

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Lionel SOULHAC

INSA Lyon / Fluid Mechanics and Acoustics Laboratory

01/04/2022

- 1. Introduction
- 2. Phenomenology and modelling of atmospheric dispersion
- 3. Inverse modelling : problems & approaches
- 4. Some applicated examples

LMFA activity

- Environment
- Transports
- Energy & process engineering
- Health

Laboratoire de Mécanique des Fluides et d'Acoustique

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

L. Soulhac INSA Lyon/LMFA

Turbomachinery flow

3

Atmospheric flows research

• Flow and dispersion in the atmospheric boundary layer

Atmospheric flows research

• A societal concern

	abonnez-vous →ጺ		abonnez-vous →였		ABONNEZ-VOUS
Auvergne Rhône-Alpes Cette pollution de l'air qui tue Dans un rap LE PROGRES l'air dans la Menu LE PROGRES	ABONNEZ-1	Rhône Climat à Lyon en 2050 : qu'inquiétantes Quel climat fera-t-il à Lyon dans une trer Mé Jame LE PROGRES	des prévisions plus ntaine d'années ? Grâce aux prévisions de ABONNEZ-VOUS → Ջ	☆ > Edition Est Lyonnais → Feyzin Rhône Raffinerie de Feyzin: la tor provoqué un épais dégager	rchère activée a ment de fumée
QOO au dio) Pourquoi les enfants pauvre Par Jean-Philippe la pollution de l'air min Un rapport du Réseau Action Climat et de l'Ur issus de classes populaires sont plus touchés des classes populaires sont plus touchés	es sont plus touchés nicef alerte sur le fait que les enfa par la pollution atmosphérique d iscalement aux maladias liées à	Par Par Damien Lemoine, titulaire d'un doct à l'université Lyon-1, nous dit tout s géant piègent le carbone dans l'air.	natique à Lyon : «Il faut planter torat en biologie forestière et maître de conférences sur la manière dont un brin d'herbe ou un arbre Mais encore faut-il opter pour le bon végétal.	En images Exercice de décontaminatio	ABONNEZ-VOUS on après un attentat au
Des classes alsees, Et dont plus vulnerables, Et dont plus vulner	4 oct. 2021 à 09:11 - Temps de lecture : 5	Par Propos recueillis par Sophie MAJOU - 14 août lecture : 5 min	2021 à 19:00 mis à jour le 15 août 2021 à 07:18 - Temps de	Ce mercredi à Lyon, un exercice de décontam d'instruction des armées de Lyon, avec la par Edouard-Herriot : il s'agissait de prendre en o gaz sarin après l'explosion d'un colis piégé d urgences de l'hôpital. Par Le Progrès - 18 avr. 2014 à 11:03 - Temps de lecture : 1	ination s'est déroulé à l'hôpital ticipation d'étudiants de l'hôpital charge des victimes contaminées par du éposé dans une poubelle près des
<image/>				Vu 1601 fois	

->2

Atmospheric flows research

- Approaches :
 - Wind-tunnel experiments

Atmospheric flows research

- Approaches :
 - Numerical simulation

a) Instantaneous velocity field, illustrated by isocontour of the q-criterion

b) Instantaneous concentration field

Atmospheric flows research

- Approaches :
 - Operational simplified models

SIRANE air quality model

SLAM – Safety Lagrangian Atmospheric Model

Atmospheric flows research

- Domains of application
 - Urban air quality
 - Air quality mapping
 - Population exposure and health effects
 - Industrial risk
 - Environmental impact
 - Risk assessment
 - Crisis management
 - NRBC terrorist attacks
 - Scenarios evaluation
 - Fast response modeling
 - Indoor ventilation

CENTRALELYON .

Why do we need inverse modelling of atmospheric dispersion ?

• Direct and inverse model

Why do we need inverse modelling of atmospheric dispersion ?

- Characterisation of sources of atmospheric pollution
 - Quantification of emissions : third party identification, traffic, industry, etc.

Emission estimation from LIDAR measurements

Traffic air pollution measurements

Why do we need inverse modelling of atmospheric dispersion ?

- Characterisation of sources of atmospheric pollution
 - Natural emissions (volcanos, bush fires, limnic eruption, etc.)

Eyjafjallajökull volcano eruption, 2010

Australia bushfires, 2019-2020

Nyos lake, 1986

Why do we need inverse modelling of atmospheric dispersion ?

- Characterisation of sources of atmospheric pollution
 - Diffuse emissions (evaporation, particle entrainment, etc.)

Oil spill

Ocean-atmosphere exchange

Red dust erosion, Gardanne

Why do we need inverse modelling of atmospheric dispersion ?

- Characterisation of sources of atmospheric pollution
 - Leaks, accident, fires

Leaks on an industrial site

INSA BESSTERCES

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

Lubrizol, 2019

L. Soulhac INSA Lyon/LMFA

Notre-Dame, 2019

14

Why do we need inverse modelling of atmospheric dispersion ?

- Characterisation of sources
 - Terrorist attacks

New York, Sept. 11, 2001

CORS

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

Crisis management exercise

L. Soulhac INSA Lyon/LMFA

Turbulent dispersion

Turbulent dispersion

Turbulent dispersion

Raffinerie de Feyzin (source France Inter)

CENTRALELYON

Orsi et al. (2021)

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

L. Soulhac INSA Lyon/LMFA

18

Turbulent dispersion

Instantaneous vs mean concentration field

Gaussian model for the mean concentration

Analytical solution of the advection-diffusion equation

$$\overline{c}(x,y,z,t) = \frac{Q}{2\pi U \sigma_{y} \sigma_{z}} exp\left[-\frac{1}{2} \left(\frac{(y-y_{0})^{2}}{\sigma_{y}^{2}} + \frac{(z-z_{0})^{2}}{\sigma_{z}^{2}}\right)\right]$$

Turbulent dispersion

• Influence of turbulence on dispersion

Lagrangian auto-correlation coefficient of turbulence

$$R_{uu}(\tau) = \frac{\int u'(t)u'(t+\tau)dt}{\int u'(t)u'(t)dt}$$

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

Lagrangian time scale

 $T_{L,x} = \int_{0}^{+\infty} R_{uu}(\tau) d\tau$

Taylor theory (1921)

$$\sigma_{X_{i}}^{2} = 2\sigma_{U_{i}}^{2}T_{L,i}\left\{t - T_{L,i}\left[1 - \exp\left(-\frac{t}{T_{L,i}}\right)\right]\right\}$$

Asymptotic behaviours

$$\begin{cases} \sigma_{X_i}(t) \simeq \sigma_{U_i} t & \text{for } t \ll T_{L,i} \\ \sigma_{X_i}(t) \simeq \sqrt{2\sigma_{U_i}^2 T_{L,i} t} & \text{for } t \gg T_{L,i} \end{cases}$$

L. Soulhac INSA Lyon/LMFA

20

Turbulent dispersion

• Influence of stratification on turbulence and on dispersion

Kaimal and Finnigan (1994)

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

Borex 1992 & 199432

Dispersion experiments

Turbulent dispersion

Turbulent variability of the concentration

Modelling approaches

Gaussian plume model

INSA INTUTION

Eulerian CFD model

Modelling approaches

• Modelling process

3D digital model

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

Mesh of cells

Modelling approaches

• Modelling process

Numerical simulation of the wind in each city street

Modelling approaches

• Modelling process

Numerical simulation of atmospheric dispersion

Concept of inverse modelling

• Direct problem & inverse problem

Direct problem

Finding consequences from causes

Concept of inverse modelling

• Direct problem & inverse problem

Inverse problem

Finding causes from consequences

Concept of inverse modelling

• Analogy with 1D equation solving

INSA RESERVES

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

29

Concept of inverse modelling

- Inverse modelling is used in many domains
 - Astronomy
 - Geology

Discovery of Neptune from the effect on Saturne trajectory (Adams, Le Verrier, 1846)

Oil fields exploration

- Acoustics propagation
- Medicine
- Image processing

Lyon 1 · INSA

• Etc.

ENTRALELYON

Acoustic sniper detection

Computed tomography

Image deblurring

nfrasound and beyond tmospheric dispersion

L. Soulhac INSA Lyon/LMFA

Concept of inverse modelling

- Inverse modelling requires
 - A direct model
 - which have uncertainties

- Measurements
 - which have uncertainties

Monitoring station

Hyperspectral camera

- An inversion algorithm
 - which has its own limitations

Inverse problems of atmospheric dispersion

- 1 source
 - Point / distributed source (line, area, volume)
 - Continuous / instantaneous / time evolving
 - Fixed / moving
- N sources
 - Point / distributed source (line, area, volume)
 - Continuous / instantaneous / time evolving
 - Fixed / moving

Emission rate	Release conditions	Released species	Meteorol. conditions

➔ n unknowns vs m measurements

32

Unknowns of the inverse problem

 $\mathbf{C}_{1}^{\mathsf{Obs}} = \mathsf{CTA}_{1 \to 1} * \mathbf{Q}_{1}$

 $C_2^{Obs} = CTA_{1 \rightarrow 2} * Q_1$ $C_3^{Obs} = CTA_{1 \rightarrow 3} * Q_1$

n < **m**

Sources

Receptors

Inverse problems of atmospheric dispersion

 $\mathbf{C}_{1}^{\mathsf{Obs}} = \mathsf{CTA}_{1 \to 1} * \mathbf{Q}_{1}$

Unique solution

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

CTA

No exact solution

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Intuitive introduction to inverse modelling

- Methods for non linear equation solving
 - 1. Guess an initial value of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Need of a cost function
 - e.g. L1 or L2 norm of the difference F(x) vs y

CORS

- 4. Adjust x
 - Systematic testing (brute force method)
 - Random testing (Monte Carlo method)
 - Dichotomy method
 - Newton-Raphson method
 - requires the inverse of F'(x) = adjoint model of F

34

NTRALEI YON

Intuitive introduction to inverse modelling

- Variational approach
 - 1. Guess an initial value of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a cost function (error)

$$(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{\mathsf{T}} \mathsf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2} \sum_{i=0}^{m} (\mathbf{y}_{i} - \mathsf{H}_{i} \mathsf{F}(\mathbf{x}))^{\mathsf{T}} \mathsf{R}^{-1} (\mathbf{y}_{i} - \mathsf{H}_{i} \mathsf{F}(\mathbf{x}))$$

- 4. Adjust x
 - Systematic testing (brute force method)
 - Optimized Random iterative testing
 - e.g. Markov Chain Monte Carlo (MCMC)

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

L. Soulhac INSA Lyon/LMFA

35

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Intuitive introduction to inverse modelling

- Variational approach
 - 1. Guess an initial value of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a cost function (error)

$$(x) = \frac{1}{2} (x - x^{b})^{T} B^{-1} (x - x^{b}) + \frac{1}{2} \sum_{i=0}^{m} (y_{i} - H_{i}F(x))^{T} R^{-1} (y_{i} - H_{i}F(x))$$

4. Adjust x

NTRALEI YON

- Systematic testing (brute force method)
- Optimized Random iterative testing
 - e.g. Markov Chain Monte Carlo (MCMC)

Mayak event of Ruthenium release, 2017 Saunier et al., IRSN (2019)

36

Intuitive introduction to inverse modelling

- Variational approach with adjoint model
 - 1. Guess an initial value of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a cost function (error)

$$J(x) = \frac{1}{2} (x - x^{b})^{T} B^{-1} (x - x^{b}) + \frac{1}{2} \sum_{i=0}^{m} (y_{i} - H_{i}F(x))^{T} R^{-1} (y_{i} - H_{i}F(x))$$

- 4. Adjust x
 - Systematic testing (brute force method)
 - Optimized Random iterative testing
 - e.g. Markov Chain Monte Carlo (MCMC)
 - Gradient method
 - requires the inverse of F'(x) = adjoint model of F

L. Soulhac INSA Lyon/LMFA

37

CENTRALEIYON

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Intuitive introduction to inverse modelling

- Variational approach with adjoint model
 - 1. Guess an initial value of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a cost function (error)

$$(x) = \frac{1}{2} (x - x^{b})^{T} B^{-1} (x - x^{b}) + \frac{1}{2} \sum_{i=0}^{m} (y_{i} - H_{i}F(x))^{T} R^{-1} (y_{i} - H_{i}F(x))$$

- 4. Adjust x
 - Systematic testing (brute force method)
 - Optimized Random iterative testing
 - e.g. Markov Chain Monte Carlo (MCMC)

CORS

- Gradient method
 - requires the inverse of F'(x) = adjoint model of F

CENTRALEI YON

Intuitive introduction to inverse modelling

- Bayesian approach
 - 1. Guess some initial values of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a likelihood function from the error which give the probability p(y|x)

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Intuitive introduction to inverse modelling

• Bayesian approach

- 1. Guess some initial values of x
- 2. Calculate F(x) with the model F
- 3. Compare F(x) with the measurement y
 - Evaluate of a likelihood function from the error which give the probability p(y|x)

CONS

- 4. Assume a prior distribution of x
 - p(x) is the prior information about x

Intuitive introduction to inverse modelling

- Bayesian approach
 - Guess some initial values of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a likelihood function from the error which give the probability p(y|x)
 - 4. Assume a prior distribution of x
 - p(x) is the prior information about x
 - 5. Bayes formula
 - $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$ • Posterior probability
 - Marginal probability p(y) = normalisation function

Intuitive introduction to inverse modelling

- Bayesian approach
 - 1. Guess some initial values of x
 - 2. Calculate F(x) with the model F
 - 3. Compare F(x) with the measurement y
 - Evaluate of a likelihood function from the error which give the probability p(y|x)
 - 4. Assume a prior distribution of x
 - p(x) is the prior information about x
 - 5. Bayes formula

NTRALEI YON

- Posterior probability $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$
- Marginal probability p(y) = normalisation function

0.0

2

5 q (mL/s)

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

• Wind tunnel experiments of instantaneous releases in a district

CNrs

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

• Wind tunnel experiments

44

cnrs

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

• Wind tunnel experiments of instantaneous releases in a district

Comparison of the direct model for the mean concentration

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

- Variational approach for inverse modelling
 - The position of the source is known
 - We assume a linear relation between
 - Concentration C

ENTRALE YON

- Release rate Q $C^{obs}(m) = ATC(m, n) \times Q(n)$
- We use a cost function with a Thikonov regularisation term

$$J = \left\| C^{obs} - CTA \times Q \right\|_{\mathbb{R}^{n_{c}}}^{2} + \varepsilon^{2} \Gamma(Q)$$

• The idea is to avoid that the model "follows" each fluctuation of the instantaneous measurements

CORS

• The optimum solution is given by $Q = (CTA^t \times CTA + \epsilon^2 I)^{-1} \times CTA^t \times C^{obs}$

Waves & geosciences: Infrasound and beyond

Inverse problems for atmospheric dispersion

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

Waves & geoscie

• Regularisation parameter $\boldsymbol{\epsilon}$

$$J = \left\| C^{obs} - CTA \times Q \right\|_{\mathbb{R}^{n_{C}}}^{2} + \varepsilon^{2} \Gamma(Q)$$

- $\boldsymbol{\epsilon}$ has to be optimized with specific method
- Example of the L-curve method

INSA RETURN

Lvon 1

CENTRALELYON .

INSA Lyon/LMFA

Estimating accidental pollutant releases inbuilt environment from turbulent concentration signals (Ben Salem et al., 2017)

- Results for the time evolution of the emission rate
 - It has to be optimized
 - f-slope approach provides the better results for the inversion from the mean concentration
 - Maximum of curvature method provides the better results for inversion from instantaneous measurements

INSA Lyon/LMFA

ENTRALE YON

Localization of a source in a district (Ben Salem, 2015)

• Brute force approach to characterize the field of the cost function

Localization of a source in a district (Ben Salem, 2015)

• Brute force approach to characterize the field of the cost function

Crisis management tool for CBRN events (H2020 TERRIFFIC project, <u>https://www.terriffic.eu/</u> & Nguyen et al, 2021)

- Methodology
 - Inverse modelling of an atmospheric flow/dispersion/radiation simulation system
 - Coupling with real time mobile measurements
 - Minimization of a cost function and optimization of the source position and intensity
- Results
 - Field test case using
 - real radioactive sources
 - drones and robots
 - sensors and cameras
 - Use of wind field database and optimized operational dispersion model to get real time inversion results

Crisis management tool for CBRN events (H2020 TERRIFFIC project, <u>https://www.terriffic.eu/</u> & Nguyen et al, 2021)

- Methodology
 - Inverse modelling of an atmospheric flow/dispersion/radiation simulation system
 - Coupling with real time mobile measurements
 - Minimization of a cost function and optimization of the source position and intensity
- Results
 - Field test case using
 - real radiactive sources
 - drones and robots
 - sensors and cameras
 - Use of wind field database and optimized operational dispersion model to get real time inversion results

Ground robot view with gamma camera

Cost function field and source position estimated

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

52

Thank you !

Waves & geosciences: Infrasound and beyond Inverse problems for atmospheric dispersion

L. Soulhac INSA Lyon/LMFA