES) of a boundary layer at Re� � 300–2000 performed by
Gloerfelt and Berland [11], 18 in the LES of a channel flow at
Re� � 640 by Viazzo et al. [12], and 10 in several LESs of channel
flows at Re� � 350–960 by Kremer et al. [13]. The use of an implicit
scheme, which is stable for much larger time steps, is therefore a
possibility, but it implies the inversion of massive linear systems,
hence a high computational cost. To reduce this cost, an iterative
method is generally employed, but the choice of the method is crucial
because it strongly affects the computational efficiency [14].
Furthermore, besides computational considerations, implicit time
integration at large Courant–Friedrichs–Lewy (CFL) numbers can
result in undesirable damping of acoustic waves [15].

An alternative is to combine an implicit scheme with an explicit
scheme. The time integration of terms involving derivatives in the
wall-normal direction, in which a fine mesh is implemented, is treated
implicitly, whereas the time integration of the other terms is treated
explicitly. Thus, the constraint on the time step is relaxed, and the
additional computational cost due to the linear system inversion
remains acceptable. Such methods are referred to as “semi-implicit.”
Because of their explicit part, the allowable CFL numbers of semi-
implicit methods are much smaller than those allowed by fully
implicit schemes. Thus, semi-implicit methods generally provide
significantly less numerical errors compared to fully implicit
schemes [16,17]. This strategy has already been used by several
authors in direct numerical simulations (DNSs) of wall-bounded
incompressible flows [18,19]. For example, for a turbulent boundary
layer, Wu and Moin [18] used a second-order Crank–Nicholson
scheme to compute convection and diffusion terms involving
derivatives in thewall-normal direction, whereas the other terms were
integrated in time with a third-order explicit Runge–Kutta scheme.
Higher-order semi-implicit schemes have also been proposed by
Simens et al. [19] and Spalart et al. [20] for incompressible problems.
Because these schemes might not be relevant in the context of
compressible problems, semi-implicit schemes must be developed
specially for aeroacoustics. A large number of papers can be found on
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so-called partitioned methods [14,21–24], which consist in applying
a combination of Runge–Kutta schemes to partitioned equations. As
noted in the review by Kennedy and Carpenter [24] reporting the
development of semi-implicit schemes up to order 5, several ways of
partitioning exist. In a first approach, partitioning is performed by
gridpoint. In Kanevsky et al. [14], for instance, in order to deal with
stiffness induced by grid refinement, refined portions of the mesh are
solved with an implicit scheme, and coarse portions are solved with an
explicit scheme. In a second approach, the equations are partitioned by
term. This methodology is often used for the integration of convection-
diffusion-reaction (CDR) equations [21–24]. In this case, for each
point of the mesh, reactive or diffusive terms are integrated in an
implicit way, and the other terms are integrated in an explicit way.
Partitioning by term seems well suited for wall-bounded flow
simulations as well, by treating implicitly the convection terms in the
wall-normal direction, as was done in the compressible LES of Suh
et al. [17]. However, these authors implemented one of the schemes
developed to solve the CDR equations [23].

In the present paper, the strategy used by Kennedy and Carpenter
[24] is followed in order to develop semi-implicit Runge–Kutta
methods adapted to the simulation of compressible wall-bounded
flows. These methods perform the time integration of terms involving
wall-normal derivatives in an implicit way, whereas the other terms
are integrated in an explicit way. In practice, the explicit six-stage
fourth-order RK scheme of Berland et al. [10] is combined with new
implicit RK schemes. The resulting algorithms are six-stage third-
order semi-implicit Runge–Kutta schemes, referred to as SIRK63 in
what follows. The dispersion and dissipation properties of the
schemes are studied in the Fourier space, and a comparison is made
with the properties of the semi-implicit scheme of Zhong [23] and of
the standard explicit RK scheme of order 4. Propagation of an
acoustic pulse in a two-dimensional (2-D) domain is then considered
in order to quantify the degree of accuracy of these schemes. Finally,
one of the SIRK63 schemes is used in the LES of a turbulent
compressible channel flow at a Mach number M � 0.1 and a friction
Reynolds number Re� � 360 based on the half-width of the channel
and the friction velocity. To illustrate the quality of the LES
performed with the proposed SIRK63 algorithm on this canonical
wall-bounded flow case, two important topics of wall turbulence are
addressed. The first one is the scaling of near-wall turbulent
structures, which have been studied by many authors, such as
Tomkins and Adrian [25] for boundary layers and Jiménez et al. [26]
for channel flows. The second one is closer to CAA applications
because it deals with the noise induced by wall-pressure fluctuations.
This problem has extensively been explored through theoretical
studies using acoustic analogy [27–29] and incompressible direct
numerical simulations [30,31], but only a few studies based on DNC
can be found [11,17,32]. Experiments have also recently been
performed by Arguillat et al. [33] among others.

The paper is organized as follows. First, the development of the
semi-implicit schemes is presented in Sec. II. 2-D test cases are also
shown to compare their accuracy with that of existing schemes. A
three-dimensional (3-D) turbulent channel flow is simulated using
one of the proposed semi-implicit schemes in Sec. III. Turbulent
structures and wall-pressure fluctuations obtained are then analyzed.
Finally, concluding remarks are given in Sec. IV.

II. Development of Semi-Implicit Schemes
A. Formulation

The 2-D Euler equations are considered in the present study. They
can be written as

�u
�t

� �
�Ex

�x
�

�Ey

�y
(1)

where u is the vector containing the flow variables and Ex and Ey
are the Eulerian fluxes in the x and y directions, respectively.
The equation is discretized in space, and spatial derivatives
are approximated by finite differences, yielding the following
semidiscretized equation:

�u
�t

� f�u� � g�u� (2)

with

�f�u��m;n � �
1

�x

XM

l��N
�l�Ex�m�l;n (3)

and

�g�u��m;n � �
1

�y

XM

l��N
�l�Ey�m;n�l

where �m; n� are the indices of the grid nodes, ��l�l��N;M are the
coefficients of the finite-difference scheme, and �x and �y are
the uniform mesh spacings in the x and y directions, respectively. The
case of a mesh strongly refined in one direction, as usually
encountered in wall-bounded flows, is considered by assuming that
�y << �x, so that the time integration of the term g�u� raises stability
concerns.

Following the strategy of Kennedy and Carpenter [24], the time
integration of Eq. (2) is carried out using an s-stage semi-implicit RK
scheme, which is expressed as

�ui �un ��t
Pi�1

j�1 a�E�
ij f�uj���t

Pi
j�1 a�I�

ij g�uj� for 1 � i � s

un�1 �un ��t
Ps

i�1 b�E�
i f�ui���t

Ps
i�1 b�I�

i g�ui�
(4)

where un � u�t�, un�1 � u�t � �t�, �t is the time step, ui
represents the flow variable vector at the stage i, �a�I�

ij ; b�I�
i � are the

coefficients of the implicit part of the scheme, performing the time
integration of g�u�, and �a�E�

ij ; b�E�
i � are the coefficients of the explicit

part, for the time integration of f�u�. To design an s-stage SIRK
method, the s�s � 2� coefficients of the implicit and explicit parts
must be chosen.

B. Development of the Schemes
In the present study, for the explicit part of the algorithms, the

coefficients �aij; bi� of the explicit fourth-order six-stage Runge–
Kutta scheme of Berland et al. [10] are chosen, in order to take
advantage of its good properties. The number of stages of the semi-
implicit method is thus fixed to s � 6. The aim in the following is to
determine the set of s�s � 3��2 � 27 coefficients �a�I�

ij ; b�I�
i � of the

implicit part. Stability and accuracy constraints will be defined first.
Then, the way of choosing of the coefficients will be described.

1. Order of the Implicit Part
A fourth-order accuracy is imposed to the implicit part of the

scheme by applying to the coefficients �a�I�
ij ; b�I�

i � the classical order
conditions [34], which are

�O1�
Xs

i�1
b�I�

i � 1 �O2�
Xs

i�1
b�I�

i c�I�i �
1
2

�O3�a
1
2

Xs

i�1
b�I�

i c�I�2i �
1
3!

�O3�b
Xs

i;j�1
b�I�

i a�I�
ij c�I�j �

1
3!

�O4�a
1
6

Xs

i�1
b�I�

i c�I�3i �
1
4!

�O4�b
Xs

i;j�1
b�I�

i c�I�i a�I�
ij c�I�j �

3
4!

�O4�c
1
2

Xs

i;j�1
b�I�

i a�I�
ij c�I�2j �

1
4!

�O4�d
Xs

i;j;k�1
b�I�

i a�I�
ij a�I�

jkc�I�k �
1
4!

(5)

with c�I�i �
Pi

j�1 a�I�
ij .
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2. Coupling Conditions for Order 3
At this step, conditions (5) are now assumed to be satisfied.

Ensuring that the implicit and explicit parts are both of order 4 is,
however, not sufficient to obtain a fourth-order accuracy for the entire
SIRK scheme. The time discretization error indeed exhibits coupling
terms of lower order, which can be eliminated by imposing additional
conditions. A complete description of these coupling conditions is
provided by Kennedy and Carpenter [24]. For instance, order 3 can be
obtained by imposing that the following coupling conditions

b�I�
i � b�E�

i � bi for 1 � i � s (6)

1
2

Xs

i�1
bic

�E�
i c�I�i �

1
3!

(7a)

Xs

i;j�1
bia

�E�
ij c�I�j �

1
3!

(7b)

Xs

i;j�1
bia

�I�
ij c�E�j �

1
3!

(7c)

with c�E�i �
Pi�1

j�1 a�E�
ij , be verified. Similarly, order 4 is obtained if the

coupling conditions

b�I�
i � b�E�

i � bi for 1 � i � s (8)

c�I�i � c�E�i � ci for 1 � i � s (9)

Xs

i;j;k�1
bia

�I�
ij a�E�

jk ck �
1
4!

(10a)

Xs

i;j;k�1
bia

�E�
ij a�I�

jkck �
1
4!

(10b)

are imposed.

3. Stability
In the present work, the stability is examined by following the

approach of Hu et al. [7] The 2-D wave equation is introduced:

�u
�t

� c
�

�u
�x

�
�u
�y

�
(11)

where c is the speed of sound. The spatial derivatives are evaluated
using a central finite-difference scheme. A 2-D Fourier transform is
then applied to Eq. (11). The effective wave numbers k�x and k�y are
defined as

k�� �� � 2
XN

l�1
�l sin �lk���� with � � x; y (12)

and where ��l�l��N;N are the coefficients of the central finite-
difference scheme, �x and �y are the mesh spacings, and kx and ky
are the exact wave numbers in the x and y directions. The
semidiscrete equation associated with Eq. (11) can be written as

� ~u
�t

� �ick�x � ick�y� ~u (13)

where ~u is the spatial Fourier transform of u, and i �
������
�1

p
. When

this equation is advanced in time using a SIRK scheme, with the term

ick�x ~u treated by the explicit part of the scheme, and the term ick�y ~u
treated by the implicit part, it can be shown that the amplification
factor of the algorithm at each time step is given by the following
linear stability function [22]:

R�zx; zy� �
~un�1

~un
�

Det�I � zxA�E� � zyA�I� � �zx � zy�1 � bT �
Det�I � zyA�I��

(14)

where ~un � ~u�t�, ~un�1 � ~u�t � �t�, zx � ick�x�t, zy � ick�y�t,
A�E� � a�E�

ij , A�I� � a�I�
ij , b � bi, 1 � f1; 1; : : : ; 1g, and I is the

identity matrix. Relations (6) must be satisfied to derive this
expression. The semi-implicit algorithm is stable for all combinations
of zx and zy yielding jRj � 1. Note that the amplification factors of the
explicit part and of the implicit part of the algorithm are given by
R�zx; 0� and R�0; zy�, respectively. One important requirement is to
ensure that the implicit part is unconditionally stable; hence,

jR�0; zy�j � 1 for zy � iR (15)

The unconditional stability is difficult to obtain with an arbitrary set
of the coefficients �a�I�

ij ; b�I�
i �. To overcome this problem, a singly

diagonally structure is chosen for the a�I�
ii coefficients:

a�I�
ii � � for 1 � i � s (16)

where � is a free parameter. Singly diagonally implicit RK methods
[35] (SDIRK) have shown interesting features regarding stability.
Kennedy and Carpenter [24] have found an interval of � roughly
equal to 0.248 � � � 0.676, in which condition (15) is satisfied for
six-stage semi-implicit RK schemes for instance. In the present case,
Eq. (9) leads to a�I�

11 � 0, reducing the condition (16) to 2 � i � s.

4. Choice of the Coefficients �a�I�
ij ; b�I�

i �
Once the constraints ensuring accuracy and stability are defined,

the 27 coefficients of the implicit part can be determined. The
following approach is used. First, a value of � ensuring condition (15)
is chosen. Second, some of the coupling conditions are selected to
obtain a desired order for the semi-implicit scheme. These conditions
forms a nonlinear system of equations in which coefficients �a�I�

ij ; b�I�
i �

are the unknowns. This system is numerically solved by applying an
iterative solver. Finally, the linear stability function (14) is evaluated
so that the constructed SIRK scheme is stable for a range of �zx; zy� as
wide as possible.

In practice, it appears that obtaining a semi-implicit scheme that
exhibits both high accuracy and high stability is rather tricky.
Therefore, it has been decided to determine two different sets of
coefficients, focusing on either the stability or the accuracy. Thus,
two semi-implicit Runge–Kutta algorithm are proposed. The one
with higher stability is referred to as SIRK63-S, and the one with
higher accuracy is referred to as SIRK63-A. The constraints used for
the calculation of the coefficients �a�I�

ij ; b�I�
i � are recalled in Table 1 for

the two proposed schemes.
The coupling conditions (6) and (7) apply to the SIRK63-S scheme

that is, therefore, of order 3. For the SIRK63-A scheme, the coupling
conditions (8–10a) are imposed. Remember that conditions (8–10b)
are required to ensure order 4. A set of coefficients satisfying these
conditions could not be found, and consequently, the time accuracy of
the SIRK63-A scheme is of order 3 only. Nevertheless, satisfying
conditions (8–10a) as is the case for the SIRK63-A scheme leads to
the cancellation of some terms of order 3 in the time discretization

Table 1 Constraints imposed to the coefficients of the
implicit part of the SIRK63 schemes

Constraint type SIRK63-S SIRK63-A
SDIRK structure a�I�

ii � � � 0.41 a�I�
ii � � � 0.245

Order 4 of the implicit part Eq. (5) Eq. (5)
Coupling conditions Eqs. (6) and (7) Eqs. (8–10a)
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error, hence improving the accuracy of the SIRK63-A algorithm with
respect to the SIRK63-S algorithm, which will be shown in the next
section.

C. Dissipation and Dispersion Properties of the Schemes
Dissipation and dispersion of the implicit and explicit parts of the

two SIRK63 algorithms are now evaluated in this section. It has been
shown in the preceding section that the amplification factor of
the implicit part of a SIRK algorithm is given by R�0; ick�y�t�. The
damping factor is derived from this expression through some variable
transforms. By defining the angular frequency � � ck�y, the
amplification factor is G���t� � R�0; i��t�, and the damping
factor of the implicit part is given by 1 � jGj. Also, by introducing the
effective angular frequency as �� � arg�G�, the dispersion error of
the scheme can be measured by the quantity j���t � ��tj��.

Figure 1a presents the damping factor as a function of
nondimensional angular frequency ��t, for the implicit part of the
proposed SIRK63-A and SIRK63-S algorithms, as well as for the
implicit part of the ASIRK-3C scheme of Zhong [23]. The damping
factor of the standard explicit fourth-order Runge–Kutta scheme
(RK4) is also displayed for comparison. The SIRK63-A algorithm
has a dissipation much lower than that of the other schemes. The
damping factor of SIRK63-S is two orders of magnitude higher than
that of SIRK63-A for the whole range of frequencies, but it is found to
be similar to that of RK4. Finally, the scheme of Zhong is the most
dissipative method.

Similar results are observed for the dispersion error j���t �
��tj�� shown in Fig. 1b. The error of the SIRK63-A scheme is
almost one order of magnitude lower than that of SIRK63-S. Both are
less dispersive than the RK4 and ASIRK-3C schemes, the latter
showing the highest error levels again.

The damping factor and the dispersion error of the explicit part are
obtained in the same preceding manner, by defining the amplification
factor and the effectivewave number of the explicit part as G���t� �
R�i��t; 0� and �� � arg�G�, respectively. The damping factor and
dispersion error are thus given by 1 � jGj and j���t � ��tj��,
respectively. The damping factor of the different schemes is plotted as

a function of the nondimensional angular frequency ��t in Fig. 2a.
Note that the two SIRK63 schemes are represented by the same curve
because they have the same explicit part provided by the RK46-Ber
scheme [10]. Its damping factor is two orders of magnitude lower
than that of RK4 and three orders of magnitude lower than that of the
ASIRK-3C scheme of Zhong. The dispersion curves, given in
Fig. 2b, exhibit the same tendencies. The RK46-Ber scheme is the
least dispersive, with phase error one order and two orders of
magnitude lower than those of RK4 and ASIRK-3C, respectively.

Finally, the present study shows that, for nondimensional angular
frequencies in the range ��8 � ��t � ��2, the accuracy of the semi-
implicit schemes proposed in this paper is higher than that of the
semi-implicit scheme of Zhong [23] and at least as good as that of the
standard RK4 scheme. For ��t < ��8, that is, for waves discretized
by more than 16 points per period, the SIRK63-S scheme is less
accurate than the RK4 scheme because of its lower order. However, in
this case, the error levels obtained for both schemes are inferior to
10�5. The apparent low accuracy of the ASIRK-3C scheme is due to
the fact that this method was initially developed for the simulation of
transient hypersonic flows with thermochemical nonequilibrium, in
which viscous stress, heat flux or reaction source terms are treated
by the implicit subscheme. The scheme of Zhong is thus a priori
not adapted to the time integration of convective terms without
dissipation and without dispersion. However, to the authors’
knowledge, the only case of aeroacoustics problem solved in a semi-
implicit way used the ASIRK-3C scheme [17]. For this reason, the
SIRK63 algorithms developed here are compared to the scheme
of Zhong.

D. Test Cases
1. Definition

The properties of the semi-implicit schemes are first investigated
by considering the propagation of an acoustic pulse in a medium at
rest. In this test case, the 2-D Euler equations are solved on different
anisotropic Cartesian meshes. The mesh spacings in the x and y
directions are �x and �y, respectively. In what follows, �x is fixed,
whereas �y � �x is different for each mesh. The number of grid

�/8 �/4 �/2 �10

a) b)

�6

10
�4

10
�2

10
0

��t

1�
|G

|

�/8 �/4 �/2 �10
�6

10
�4

10
�2

10
0

��t

|�
* �

t�
�

�t
| /

 �

Fig. 1 a) Damping factor and b) dispersion error per time step of the implicit part of the schemes, as a function of nondimensional frequency ��t. –. –.:
ASIRK-3C of Zhong [23], : : : : : : .: standard RK4, proposed schemes: ––––––: SIRK63-A and – – –: SIRK63-S.

�/8 �/4 �/2 �10
�6

10
�4

10
�2

10
0

��t

1�
|G

|

�/8 �/4 �/2 �10
�6

10
�4

10
�2

10
0

��t

| �
*�

t�
�

�t
| /

 �

a) b)
Fig. 2 a) Damping factor, and b) dispersion error per time step of the explicit part of the schemes, as a function of nondimensional frequency ��t. –. –.:
ASIRK-3C of Zhong [23], : : : : : : .: standard RK4, ––––––: proposed SIRK63-A and SIRK63-S (RK46-Ber of Berland et al. [10]).

KREMER, BOGEY, AND BAILLY 519

D
ow

nl
oa

de
d 

by
 E

C
O

LE
 C

E
N

T
R

A
L 

D
E

 L
Y

O
N

 o
n 

M
ar

ch
 3

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
J0

52
23

6 



points in each mesh is 140 × 140 × �x��y. The initial conditions are
defined by

p � p0 � �p exp�� ln�2��x2 � y2��b2�

� � �0 � �p � p0��c2

ux � uy � 0 (17)

where b � 3�x, p0 � 105 Pa, �p � 10 Pa, c �
���������������
�p0��0

p
, �0 �

p0��T0�� � 1�cv�, T0 � 293 K, and cv � 717.5 J · K�1 · kg�1. To
obtain spatial discretization errors negligible with respect to time
integration errors, a 21-point centered finite-difference scheme of
order 20 is used.

The stability limit of the time integration algorithms is evaluated on
a set of simulations with periodic boundary conditions, such that the
centered finite-difference scheme is used in the entire mesh. A second
set of simulations are then carried out to study the accuracy of the

algorithms, using nonreflective boundary conditions [36] combined
with low dissipative and low dispersive noncentered finite differences
[37] at the boundaries of the domain.

Simulations are performed with the time integration schemes
SIRK63-S, SIRK63-A, ASIRK-3C, and RK4 for aspect ratios
�x��y � 2, 4, 8, 16, and 32. The terms containing y derivatives in
the Euler equations are integrated by the implicit part of the
algorithm, whereas the other terms are integrated with the explicit
part when semi-implicit schemes are used. The CFL number is
defined as CFL � c�t��x.

2. Stability
The aim here is to numerically find the maximum CFL number

ensuring stability. These values of CFLmax are plotted in Fig. 3 as a
function of the aspect ratio, for the different schemes. The axes are in
logarithmic scale. The proposed SIRK63 schemes appear to be the
most stable. The SIRK63-S scheme exhibits the highest value of
CFLmax � 1.2 at all aspect ratios. Concerning SIRK63-A, the
maximum CFL number is found to decrease with �y, before reaching
a plateau at CFLmax � 0.25, a value slightly higher than that of the
scheme of Zhong [23], for which CFLmax � 0.2 at all aspect ratios.
For the explicit RK4 scheme, the maximum CFL number decreases
as �y decreases, as expected.

3. Accuracy
Simulations are now carried out up to t � 32�x�c, for CFL

numbers varying from 0.1 to 1. Their results are compared with
reference simulations. Because the grids change with the aspect
ratio, one reference simulation is run for each grid with a very small
CFL number. The CFL number is, for instance, equal to 10�1 for
�x��y � 1 and to 10�4 for �x��y � 32. As an illustration, the
reference solution computed on the grid with �x��y � 1 is shown
in Fig. 4.

The accuracy of the schemes is estimated by the error rate E,
defined as follows:

E �

����������������������������������RR
S �p � pref�2 ds

q

������������������������������������RR
S �pref � p0�2 ds

q (18)

where pref is the reference solution. Error rates obtained using
different schemes for values of �x��y equal to 1 and 32 are plotted
in Figs. 5a and 5b, respectively. The axes are in logarithmic scale.
The results being very similar, the analysis is limited to the case
�x��y � 1, displayed in Fig. 5a. The SIRK63-A scheme has the
best accuracy, with an error rate one order of magnitude lower
than that of SIRK63-S and of RK4. The ASIRK-3C scheme has
the weakest accuracy, its error rate being more than one order of
magnitude higher than that of SIRK63-S. These results are in good
agreement with the theoretical study in Sec. II.C. Finally, a reference
slope of order 3 is provided as a gray line to evaluate the order of the
error rates. Those of the semi-implicit schemes are of order 3 for low

1 2 4 8 16 32
0.05

0.1

0.2

0.4

0.8

1.6

�x ⁄ �y

C
FL

m
ax

Fig. 3 Maximum CFL number of the time integration schemes, as a
function of the aspect ratio �x��y. –. –.: ASIRK-3C of Zhong [23],
: : : : : : .: standard RK4, proposed schemes: ––––: SIRK63-A and – – –:
SIRK63-S.

Fig. 4 Fluctuating pressure field, at t � 32�x�c, of the reference
simulation for the acoustic pulse case, run with the RK4 time integration
scheme, for �x��y � 1 and CFL � 0.01. The color scale ranges between
�1 Pa.
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Fig. 5 Error rate E of the time integration schemes, at t � 32�x�c, for the acoustic pulse case: a) �x��y � 1 and b) �x��y � 32. .–.–.: ASIRK-3C of
Zhong, : : : : : : .: standard RK4, proposed schemes: –––––– SIRK63-A and – – –: SIRK63-S.
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CFL numbers. The SIRK63 algorithms present a steeper slope
for CFL > 0.4.

To highlight the coupling effects between the explicit and implicit
parts of the SIRK algorithms, snapshots of the error �p � pref��E, are
shown in Fig. 6, for simulations performed with CFL � 0.1 and
�x��y � 1. As expected, the error is isotropic for the RK4
scheme in Fig. 6a because the same algorithm is used in the x and y
directions. Inversely, the semi-implicit schemes exhibits anisotropy.
The error of the ASIRK-3C scheme plotted in Fig. 6b is dominant
in the directions parallel to the axes of the mesh, whereas the
proposed SIRK63-A and SIRK63-S schemes in Figs. 6c and 6d
provide the largest errors in the diagonal directions.

It must be noted that different results can be obtained at other
values of the CFL number and of �x��y. Figure 7a shows, for
instance, the error of the SIRK63-S scheme for �x��y � 1 and
CFL � 1. Compared to the error at CFL � 0.1 in Fig. 6c, the pattern
clearly changes. The influence of the aspect ratio is also highlighted
by the comparison of Figs. 7a and 7b, corresponding to �x��y � 1
and 32, for CFL � 1. It can be seen that the aspect ratio has a very
small effect on the anisotropy of the error.

E. Summary
Some properties of the schemes developed in this paper are

summarized in Table 2, which reports the maximum CFL number and
the error rate E at CFL � 0.2 for aspect ratios of 1 and 32. The
proposed SIRK63-S algorithm appears to be the most stable, with a
maximum CFL number of 1.2 independent of the aspect ratio. The
SIRK63-A is less stable, with a maximum CFL number decreasing
from 1 to 0.25 when the aspect ratio increases. However, it remains
more stable than the scheme ASIRK-3C of Zhong [23], which has a
maximum CFL number of 0.2. Concerning accuracy, the SIRK63-A
scheme is more accurate than SIRK63-S: the former has error rates
more than one order of magnitude lower than the latter. The accuracy
of SIRK63-S is similar to that of RK4 and is better than that of the
scheme of Zhong.

The SIRK63 schemes consume six stages per time step, which
is two times more than a standard three-stage RK scheme and 1.5
times more than a standard four-stage RK scheme. However, to
compare the computational efficiency of these schemes, it appears
necessary to consider the ratio between the maximum CFL number
and the number of stages s. This quantity is given in Table 3. For the

Fig. 6 Snapshots of �p � pref��E to illustrate the anisotropy of the error, where pref is the reference solution and p is the pressure computed at
CFL � 0.1 and �x��y � 1 using a) standard RK4, b) ASIRK-3C of Zhong [23], and proposed schemes c) SIRK63-S and d) SIRK63-A.

Fig. 7 Snapshots of �p � pref��E to illustrate the anisotropy of the error, where pref is the reference solution and p is the pressure computed using
SIRK63-S at CFL � 1 on meshes with aspect ratio of a) �x��y � 1 and b) �x��y � 32.
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