
NCPA infrasound research The University of Mississippi

Physics of Infrasound Propagation

presented by Roger Waxler

NCPA at UM

March 29, 2022

LETMA March 29, 2022



NCPA infrasound research The University of Mississippi

Acoustic Fluctuations in the Atmosphere

Propagating compression/rarefaction waves
• Coupled fluctuations

− velocity
− pressure
− density
− temperature
− entropy

Notation:
• Frequency f in Hz, ω = 2πf in rad/sec
• Sound speed c, 340 m/sec on the ground
• Wavelength λ = c

f
• Wave number k = 2π

λ = ω
c

Air is compressed and then rebounds
• Propagates outwards at c ≈ 20

√
T

• Propagating component has λ ∼ c
f

Other propagating waves
• Buoyancy driven waves
• Planetary waves

A ”quiet” atmosphere has
• temperature gradients
• humidity gradients

− less important for infrasonic frequencies
• prevailing winds
• wind gusts
• turbulence and internal waves

The atmosphere influences the propagation
• temperature gradients refract
• wind shear refracts
• turbulence scatters
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Infrasound

Low frequency audible (30 to 1000 Hz).
• Attenuation is significant.
• Sources are often of human or animal origin.

Infrasound: sub-audible frequencies (< 30Hz).
• Attenuation is small ∼ (frequency)2.
• Sources are large or catastrophic.

Working definition: 0.05 Hz to 20 Hz
• between buoyancy waves and audible sound

Wavelengths from λ ∼ 7 km to 17 m

Various Frequency Bands:

 0.001  0.01  0.1  1  10  100  1000

Frequency [Hz]

low frequency audible
upper infrasonic

mid infrasonic
deep infrasonic

geo-physical events environmental / anthropogenic noise

Some sources of infrasound:
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Equations of Fluid Mechanics
Air as a gas
• mildly thermally conducting
• mildly viscous
• nearly ideal

Eulerian equations of fluid mechanics:
∂ρ

∂t
+∇ · (ρv) = 0 (mass conservation)

ρ
( ∂
∂t

+ v · ∇
)
v +∇P + ρg ẑ = µ∇2v + ν∇× (∇× v) (momentum conservation)

P = ρRT =⇒
dP

P
=

dρ

ρ
+

dT

T
(gas law)

dS = cp
dT

T
− R

dP

P
(3rd law)

ρT
( ∂
∂t

+ v · ∇
)
S = κ∇2T + viscous terms (heat equation)

density ρ, pressure P, temperature T , entropy S , velocity v
bulk and shear viscosities µ and ν, thermal conductivity κ
specific heat cp , gas constant R, gravitational constant g

ground conditions: v = 0 (lossy; collapses to n̂ · v = 0 in lossless model)
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Principle of Solution

Express the state variables as a sum:
• unperturbed (subscript 0) plus perturbed (subscript A)


P
ρ
T
S
v

 =


P0 + PA

ρ0 + ρA

T0 + TA

S0 + SA

v0 + vA

 .

Determine an appropriate far field approximation for
1) the unperturbed state
2) the system of equations for the perturbation
3) the solution to the system from 2)

Determine an appropriate approximation for the source

Acoustics is sometimes thought of as the linear approximation to fluid mechanics
• Fails for large amplitudes
• Fails for low background density
• Non-linear corrections are frequently required
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Linear versus Non-linear Approximations

Formally one can express the equations of fluid mechanics as a functional

0 = F(P, ρ,T , S , v) = F(P0 + PA, ρ0 + ρA,T0 + TA, S0 + SA, v0 + vA)

= F(P0, ρ0,T0, S0, v0) + FA(P0, ρ0,T0, S0, v0; PA, ρA,TA, SA, vA)

The 0th order terms should satisfy the equations of fluid mechanics

0 = F(P0, ρ0,T0, S0, v0)

FA is a non-linear mess but has a linear approximation obtained by dropping non-linear terms

0 = FA(P0, ρ0,T0, S0, v0; PA, ρA,TA, SA, vA) ≈ LA(P0, ρ0,T0, S0, v0;
∂

∂t
,∇)


PA

ρA

TA

SA

vA


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Properties Specific to Linear Approximations

In the linear approximation overall amplitude doesn’t matter (determined by the source)

LAA


PA

ρA

TA

SA

vA

 = ALA


PA

ρA

TA

SA

vA


In the linear approximation frequency content doesn’t change (principle of superposition)

LA(
∂

∂t
,∇)

∫
e iωt


P̂A

ρ̂A

T̂A

ŜA

v̂A

 dω =

∫
e iωtLA(iω,∇)


P̂A

ρ̂A

T̂A

ŜA

v̂A

 dω

None of this remains true with non-linear terms
• Non-linear equations change with changing amplitude: they don’t generally scale homogeneously
• Frequency content is not preserved; how depends on the details
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Compact Source in Static Homogeneous Atmosphere

Away from the source region

∂

∂t


P0

ρ0

T0

S0

 = ∇


P0

ρ0

T0

S0

 = 0

v0 = 0

Introducing

sound speed c2 = γRT0

with γ = cP
cV

One has(
∇2 −

1

c2

∂2

∂t2

)
PA = S(x, t)

observation

source region

S = −
∑
j,k

∂2

∂xj∂xk

(
ρvj vk +(PA−c2ρA)δjk

)
+viscous terms

If Q̂ is the Fourier transform of Q then(
∇2 +

ω2

c2

)
P̂A(x, ω) = Ŝ(x, ω)

=⇒P̂A(x, ω) =

∫
e i ω

c
|x−y|

|x− y|
Ŝ(y, ω) d3y

−→
e i ω

c
r

r

∫
e i ω

c
x̂·yŜ(y, ω) d3y = Ŝ(

ω

c
x̂ , ω)

e i ω
c

r

r

as r = |x| → ∞ (due to J. Schwinger).

Outgoing spherical wave; source satisfying the acoustic condition k = ω
c

.
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Schwinger lecturing on Electrodynamics
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Stratified Approximations for the Unperturbed Atmosphere

Assume a vertically stratified medium (subscript H means horizontal):

v0z = 0 and


P0

ρ0

T0

S0

v0H

 depend only on z.

Ignoring heat conduction and viscosity, the equations of motion are satisfied if

dP0

dz
= −ρ0g (hydrostatic equ)

P0 = ρ0RT0 (gas law)

and

S0 − S0(0) = cp ln
T0

T0(0)
− R ln

P0

P0(0)
(3rd law)

Note: v0H and 1 thermodynamic degree of freedom are arbitrary.
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Stratified Atmosphere
One generally chooses T0 as the independent thermodynamic degree of freedom

P0(z) = P0(0)e
−g

∫ z
0

1
RT0

dz
ρ0(z) = ρ0(0)

T0(0)

T0(z)
e
−g

∫ z
0

1
RT0

dz

S0(z) = S0(0) + cp ln
T0(z)

T0(0)
− g

∫ z

0

1

T0
dz

Adiabatic case: note that

S ′0 = cp
T ′0
T0

+ g
1

T0

so that

S0 = S0(0) =⇒ T0(z) = T0(0)−
g

cp
z.

g
cp
≈ 0.01 ◦/m is called the adiabatic lapse rate.

Note: Left on its own, air temperature decreases with altitude.
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Infrasound Propagation: Simplest Case Model Equations

Locally stratified approximation
• Deviations from vertical stratification (range dependence) are small on acoustic scales

⇔ λ ∂∂r

{
c, ρ0, v0,H

}
�
{

c, ρ0, v0,H

}
⇒ Assume vertical stratification and treat range in the atmospheric specifications as a ”slow variable”

Treat T0 (equiv. c) and v0,H as input to be obtained from the atmospheric sciences

After much algebra one finds the model wave equation in the linear approximation to be[
∇2

H + ρ0
∂

∂z

( 1

ρ0

∂

∂z

)
−

1

c2

( ∂
∂t

+ v0,H · ∇H

)2
]

pA(xH , z, t) = 0 .

Valid when
• Buoyancy is insignificant (nominally frequencies > 0.05)
• Vertical wind shear is small on the scale of a wavelength
• Deviations from stratification (range dependence) are slow on acoustic scales

Note the convective time derivative
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Effective Sound Speed Approximation
Consider horizontal plane wave solutions (Fourier transform in horizontal variables)

pkH
(z, t)e ikH ·xH with

[ 1

c2

( ∂
∂t

+ iv0 · kH

)2
+ k2

H − ρ0
∂

∂z

1

ρ0

∂

∂z

]
pkH

= 0.

In the frequency domain (temporal Fourier transform) this equation is[
−

1

c2

(
ω − v0 · kH

)2
+ k2

H − ρ0
∂

∂z

1

ρ0

∂

∂z

]
p̂kH

= 0.

For shallow angle propagation k = |kH | ∼ ω
c

. For such kH

ω

c
−

v0

c
· kH ≈

ω

c

(
1−

v0

c
· k̂H

)
≈

ω

c + v0 · k̂H

Substituting ∇H for ikH results in a Helmholtz-like equation[
∇2

H + ρ0
∂

∂z

1

ρ0

∂

∂z
+

ω2

c2
eff

]
p̂kH

= 0.

with
ceff(k̂H , z) = c(z) + v0(z) · k̂H
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Attenuation by the Atmosphere: Plane Wave Approximation
without molecular relaxation

−iωρ̂A + iρ0k · v̂A = 0

−iωρ0v̂A + ikP̂A + µk2v̂A = 0

−iωρ0T0ŜA − κk2T̂A = 0

T̂A

T0
=
γ − 1

γ

P̂A

P0
+

ŜA

cp

ρ̂A

ρ0
=

1

γ

P̂A

P0
−

ŜA

cp

=⇒

−
ω

γ

P̂A

P0
+ ω

ŜA

cp
+ k · v̂A = 0

k
P̂A

ρ0
− (ω + i

µ

ρ0
k2)v̂A = 0

iκk2 γ − 1

γ

P̂A

P0
+ (i

κ

cp
k2 − ρ0ω)ŜA = 0

det


− ω
γP0

k ω
cp

k
ρ0

−ω − iµ k2

ρ0
0

iκ k2(γ−1)
γP0

0 −ρ0ω + iκ k2

cp

 = 0

k =
ω

c
+ i

1

2ρ0

ω2

c2

(
µ+ κ(

1

cv
−

1

cp
)
)

=
ω

c
+ iα

for the acoustic mode to leading order. Kludge: replace ω
c

by ω
c

+ iα
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Atmospheric Attenuation in a Windy Atmosphere

Godin’s extension (2015)
• Godin considers lossy fluid mechanics in the geometric limit
• obtains Sutherland-Bass with Doppler shifted frequency ω 7→ ω − k · v0
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Atmospheric Refraction by Temperature and Wind
Temperature or || Wind Speed Wavefront

Sound speed
• c(z) =

√
(γR)T

Sound is refracted by
• temperature gradients
• along-path wind shear

− due to advection

Cross winds
• out-of-plane advection
• changes apparent bearing

Ducts form between the ground and regions of higher temperature/wind
• these provide channels for efficient long range propagation
• dependence on wind speed makes propagation azimuthally asymmetric

Signals return to the ground from altitudes with c(z) ≥ c(0)
• approximately (true in the high frequency approximation)

Effective sound speed approximation:
• ceff = c + u
− u = horizontal wind in the direction of propagation

• Valid for u and elevation angles not very large
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Propagation Models

Hierarchies of approximation
• Geometrical versus full wave

− Geometrical acoustics is a formal expansion in powers of λ
− Does not capture diffractive effects without modification

• Planar versus 3-d

− Planar ignores the influence of cross winds
− Does not capture azimuth deviation and out of plane propagation

• Stratified versus range-dependent

− Applicability depends on circumstances
• Effective sound speed versus high angle/Mach number

− Eff. c is typically reasonable for tropospheric propagation
− Fails for high stratospheric winds and superstratospheric propagation

• Linear versus non-linear

There are a variety of propagation models of varying complexity
• Geometrical acoustics models
• (Bi-)normal mode models
• P. E. models
• Finite Difference Models

LETMA March 29, 2022



NCPA infrasound research The University of Mississippi

Specifications of T0 and v0H : general comments

Direct measurements:
Tethersonde: up to 3 km, FAA restriction to 150 m
Aircraft data collection: up to ∼ 10km Radiosonde: up to 35 to 40 km
Rocketsonde: up to 90+ km

Remote sensing of wind speed:
Sodar: acoustic back scatter Doppler shift, from 50 m to 400 m
Lidar: optical back scatter Doppler shift, up to 100 km
Lidar: optical emission Doppler shift

Remote sensing of temperature:
Optical emission based devices

Models and data interpolation:
WRF, GFS: up to 12 km
G2S, ECMWF: up to ∼ 70 km

Quasi-empirical static model:
HWM: up to 160 km  0
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Climatology of the Most Significant Wind Jets
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Specifications of T0 and v0H
Climatology of the Northern Hemisphere

Summer environment
• Stable west-flowing stratospheric jet (circumpolar vortex)
• Weak east-flowing jet stream

Winter environment
• Unstable east-flowing stratospheric jet (circumpolar vortex)

− broken by Sudden Stratospheric Warming (SSW) events
• Strong east-flowing jet stream

Equinoxes
• several weeks in spring and fall when the circumpolar vortex turns

The southern hemisphere is similar
• The seasons are reversed
• The southern polar vortex is relatively stable
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The Qualitative Atmospheric State
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The atmosphere tends to be layered
• Temperature layers

− solar heating/cooling of ground and upper atmosphere
− chemistry of the ozone layer

• Wind jets generated by global horizontal temperature gradients and the Coriolis force

− Seasonal, diurnal variations and variations with latitude
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The Overriding Significance of the Wind

 0

 20

 40

 60

 80

 100

 120

 140

 250  300  350  400  450

A
lt
it
u
d
e
 [
k
m

]

Sound Speed [m/s]

Thermodynamic Sound Speed

12 m/s

30 m/s

The temperature is insufficient to produce stratospheric ground returns
• exceptions can be found at extreme latitudes
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The jet stream must compensate the steep temperature drop
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Typical ground return paths:
• Tropospheric

− low altitude wind jets
− typically easterly

• Stratospheric

− circumpolar vortex
− seasonal

• Thermospheric

− temperature driven
− lossy, non-linear
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Typical Propagation Paths: Spring/Summer model
no attenuation
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Typical Propagation Paths: Autumn/Winter model
no attenuation
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The Buncefield Event: a Rare Clean Example

Fuel vapor cloud explosion
• southern UK on December 11 2005
• large explosive event (no injuries)
• nearly ideal propagation conditions
• detected across Europe

Propagation models worked well

Arrival pairs were predicted  0
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The Stratospheric Pair: 1st Bounce
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The Stratospheric Pair: nth Bounce and Waveforms
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Geometrical acoustics: waveform dispersion only through caustic encounters
• a simple caustic passage changes the phase by π/2, ie by a Hilbert transform
• a double caustic passage changes the phase by π, ie by -1
• visible in the Buncefield data
• visible in the Tonga data! (Caustic at the antipodal point)
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Stratospheric Duct Alone
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A Less Ideal Stratospheric Duct
UTTR rocket motor fuel elimination events Aug 2010

A network of arrays deployed in an arc to test the stratospheric models
Model results bear little resemblence to the data
• Assumption: the available atmospheric specifications lack fine structure
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Gravity Wave Perturbations: A UTTR Example
“First Principles” statistical gravity wave model: qualitative improvement
• wrestling with the large parameter space
• a 3d model seems necessary
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Tropospheric Ducts
Factors controlling tropospheric ducting

Wind speed versus temperature drop
• c at 10 km is ≈ 35 m/s less than c on the ground

Wavelength versus wind jet thickness
• long wavelength components penetrate the jet

Wavelength versus upward refraction
• short wavelength components refract away from the ground  0
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Ducting by elevated wind jet
• reduced by tunnelling: high pass filter
• lower phase speeds, more ducting

1
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Ground contact
• enhanced by tunnelling: low pass filter
• higher phase speeds, better contact

1

F (c)
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Borderline Ducts are Band Pass Filters in both Frequency and Wavenumber.
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Stratospheric Arrivals with a Strong Jet Stream
Tropospheric Ducts are Leaky at Infrasonic Frequencies
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Tropospheric train
• fills the classical shadow
• reverberant signals leak
• geometrical acoustics fails

Stratospheric train
• “slow” arrival with echoes
• “fast” arrival without

echoes

Thermospheric late arrival
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Stratospheric and Tropospheric Duct
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The Sayarim 2011 Ground Truth Experiment
environment with a strong jet stream
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J. Geophys. Res. 118 (2013)
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Wallops Island Rocket Explosion Oct 2015
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Low altitude duct to the NE
• Nocturnal temperature inversion
• solid jet stream
• low atitude wind jet

Upward refraction to the south

Solid stratospheric duct
• stratospheric jet E-NE
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Wallops Island Antares Rocket Explosion Oct 2015
propagation model output comparison
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Thermospheric Paths

Initial Waveform

-40 -30 -20 -10  0  10  20  30  40

Waveform Comparison at ∼300km
(linear versus non-linear)

-40 -30 -20 -10  0  10  20  30  40

Lonzaga, Waxler, Assink, and Talmadge,

Geophys. J. Int. 200 (2015)

Very low density
• propagation is very nonlinear
• atmosphere is very attenuating

Nonlinearity
• causes transients to stretch

− generating low frequencies
• causes wave fronts to steepen

− generating high frequencies

Attenuation
• mollifies shocking
• reduces fine structure

− in atmosphere
− in waveform

Period lengthening vs attenuation
• longer periods survive attenuation
• observed signals are low frequency
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Modeling Thermospheric Phases
non-linear ray theory
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Non-linear ray theory (Robinson, Gainville, Coulouvrat, ...) P = Ae iφ + . . .
• φ is given by the linear eikonal equation

− provides propagation paths and travel times
• A is given by the 2nd order non-linear transport equation

− transport equation is integrated along the propagation path
− provides signal amplitudes

• Attenuation handled in a split-step approach

− Sutherland-Bass model is used here
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Attenuation vs Non-linear Distortion
Attenuation of sound by the atmosphere
• increases with increasing frequency
• increases with decreasing density

⇒ increases with increasing altitude
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Non-linear distortion of infrasound signals
• is inversely proportional to density

− non-linear distortion increases dramatically with altitude
• there is an interplay between attenuation and non-linearity

− harmonic generation ⇔ wave steepening moderated by attenuation
− attenuation is moderated by period lengthening ⇔ low frequency generation

LETMA March 29, 2022



NCPA infrasound research The University of Mississippi

Attenuation: Stratospheric versus Thermospheric Returns
Stratospheric Returns: 100 Pa @ 1km vs 1500 Pa @ 1km
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Difficulties with the thermospheric model
• linear propagation models predict no returns but these are regularly observed

Possible explanation: non-linear propagation
• severe low frequency generation in the thermosphere

Thermospheric Returns: 100 Pa @ 1km vs 500 Pa @ 1km

−20 −10 0 10 20

−0.5

0

0.5

retarded time (s)

a
c
o
u
s
ti
c
 p

re
s
s
u
re

 (
P

a
)

 

 

with attenuation

no attenuation

−30 −20 −10 0 10 20 30
−1.5

−1

−0.5

0

0.5

1

1.5

retarded time (s)

a
c
o

u
s
ti
c
 p

re
s
s
u

re
 (

P
a

)

 

 

with attenuation

no attenuation

0 50 100 150 200 250 300
0

20

40

60

80

100

120

range (km)

al
tit

ud
e 

(k
m

)

LETMA March 29, 2022



NCPA infrasound research The University of Mississippi

The Humming Roadrunner Tests
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6 large chemical explosions in the western US
• from 10 to 50 tons TNT equivalent

Extensive near field source capture

Far field network deployed to study long range propagation
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Humming Roadrunner Example Waveform
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Four signal phases observed (from celerity; only the thermospheric is predicted)
• two stratospheric
• one mesospheric
• one thermospheric

Frequency content steadily decreases
• from ∼ 0.5 Hz in the stratospheric phases to ∼ 0.05 Hz in the thermospheric

Waveform complexity steadily decreases
• from highly dispersed stratospheric phases to a simple thermospheric U-phase
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Thermospheric Return Paradigms

Is there any systematic behavior to expect similar to the stratospheric pair?
• Naively one expects either a U or an N
• One observes U’s, N’s, and what appear to be hybrids (see, eg., Vergoz et al on the Antares Rocket explosion)
• The atmospheric tides are responsible for the variability
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Thermospheric Return Paradigms
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Profile as in last slide:

No wind
• a pair is predicted
• the fast arrival attenuates

With the wind
• more complex structure
• also largely attenuated
• a U is predicted

It is common to find coincident arrivals
• leads to observed complex structure
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Not Discussed: range dependence and topography

Plots from the NCPAprop manual

Jet stream (or stratospheric jet) changes in direction along propagation path

Mountain generated winds (Föhn effect)

Topography is intrinsically range dependent
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Not Discussed: backscatter off of fine structure (Kulichkov and Chunchuzov)

Data analysis from HRR (David Green et al)
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More generally: the inadequacy of atmospheric specification
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