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Predictions based on numerical model involve:

o Errors due to simplified physical models

o Errors due to numerical approximations

o Errors due to unknown model parameters

o Errors due to misspecification of object of the prediction

Although all these sources of prediction errors are separated, their global treatment is
needed to

o Fairly assess the prediction quality
o Enable risk informed decision-making
o Ensure that no resources are inefficiently allocated

o Engage in prediction error reduction

Experimental data & observations are crucial to produce accurate model predictions

but are also compromised and subjected to multiple sources of error
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Observations and experimental measurements are needed to
o Determine the model parameters (e.g. calibration)
o Validate the model and its predictions (e.g. comparison)

Since the knowledge of the model parameters is never perfect we adopt a
probabilistic view:

o The predictions are random (uncertain) with a probability distribution induced by
the probability distribution of the model

o One can assess the impact of different model parameters on the uncertain

prediction (Forward UQ problem) and perform sensitivity analysis (ANOVA,
HSIC,...)

o From an a priori parameter distribution, experimental observations can be
incorporated to update the knowledge of the parameters

So-called Bayesian model calibration

Note: here, we entirely focus on parametric uncertainty. Other Bayesian techniques
can compare the predictive capabilities of different model structures
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Propagation of data uncertainty

Data density Solution density

. \ M(S,D) =0 " /

Many alternative methods
o Sampling based methods: Monte-Carlo, QMC, LHS,...

o Surrogate based methods: Regression and projection methods, Polynomial Chaos,
Stochastic Multi-wavelets, Sparse-grid interpolation, Gaussian process
regression,. . .

o Stochastic Galerkin methods
In geosciences, we have to deal with:
o Models with high to extremely high solution cost
o Possibly high dimensional parameters and predictions (fields, time series,. .. )
o Generally sparse and costly observations (although we are promised cheap data)

Calls for adapted techniques, mitigating numerical complexity with accuracy
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[Sochala, de Martin & OLM.
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FIG. 1: Location of the domain of study in Greece close (0 the city of Thessaloniki, The
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[Sochala, de Martin & OLM. Int. J. Unc. Quant., 2020]

Half-space

Absorbing boundary condition

FIG. 6: Schematic representation of the shear wave velocity structure: in the sedimentary basis the profile is piecewise linear and
defined by values at the top and bottom of the layers 1 and 2; in the bedrock the value is constant.

TABLE 1: The nominal values and ranges of the seven uncertain inputs retained in the uncertainty analysis

"’;‘jlp vyt ”;?zp o Vs ped qs &d
Nominal | 130 (m/s) 475 (m/s) 581 (m/s) _ 800 (mfs) 2,100 (m/s) 1250 0 (m)
Range | [104,156] [428,523] [523,639] [640,960]  [1920,2280]  [5,20]  [10,10]




[Sochala, de Martin & OLM. Int. J. Unc. Quant., 2020]
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FIG. 10: Dominant rescaled eigenmodes uy\/Ax of the EOF decomposition, and (componentwise) empirical MSE(u,u") for
r=3
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[Sochala, de Martin & OLM. Int. J. Unc. Quant., 2020]
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0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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FIG. 16: PGM interval probability maps for different intervals obtained with a LHS of 10* realizations.
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Bayesian Inference

Parametric uncertainty

o uncertain model prediction M(q)

o incomplete knowledge of some model parameters: q ~ p(q)
o uncertainty reduction strategies

Bayes formula

We want to update / infer a finite set of parameters q € RY, using

o aset O ={y; €R,i=1,..., M} of observations,
o the model prediction of the observations: U(q) € RM

Bayesian rule to update our knowledge on q:
Poost(q|O) < L(O|q)p(q),
with

o L(O|q) is the likelihood of the measurements,
o p(q) is the parameters’ prior,

0 ppost(q|O) is the posterior.
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Bayesian Inference

&

Likelihood function (Gaussian example)

Model for the measurements error (noise):
\/I' = Ul(q) < Gy € = N(0,0',-z),

The likelihood becomes:

I SO
L©la) = [[ o |- 52| -

20,.2
i=1

Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC)
Note: in reality needs hyper-parameters (i.e. noise variance)

Issues:

o Rely heavily on multiple evaluations of the model ¢ — U(q) = (U1 - - - Un)(q):

use of surrogate models

o Assumes the measurements to be informative: more is not always better, in
particular in the absence of complete information regarding protocols

o Calls for the selection of robust and informative observations

o Model error?

A



o Suppose that we have the following
polynomial model:

“True” polynomial

u(x) = 10 — 2x + 7.5x% — 3.3x> — 3.2x*

observed at at N coordinates {x;}¥, € (0,1)

o We perturb the observations with a Gaussian
noise with mean zero and variance 0.01, i.e.

N(0,0.01).

o This yields a set of noisy observations,
({xi, yits)-

o For this example we have N = 30. (We will

discuss the effect of the number of
observations)

G @D
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o Objective: given the data O = {Yi},N:p can we recover the original polynomial?

o We need to define a model (i.e. the hypothesis) to describe the data
o Our model is a polynomial of certain order p:

P
M(xla) = > aix*
k=0

o It follows that our set of parameters is:

q= {‘IO,Q17Q2,~~-7¢IP}

Bayes’ theorem

poost ({akHooo 1yt 1) oc L({yi} s Hak}ooo) P({ax}o_o)
o We now need to define the likelihood and priors.

1)

)
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10.75

1055
o To formulate the likelihood we assume the

. . . 10.35
following relationship: 1015
yi = Ui(q) + e, Ui(q) = M(xilq) Lo

g a7

where ¢; is a random variable which represents 955
the discrepancy between the i-th observation, y;, 935
and the model evaluated at the i-th coordinate, 9.5
M(xiq). 895

75|
.75

0.2 0.4 0.6
X

o Assuming N independent realizations and ¢; ~ N(0,02), i = 1,..., N, the
likelihood can be written as

N
i — Ui(q))?
= p({Yf §V=1|{qk}i=o) = H \/21;_7 exp <(y 20.2(q)) >
i=1

o Objective: jointly infer 02 and {q)}}_,.

0.8
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The choice of a prior should be based, when possible, on some a priori knowledge
about the parameters.

We have p + 2 unknowns, i.e. the (p+ 1) coefficients {px}?_, and the variance

a2

For each py, since we have limited information and for the purpose of this
exercise, we choose a uniform distribution

1

= for —200 < g, < 200,

p(qx) = § 200 . W=
0 otherwise ,

In theory, these bounds can be made arbitrarily large.

We know that o2 cannot be negative: this information is what we defined as a
priori knowledge about a parameter. We assume a Jeffreys prior:

1 2
P(az) _Jlz for o > 0,
0 otherwise.
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Bayesian Inference

Final form of the joint posterior

i _ Uia))? 2
Ppost({Qk}£=0a02|{}’i},N:1) o H \/% exp <(y, zgé(q)) ) P(c?) Hp(qj)
i=1

Jj=0

o The problem now reduces to simulate (sample) this posterior.
o We are dealing with a (p + 2)-dimensional probability distribution.

o For high-dimensional cases, which are also the only interesting ones, use Markov
chain Monte Carlo (MCMC) methods.

o MCMC: class of algorithms suitable to sample high-dimensional probability
distributions.

o Must pay attention to mixing ability, convergence...

o Important feature: the quality of the sample improves as a function of the
number of steps.
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Markov Chain Monte Carlo

RN Ge




Markov Chain Monte Carlo

o Markov chain Monte Carlo (MCMC) methods: class of algorithms aimed at simulating
direct draws from some complex distribution 7 ().

o After a large number of steps the random state of the chain follows the desired
distribution.

o The quality of the sample improves as a function of the number of steps.

o It is difficult to determine when the chain has converged to the stationary distribution:
usually at least ~ 10000 samples.

o The chain should be rapidly mixing, with the stationary distribution is reached quickly
and the target probability is explored well and efficiently.

o Focus on Metropolis-Hastings algorithm: a random walk with proposal density and a
method for accepting/rejecting proposed moves.

G @D
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o MH algorithm can draw samples from a target probability distribution, 7, requiring
only the knowledge of a function proportional to the target PDF.

o It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let &;_, be an initial guess for a 2D problem.

0.8 4

06 4
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o MH algorithm can draw samples from a target probability distribution, 7, requiring
only the knowledge of a function proportional to the target PDF.

o It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let &;_, be an initial guess for a 2D problem.

2 Draw a candidate ¢’ from a Gaussian centered on the
current state: &' ~ N(&,, Cov) where Cov is chosen
a priori.
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o MH algorithm can draw samples from a target probability distribution, 7, requiring
only the knowledge of a function proportional to the target PDF.

o It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let &;_, be an initial guess for a 2D problem.

2 Draw a candidate ¢’ from a Gaussian centered on the
current state: &' ~ N(&,, Cov) where Cov is chosen
a priori.

3 Calculate the ratio:

. w(€")
m(£o)’
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Markov Chain Monte Carlo

o MH algorithm can draw samples from a target probability distribution, 7, requiring
only the knowledge of a function proportional to the target PDF.

o It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let &;_, be an initial guess for a 2D problem.

2 Draw a candidate ¢’ from a Gaussian centered on the
current state: &' ~ N(&,, Cov) where Cov is chosen
a priori.
3 Calculate the ratio:
!
)
- )
m(&o)

4 Draw a random number o ~ U(0, 1).

-1 -08 -06 -04 -02 g 02 04 06 08 1
1
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Markov Chain Monte Carlo

o MH algorithm can draw samples from a target probability distribution, 7, requiring
only the knowledge of a function proportional to the target PDF.

o It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let §,_ be an initial guess for a 2D problem.

. . 08
2 Draw a candidate £’ from a Gaussian centered on

current state: &' ~ N(&;, Cov) where Cov is chos os
a priori. 04
3 Calculate the ratio: , 02
,_ ) e
m(£o)
-0.2
4 Draw a random number o ~ U(0, 1). 04
5 Chain moves (i.e. candidate is 06

accepted/rejected) according to: e

if a<r, -1

-1 -08 -06 -04 -02 g 0.2 0.4 06 08 1
otherwise. 1



o The proposal distribution has covariance: ¥ pr0p = 0.1 % I2.
o Results for 3 different values of total steps n = 500, 5000 and 25000.
o The larger n, the better the approximation.

Starting point Starting point
10 10 . Starting point
10 e
5 5 5
wi!
0 0 o
-5
. . . . . . s 2 12
0 2 4 6 8 10 12 2 0 4 6 8 10 12
n =500 n = 5000
o F = E Ay




Markov Chain Monte Carlo

©

The proposal amplitude must be tuned to obtain good exploration of the space and fast
convergence of the chain toward the high-probability regions.

Results shown for 0.005 % I5, 0.1 % I, and 50 x* I5.
The smaller the proposal amplitude, the larger the number of the accepted moves.

Large proposals lead to small acceptance and slow exploration of the space.

© © o o

Ideally, the acceptance rate should be between 30 to 60%.

Starting,point - Starting point
10 P> T o Startin point 10 .

&
z

-2 0 10 12 2 0 2 12

2 4 6 8 & 4 6 8 10
amplitude = 0.005 amplitude = 0.1 amplitude = 50
acceptance rate ~ 95 %. acceptance rate ~ 50 %. acceptance rate ~ 4 %.

G @D
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Markov Chain Monte Carlo

o To evaluate the mixing properties of a chain:

o visually should look like a white noise.
o the autocovariance should be rapidly decaying.
o the acceptance rate should be 30 to 60%.

o Before computing statistics, the initial steps before convergence should be dropped: these
steps are referred to as “burn-in" period.

o The burn-in period is estimated from the autocorrelation as the step at which it drops to
and becomes oscillatory around zero: in this case it is about 3000 steps.

3 Starting point
.

)

. g
uf E .
ol
0 0.5 1 15 2 25 0 05 1 1.5 2 -§2 0 2 4 6 8 10 12
Step x10" Step x10" B
Chain for &> showing the Autocovariance for Chain samples after
bimodality. chain of &;. omitting 3000 steps.
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Back to polynomial inference example
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Elementary Examples

o Suppose that we infer a zeroth-order polynomial:

M(x|q) = qo

o We know that this is far from the true model defined before, which was a
fourth-order polynomial.

Two-dimensional joint posterior

i h e 2
ppost(qo,02|{y,.}§":1) o H \/21(7 exp <(y’ 2020) > 'P(o-2) p(q0)
i=1

Step Step
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96 97 98

o Chain samples can be used to estimate the marginalized posteriors of the
parameters via KDE.

99 10 101 102 103 104
d

Tiuevalue

02

04

015 02 02
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venteus damonde nmbriave

03 03 04

06

This approach only allows us to

08

infer the

mean



Elementary Examples

o Suppose that we infer a fourth-order polynomial:

M(x|q) = qo + qix + g2x* + q3x> + qax*
Six-dimensional joint posterior

N
poost({aki—o: 21y o< ||

1ex(m—wmf>
Vano? P 202
i=1

P [ rla)

j=0

/*wlriwwni i l!‘y ”‘L

5000

10000

1500C
F



Elementary Examples

o Suppose that we infer a fourth-order polynomial:

M(x|q) = qo + q1x + g2x* + q3x> + qax*

20
30)
10
20
o
& 10 & -10
-20
of
-3
-1
40
0 5000 10000 15000 5000 10000 15000
Step Step
014
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01
10
5| 008}
o %
0 0.06)
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004
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- Step Step
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o Suppose that we infer a fourth-order polynomial:

M(x|q) = qo + q1x + q2x* + q3x> + qax*

250,
200 <—Truevalue
150
2 =
100
) \x
% 0.01 002 003 004 005 8% 02 04 06 08 1

o ’ Tox




Inference with model error
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Calibration equation:

observations computer model  model discrepancy  measurement error
— — ~ =~ ~=
Yobs(X) = f(x,0%) + z(x) + e(x) ,
where 6* is the "best value” of the model parameters.
f(x,0%)
¢
Qol
¢
¢

X
> ¢(x) is Gaussian noise, z(x) is a Gaussian Process.
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Cp(,X) =02+ (x—c)x(x —c). (4)
= (o,0).

» |ts hyperparameters are noted ).
| 4

Squared Exponential kernel:

’ —x')? '
Cp(x,X) = o2exp (—%) @ v
¢=(le)'

» A Gaussian Process is a probability distribution over functions.
> |t requires a mean function 1 and a kernel ¢y,

-2

» Dot Product kernel:

SqExp,0=1,/=1 SqExp,0=1,/=0.3
29&\ A
S e
—2// W\/J
2 a 2
X

» One value of ¢ < one "’kind” of model error.

Dot Product, 0=.2,¢c=0
10 ]

0.5

N 00}

-05 .

-1.0
0.4

0 0.25 0.50 0.75 14
x
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> Classical assumptions: z|1p ~ GP(0, Cy); €|02.es ~ N(0, 02,s); 2o L €
» The likelihood function writes:

Yobs|0, % ~ N(fo, Cy + 02.eln),

where fq is the predictions of the computer model, C, the covariance
matrix of model error, |, the identity matrix.

RN Ge



Bayesian Calibration with model error

Recall the KOH calibration equation:

Yobs(X) = f(x,07) + 2(x) + €(x) (5)
where 6* is the "best value” of the model parameters.
Hyperparameters of the model error are estimated with a single value:

17’K0H = argdr,nax P(%|Yobs)- (6)

» Problem 1: what is the meaning of a "best value” of model parameters ?

— Lack of identifiability (F. Liu, Bayarri, and Berger 2009; Arendt et al.
2012).

> Problem 2: A single distribution is used for z(x), inappropriate when
different model parameters values can provide equally good
representations of the data.

G @D
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» Assumption: the posterior distribution p(@, | D) is a mixture of

p(6ID)

Gaussians with well-separated modes.

left mode

right mode

p(y|D)

Full Bayesian solution

1(61)

observations

1(62)

observations




» Assumption: the posterior distribution p(8, | D) is a mixture of

Gaussians with well-separated modes.

£(61)

1.0 * observations

Pron(6|D)

leformade 00—

1(62)

observations

right mode 10

T
i
]
]
i
1
i
]
]
i
1
I
I
]
i
|
]
I_..'lk--. ..... ;,0-5

KOH

6 p(y|D) 0.0/

Kennedy-O'Hagan solution
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» Assumption: the posterior distribution p(8, v|D) is a mixture of

Gaussians with well-separated modes.

prup(6]D)

Wemp(61)

score of 6!

=

D
[
5
)
5
D
S

— plyl61. D)
1 — ply162,D)

left mode

F(on)

*  observations

right mode

1(02)

observations

Full Maximum a Posteriori solution

1.0
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Bayesian Calibration with model error

10 noisy observations from the true process y(x) = x, with x € [0, 1], with
computer model:

f(x,0) = xsin(20x) + (x + 0.15)(1 — ), (15)

with a single parameter 6 € [-0.5,1.5].
Model error uses a squared exponential kernel with uniform priors.

Posterior distribution of & _— » KOH estimation finds a
1.5 KOH posterior predictions . .
) o T s single family of
— KOH . . .
~ ﬁ — e | L0 predictions, with 0 ~ 0.
5 e | L
= 05 } » The FMP posterior finds
00 the correct balance

i i 0.0 05 10 between the two
interpretations of the data.

» The FMP method exhibits

L5 FMP posterior predictions 15 Bayes posterior predictions

§  observations §  observations

L0 L0 a more conservative
205 205 behaviour.
0.0 0.0
0.0 0.5 1.0 0.0 0.5 1.0

] = =
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0 Complexity Reduction
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Bayes’ formula:

Inference of g € RY from O = {y; € R,i =1,..., M} (measurements)

Ppost (9|0) o< L(Olq)p(q),
with p(q) (prior), L(O|q) (likelihood) and ppost(q|O) (posterior)
Model for the measurement errors:

yi=Ui(q) + e, € =N(0,0?),
Ui(q) is the model prediction of the i-th measurement
Likelihood becomes:

M
mwiﬂmP

i=1
heavily on multiple evaluations of

201.2
Posterior sampled, for instance using Markov Chain Monte Carlo (MCMC), rely

m-wmﬂ.

q— U(q) = (Ui---Un)(q)

RN Ge



Surrogate model for Bayesian Inference

Substitute costly model U with a surrogate U with inexpensive evaluations
The surrogate-based posterior becomes

M
post (q10) i—(O|Q)P(¢1)

L(0lg) = [ [ exe [— i =~
Error estimate [Marzouk, Xiu, Najm,

Ui(q)|2
202 '
i=1
@]
KL(ppost|ppost)—// post(q| )

I}
Ppost (q|(’))
where

|

M 1/2
Ty Ppost(g]0)dg < C(O) Z Ui = U]
i=1

La(p) ?
0 = [+ lu@Pr(a)da

Motivate for surrogate minimizing ||U; — Uj||1,(p)

2
l[ullz,

PC surrogates (off-line construction)

, Najm]

[Marzouk
P
Ui(@) ~ Ui(a) = ) _[UllaVa(a)
a=1

high convergence rate of the approximation
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The surrogate-based posterior becomes

Substitute costly model U with a surrogate U with inexpensive evaluations

M ~
~ ~ . Yi —
Prosi(al0) < L(Ola)p(a),  L(Olg) = [ e [—' >
Error estimate [Marzouk, Xiu, Najm,

U".2 '
i=1
]
KL(FPOSﬁ'Ppost)—// Ppost(q| )

Ppost (q10)

.1

M

1/2
Poostd s post(al0)da < C(O) [ Y10 = Gl )
Constant C(QO) can be large if the observations are very informative

i=1

Eppon {10 = 0P} = [+ 104@) = 0@) oot (a10)da
But the posterior is unknown!
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Iterative surrogate construction
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Basic idea:

observations of U

o take new observations of the model to improve the surrogate error (in the

posterior norm)

Denote D = {(¢/, v, p),j=1,...,n} the set of collected model observations:
o ¢/ observation point

o U/ = U(¢/) full model evaluation
o p/ > 0 trust index

~ (K
o a sequence of polynomial surrogates U( )(q) incorporating progressively new

RN Ge



Basic idea:

o (k
o a sequence of polynomial surrogates U( )(q) incorporating progressively new

observations of U

o take new observations of the model to improve the surrogate error (in the
posterior norm)

Model construction:

o select a subset Z(K) of model observations indexes

o find the polynomial approximation

P
U(q) ~ UM (q) = > UIEVam®(a)),
a=1

o solving a regularized regression problem of type

P 2 P
- i o — ‘
u argumEgPZp U Z\Ila(qf)va +)\Z_%|va|.

JET a=0
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Basic idea:

. ik . . .
o a sequence of polynomial surrogates U( )(q) incorporating progressively new
observations of U
o take new observations of the model to improve the surrogate error (in the
posterior norm)

Resampling: (completing the model observations set)

M

A(k
pl(alo) xexp | D -

2

yi— 0% (q)

20,.2
i=1

p(q)-

o Draw several independent samples ¢ form FA’SL)st

o Compute model prediction U/ = U(¢)
o Define the trust index of the new observation as

M f A .
o V- 0Rgh2 1
@y =y W LI@E
i=1

max(e¢, AJ)
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ALGORITHM 1: Iterative Procedure for the Construction of the Posterior Fitted Surrogate.

Require: Initial number of observations ng, number of new observations at each step n4q4q, measurements

© XIS qT Wy

set O, maximal number of model evaluations nyayx

: Initialization:
n=1,D= > Initialize the observations set
: for j=1,...n9 do > Generate the initial observations
Draw ¢" from p(q), D < DU{(g",U(g"),po)}, n < n+1
: end for
k = 0, construct f](o) with ZO) = {1,...,n} > Construct initial surrogate
. while n < 1,4, do
for j =1,...n44q do
Draw ¢" from ﬁsf,)st (ql0) > Sample surrogate-based posterior
Compute U(qg") and observation weight p™ from (19) > Set observation
D« DU{(g",U(g"),po)}, n+n+1 > Update observation set
end for
ke—k+1
Define Z(¥), construct U ® > Specify observations to use and compute surrogate
: end while
. Return U > Return final surrogate




Simple one-dimensional test problem

Problem settings

v g € R% and non-polynomial model: U(q) = exp [tanh(q/2)]
v standard Gaussian prior: g ~ p(q) = exp [-¢*/2]/V/2m
v’ single observation O = 2.6, likelihood maximized for g = 3.8

3 T T T T T
25 F E
2 Model U(q) ——— b
p(q
15 Observation b

Max Likelihood

v~ for small noise level, 0 < 1, prior and posterior are very distant

v high pol. order N, required to globally approximate U(q) over few std range
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true model
Surrogates.
Observation

true post
pri

true model

q
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Effect of polynomial degree N, (noise level o = 0.05; sampling \’D(k)|k:1mm =2N,)

Ny =2 No =3

-

&V‘“‘" o = = = 9Dac




MI(/Z

9 (k(x)0u(x)) = —eg,

o Log-normal random field, exponential type covariance

o Retain the first 15 modes: q € RS

log r(x,w) = Y \/Ndi(x)ai(w), @~ N(O,1).
=1

T T
scaled eigenfunctions

T T T
eigenvalues —+——

M2 o
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Examples

Tterative Surrogate Global Surrogate Error ratio
Nmax (D)) e®) N, | Npc @ No¢ | Npc | € /e
500 (503) | 3.1 1073 2 16 | 941073 4 166 0.33
1000 (1088) | 3.8 10~* 4 166 | 6.8 103 4 166 0.06
2000 (2084) | 3.7 10~ 4 166 | 3.2 1073 6 406 0.11
2500 (2807) | 2.9 10~ 6 406 | 2.71073 6 406 0.11
3000 (3213) | 4.1 107* 6 406 | 2.51073 6 406 0.16

Table 1: Using No(? = 1, and different Nyax as indicated. o = 0.01.
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Niax = 500

Niax = 2000

Niax = 3000

H

g =
H ™
g S
¢ SRR
H 3T x

lerative method  +
Global method
oy ——

log:posterior of exact model

Herative method  +

Global method

ey ——

log-posterior of exact model

Herative method
Global method  *
Xy ——

log-posterior of surrogate

log-posterior of surrogate

logposterior of surogate

Figure 3: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from 5(k)

Ppost

(Iterative method) and f)gost (Global method) respectively. Surrogates are constructed with different values
of Nyax, as indicated, and for o = 0,.01, g = 0, No©@ =1.
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o =0.01

B

Mean of Trust index
Mean of Trust index

Mean of Trust indox —+—
Surrggae ojder —-—

200 400 600 800 1000 1200 1400 1600

1
200 400 600 800 1000 1200 1400 1600
#

Figure 5: Evolutions of the averaged trust-index for § = 0, Nyyax = 1500, No(©® = 1 and different values for o
as indicated. Also shown are the evolutions of the polynomial order of the successive surrogates (left axis).

Mean of Trust index

200 400 600 800 1000 1200 1400 1600




A=05|A=10| A=20 | N, | Npc
k) 2.710° | 75107 [ 3.1107% | 4 | 166
e“ 21102 [ 761073 | 281072 | 6 | 406
e® /e 11131072 19.9107* [ 1.1 1074 | - -

Table 3: Using N (¥ = 2, Npax = 1500, ¢ = 0.001.
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e

=20

log-posterior of exact model

log-posterior of exact model

Merative method  +
‘Global method Global

Merative method  +
metnod

Iog-posterior of exact model

log-posterior of surrogate

log-posterior of surogate

log-posterior of surogate

Figure 6: True log-posterior against surrogate log-posteriors values for 1000 sample points drawn from

~(k
pl()o)st

(Iterative method) and ﬁg"ost (Global method) respectively. Case of construction with Ny = 1500, for
qg=0, NO(O) =1 and different o as indicated.

[OLM & D. Lucor.

G @D

ESAIM Proc., 2018]
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[Sochala, Gesret & OLM. Int.

Table 4: Refraction case: ranges of the uniform prior distributions of the velocity model parameters and true values used for
the synthetic observations.

G @D

1000 -
£
N 2000
= Souces - Recehers —Tuez,, —Truez,,
3000
0 2000 4000 6000 8000 10000
X(m)

1000
E 1500
N

2000

2500

3000

J. Geomath., 2022]

Prior

———True model

1000 2000

3000 4000
V(mis)

5000

(a) Acquisition geometry and interface loca-(b) Layers’ velocities with the true values of

tions z12 and 223
Figure 12: Schematic description of the refraction test case
Parameter vy (m/s) vy (m/s) vz (m/s) 212 (m) 223 (m)
Prior ranges | [1,3] x 10°  [2,4] x 10®  [3,5] x 10 | [700,850]  [1700,1900]
True values 2000 2700 4000 750 1800

-
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[Sochala, Gesret & OLM. Int. J. Geomath., 2022]

Source-receiver distance (km)
3 4 5 6

X 1 89

107
5
i o —
°
2
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]
@
3
2
g

——degree 1

‘Em“ H ——— degree 2
§ — ——degree 3
H ——degren 4
g ——— degree 5

10*

0 100 200 300 400 500
# Observation

Figure 13: Refraction case: RMSRE of the PC surrogates of
the traveltimes for maximum total degree d° from 1 to 5.
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Source-receiver distance (km)
4 6

0 100 200 300 400 500
# Observation

Figure 14: Refraction case: first-order sensitivity indices esti-
mated with PC surrogates of maximum total degree d° = 5.
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[Sochala, Gesret & OLM. Int. J. Geomath., 2022]
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[Sochala, Gesret & OLM. Int. J. Geomath., 2022]

600 600

550 550
g i
= 500 = 500
&) O
o o

450 450

400 400

400 450 500 550 600 400 450 500 550 600
True Misfit True Misfit
(a) d° =5 (Step 1) (b) d° =5 and d§ = 2 (Step 2)

Figure 17: Refraction case: true misfit function versus approximated PC misfit function plotted for 1, 000 independent values
for m extracted from the MCMC sampling.

-

G @D

venteus damonde nmbriave

RN Ge



[Sochala, Gesret & OLM. Int.

J. Geomath., 2022]
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5210 005
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IXE E
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23- E
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001
1
4 \ 4
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(a) Velocity vg (b) Interface z12
0014
Pror
0,012 - —— Posteror-LS dagree 2
© Truavalue
© MAP-LS dagree 2
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(c) Interface z23

Figure 18: Refraction case: priors and posterior marginals of v3, z12 and z23 based on the polynomial surrogate constructed
P @

=2 ona sample set of 1,000 values drawn using the initial PC surrogates of the traveltimes with d® = 5.
-
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Selection of Observations: an example

RN Ge

J




o Flow of debris (mud, gravels, small rocks, ...)

o Empirical / Phenomenological models

o Parameter calibration on experiments at USGS

Governing equations

oh  a(hu)  A(hv)

ot Oz oy o

PO+ i) g 030+ S KA
a(ahtv) a(g;w) N gy(hﬁ) + Kaay(o.sgzhz) + h(1— K)%I;b =
B(gn) N B(fg;m) o ‘9(21;”1) = pu,

o Ok Obw)  Op | Oh  Ohu Opy
R ar oy " Xay "y T~

GeoClaw

25

$3;




o Flow of debris (mud, gravels, small rocks,

o Empirical / Phenomenological models

)

o Parameter calibration on experiments at USGS
Non-linear source terms

[Iverson & George, 2014]
_ (p—ps) 2k
= (py — prg=h),
— —2k Tayo -+ Tfo
w2 = hgy + uwi(pb - Pfgzh) - M’
P hu
_ (p—ps) =2k (To + Try)
3 = hgy + L (pv = prg=h) ) 5
_ 2k Ps
pa= o (py — prg=h)m P

where

3
95 = (o (90 = prgah) — [l tan(s),

_ 9= (P — py)
2ah

a
4p » 8BS

m(pgzh —py + 00)
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Inference of model parameters [Iverson & George, 2014]

static critical-state solid volume fraction (mcyit)

initial hydraulic permeability ko

°
°

o pure-fluid viscosity u

o steady friction contact angle ¢
°

compressibility constant a.

Gate release experiments: available measurements




A priori range of model parameters

Merie ~ %[0.62,0.66],
[t ~ 0g[0.005,0.05],

a~ %[0.01,0.05).

ko ~ iog[107°,1078],
¢ ~ U1[0.62,0.66],

A priori analyis

08 02 0.2
06 015 015
7*: o4 %‘: 0.1 —E 0.1
- k- k|
g 02 H H
2 < 005 2 0.05
0
0 o
0.2
5 10 15 s 10 15 5 10 15 20
t t t
(a) z=2m (b) 2=32m (¢) 2 =66 m
= & = = =




Naive model: Gaussian likelihood

L(d|§) =

iy 2

exp

Independent / uncorrelated ''measurement noise'

0.2
——obs
Bl original
0.15 I smooth

0.1

0.05

0.07

o
1=}
=3

o
=}
a

normalized marginal pdf

[ 0.2

0.4 0.6
canonical values

0.8 1
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Trying to fit "important characteristics"

204rr

In(£(dlg)) o — (t ~ an(€)

_ (tdec - alec(g)

20 dec

0.2

obs

{ Ml scaling

o
o
©

normalized marginal pdf

o
o
o

o




With feedback from experimentalist

Measurements were synchronized:

In(L(dE)) ox — (Tg”’ =

— 2 — 2
Tgrw(&) > _ (Tdec - Tdec(g) ) _ (
20 Tarw

207400

20,

max

~ 2
hmax - hmu(£)>

15

5
(b) = =32m

(c) = =66m




With feedback from experimentalist

Measurements were synchronized:

In(£(d|§)) oc —

Tgrw — Togrw (€) Taee — Tacc(€)

hmax — Emax (ﬁ)

arw 20Ty,

marginal pdf

0 0.2 0.4 0.6 0.8 1
canonical values

20

max
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Selection of Observations an example

What did we learn?
o Experimental data may be biased
o Raw measurements, or complete description of their treatments, are important
o Using all the available data may be counterproductive (yes!)

o If the model is poor, we should focus on basic features of interest, and not insist
on obtaining global agreement

o Models of model error are more robust and easier to propose & test for simple
features

How to select / reduce the experimental data to facilitate the inference problem?

[Navarro, OLM, Mandli, George, Hoteit and Knio. Comp. Geosciences, 2018.]
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Optimal Reduction of Observations
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Reduction of observations

Motivation
Bayesian inference in the case of overabundant data
o Weather forecasting

o Seismic wave inversion

Goal

Compute an optimal approximation
minZ (P(Q| Y =y),P(Q| W =VTy))
o % a loss function

o n (random) observations Y = (Y;)!_,;

o q parameters Q = (Qi)?:i, Ng < n
o r dimensional reduced space V € R"%", r < n

@ ¥or]

OLM, Hoteit and Knio. Comp. Stat. & Data An., 2018]

] = =
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Gaussian model

Y =BQ+E,
o Observations: Y ~ N (my, Cy) with values in R”
o Parameter of interest: @ ~ N (mg, Cg) with values in RN9
o Noise: E ~ N(mg, Cg) with values in R”
o Design matrix: B € R"*Na

o Forward model: A(Q) = BQ ~ N(ma, Ca), and Cag = Cov(A(Q), Q)

Reduced model
W=V"BQ+ VTE,
o Reduced observations: W ~ N (myy, Cy/) with values in R”
o Reduced space: V € R"%"

G @D
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knowing the realization (a particular measurement) y of Y

Unreduced case

The posterior distribution is P(Q | Y = y) ~ N(m, C+) where

— -1
Co = Cq (Co+ CagCr'Can) ~ Cos
my = C}QC;I(y — mg) + C*CalmQ.

Reduced model

The posterior distribution is P(Q | W = VTy) ~ N(my, Cy) where

—1
-1
Cv=Co <CQ +ChV (vTcEv) vTcAQ> Co,

my = CIQV(VTCY V)_IVT(y — mE) + CVC(SlmQ.

G @D
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Proposition (Invariance property)

For all invertible matrices M € RL*", we have

mypy = my and CVM = Cv.

o Posterior distribution invariant under rescaling, rotation or permutation of the
observations

o Newton method can not be directly used

o range(V) is more important than V

o Use of a Riemannian trust region algorithm on the Grassmann manifolds Gr(r, n),
the set of r-dimensional subspaces of R" (see Absil et al. 2007, Manopt and
Pymanopt libraries)

u]
o)
1
n
it

RN Ge



G @D

Kullback-Leibler divergence

Given two distributions P(Zp) and P(Z;) with densities fz, and fz,,

DKL (P(Zo) || P(Zl)) = ]EZO (|Og %) o

o Quantify the “information lost when [P(Z;)] is used to approximate [P(Zp)]”
(Burnham and Anderson, 2003)

o Positive and null iff P(Zy) = P(Z1)
o Asymmetric quantity

RN Ge



Reduction of observations

Kullback-Leibler divergence minimization

i D P Y = P w=vT
[V]ggrrzr,n) KL ( (Q| y) I P(Q] «V))

o Closed form of the functional available

o A solution to the optimization problem exists
o A posteriori reduction (measurement available)
Expected Kullback-Leibler divergence minimization
min By (Dkr, (P(Q|Y) | P(Q|W=VTY
i Ey (Diw (P(@I V) Il P(Q )

o Closed form of the functional available

o A solution to the optimization problem exists
o A priori reduction

RN Ge




Given random variables Z, Zy, and Z3,
Entropy

With Z ~ P(Z),

H(Z) = Ez(~log(fz(Z2))).
o Amount of information contained by P(Z)

Mutual information

With Zp ~ P(Zo) and Z; ~ P(Zl),

(2o, Z1) = H(Z) + H(Z1) —H(Z, Z1),

o Amount of information that P(Z)) contains about P(Z;)
o Symmetric quantity

G @D
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Reduction of observations

Theorem (Mutual information maximization)

We have
r
1
max Z(W,Q) = % Z log Aj,
i=1

VeRrR™X"
where (X\;)[_, are the r dominant eigenvalues of the problem
Cyv=MACegv, MER, veR"

A solution to the optimization problem is given by the matrix V with columns being
eigenvectors (v;)!_, associated to the eigenvalues (X\;)!_;. (Error estimator)

Equivalences
The mutual information maximization is equivalent to:

o the maximization of the expected information gain

man)irEW(DKL (P(QIW) || P(Q)))
VER"

o the minimization of the entropy of the posterior distribution
min H (P(QW = VTy))
VER:XF

@Pv'_\
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Synthetic data

For (t;)7_;, n =500, a uniformly drawn sample in (—1,1),

Yeer(ti) = Aver(ti) + E(ti), Vi€ {l,...,n},
with Apes ~ N(mrefv Cref) and E ~ N(mEv CE)'

Model

Nqg-—-1

j=0
with T; the Chebyshev polynomial of order j and Nq = 30.

G @D

Yi= Y T)Q+E(), Viefl...n},
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X Observations
—S— MAP estimate
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Reduction of observations

Synthetic data

Given two random samples (s;)7_; and (t;)]_; being independent and uniformly
distributed in (—1, 1), with n = 2000,

Yief(Si, ti) = exp(Fref(si, ti)) + E(si, ti),
where Fef ~ N(O: Cef), E ~ N(07 Cg).

Vie{l,...,n},

Model

Y = Ai(Q) + E(si, i),

vied{l,...,n},
where A;(Q) = exp((BQ)i), @ ~ N (0, Cq), and g = 30.
o Columns of B: dominant eigenvectors of Cf
o Cg = diag(\1,...,Aq): dominant eigenvalues of Cef
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Ly error on MAP point (left) and Frobenius error on Hessian at MAP.
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Reduction of observations

The model:

-1, H?(X S Q,’) = Kj,

V (k(x)VU(x))
32,000 points with Gaussian noise.

where log k; ~ N(0,1). Observed at n =

. . -
2 R ‘ 2 " %

@

Dominant modes of the projection:

F'rere




The model:

V (x(x)VU(x))
where log k; ~ N(0,1). Observed at n

/€(X S Q,‘) = Kij,
32,000 points with Gaussian noise.
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(® Conclusions and outlooks
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Summary

o Reduction approaches are instrumental in UQ and inference
o May concern both the model and the observations

o Reduction strategies should be goal-oriented

°

Information theoretic reduction approaches are promising

Outlooks
o Selection of observation features for Bayesian inference
o Goal-oriented design of model reduction and experiments

o Balancing all uncertainty and prediction error sources

Thank you
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