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The European Centre for Medium-Range Weather Forecasts

Independent intergovernmental organisation

Established in 1975, today supported by
23 member and 11 cooperating states

Headquarters in Reading (UK)

Data center in Bologna (IT) (almost finished);
Offices in Bonn (DE) (later this year)

Research institute and 24/7 operational service:
produce and disseminate NWP
operate meteorological data archive
implement Copernicus services CAMS and C3S
provide computing resources to member states
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Configurations

Forecast period 10 days 15 days / 46 days 7 months / 13 months
Ensemble members 1 51 51 / 15
Frequency 2x daily 2x daily / 2x weekly monthly / quarterly
Resolution TCo1279L137 (9km) TCo639L137 (18km) /

TCo319L137 (36km)
TCo319L91 (36km)
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What is data assimilation?

Given a sytem to be analyzed,

data assimilation aims to produce best possible estimate of the system’s
state
making use of different sources of knowledge about a system
typically two sources will be observations and models
used throughout earth-system disciplines (atmospheric, oceanographic,
land surface, vegetation index, ...)
In real life, “best estimate” is inexact due to uncertainties:

models are imperfect (simplifications, errors in parameters, in inputs)
measurements are insufficient and imperfect (random errors, biases,
correlated errors, observation operator)
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Aim in meteorology

Establish estimate of the discretized atmospheric state
at a given time (x, x ∈ <Nx)

with quantification of the uncertainty of the estimate

using observations in a time window (y, y ∈ <Ny ),

a background state xb,

and a model of state evolution M , x(t+ dt) = M(x)

Do it quickly!
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Is it a big deal ?

Hurricane Sandy (2012)

Initialization times of (a–c) 0000 UTC 23 October, (d–f)
1200 UTC 23 October, (g–i) 0000 UTC 24 October, and
(j–l) 1200 UTC 24 October. ECMWF (pink), GFS (green),
TWRF (red), and SWRF (blue) tracks are shown in
addition to Sandy’s best track (black).

Bassill, GRL 41(9) 2014
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Problem size

current ECMWF operational grid resolution (TCO1279) : ' 9 km, 137
vertical levels
' 7× 108 atmospheric grid points
initial value to be specified for all prognostic variables at every grid point
for ensemble prediction suite, this is to be done for each ensemble member
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Observations
The atmosphere is continually being measured all over the world

strong global collaboration on sharing atmospheric observations
World Meteorological Organisation coordinates data handling and sharing
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Observations
In situ observations

Synop

Aircraft

Buoys

Satellite

Sounder

Geostationary

Ozone
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Observations

most observations are not located at a grid point
most (satellite) observations are not of model variables (for ex. radiances)
observation operators are used to generate equivalent observation values
(same quantity, same location) from model values y = H(x)
observation operators range from very simple to very complicated
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Observations
Temperature observation example

H =



0
...
...
...
0
1
0
...
...
...
0
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Observations

Temperature observation example

H =



0
...
0

0.25
0.25
0.25
0.25

0
...
0
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Observations

Temperature observation example
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Observations

at ECMWF O(108) observations processed daily
offline quality control of observations :

elimination of duplicates
thinning
blacklisting
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Observations

Traditional operational schedule
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Bayes’ theorem
Formalism for melding different information sources (observations and models) :
Bayes Theorem.
With both models and observations being imperfect, they can be viewed as
random variables, and described by their Probability Distribution Functions.

For random variable X with density p(x), P [a ≤ X ≤ b] =
∫ b

a p(x)
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Bayes’ theorem
Expresses the link between joint probability p(A,B), conditional probability
p(A|B) and marginal probability p(A)

p(A|B) = p(B|A) p(A)
p(B)

In a meteorological context,

p(x|y) = p(y|x) p(x)
p(y)

p(x|y) (posterior) pdf of the atmospheric state for given observations
p(y|x) pdf of observed values for given state
p(x) (prior) pdf of state values being predicted by model
p(y) (marginal) pdf of observed values
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In practice ...

Estimation of full probabilty functions is intractable, assumptions are needed
different assimilation methods stem from this :

sequential filter methods (particle filter, Kalman)
variational methods
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Particle filter approach:
try to sample the posterior probability density

sample initial pdf of starting state p(x) '
∑

iwiδ(x− xi), i = 1..N
propagate set of “particles” in time with the model
analysis step : weights are updated from obs wa

i ∝ wip(x|yi)
resampling : duplication of high-weight particles, elimination of low-weight
particles
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Sequential filtering

Solve for mean and covariance of posterior probability density
Fun fact : was first implemented to estimate trajectories for the Apollo missions

Sequence of pairs of prediction/forecast steps and analysis/update steps.
prediction step :

xb
i = M(xa

i−1)

analysis step :
xa

i = xb
i + Ki(Hi(xb

i )− yi)

with
Ki = BiHT

i (HiBiHT
i + Ri)−1

Bi = {(xi − xb
i )(xi − xb

i )T } is explicitly propagated
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Variational assimilation

Goal is to find analysis state xa that minimizes distance between its trajectory
and observations, while not differing strongly from background.
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Variational assimilation

Minimization of a cost function with background term and observation term

J(x(t0)) = JB(x(t0)) + JO(x(t0))

with

JB(x(t0) = 1
2(x(t0)− xb)T B−1(x(t0)− xb)

and

JO(x(t0)) = 1
2

∑
i(HiMt0..ti(x(t0))− yi)TR−1

i (HiMt0..ti(x(t0))− yi)
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Variational assimilation
Gradient of the cost function :

∇x0J = B−1(x(t0)− xb) +
∑

i

MT
t0..ti

HT
i R−1

i (HiMt0..ti(x(t0))− yi)

or, by defining innovation vector di = (yi −HiMt0..ti(x(t0)))

∇x0J = B−1(x(t0)− xb)−
∑

i

MT
t0..ti

HT
i R−1

i di

Gradient can be used to inform minimization technique (steepest descent,
conjugate gradient, quasi-Newton etc)
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Variational assimilation

Schematic 4dvar algorithm :

compute innovation vector components (obs - obs equivalent at observation
time) during forward model integration
multiply each term by HT

i R−1
i

integrate terms back in time with adjoint model
update x(t0) accordingly
repeat until convergence
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Variational assimilation
Incremental 4dvar :

Solve iteratively a series of quadratic problems progressively approaching full
non-linear one.

Outer loop (non-linear) stores linearization state (trajectory) and innovations
Inner loop minimizes linear approximation of non-linear cost-function, with
respect to δx = x− xg

J(δx)) = 1
2[δx− (xb − xg)]T B−1[δx− (xb − xg)]

+ 1
2

∑
i

(HiMt0..tiδx− δdi)T R−1
i (HiMt0..tiδx− δdi)
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Variational assimilation

Incremental 4dvar :

each inner loop runs to convergence criterion, xg is then updated by δx
next outer loop starts by updating trajectory and innovations
inner loops and outer loops are not necessarily at the same resolution
initial conditions for forecast are the final analysis x progpagated forward to
forecast start time
at ECMWF 3 outer loops, and typically around 30 inner iterations per outer
loop
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Variational assimilation

Peter Lean
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Variational assimilation

Other things I would have liked to mention
variational bias control
ensemble of data assimilations

allows the initialisation of the forecast ensemble
allows B matrix to be more than just climatological
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Variational assimilation and OOPS

OOPS was designed to allow rapid exploration of variational assimilation algorithms.

It exposes high-level building blocks of assimilation algorithms (e.g. State4D,
Increment4D, ControlVariable, ControlVector, CostFunction, Minimizer etc) and their
associated methods (e.g. CostFunction.linearize(), Minimizer.minimize() etc).

Three categories of OOPS classes :

assimilation, e.g. CostFunction, CostFnc3D/4D/4DEnVar/Weak Minimizer,
SQRTPLanczos/PCG/PFOM, ...

interface, e.g. Incr/State, (Linear)Model, (Linear)ObsOperator, ...

base, e.g. Accumulator, TrajectorySaver, Observer(TL/AD) ...

Although initially designed with variational assimilation in mind, the classes are
appropriate building blocks for other algorithms ( forecast (done), singular vector
computation (to be done), fsobs (to be done), ...).
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Variational assimilation and OOPS

Illustrative example

J(δx0) =
1
2
δxT

0 B−1
0 δx0

+
1
2

N∑
0

(
yi − H(M0..i(x0 ) ) − H(M0..i(δx0 ) )

)T
R−1

(
. . .
)
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Variational assimilation and OOPS

Illustrative example

J(δx0) =
1
2
δxT

0 B−1
0 δx0

+
1
2

N∑
0

(
yi − H(M0..i(x0 ) ) − H(M0..i(δx0 ) )

)T
R−1

(
. . .
)

increment

quadratic cost function forecast error covariance

observation error covariance

observations

NL obs operator lin obs operator

lin modelNL model

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS RD 4



OOPS design
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Loki - Freely programmable source-to-source translation
Transforming large sub-trees of a complex code base

Two-step GPU transformation for IFS physics
Auto-extract single-column code via Loki
Use bespoke knowledge of IFS code
(eg. variable names, data layouts, etc.)
Generate CPU/GPU parallelisation via CLAW

Encode transformations as preprocessing step
Integration alongside scientific development
Restrict changes to defined sub-branches
Composable with downstream tools

.F90

Pre-processing (optional)

OFP FParser OMNI

Post-processing

SourceFile
Module

Subroutine
...

Flatten derived types

Resolve vector notation, ...

Wrapper Kernel

fgen

.F90

cgen

.c

Frontend

Internal
representation

Transformation
steps

Backend

.F90
Frontend

Internal
Representation Transformations Backend

.F90

Single column
code with CLAW
annotations

CLAW

.F90

.F90

CPU code
(OpenMP)

GPU code
(OpenACC)Makes use of:

• Fparser
• OMNI
• OFP

Two-level IR with ex-
pression trees based
on Pymbolic

User-guided transfor-
mations encoded as
visitors

Exports the AST
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GPU code generated by source-to-source tools

SCA: Pure single-column Fortran kernel format
Restrict science code from accessing horizontal dimension
Insert parallelism in CPU/GPU-friendly ways via CLAW
Assume the following original(!) kernel signature

subroutine kernelA (nlev , nproma , array , ...)
integer , intent (in) :: nlev , nproma
real , intent ( inout ) :: arr1d ( nproma )
real , intent ( inout ) :: arr2d (nlev , nproma )

! --- Original CPU format --

do jl=1, nproma
arr2d (jl ,1) = arr1d (jl)

end do

do jk=1, klev
do jl=1, nproma

arr2d (jl ,jk) = <something >
end do

end do

! Nested kernel call
call kernelB (... , arr2d (: ,:))

! ---------------------

! --- SCA format from Loki --

! Simple arithmetic
arr2d (1) = arr1d

! Vertical loop
do jk=1, klev

array (jk) = <something >
end do

! Nested kernel call
call kernelB (... , arr2d (:))

! ---------------------

! --- GPU format from CLAW --
!$acc loop gang
do jl=1, nproma

arr2d (jl ,1) = arr1d (jl)

do jk=1, klev
arr2d (jl ,jk) = <something >

end do

! Nested kernel call
call kernelB (... , arr2d (jl ,:))

end do
! ---------------------
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Memory accesses on CPU vs. GPU

Example structure for 2D column physics (eg. CLOUDSC)
Horizontal dimension is data parallel; vertical is sequential!
“NPROMA” memory blocking exposes block-stride memory alignment
CPU: Thread-parallel outer loop, vectorised inner loops
GPU: Same data layout, but loop-nest inverted => coalesced memory accesses!

T 0 T 1 T 2 T 3

real :: array (NPROMA ,NLEVELS , NBLOCK )

do bl = 1, NBLOCKS ! <= thread - parallel
! <block data association via subroutine call >
do lev = 1, NLEVELS ! <= sequential

do jl = 1, NPROMA ! <= vectorised
array (jl , lev) = <expression >
...

end do
end do

end do

T T T T T T T T T T T T T T T T T T

real :: array (NPROMA ,NLEVELS , NBLOCK )

do bl = 1, NBLOCKS ! <= device - offload
! <block data association via subroutine call >
do jl = 1, NPROMA ! <= thread - parallel

do lev = 1, NLEVELS ! <= sequential
array (jl , lev) = <expression >

...
end do

end do
end do
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Another approach: Single-column coalesced (SCC)
Direct CPU-to-GPU transformation in Loki

! --- Loki -CLAW driver format --
!$acc update (...)

do ibl =1, nblocks
call kernel ( point (:, ibl), column (:,:, ibl ))

end do

!$acc end update

! --- Loki -CLAW kernel format --
subroutine kernel (nproma ,nlev ,point , column )

real :: column_tmp (nproma ,nlev)

!$acc parallel loop gang
do jl = 1, nproma

do lev = 2, nlev
column_tmp (jl ,lev) = <f( point (jl),

column (jl ,lev -1)) >
end do

do lev = 1, NLEVELS
column (jl ,jl) = <g( column_tmp (lev), ...) >

end do
end do
!$acc end parallel

end subroutine kernel

! --- Loki -SCC driver format --
!$acc update (...)
!$acc parallel loop gang
do ibl =1, nblocks

call kernel ( point (:, ibl), column (:,:, ibl ))
end do
!$acc end parallel
!$acc end update

! --- Loki -SCC kernel format --
subroutine kernel (nproma ,nlev ,point , column )

real :: column_tmp (nproma ,nlev)
!$acc routine vector

!$acc loop vector
do jl = 1, nproma

do lev = 2, nlev
column_tmp (jl ,lev) = <f( point (jl),

column (jl ,lev -1)) >
end do

do lev = 1, NLEVELS
column (jl ,lev) = <g( column_tmp (lev), ...) >

end do
end do

end subroutine kernel
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! --- Loki -SCC - hoisted driver format --
real , intent ( inout ) :: column_tmp (nproma ,nlev , nblocks )

!$acc update (... , create ( column_tmp ))
!$acc parallel loop gang
do ibl =1, nblocks

!$acc loop vector
do jl = 1, nproma

call kernel ( point (:, ibl), column (:,:, ibl),
column_tmp (:,:, ibl), jl=jl)

end do
end do
!$acc end parallel
!$acc end update

! --- Loki -SCC - hoisted kernel format --
subroutine kernel (jl ,nproma ,nlev ,point , column )

real , intent ( inout ) :: column_tmp (nlev)
!$acc routine seq

do lev = 2, nlev
column_tmp (jl ,lev) = <f( point (jl),

column (jl ,lev -1)) >
end do

do lev = 1, NLEVELS
column (jl ,lev) = <g( column_tmp (lev), ...) >

end do
end subroutine kernel
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