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_ General outline of the course

@ Models for linear wave propagation in fluids

Introduction, surface gravity waves, internal waves, acoustic waves,

waves in rotating flows, ...

Longitudinal and transverse waves, dispersion relation, phase velocity,
group velocity
@ Theories for linear wave propagation

Fourier integral solution, asymptotic behaviour (stationary phase)

Propagation of energy, ray theory (high-frequency approximation for inhomo-
geneous medium)
@ Introduction to nonlinear wave propagation

Euler equations, N-waves, weak shocks, Burgers

Solitary waves (Korteweq - de Vries)

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



@ Schedule

friday 08/12/2017
friday 15/12/2017
friday 22/12/2017
monday 08/01/2018
friday 12/01/2018
monday 15/01/2018
friday 19/01/2018
friday xx/01/2018

_ General outline of the course

CM1

TD1 (2h homework)
TD2 (2h homework)
CM2 & TD1

CM3

CM4 & TD?2

TD3

Exam xx

Laptop required for small classes!
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L Wave propagation in fluids

@ Textbooks

Guyon, E., Hulin, J.P. & Petit, L., 2001, Hydrodynamique physique, EDP Sciences | Editions du CNRS, Paris -

Meudon.
Lighthtill, J., 1978, Waves in fluids, Cambridge University Press, Cambridge.

Johnson, R. H., 1997, A modern introduction to the mathematical theory of water waves, Cambridge University Press,

Cambridge,
Morse, PM. & Ingard, K.U., 1986, Theoretical acoustics, Princeton University Press, Princeton, New Jersey.
Ockendon, H. & Ockendon, J. R., 2000, Waves and compressible flow, Springer-Verlag, New York, New-York.
Pierce, A.D., 1994, Acoustics, Acoustical Society of America, third edition.
Rayleigh, J. W.' S., 1877, The theory of sound, Dover Publications, New York, 2nd edition (1945), New-York.
Temkin, S., 2001, Elements of acoustics, Acoustical Society of America through the American Institute of Physics.
Thual, O., 2005, Des ondes et des fluides, Cépadués-éditions, Toulouse.

Whitham, G.B., 1974, Linear and nonlinear waves, Wiley-Interscience, New-York.
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Waves in fluids : models for linear wave propagation
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L Linear dispersive waves '

@ Introduction

Acoustic waves (in a homogeneous medium at rest)
hyperbolic wave equation
aZP/ 02/31
L C2 - =

=0
ot> T ox?

General one dimensional solution p’(xy, t) = pi(x1 + Coot) + pPr(x1 — Coot)
known as d’Alembert’s solution

Dispersion relation

For a plane wave (i.e. a particular Fourier
component) ~ efltkixi—wi)

w = *Cook1 non dispersive waves

phase velocity v, = w/ky = ¢
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L Linear dispersive waves '

@ Introduction (cont’d)

1-D dispersive waves

n(xi, t) = Ae'kix1=0 = Aetkii=vl) \with  w = Q(k)

The phase speed v, = Q)(ky)/k; generally depends on kj
The dispersion relation w = Q(ky) or D(ky, w) = 0, is obtained by requiring the

plane waves to be solution of the linearized equations of motion.

The general solution is a superposition of modes o< e!1*1=%% through a Fourier
integral : wave packet characterized by a group velocity v, = dw/dk;
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L Surface gravity waves

@ Body moving steadily in deep water

USS John F. Kennedy aircraft Ducks swimming across a lake
carrier and accompanying destroyers

Kelvin's angle of the wake 2a = 2asin(1/3) ~ 39 deg!
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L Surface gravity waves '

@ Formulation

X3
Pa C(x1, x2, 1)
/\/\
X1
h Uso
@ Flow velocity u = (uq, uy, u3), potential flow u =V
incompressibility V - u = 0, Laplace’s equation V?¢ = 0
@ FEuler’s equation for the potential function
dp 1
&—i + ipV(/) -V o+ pgxs+ p = cst (1)
@ Boundary conditions
do
us = 99 =0 on x3=—h (impermeable wall)
aX3

and free boundary problem on x3 = {(x1, x2, t)
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L Surface gravity waves '

@ Surface tension
which introduces a pressure difference across a curved surface

Surface tension prevents the paper clip Capillary waves
(denser than water) from submerging. (ripples — short waves A < 2 cm)
produced by a dropplet of wine'!
Courtesy of Olivier Marsden (2010)
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@ Surface tension

Work oW, needed to increase the surface area of a mass of liquid by an amount
dS, oW, = y,dS (surface tension y; in Jm™? = N.m™)

Total energy variation oW

oW = —p,dV, —p,dV, + y:dS /// RS \C/l‘

dV, = d@4nr3/3) = 4xridr  dV, = —dV,

| I

dS = d(4nr?) = 8ardr ! /
2V, ~air, pg

balance 0W =0 = | p, —ps = -

Vi air-water =~ 0.0728 N.m ™' ( 20°C)

r="1mm, Ap/ps ~ 0.14%
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L Surface gravity waves '

@ Young-Laplace equation (1805)

pa— P = vV:(s where Cr = —V-n_,, is the mean curvature in fluid mechanics

(the curvature is positive if the surface curves "towards" the
normal, convex)

10(r* x 1 2
For a sphere, n = e, and V - n = ( ) _ 2

2 or r

1-D interface {(xq) 2-D interface {(x1, x2)
Pa
/—\ C(X’|) C, — (1 + 32)(X1X1 + (1 + Z;)CXzXz _ 2(X1 CX2€X1X2
P> Pa f— (1 + 631 + (32)3/2
Cr = G Cone +C by linearization
3/2 = Gxqx X)X altze
(1 4+ 6)31) 1X1 2X2

Cy, = 0C/0x1, ...
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L Surface gravity waves '

@ Formulation in incompressible flow : free boundary problem

Kinematic condition for the surface deformation ¢ (Kelvin, 1871)
interface defined by f = {(x1,x2,t) —x3 =0

Fluid particles on the boundary always remain part on this free surface
(the free surface moves with the fluid), that is Df/Dt =0

Df ¢ d¢ d¢
Dt — 97 + u1ax1 + uzaxz U3
¢ d¢ ¢ D¢
= — _— I — 2
L3 57 + LI1aX1 + leax2 Dt (2)
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L Surface gravity waves '

@ Formulation in incompressible flow : free boundary problem
Kinematic condition for the surface deformation ¢, Eqs (1) - (2)

[ 0 1
a—(f + sz(/) Vo + pgl+ps—vili= pg

100 ac L 060¢ 93¢ on X3 = Clxi. Xz 1)

0x3 ot  0xq10xq 0x> 0x>

-

Linearization, velocity potential ¢ = Usx1 + ¢’

[ 0¢ o’ ¢ 9C
00 — =0
Py T PU 0X1+p95 vt(ax12+axzz)
1 0F  9C ac on x3 =0
0
— Uy —
o ot T ™o

Wave equation obtained by applying D,,/Dt to eliminate ¢

Doo[/)ooc/)’ yt(g 025)]_0 Dy 0 0

— —X = 4 U,
Dt | Dt Y p \oxi 0x3 Dt ~ ot ~™ox
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L Surface gravity waves '

@ In summary : 2-D surface waves

V¢ =0 (3)
g—i =0 on x3 =—h (bottom) (4)
D2 &' 00’  y: | 0° 9>\ d¢’
o0 _ — O = O "fc 5
De? + gax3 5 (ax12 + axzz) Ix; on x3 (surface) (5)

« Phare des Baleines » (Lighthouse of

the Whales, Ile de Ré, by Vauban in
1682)

Photography taken by Michel Griffon

cross sea : two wave systems trave-
ling at oblique angles
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L Surface gravity waves '

The dispersion relation for surface waves

Let us try to find a normal mode solution in Eq. (3), of the form
(/l — L/J(XB)ei(k1X1+/<2X2—wt)

2 CIZL/J 2 2\ _ 2 2
Vg =0 = —Iz—(/<1—|—/<2)L/J—O k =/ki + ks

CX3

Waves on water of a finite (constant) depth h
W(x3) = Ag coshlk(x3 + h)] + By sinh[k(x; + h)|, By = 0 with Eq. (4)

The dispersion relation is provided by Eq. (5)

— (k1 Uso — w)* + (gk + %k?’) tanh(kh) =0 (6)
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L Surface gravity waves '

@ The dispersion relation for surface waves (cont’d)

with U, = 0, no running stream to simplify the discussion

w” = (1 + ﬁkz) gk tanh(kh) dispersive waves (Kelvin, 1871)
PY

o Capillary waves

Y capillary length [ ~ 2.7 mm for air-water interface
PY

e

ki,=1 — A=2mxl.~1.7 cm
Only important for short waves (‘ripples’)
A> e, kh>1  w? >~ |14 (kl)?] gk

Phase velocity v, = {(glc)/(kl) [1 + (/<lc)2]}1/2

. . 3 } . o -~ —1
and minimum reached for kl. =1, v, = /29l 2 0.23 ms
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L Surface gravity waves '

@ Properties of the dispersion relation for surface waves
: 2 _ 21 gh
phase velocity v, = [1 + (kL) ] o, tanh(kh)

long waves (k — 0) short waves (k — o0)
Vo =/ gh ve = (kl)? glk
(non-dispersive waves)
gravity waves kl. =1 capillary waves
® >

wavenumber k
negligible surface tension

quo = (g/k) tanh(kh)

deep water shallow water
AL horkh>1 A> hor kh <1

Ve =/ 9glk Vo =/ gh
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@ The dispersion relation for surface waves
vo = {[1 + (kl)?] (g/k) tanh(kh)} '

10

L Surface gravity waves '

\ deep water

g/k

Vy =

gravity waves

v, = /(g/F) tanh (k)

capillary _
waves

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



L Surface gravity waves '

@ The dispersion relation for surface waves

When surface tention effects are negligible, the dispersion

relation for gravity waves was obtained by Lagrange

I'=8s, kh=m A~=100m, v, ~12.5 m.s~

w? ~ gk tanh(kh)

Joseph Louis Lagrange

(propagation of crests) (1736-1813)

Loy S A e . . L P L . PP IR L P L . .ot L I T PR, . < /.t 1ot
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
....................................... IRMIREE | L R |

-
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L Surface gravity waves '

@ Wave refraction
Alignment of wave crests arriving near the shore

In deep water,

wo =~/gk v,=-/9glk

Near the coast, h \
w§ = gk tanh(kh)
= A Ve \

Reduction of both the wavelength and the wave speed near coasts
by shallow-water effects

for h=10m, A~709 m, v, ~ 8.9 m.s™
forh=1m, A~248 m, v, ~ 3.1 m.s™
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L Surface gravity waves

@ Tsunamis

RIRAT

i~ _;, Be careful of tsunamls |

> 2 DHuEE (3

ﬁn.m

Height above sea level

(Kamakura, south of Tokyo, August 2016)
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L Surface gravity waves '

@ Wave refraction and diffraction

Aerial photo of an area near
Kiberg on the coast of Finn-
mark in Norway (taken 12
June 1976 by Fjellanger Wi-
derge A.S.)
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L Surface gravity waves '

@ The dispersion relation for surface waves on a running stream
From Eq. (6), (kiU — w)? = gk tanh(kh), stationnary waves as w — 0

2-D case (x1,x3), k3 = k = kq

tanh(kh)
kh

U2 = gh

: 12
Only solutions for U, < gh,
corresponding to a Froude number Fr

Us 0.0

Fr

The Froude number is the ratio of the flow ve-
locity Uy to the phase velocity v, = /gh. The
flow is subcritical for Fr < 1 (analogous to sub-

William Froude
(1810 — 1879)

sonic in gasdynamics)
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L Surface gravity waves '

@ The dispersion relation for surface waves on a running stream
stationary waves (w — 0)

3-D case, with now k3 = k =/ I<12 + /<22

U2 ki = gk tanh(kh)

For a shallow water flow, h — 0, (U2 — gh)ki = ghk3
only solutions k, # 0 for Fr > 1, supercritical flow

Fr>1

supercritical Hydraulic (laminar) jump - analogous to a
shock wave in gasdynamics - when tap water
spreads on the horizontal surface of a sink
Fr < 1 ~» nonlinear problem

subcritical

hydraulic jump
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_ Internal gravity waves '

@ Atmospheric internal gravity waves off Australia

taken by Terra Satellite on Nov. 2003 - NASA
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)
Stratified medium at rest, po(x3), po(x3) satisfying

the hydrostatic equation
dpo

d—X3 = —pog

Fluid particle moving from altitude x3 to x3 + dx3

pp? @ The pressure of the fluid particle at x3 + 0x3 is
X3 + 0x3 Pp? Pp = Po(x3 + 0x3) = po(x3) — po(X3)g0x3

@ Assuming a reversible (adiabatic) process, the
density of the particle at x3 + 0x3 is

pPp = Po(x3) Pp(x3 + 0x3) _ (pp(X3 + 0x3) ) 11y ¥  p0gdx;
X3 Pp = po(x3) Pp(x3) Pp(x3) YPo

g

cg(x3)

—> Pp(X3 + 0x3) = po(Xx3) — po(X3) 0X3
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)
To observe wave propagation (oscillations : restoring force from the principle of
Archimedes), the density of the surrounding fluid at x3 4+ 0x3 must be smaller than
the density of the fluid particle, that is po(x3 + 0x3) < p,(x3 + 0x3)

d G
po(x3) + 22 (x3)8x3 < po(x3) — polxs)——Bxs
dxs cy(x3)
/
9 50
dxs3 o

The restoring gravitational force per unit volume may be written pgN?dx3 where
N(x3) has the dimension of a frequency, known as the Vaisala-Brunt frequency

| 2
N2 _9dpo g 7)

podxs ¢}

Very low frequency — in the atmosphere, typically 7 = 27/N ~ 10% s
N? > 0 for a stable stratified fluid
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)
Stratified fluid at rest pg(x3), incompressible perturbations governed by the linea-
rized Euler equations

dp’ au’
V- -u=0 a—pt—|—u'-Vp0:O poa—LilL:—Vp'-l-p'g

By cross-differentiation to eliminate o', p’, ujy and u’, the following equation can

be derived for u}
02
ﬁv%g = —NjVius +

Ng 6)3u’3
g 0t2c?X3

where V2 = 9% +0°

: - . 2 . . :
wix T 0%y, is the horizontal Laplacian, and N is the approximation

of N2 for incompressible perturbations, see Eq. (7),

Ipo  g°
N2(x3) = — L 2P0 8
o)== 220-% (o oo) )
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)
By assuming that Ny ~ cte to simplify calculations (e.g. isothermal atmosphere),

the following dispersion relation is obtained with v ellk-x—wi)

N
k? + iksNg /g

k? = ki + k3

Furthermore, with N§ ~ g/H where H is a characteristic scale of the strati-
fled atmosphere, a classic assumption is kH > 1 (high-frequency approximation,
background medium varies slowly over a wave cycle)

k?
W’ ~ /\/g —é
k

Waves are only possible in the case w < Ny, and more surprisingly,
the wavelength is not determined by the dispersion relation
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)

With k;, = kcos 6 and ks = ksin 6, the
dispersion relation reads

k. Vu=0 = k-0=0
W= NO? = No| cos 9| transverse waves
X3 , propagation
of phase fronts
v = k/k
g Y9
6
* A
\J Y, X1
forcing <

phase velocity v, = w/k = propagation of constant phase lines
in the k direction
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_ Internal gravity waves '

@ Oscillations in the presence of gravity (atmosphere, ocean)

Mowbray & Rarity, J. Fluid Mech., 1967

Source : vertically oscillating cylinder (D = 2 c¢cm) normal to the pictures
w/Np ~ 0.615,0.699, 0.900 — 6 ~ 52,446,206 deg

No gravity waves for w/Np ~ 1.11

(6 =56 deq)
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. Long-range propagation in Earth’s atmosphere '

@ Motivations for monitoring infrasound

Infrasound : academic definition, 0.01 < f < 20 Hz. These low-frequency waves
can propagate over long distances (several hundreds of km) in the Earth’'s atmos-
phere. In practice, the relevant passband is closer to 0.02 < f <4 Hz

Sources of Infrasound

Meteors Sioe Salean Satellite and
UPBISOTIC altara other Space debris

k reentr}f

L

Rocket

launching ﬁﬁeuer& Storms
F }f : : F i,

Microbaroms Nuclear and
Explosive 9 Chemical Explosions

Earthquakes ‘E"‘-”'ca_‘“c e N
(epicenters and THRIO0S. 7 L
ground-coupled i i 8

4 i

| : : ‘.?;-I 1) * - $-
Avalanches ~ g _ﬁgene;ated

waves)
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L Long-range propagation in Earth’s atmosphere '

@ Worldwide infrasound monitoring network developed to verify compliance with
the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

210° 240°270° 300° 330° 0° 30° 60° 90° 120° 150° 1BO°

Headquarter : Vienna, Austria

60 stations with 4 to 8 micro-

barometers over an area of 1 - 9 km?

e Certified and sending data to the
International Data Centre (IDC)

e under construction, o planned

(Christie & Campus, 2010)

90° ’
210° 240° 270° 300” 330° 0° 30° 60° 90° 120° 150" 180°
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. Long-range propagation in Earth’s atmosphere '

@ Propagation in the Earth’s atmosphere
Stratified atmosphere extending up to 180 km altitude

180 speed of sound ¢
1507
1207
s
= 90}
9\

8
60|

307

0 L L L L L L L L
200 300 400 500 600

¢ (m/s)
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. Long-range propagation in Earth’s atmosphere '

@ Propagation in the Earth’s atmosphere
Stratified atmosphere extending up to 180 km altitude

180 speed of sound ¢
1507
1207
s
= 90}
9\

8
60|

307

0 L L L L L L L L
200 300 400 500 600

¢ (m/s)
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. Long-range propagation in Earth’s atmosphere '

@ Propagation in the Earth’s atmosphere
Stratified atmosphere extending up to 180 km altitude

180 ——— speed of sound ¢
— effective speed of sound
1507 Ce = C + U4
1204 Waves naturally refracted towards
E stratospheric and thermospheric wave
907 ,
- guides (x2 ~ 44 km and x, ~ 105 km)
S col according to geometrical acoustics
through the Snell-Descartes law
307

0 L L L L L L L L
200 300 400 500 600

¢ (m/s)
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L Long-range propagation in Earth’s atmosphere '

@ Measured signals from Misty picture event

High chemical explosion experiment Alp'mezf48 km W
at White Sands Missile Range, New Z 1l o
Mexico, USA, May 14, 1987 (US Defense = 0
Nuclear Agency) é‘i S
750 850 950 1050 1150

t(s)

Signals recorded by 3 laboratories up to
White River 324 km W

1200 km from the source (4.7 kt AFNO) 12—
S
= 0
L
-12 L L L L L L L
1000 1100 1200 1300 1400
t (s)

Roosevelt 431 km W
8 : :

=

.. 4t
(Gainville et al., 2010) &

= 0

| I

S —4

-8 : : : : : : :
1300 1400 1500 1600 1700
t (s)

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1




. Long-range propagation in Earth’s atmosphere '

@ Nonlinear propagation with wind (NLW) : global view

180

15071

1207}

601

301

Sabatini et al. (2015)

nonlinear effects

p'lp~p "

+ absorption

% 90t
N
)

0 s
200

300 400

500

600

400
¢ (m/s)
refraction induced by
source c(x) and aq(x) . .
Various arrivals
fe ~ 01 Hz

at ground level
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L Linear dispersive waves '

@ In summary

Linear wave equation with constant coefficients L£(¢) =0
We assume the elementary solution (plane wave) has the form ¢ ellkx—wt)

leading to the dispersion relation D(k, w) =0

Sound waves in a homogeneous medium at rest, dyp’ — c2.V?p’ =0
w = £QO(k) with Q(k) = kc, (2 modes)

Advection equation 0:u + Coo0y,u = 0
w = Q(k) with Q(k) = cok1 (1 mode)

Surface gravity waves (without surface tension effects)

w = £Q(k) with Q(k) = /gk tanh(kh) (2 modes) k=ks=1/ki+ks

Internal gravity waves (Boussinesq approximation)
w = £Q(k) with Q(k) = Np|cos O] (2 modes) cos 0 = k| [k
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Waves in Fluids : models for linear wave propagation
~» theories for linear dispersive waves |
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_ Introduction

@ Acoustic wave equation : d’Alembert’s solution

Solution of Cauchy’s initial value problem
p'(x1) = go(x1) and 9:p” = g1(xq) at time t =0

02/ 82/
/3_C2 P

=0
ot T 0ox7

From the general solution p’(x, t) = pi(x1 + coot) + pr(x1 — Csot), obtained by in-
troducing the characteristic variables n™ = x; — ¢t and N~ = x1 + cxt, one has

go(x1) = piulx1) + pr(x1) g1(x1) = Coo [0X1/J[(X1) — 0X1/3,—(X1)]

and by integration,

/0X1 g1($)d§ = Coo[pi(x1) — pr(x1)] + cst
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_ Introduction

@ Acoustic wave equation : d’Alembert’s solution
Initial value problem (cont'd)
The two functions p; and p, can be determined as follows,

[ 1 1 X1 1
pib) = 5 (90(X1) v g1<5)c/5) st

oQ COO

1 1 ol 1
pi(xi) = & (gom) -~ 91(5)6/5) b st

00 2Co0

~

d’Alembert’s solution

) 1 1 X1+ Coot
p'(xq1, t) = i[go()ﬂ + Coot) + go(x1 — Coot)] + T/ g1(&)d<&
Q0 JX1—Coot
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@ Acoustic wave equation : d’Alembert’s solution

Initial value problem (cont'd)

_ Introduction

TRAITE
DE EQUILIBRE

ET DU MOUVEMENT

DES FLUIDES,

Pour fervir de fuite au Traité de Dynamique.

Par M. D’ AvEMBERT, de I’ Académie Frangoife , des Acadé-
mies Royales des Sciences de France , de Pruffe, d' Angleterre
& de Ruffie, de I’ Académic Royale des Belles- Lettres de
Suéde , de IInflitue de Bologne ; & des Societés Royales des
Sciences de Turin & de Norwege.

Nouvelle Edition, reviie & augmentée par I'Auteur,

A PARIS,
Chez BR1ASS ON, Libraire, rue Saint Jacques; 4 la Science.

v M. DCC. LXX
AVEC APPROBATION ET PRIVILEGE DU ROL

Jean Le Rond d’Alembert (1717-1783)
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_ Introduction

@ Acoustic wave equation : d’Alembert’s solution
)2

gO(X1) _ e—l|12(x1/b (Coo _ 1)
g1 = —CooJp g1=0
t=0 t=10 t =20 t=0 t=10 t =20
1.0 - - - - 1.0
0.8 0.8
0.6 0.6
& &
\&04 \g‘ 04'
0.2 0.2
0;910 | —ZLO 0 20 40 0;(4)10 40
I
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_ Introduction

@ Acoustic wave equation : d’Alembert’s solution

Interpretation in terms of characteristic curves

p'(x1,t) = go(X1 — Coot)

means that go(xq) is preserved along the lines dx; = co.dt

£
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_ Introduction

@ Acoustic wave equation : d’Alembert’s solution

Interpretation in terms of characteristic curves

30
25 1
20 | pr constant along the curve (line
here) dx1 = +codt (RT)
+ 151
10 -
p; constant along the curve (line
a here) dxi = —coodt (R
0
-40
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_ Introduction

@ Acoustic wave equation : solution by Fourier integral

+00 aZ / 02 / '
P 2 P —ikyx _
[ G0 -ash] erman=c

For p’ and d,,p" — 0 as x; — oo,

9%p A : A :
SD kb =0 = plk,t) = h(ki)e ! 4 Dyflq)ethiet
+00 _
1-D Fourier transform p'(x1) = F ' [plk)] = / p(kq)e™ ™ dk;

The solution is the sum of two travelling wave packets

+00 100
p'(x1, t) = / fi (kq)elkxa—kicotl e, 4 / fo(ky)ettkixtkicoot) g,

o (0,@]
= f1(x1 — cot) + f2(X1 + cxot), each containing progressive (moving to the right)

and retrograde (moving to the left) elementary plane waves wrt to the sign of the
wavenumber kj
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o

L Fourier integral

General solution by Fourier integral
~» sum written over the n modes Q)(k) of the dispersion relation

e.g. for the acoustic wave equation, w = +Q(k) = £cok
1-D to simplify algebra, for an arbitrary variable ¢

+00 100
Z(X1 ' t) — / ][1 (k1)ei(/<1X1—Q(k)f)dk1 + [ fz(/<1)ei(/<’|X1+Q(k)t)dk1 (9)

oQ —0Q

where the functions f; and f, are determined to fit initial or boundary conditions

@ Dispersion relation with only one mode w = Q(k)

+00
A0, 2,0 = [ Blkie®idiy = 7 (k)] = filx)

oQ

and f; is then determined by the initial condition, fi(x1) = go(x1)

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1




L Fourier integral

@ Solution by Fourier integral

@ Initial value problem for two modes w = £Q)(k)
¢ = go(x1) and 0:¢ = g1(xq) at time t =0

~

+0
g()(X1) = / [f1(/<1) + fz(/<1)](:‘lk1x1 d ki

(0.0]

+00
g1(X1) — / —iQ[f1(/<1) — fz(/ﬂ)]é‘“qx1 C//<1

o0

~

The inverse Fourier transform provides go = f1 + f, and g, = —iQ(f; — 1)
The function f1 and f, are thus determined to be

y 1. ig1(k . 1. ig1(k
f1(/<1)=§[go(l<1)+ J1(() 1)] f2(k1):§[go(/<1)—|— J1( 1)]
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L Fourier integral
@ Solution by Fourier integral

@ Initial value problem for two modes (cont’d)
Let us consider the particular case ¢ = go(x1) when gg is real
and d;( =0 attime t =0

1 +00 . 1 +00 .
C(X’Ir t) — i[ go(lq)el(k1x1 _Q(k)t)dk’| 4+ i/ é\lo(k1)el(/<1x1—I—Q(k)t)dk1

oQ

It can be shown that (leave it as an exercise)

+00
l(x, t) = R{ / go(k1)ef(k1X1—Q(k>f>c//<1} (10)

o0

An explicit integration is possible for a very few functions g, direct numerical
integration often tricky, but the asymptotic beheviour as x1, t — oo can be easily
obtained by the stationary phase method
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L Method of the stationary phase

@ Propagation of a wave-packet : asymptotic behaviour

+00
((x1,t) = / Go(kq)elkra=0Wt g, Asymptotic solution as t — o0 ?

oQ

Method of the stationary phase (Kelvin, 1887)

Lord Kelvin (William Thomson), 1824 - 1907
http://www-history.mcs.st-andrews.ac.uk/Biographies/Thomson.html
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L Method of the stationary phase

@ Asymptotic behaviour of integrals

b
(&) = / f(t)e“?dt  as & —- oo (a,b, ) reals

a

For large &, the function e’“?l!) oscillates quickly with almost complete cancel-
lation for /(<). The main contribution comes from intervals of t where ¢(t) varies
slowly, that is for which ¢'(t*) = 0 (t* stationary point)

4

Rel{tei’f(i_w} I

2: ' M

o
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L Method of the stationary phase

@ Asymptotic behaviour of integrals

+00
e.q. (&)= / te“0-°dt  @t)=(1—-1% =1 @(t") =0

oQ

4
i&(1—1t)? i
¥ n Re {te (1=t } (\
2- ﬂ ” i
0
2|1 | : : -
I 2y/7/ (" () |
£ =4
—4 : . .
3 ) -1 1 2 3

o
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L Method of the stationary phase
@ Asymptotic behaviour of integrals

Easiest case, only one stationary point t*, ¢’ (t*) =0, a < t* < b
Expanding the phase in a Taylor series near t*

Plt) = plt") + 5t — £V (£) + O[(t — )]

Method of the stationary phase (Kelvin, 1887)

bale

b
I(&) = / f(t)els?Odt ~ f(t*)elcelt) / e ™2t as & — oo

a Ja .,

NV
can be exactly calculated

b
. 27T -
I(&) = / f(t)e*?Odt ~ f(t*) \/ Elcp”/(lt*)l e P)SET a5 & 5 o0

a

with the sign & according as ¢”(t*) > 0 or ¢"(t*) < 0
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@ Asymptotic behaviour of integrals
An example : Hankel function H(()”(E)

too t) = cosh(t), ©'(t) = sinh(t), t* =0
H(@) = l/ piEcosht 4 o(t) (t), ¢'(t) = sinh(t)
_ @”(t) = cosh(t), "(t*) =1>0

[JT

o0

as & — oo

2 ei(kr—ﬁ/4)
gkr

as & = kr » o
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@ Asymptotic behaviour of integrals

Additional remarks

- stationary point at an end point, t* = a for instance,
half contribution ~» 1/2 factor

o0 ’I —
/0 cos(Etz—t)c/twi % as & - 0 (t* = 0)

- several stationary points : summation of their contributions

- notation : symbol ~ means asymptotic equivalence;
f~gas&—oomeans f/lg—1as {— x
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L Asymptotic solution

@ Propagation of a wave-packet : asymptotic behaviour

+00 +00
((xq, t) :[ Q()(/<1)ei[/<1><1—Q(k)f]dk1 :/ Qo(/<1)ei¢(k1)tc//<1

oQ o

Method of stationary phase ta ) -
I1 t = Vg1 71.(

- phase given by (k) = /<1ﬁ — Q(k

| g y ¢ ;
- turning point ky

X1 0() /\
/ k* — 0 — L = * "\/\ /\v" >
¢'(k7) TS i Vg1 V \/ \/ Y 1

Asymptotic solution as t — oo along the ray
x1/t = vg1(k7), that is with x¢/t held fixed (parameter)
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L Asymptotic solution

@ Propagation of a wave-packet : asymptotic behaviour

In summary

V2rx . i{kibxa — Q)+ imsgn[—Q"(k)]}
~ ey e 4
1

- dominant contribution for a component at wavenumber k7,
namely go(ky), is observed at x4 = vgq1(k7)t

- amplitude decays like t="% as t — 0
(and the signal therefore widens to conserve energy)

- formal definition of the group velocity, vy = Vi w

(reminder : phase velocity v, = w/k = propagation of constant
phase lines in the k direction v = k/k)
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L Fourier integral

@ Table of Fourier transforms

+00
o) = 7~ Golkil] = [ gollka)e™ ™ dk
go(x1) Go(ki)
—n2(% 2 b _M
e (%) e A2
5(x) L
cos(kox1) 210(ky — ko) + O(k1 + ko)]
In2 (x1/b)2 1 btk —kw)? ik tkw)l®
e~ N2 b)" cos(kyx1) 3 /—ljlnz e~ 4n2 4 e 42
. 9(8)dg Lot 4 15(0)0(k
f_oog( )a 27 ik +2J( )0 (k1)
1 L o—Ilk
T+ (x1/1)2 2€ al
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L Surface gravity waves '

@ Stationary phase applied to surface gravity waves

Dispersion relation for long waves (kl. < 1) in deep water (kh > 1)

w = ++/gk = =Q(k)

Initial value problem for the surface displacement ¢
¢(x1) = go(x1) and 0;¢ =0 at t =0

Since gg is a real function - refer to Eq. (10) - it can be shown that

oQ

+00
C(X1,t)=Re{ / go(/q)e"<k1X1—Q<k>f>c//<1} Q(k) =/gk

~ 7 ast — o0
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L Surface gravity waves '

@ Stationary phase applied to surface gravity waves

(k1) = k1 x1/t — Q(k), stationary points di,¢(ks) =0

X1 /<1 2
= V19 or 0  k=+/k? (1-D
" ak1 \ﬁ DAL (D)

_gt?
B 4)(1

920) 1 [g T [ 42\ 0
ok? ’<T 4k \ ki), 4 \gt?
2 3
\/t|ak K QK| = _X_12
1K1 Jt

n t gt2 JT
¢ ~ go(k) /g @ CcOS (—4—)(14—1)
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L Surface gravity waves '

@ Application to surface gravity waves

Initial value of the surface elevation ¢

G oIk
1 + (X1/l)2 (/<1) CO

gol(x1) =

By introducing dimensionless variables
t=t/g/l, i = x;/l and { = /o (linear problem),
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L Surface gravity waves '
@ Application to surface gravity waves

Initial value of the surface elevation

1 A 1 ;
~ _ ~ _ —| k1
Jo(x1) = ——=  golki) = e
1+ x12 2
1.0 : . . . . , 0.5
0.8} 0.4f
0.6f 0.31
zg <§
0.4f 02f
0.2f 0.1t
0.0 - ' ' . - 0.0
=20 -15 -10 -5 0 5 10 15 20 -10 -5 0 5 10
I kl
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L Surface gravity waves '

@ Application to surface gravity waves

Tsunami generated by (submarine) earthquake, landslide, volcanic eruption ...

Cape Verde archipelago off western
Africa, where a massive flank collapse
at Fogo volcano potentially triggered a
'giant tsunami’ with devastating effects,
reportedly between 65,000 and 124,000
years ago. Fogo is one of the most ac-
tive and prominent oceanic volcanoes
on Earth, presently standing 2829 m
above mean sea level and 7 km above
the surrounding seafloor.

Ramalho et al., 2015, Science Advances
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L Surface gravity waves '

@ Application to surface gravity waves
— numerical solution (Fourier), e stationary phase approximation

5/t = vy(ky) with (1) ks =172 (2) ki =2 (3) ki =4 (4) maximum amplitude %/t = V3

@  © @

t =100 r o

MW
~ / / /~ /7
t =80 / / : 7

7 /
;o )
r / // ./‘ //
t = 60 / , / . 3
! // """" " C(xlat)
/ / ‘/‘ s
7?: 4() ;! Vo
7 4, v
Y AL SN T
- Iy ,
t =20 / /.// ..............
Y% ¢
AR/ | . | | I
20 40 60 80 100
T
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L Surface gravity waves '

@ Application to surface gravity waves
— numerical solution (Fourtier)

3 (A F) B @ (1)
= 100 C(x1,t) ° ; E
- Iy /
t = 80 Iy /

/ / /

t =60 Lo

\/\/\/\N\/\“ W

Iy /

ffip ____________ /}i__ ____________
—-100 -50 0 50 100
T1
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L Surface gravity waves '

@ Surface gravity waves

silt=vglk) Mki=12 k=2 3 k=4

100 0.2
q
80 -
0.1
60 -
1+ 10.0
401
~0.1
20
0-# —02

0 10 20 30 40 50 60 70 80 9 100

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



L Surface gravity waves '

@ Application to surface gravity waves : additional remarks

— As k — 0, the group velocity becomes infinite, and ”(k;) — 0 in the stationary

_0Q _1 /g
97 0k, 2\ K

The propagation of large wavelength components at an infinite speed is a

phase approximation

direct consequence of the incompressibility assumption.

— For a finite depth h, Q(k) = \/gk tanh(kh). The group velocity then remains
bounded,

dQ)

VQ:OTQ_) gh as k1 —» 0

but Q”(k;) — 0! The treatement of the wavefront requires a little more work.
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L Surface gravity waves '

@ A simple wave packet model as initial condition

2
go(x1) = e~ "2 D) cos(k,x1)
folki) 1 b _[blky—kw)P? _ [blky+kw)P
gO 1) = — — 4 C 41ln2 + e 41ln2
4v/7ln2
2.0
gO(kl)
1.5 .
1.0
0.5
' ' ' ' ' 0.0 ' ' -
230 -20  -10 0 10 20 30 0 /4 /2 311/4 n
I kl

(b =11, k,, = 0.9)
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L Surface gravity waves '

@ Application to surface gravity waves
— numerical solution (Fourier), === X1/t = v,(ky)

~

M» ((F1,1)

t =90
\ /
\ /
1 1 A4 1 |
-100 -50 ~O 50 100
X1
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L Surface gravity waves '

@ Application to surface gravity waves

numerical solution (Fourier) at = 0 and # = 450 (signal translated of v, (k)

1.0
0.5 M !
£ 00 'AVAVAVAVA/\I\M I \ {\/\/\/\/\/\ A P
S T =
-0.5 U U M
105 -6 0 6 12 18
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L Theories for linear dispersive waves '

@ In summary

Linear partial differential equation £({) =0

k-x—wt)

Fourier transform ~ el , relation dispersion D(k, w) =0

e.g. surface gravity waves w(k) = £Q(k) with Q(k) = +/gk tanh(kh)

With the initial conditions {(x1) = go(x1) and 0;{(x1) =0 at t =0,
the solution can be recast into a single integral

+00
{(xq, 1) = / Go(ky)etkra= gk,

(0,0]

Asymptotic behavior (stationary phase) as t — oc

V 2'— . - 7T "
((X1 — 51 t, t) ~ \/ |Q"J(‘/ )| 6]0(/(1) et{/<1X1—Q(/q)t-HZSQn[—Q (/<1)]}
t <1

For an observer travelling at x/t = vy1(ky), the amplitude varies as 1/y/t and
is modulated thanks to the phase, crests moving at v, = Q(k1)/ks.
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Waves in Fluids : models for linear wave propagation
~> theories for linear dispersive waves Il

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



_ Introduction

@ Ray theory

Extention of Fourier’s integral solutions for a medium with slowly varying proper-
ties with respect to the wavelength : geometrical or high frequency approximation

o surface gravity waves with h = h(x), Q(k) £ /gk tanh(kh)

@ acoustic waves in non homogeneous medium cy = c¢p(x)
or in the presence of a mean flow uy = up(x)

It can be shown that the dispersion relation reads

C(z)kz — (k- ug — w)2 =0 or w =k -uy =+ cok

Dispersion relation D(k, w,x) =0
Wave propagation is then governed by partial differential equations with non-
constant coefficients, and it is no longer possible to apply a simple Fourier trans-

form.
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L Outdoor sound propagation

@ Standard temperature profile

rat
Z J
A A _
To(2)
+
7 shadow zone
S
;
@ Temperature profile inversion (pollution)
z
A A
To(2)
ray

shadow
zone

Y
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L Outdoor sound propagation

@ Mean flow effects on sound propagation
Ray tracing with strong positive sound speed gradient of 0.1 s~

1000 1000 g
800+ 800
6001 600

E E

N N
400 400
2007 200'

0 L L
300 350 400 450
c (m/s)
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L Outdoor sound propagation

@ Mean flow eftects on sound propagation
Explosion at Oppau, Germany, on sept. 21 1921 (561 deaths)

L ocations where sound was heard e
and not heard o

. . L ]
BASF factory, ammonium nitrate N S —
Al T UL _ s
" e : . ﬁS}Q/"
s -
g Fd
/-
/
e 100 kM o
r, A i 4
V' o*
{ @
* |
| Oppau We®
b Metz \ o> *
o 0,0
b'\ & \\O y o
> o 9% k.
\\ o Q ....
o\ e
o Y OO .:. .:

(o) o (o] oNejle
...rl:. .. o]

Cook, R.K,, 1962, Strange sounds in the Atmosphere, Zosic
urich o o5
Sound, 1(2) o % o cg

o 8° %
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L Underwater acoustics
@ SOFAR (SOund Fixing And Ranging)

IR
s TR
AR
N NN
AR
N7
MRS /]
WAL/ LF

\

\\\\\\\\\\ N7

NN, l/
AL LA
R,

2062
2z

s
'0:':,
S
Sa.
NN,
&
NN
13

XN

Z
2
SR

=
"0

e
N
8
N

%%
o
S88
N
X

29
27
0,'.
Wy
Wy

</
%%
%%
5
N,

5 ' ' 5 : ' '
1.50 152 154 1.56 0 20 40 60 80
c (km/s)

Munk, J. Acoust. Soc. Am. (1974)
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_ Underwater acoustics '

@ Ghost octopus ‘Casper’

Octopus observed at a depth of 4290 meters by the remotely operated vehicle
Deep Discoverer (Hawaliian island of Necker; NOAA, 2016)
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_ Aeroacoustics

@ Sound propagation in a jet flow

7 1
Harmonic source in a Bickley jet o 5 B = In(1+ V2)
uj  cosh*(By/o)

25 LEE (log,o(|p’| + €)) and
_#{.?@ | ray-tracing
@’%’* S PR -3
%‘:ﬁ% R AR : T :
(i AN high-frequency noise is diverting
g 35 away from the jet axis
-4 shadow zone at angles close to

the jet axis, 6% ~ 48.2°
(edge of the silence cone)

-4.5
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_ Introduction

@ Ray theory

X X
\
\
\
\
\
locally plane waves \
wavelength A N\
\\\
=9
ZV ZV
slowly varying medium on scale L ray tube

high frequency approximation — AKL
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L Ray theory
@ Wave kinematics

Dispersion relation D(k, w, x) = 0 in an inhomogeneous medium,
and by considering one of the modes w = Q(k, x)

The solution is now sought as a local plane wave, e.g. { = ((x)e®®, where the

amplitude {(x) and the wavenumber k(x) slowly vary with position x on scale
A= 2m/k, or equivalently A/L <« 1

From the phase © of the wave, we can define
a wavenumber vector k(x, t) = VO
an angular frequency w(x, t) = —0,0

ray x = vy

wave front
(wave crests © = cte)

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



L Ray theory

@ Wave kinematics (Whitham, 1960)

The orientation of the normal vector v = k/k to the wavefront must be
determined along the ray path, through the evolution of k(x, t) along this ray,
thatis ok + v, - Vk = 7

w=Q(k x)
[ dw 90 ok ok
2 v S =via S
ST P TR Y
) ,
ok 0 00 0
W=V S =-Ve=V_=-Vo — —= vy Vw=0

The angular frequency is convected along rays if the medium is
independent of time
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L Ray theory

Wave kinematics

In a similar way, one has for the wavevector k

oki 900 000  ow  9Q| 0Qok a0 ok;

ot  dtox; ox ot  ox,  ox|, okox.  ox|. Yox

In order to form the material derivative with the last term, it should be noted that
V x k = 0 by construction, since k = V0. It yields

dk;  0k;
Oxi an

ak; ok;
nga—)q = nga—xj

=0 = = v, - Vk;

and the transport equation can be rewritten

ok
E + Vg - Vk = —VQ|k

where the term YV Q| is linked to the explicit dependence on space
of the medium.
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L Ray theory

@ Ray tracing equations (for a medium independent of time)

~

dx

- — q 11

dt Vg ()
<

dk

— = —VN() 12
i P (12)

Eq. (11) provides rays, Eq. (12) provides the orientation of wave fronts along the
rays, and refraction effects are included in

the term —VQ (frequency remains
constant along these rays)

Vg ray x = v,

wave front
(wave crests © = cte)
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L Ray theory

@ Ray tracing equations in acoustics
w=Q(k,x) =k - ug+ cok

C/Xi ki
: : : = Co~~ + Uo;
system of differential equations dt k
<
to (numerically) solve dk; dcy duy;
= —k— — kj—=—
L dt c?xi aXi

The system requires initial conditions. In 2-D,

@ Source position S

@ Orientation of the wavefront,

with shooting angle 6y

My + cos 6
\/(/\/Io + cos 6p)? + sin® 6,

COS (g =

Moy = ug/co
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L Ray theory

@ Additional remarks

@ Ray equations are also called characteristic equations
and they are intensively used in fluid dynamics (hyperbolic systems)

@ General framework : WKB (Wentzel, Kramer, Brillouin) expansion method

A acoustic wavelength
small parameter € ~ — ~ ,
L medium length scale

= {(X)e®XDie with x = X/eand t=Tle {(X)=) "¢
n=0

@ Propagation of energy along rays

o) =
E—FV (Evg) =0
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L Ray theory

@ Underwater acoustics : ray-tracing versus parabolic approximation

(Munk’s profile for the speed of sound)

0
200
A =
i : -10
il ._ /i 2
/) e i "
= /i — 20
5 %%“ ] 7 // 5
B LR 1) ==
£ - \s@@z =
I s =
3 N =
N/ — 40
NKY "l/// . \‘-..:____.r__/
L) =
L 3
4 50
5 1 1 1 1 -ED
0 20 40 60 80 100 0 20 40 60 80 100 dB

X (km)
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@ Surface wave enerqy

Conservation of kinetic energy for an inviscid fluid

0 2 2
5 (p;l )—|—V- (p%u) +u-Vp=pf,-u

Incompressible flow, u - Vp =V - (pu)
pf, = pg = Vo, with ¢, = —pgx3 and p = cst (water)

d [ pu? pu?
8t( 5 )—I—V-[(T—I—p—l—pg)@,) u]—O

Equation of energy for a linear flow : quantities of third order (and higher) are
discarded,

d (pu’2

> ) +V - [(p'+ pgx3s)u'] =0
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@ Surface wave enerqy

Integration along —h < x3 < ¢

]

X3

C(x1,x2, t)
— X1

¢ 9 [pu? ¢
/ 3 ( 5 ) dx3 + V- [(p' + ng3) u’] dx3 =0 (13)
—h —h

Leibniz integral rule : integral whose limits are functions of the differential va-
riable

g [P ) of ol 0
I(x) :0—)(/() f(x, y)dy = /() —dy + (x b)a—;—f(x, a)a—z
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. Conservation of energy

@ Surface wave enerqy

First term of Eq. (13)

4 J r2 J ¢ r2 2 aC
pu pu pu
L R
_[hat( 2 )CX3 0tj; 2 BT | ot

9 0p"lzl + high order t
—_ — —ax3 1[9 1 order terms
ot |, 2
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@ Surface wave enerqy

Second term of Eq. (13)
by introducing V- = V- +0d,; where x;, = (x4, x2)

q 4
| V- (p' + pgx3)u’]dxs = Vi [(p"+ pgxs)up]dxs + [(p" + ng3)u'3]ih
—n —h
[ ¢ 0 . L
Vin-l(p + pgxs)up|dxs =V, - / (p" + pgx3)updxs + h‘%g_ﬁ;ge'

—h —h

/ , 0C d [1
s ol <o - L

~

Kinematic condition for the free surface deformation v = d{/dt

Notation p’ = p’ + pgx3 (so-called dynamic pressure)
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. Conservation of energy

@ Surface wave enerqy

0 0 12 1 0
3 (/ p% Ix3 + ngfz) + V- / p'uydxs =0

—h J—h p
N NV

(a) (b)

(a) E = kinetic 4+ potential energy (per unit surface area)
(b) I = energy flux in the plane x; = (x1, x2)

o)=
conservation of energy I +V-I=0
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@ lllustration taken from acoustics

Linearized Euler equations around a uniform mean flow ug = ugxq

[ Dpf :
E—FPQV'LI =0 (14)
<
Du’
— =V 1
Py Vp (15)

where D/Dt = 0/t + ug -V = 09/dt + uyd/dxq,
and by assuming that p’ = ¢§p’

By taking the time derivative of Eq. (14) and the divergence of Eq. (15), and by
substraction to eliminate the velocity fluctuations,

D?p’
Dt?

—cgVp' =0

Dispersion relation, (—iw + ik - ug)? — cf(ik)* =0
that is D(k, w) = cgk* — (k - up — w)?
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@ lllustration taken from acoustics

Conservation of energy

By multiplying Eq. (14) by p’ and Eq. (15) by o/, it yields

D (u”? , .
POAZ (—) +u -Vp =0

2

D (p?
2

m _) —I—p()p/V'U/:O and

Using p’ = cip’, the following energy budget equation can be derived

D ( p/2 p0u/2

) +V - (p'u')=0

Dt 2p()C(2) 2
that is,
oF 2 2
— +V - (Eupg+1)=0 with E = P 5+ POt and I =p'u

E ~ ].m™ sound energy density
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. Conservation of energy

@ lllustration taken from acoustics

Conservation of energy

For the case of a plane wave, p’ = pocot//,
12

r
D D
E ~ f 5 and If:/—szcov
PoCy Poco

and thus,
)= :
— + V- (Evg) =0 Vg = oV + up (group velocity)

ot
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Introduction to nonlinear wave propagation
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L Solitons
@ The linear Korteweg-de Vries (KdV) equation

Linearized equations were derived under
the assumption that e, = {p/h <« 1

Y f VZC/, - O
| 201"+ 9oy, =00nx3=0
(surface tension neglected, [/A « 1) ‘ 0x;¢" =0 on x3 = —h

@ Many ways to construct approximations, e.g. in deep water h/l > 1,
or in shallow water ¢, = h/l « 1

@ Long-time evolution of tidal waves, e, < 1 and e, ~ kh <« 1
w = £Q(k) Q(k) = +/gk tanh(kh) ~ ak — Bk> + O(/<5)

associated of of 03 f h?
AR L — Vgh B=-+/gh~—
ot T % TP a=Vgh B=~gh3

wave equation
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. Solitons

@ The Korteweg-de Vries equation

Fully nonlinear model for surface waves. The derivation of the Korteweg-de Vries
equation is rather tedious, and this step is skipped here. Using dimensionless
variables, the KdV equation can be recast as
c?n —|—6 (9/7 °n
N
d& 035

=0

Korteweg & de Vries (1895)
I = (/h E — (X1 — ght)/lref T = t/tref

Historically : solitary waves or solitons (unchanging form during propagation,
cancellation of nonlinear and dispersive effects )

John Scott Russell (1834, ..., 1885)
Joseph Valentin Boussinesq (1871, 1872)
Diederik Korteweg & Gustav de Vries (1895)
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. Solitons

@ Solitons

2 Collision of two solitons (Oregon Coast,
4 USA, 2004, Terry Toedtemeier)

felcephotol e

John Scott Russell (1808-1882)
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. Solitons

@ Solitary-wave solution

a

cosh’ [Va/2(& — 2aT)]

N =

Soliton of amplitude a, and of

half-width o, moves with velocity
2a >0

o =In(1+Vv2)\2/a

Zabusky & Kruskal (1965)
Gardner et al. (1967)
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. Solitons

@ Interacting solitary waves!
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. Solitons !

@ Interacting solitary waves

Elastic collision, and the nonlinear interaction produces a phase shift
(taller wave moved forward, smaller one backward)

0.6
0.4

0.2

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1




L Nonlinear wave propagation '

@ Motivations
Supersonic flying object : aircraft, missile, rocket, meteorite,
High-speed jet noise, cavity noise,

Propagation in resonant systems : thermoacoustics, musical instruments,

T

[r S

(f\
| /{_L
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L Nonlinear wave propagation '

@ In aeronautical applications

Secondary flow of a commercial civil en- Bell X-1 (1947) flying at Mach 1.07
gine during the climb and cruise phases

M external stream

Y

_________/._> . X
prumary stream
Olympus 593 Mark 610

plug

(Rolls-Royce & Snecma, 1960)

C. Henry
(SNECMA)
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L Nonlinear wave propagation '

@ ... but also in domestic life!

Compressed air canister for cleaning your computer
(Rep ~ 5 x 10%)

5\ 2

& (E. Salze, LMFA)
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. Nonlinear wave propagation '

@ Military and supersonic transport aircrafts
Pratt & Whitney FX631 jet engine (F-35 Joint Strike Fighter)
Kleine & Settles, Shock Waves (2008)

http://www.jsf.mil

=N
. — &/
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L Nonlinear wave propagation '

@ Military and supersonic transport aircrafts

PRIPoc = 2.48, D =5.76 cm M; =155 & Re, =6 x 10° =

—

pe/poo = 2.48, Mj =1.67 pe/poo = 2.09
Westley & Wooley, Prog. Astro. Aero., 43, 1976 Berland, Bogey & Bailly, Phys. Fluids, 19, 2007
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L Nonlinear wave propagation '

@ Sonic boom

F/A-18 Hornet | Concorde - Shock waves at Mach 2.2 in

passing through the sound barrier wind tunnel (ONERA)
(Navy Ensign John Gay, July 7, 1999)

N-wave pattern measured close
to the ground from Concorde
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L Nonlinear wave propagation '

@ Space shuttle Columbia — 10 December 1990
N-duration 400 ms, overpressure 104 Pa (z ~ 18km, M ~ 1.5)

100 ‘«\

0 \ T i e
~
o N
~200, 400 ms TIME 800

Young, J. Acoust. Soc. Am., 2002
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow
in conservative form

P PUA
ou OoE
— O U — E = 2
97 + Ix; JoliE puy +p
peq uq (pes + p)

2
with pe; = pe + p;“ = y /i " + % for an ideal gas

In order to highlight nonlinear effects (e.g. the formation of a N-wave) while
keeping algebra as simple as possible, a more basic flow model is considered
here to derive characteristic equations. Namely, the flow is assumed homentropic,
s = cst. Hence, dp = c?dp and

dp _dp| dp _ 10dp
dt  dp|, dt 2ot
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow

dp dp du ap dp ,0u1

— — — =0 — — — =0 16

ot T "% T Pax — 9t "% TP an (16)
ou ou 1% B

0 (17)

ot "o T oo

By taking Eq. (17) &+ Eq. (16)/(pc), characteristic equations are obtained,

du N 1 dp (0 % 0 du N 1 dp _ 0
dt  pcot dx1  pcox

Let us introduce the Riemann invariants (1860)
dp 2

Ri=u1+ | —=u £ C

pc y—1
lc dp d / /
2-Yr _, Hdc_4dp_4dp | 2c/c:£C/J—£C—/2J (—1)£
0 c p p p ¢ pPc
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow
Along the curves defined by dx; = (uq + ¢) dt, the two Riemann invariants R,

and R_ are respectively conserved,

2
R, = uqg + c = cst R_=u— c = cst
y — 1 y —
ur(x) = B2
) At t + At e

c(x1) = 5 7
t + At ;1
t >
x; X7 X1

solution known at time t = R, R~ also known
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow
Construction of a solution using characteristics

t+dt

Y

-

Rt = cst R~ = cst

\_/ R~ S

— C = Co +

2
= uq1 —
y—1 "1, y —1
The local speed of sound c is affected by the perturbation amplitude uj

R~ = — Coo C

t+dt
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L Nonlinear wave propagation '

@ Formation of a N-wave
The local speed of sound is modified by the velocity amplitude uq of the pertur-
bation. The part of the signal corresponding to u; < 0 travels slower than the
part corresponding to u1 > 0. The initial signal is thus distorted, with a stiffening
of the front wave and the formation of a weak shock, namely a N-wave.

1.0

0.5

=
E 00
S

-0.51
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow

Interpretation : from Euler’s equation (17) and the Riemann invariant R~

c9u1_|_ 0u1+ 2 Cc?c 0 c— ¢ _I_y—1u
— + U= = = Coo
at = 'ox;  y—1 0x; 2
ou ou y — 1 ou
-1 -1 . 1 _0
9t + Uy X + (C + 5 u1) ox;
which leads to, 3
du y +1 U
-1 - 1 _0
ot + (C + 5 LI1) aX1

Two contributions to nonlinear effects can be identified,
which are associated with

— thermodynamics, with the modification of the speed of sound

— the convection itself
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow

Parametric solution — Initial value vy = gg(x1) at t =0

1
uq (x1,t) = go [x1 — (Coo-|— V—ZI— u1)t]

Time evolution provided by following the characteristic line,

X1 =5+[Coo+y—2i_1§/0(5)] dt
go (<) \ //\\u\1(x1)
¢ S t+dt H

Wave propagation in fluids - S7 ECL 2A - Jan. 2018 - cb1



L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow

Parametric solution - estimation of the shock formation time

As illustration, initial sinusoidal perturbation
go(x1) = asin(kxy) 0<x <1 t=20 A= 2mlk

o <

oYy | | ! |

N |
t=20 \/ tsh ’ X

The shock formation time ts; is given by the time needed by the velocity peak a
(initially at &) to reach the next neutral point (initially at & with & — &y = A/4),

y +1
2

Xsh = EO + (Coo + C’) tsh Xsh = 51 + Coolsh
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow

Parametric solution - estimation of the shock formation time t.;

A 2 A
a | tsh — Coolsp = Z — tsh = v+ 1 44

y + 1
(Coo-|— 5
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L Nonlinear wave propagation '

@ 1-D Euler equations for a homentropic flow
General approach to derive characteristic equations associated with a
hyperbolic system

A% A% Jo uy p
— 4+ A—=0 V = A=
dt * dx; ( U1 ) ( c?/p uy )

@ Eigenvalues A = uq = ¢ and eigen vectors V, of matrix A

B 1 B B 1 1 _1_1 1 plc
VA_(J_rc/p) S_(\/A)_(c/p—c/p) > _2(1—/3/6)

A=spst A= |uite !l
0 wuj—c
@ Characteristic equations
A% aVv A% A%
ST'—+ST'A—=0 STT—+4+NAST'—=0
at ox; — ot ox
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L Wave propagation in fluids

@ Turbulence and Aeroacoustics

Highly qualified candidates are encouraged
to apply at any time!

http://acoustique.ec-lyon.fr

Investigation of tone generation in ideally expanded supersonic planar
impinging jets (Gojon, Bogey & Marsden, J. Fluid Mech., 2016)

Journal of
Fluid Mechanics
VOLUME 808

L
’/, /,:" [
. -~
g $7
R 2
|
RN -6 ‘

4 _8 - e _8 ) !
-4 =2 0 2 394 -4 -2 0 2 4 55 -4 =2 0 2 4 6 827 -4 =2 0 2 4 6 8 9.1
xz/h x/h x/h x/h

Density and pressure fields, L/h = 3.94,5.5,8.27,9.1
M; =1.28, Re, =5 x 10*

N 2

& L O
=
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