

High-resolution array processing method: *MLE vs. TDOA – Evaluation, implementation and applications*

A. Le Pichon¹, M. Charbit², B. Poste¹, J. Vergoz¹

¹CEA-DAM-DIF, F-91297 Arpajon, France

² Telecom ParisTech, Institut Polytechnique de Paris

- Overview of operational detection method used at the French NDC
- Examples of applications of infrasound products
- Recent advances in the implementation of MLE approach
- Evaluation through synthetic dataset and real cases

IMS infrasound network today

International Monitoring System (IMS)

- Operational global network of 60 arrays
- ~90% operating stations
- High-quality continuous measurements since 2000

A "zoo" of infrasound sources (0.02-4 Hz)

- Ocean waves, bolides, earthquakes, volcanoes, hurricanes...
- Need robust detection, location and source characterization methods
- Opportunity to calibrate the network and promote civil and scientific applications

Broadband detection algorithm

Time Difference Of Arrival (TDOA)

- PMCC = Progressive Multi-Channel Correlation
 (Cansi, 1995) → Julien's Lab. Session
- Challenge: highly variable noise conditions
- Unique source: raw data are filtered in narrow bands
- Time delay estimates of planar wavefront

 $\tau_{ij} = \arg \max_{\tau} (C_{ij}(\tau))$

Function of test: consistency

$$C = \frac{6}{M(M-1)(M-2)} \sum_{i>j>k} r_{ijk}^2 < C_{Threshold}$$

$$r_{ijk} = w_{ij} + w_{jk} + w_{ki}$$

$$w_{ij} = \tau_i - \tau_j \cdot r_{ijk}$$

2D least-squared solution

$$S = (A^{T}A)^{-1}A^{T}\Delta T, \quad V = \frac{1}{\sqrt{S_{x}^{2} + S_{y}^{2}}}, \quad \theta = \operatorname{atan}(\frac{S_{y}}{S_{x}})$$

Commissariat à l'énergie atomique et aux énergies alternatives

Example of PMCC analysis Beirut explosion (2020)

- Explosion of ammonium nitrate stored at the port of Beirut
- 5 IMS stations: from 2450 to 6200 km
- Localization: $\Delta loc = 38 \text{ km}$, $\Delta t = 20 \text{ s}$
- 0.01-4 Hz, 1/3-octave band scheme (Garcés, 2013)
- Window length scaled to the period
- 11 stratospheric returns at IS48-Tunisia

Pilger, C. et al. (2021). Sci. Rep. <u>https://doi.org/10.1038/s41598-021-93690-y</u> Commissariat à l'énergie atomique et aux énergies alternatives

1 hour

Characterizing the global coherent infrasound wavefield

Standardized processing scheme

- Real time process, 26 log-scaled frequency bands (0.01-4 Hz)
- Stable responses in phase and amplitude
- Statistically and systematically characterizing coherent infrasound

Characterizing the global coherent infrasound wavefield

New IMS broadband bulletin products for atmospheric studies

- Full IMS infrasound data set reprocessed (2003-2020)
- One-third octave frequency band between 0.01 and 4 Hz
- Detection lists: >81 million entries with center frequencies between 0.02 and 3.5 Hz (all stations)
- Infrasound products (Hupe et al., 2022, ESSD) <u>https://doi.org/10.25928/bgrseis_mbhf-ifsd</u>

Examples of recent applications

- Global mountain wave characterization (Hupe et al., 2019)
- Benchmarking microbarom radiation and propagation model (De Carlo et al., 2021)
- Identifying signatures from rocket launches (Pilger et al., 2021)
- Lightning activity (Farges et al., 2021)
- Volcanic eruptions (Matoza et al., 2019; Marchetti et al., 2019)

Volcanic Information System (VIS) European Catalogues for Geohazard Analysis Infrastructure

A prototype system for monitoring volcanic eruptions

- Volcanic Information System (VIS) has been developed and evaluated through the ARISE EU project (H2020, 2015-2018)
- Use PMCC detection lists and consider long-range propagation effects
- Proposed approach tested with Toulouse VAAC mandated by the ICAO
- VIS was able to detect all the major eruptions (VEI > 3)

From science to operation

- Geo-Inquire (INFRA-SERV, 2022-2026)
- Data platform to reinforce synergy between different fields of geophysics for georisk and geohazard research
- VIS: service of the class "European Catalogues for Geohazard Analysis Infrastructure" capitalizing on multi-year archives of IMS observations

Etna test case: CEA / UNIFI / VAAC

Message NortVakc : 20120401.1 Source : 20120401.1 Summary			Volcano	Volcanic source term
			VOLCANO NAME : CABULCO VOLCANO ID : 358020 LATITUDE : 41.3°S LONGITUDE : 72.6°W ELEVATION : 0 M	CONFIDENCE INDEX SOURCE AMPLITUDE (Pa) CONFIDENCE INTERVAL
			🖸 Detectability	
END TIME : 2015 DETECTIONS :	5/04/23 09	134100 UTC	ana	april 5
STATION	DIST. (A	m) AMP, (Pa)	AND AND LAND	nice a star
I14CL	1012	0.37	-	mag 1
102AR	1526	0.27	2544	BOOD
	2011	0.22	8	trail -
10880				AND STATISTICS
108B0 109BR	3700	0.14	Haci I	
108B0 109BR 127DE	3700 4802	0.14	are the	
108BO 109BR 127DE 149GB	3700 4802 5124	0.14 0.47 1.07	5° 100	
108B0 109BR 127DE 149GB 1478A	3700 4802 5124 8574	0.14 0.47 1.07 0.10	and the second	- Marina
10880 10988 12708 14908 1472A 135NA	3700 4802 5124 8574 8642	0.14 0.47 1.07 0.10 0.08	100 A	1 20 ¹ W

Commissariat à l'énergie atomique et aux énergies alternatives

Recent developments: Multi-Channel Maximum-Likelihood (MCML) method

Collaborations with Telecom ParisTech

- 2011-2012: audit / improvement of PMCC algorithm
- 2014-2015: expert group meetings at CTBTO
- 2014-2017: PhD supervision (A. Nouvellet)
- 2019-2020: MLE in multi-band framework
- 2021-2024: PhD supervision (B. Poste) High resolution method for source separation (e.g. Ouden et al., 2020)

Maximum Likelihood Estimator (MLE)

- Likelihood function derived from a multi-sensor statistical model detection (see poster by B. Poste)
- Estimation of the slowness vector, confidence intervals, SNR
- Detection criteria: Generalized Likelihood Ratio Test (GLRT, Burgess 1994)
- New asymptotic results: GLRT under the null hypothesis leading to the computation of the corresponding p-value (Gibbons, 1975)
 - Benefits: grid search approach, probability of null-hypothesis significance, SNR, asymptotic errors of the slowness vector, robustness
 - Limitations: computational cost

Asymptotic errors of the estimation

Covariance matrix of the MLE estimator

$$R(a,v) = J\Gamma_0 J^T \text{ with } J = \begin{bmatrix} -v\cos(a) & v\sin(a) \\ v^2\sin(a) & v^2\cos(a) \end{bmatrix}$$
$$\Gamma_0 = \frac{\int 4\pi^2 f^2 |H(f)|^4 (M \times \text{SNR}_{\star} + 1) df}{\left(\int 4\pi^2 f^2 M \times \text{SNR}_{\star} \times |H(f)|^2 df\right)^2}$$

Integrated expression of the covariance matrix

$$\bar{R} = \int_0^{360} \int_{V_{\min}}^{V_{\max}} R(a, v, \text{SNR}, f_{\max}f_{\min}, X) dadv$$

Evaluation protocol using synthetic dataset

Receiver Operating Characteristic (ROC) curves: evaluation of TDOA/MLE according to **true positives** vs **false positives**

- Wave parameters randomly distributed within (θ; v): o-360° and 300-800 m/s (5° and 20 m/s steps)
- Synthetic noise sequences and signals are generated:
 - H0 hypothesis (1000) with white and real wind noise
 - H1 hypothesis (2000): synthetic signals
- Various experiments: SNR, array geometry, number of sensors

Evaluation results using synthetic dataset

Commissariat à l'énergie atomique et aux énergies alternatives

P-value in statistical hypothesis tests Statistics derived from GRLT under null-hypothesis

- Quantification of the statistical significance of the detection
- P-value: objective decision fixed by the analyst in terms of probability of false alarm
- Asymptotic distribution of the GLRT test under the noise only hypothesis
 - Cumulative distribution of *f* under H0
 - Probability to observe H0 for a test larger than *f*
 - For p < 1%, the null-hypothesis is unlikely</p>
- For each band: invert GLRT threshold from *p*-value

Example of MCML application: Beirut explosion

- PMCC and MCML implemented in the same processing framework
- Signal separation into at least 11 successive stratospheric propagation paths characterized by p-values lower than 0.01
- Errors of ~5 m/s and ~1° (SNR>5 dB)

MCML vs. PMCC: Beirut explosion

300

180 H

120

370

360 320 velocity [m/s]

340 Lace

330

Azim

- 26 log-scaled bands (0.01-4 Hz)
- Detection results (*p-value*<0.01)</p>
- Comparable results in high SNR conditions
- MCML yields enhanced detection in the lower part of the frequency domain where the SNR decreases

SNR> 5 dB

MCML vs. PMCC: a typical soundscape at IS31

MCML vs. PMCC: a typical soundscape at IS31

- Comparable estimates at high SNR (>5 dB)
- MCML improves detection capability at low SNR
- The consistency fails to detect SOI when permanent signals overlap

Summary & Perspectives

- MCML method has been implemented in the PMCC time-frequency domain framework
- Using the likelihood expression of MLE, SNR and asymptotic errors are calculated
- From the GLRT, the p-value allows to fix an objective decision in terms of probability of false alarm
- MCML vs. TDOA evaluated using synthetics and real signals
 - $_{\odot}\,$ MCML performs better than TDOA, especially at low SNR values
 - In 0.01-4 Hz band, MCML yields enhanced detection results in low SNR conditions more especially when multiple signals interfere
- Limitations: computational cost is reduced, parallelized grid search approach
 - e.g.: ~30 s for one hour of signals recorded at a 10-element array, sampled at 20 Hz (DELL PowerEdge workstation, 56 cores)
- A promising method; further optimization needed for a real-time implementation