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dz (21c)

Examination of Eqs. (21) shows that the pressure P must
be expressed in the form

P = ax + by + p(z) (22)

where a and b are constants, and p(z) is some function of z.
Substituting in Eq. (21 c) and integrating gives

p = -(l/2Mo)(£*2 + £,2) + C (23)

where C is a constant. Eqs. (21a) and (21b) now become

B0dBx , d*u
— —— -p M —— == ^jLt0 dz dz2

Q y , =

Mo cfe Mdz 2 "

In addition, two of Eqs. (13) survive:

1 d*Bx du _
—— —, — -T -DO -j = U/zocr az az

-rdz

(24a)

(24b)

(25a)

(25b)

Eqs. (24a) and (25a), which involve t£ and #x only, may be
combined to give

dz*
o2 du

jj, dz

and

dz* dz

(26)

(27)

These two equations can be solved separately for u and Bx,
respectively. Since Eqs. (24b) and (25b), which involve v
and By, have a structure similar to that of Eqs. (24a) and
(25a), it is evident that v and By have the same functional
form, except for a constant, as u and ##, respectively. Once
Bx and £3, are determined, the pressure P can be found from
Eqs. (22) and (23).

The solutions to a few problems of the two cases discussed
in the foregoing are reported in the literature. Shercliff1 ob-
tained a complete solution for a problem of the case 1 type,
namely, the flow through a straight pipe with rectangular
cross section. Sherman and Sutton2 solved a problem of the
case 2 type except for the inclusion of the Hall effects in Eq. (8).
The flow between parallel plates was studied by Hartmann3

for the case of stationary plates and by Lehnert4 for the case of
relative motion between the plates. Both of these problems
come under case 2 but with the additional simplifying con-
dition that v = 0.
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Existence of Periodic Solutions Passing
Near Both Masses of the Restricted

Three-Body Problem

RICHARD F.
NASA George C. Marshall Space Flight Center,

Huntsville, Ala.

The following new result is announced and an
outline of its proof indicated. There exist in the
restricted three-body problem with small mass ratio
one-parametric families of synodically closed solu-
tion curves, which are near rotating Keplerian
ellipses with arbitrary rational sidereal frequencies
and appropriate positive eccentricities. By suitable
selection of the parameter values, these periodic
solutions can be made to come close to both attract-
ing bodies. Thus, besides its meaning for astron-
omy or atomic physics possibly, the practical sig-
nificance of this result for astronautics becomes
apparent if one considers operating spacecraft along
such paths in the Earth-sun or moon-Earth systems.
(The detailed mathematical existence proof is to
appear elsewhere.)

IN the restricted three-body problem, one considers the
motion of a particle P of negligible mass moving subject

to the Newtonian attraction from two other bodies E and M,
which rotate in circles about their center of gravity S. One
can choose the units of time, mass, and distance such that E
and M have masses 1 — M and /*, distance 1, and angular
velocity 1 (0 ̂  ju ^ 1). Considering the case when P moves
in the plane of E and M only and using complex position
vectors drawn from S as origin, the equations of motion for
P with position vector x = Xi + ix2 = x(t) in a co-system
rotating with E and M are ( ' = d/dt)

x + 2ix - x = - (1 - ~3 -+ AO \x +
+ M - l)\x+ M - 1|~3 [1]

since — pe", (1 — /*)e", and z = xeu = z(t) are the inertial
position vectors of E, M, and P at time t.

For AI = 0, the solutions of [1 ] are well known. They cor-
respond to Keplerian motions z(t), i.e., solutions of z =
— z\ z ~3. If z(t) describes an elliptic motion, its period T0 =
2?r a3/2| is determined by the major half-axis a > 0 alone.
In order that the corresponding x(t) be periodic, it is neces-
sary and sufficient that T0 be commensurable with the period
of M] i.e., a3/2 = m/k with natural m and integer k, which
is chosen positive respectively negative, if z(f) is direct respec-
tively retrograde. The initial conditions

= i(c* - c*z = a(l -
yield such a solution of [1] with /* = 0 describing motion
along a rotating ellipse of eccentricity e(0 < e < 1) and
period TQ. The synodical period of this solution is T7* =
2irm = \k\T0, and it closes after k — m revolutions around
the origin, which is a focus of z(t). This solution is denoted
by x*(f) from here on.

Now the following result can be stated: There exist
periodic solutions x(t) of [1] for small /z > 0 which are near
the generating solutions x*(t) belonging to arbitrary k, m,
and properly restricted e. These solutions and their synodi-
cal periods T are continuous in /z and transfer into x*(t) for
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The restrictions upon e are as follows: For given a =
(m/fc)2/3, there are at most finitely many e in 0 < e < 1 with
€ = (1 - a~3)1/2 or x*(f) = 1 at least once in 0 ^ t ^ T*.
In the latter case, P collides with M. Such e have to be
omitted from (0,1).

The following steps lead to a proof of these statements:
1) The special solution curve x = x*(t), (0 ̂  t ^ T*) inter-

sects the real axis perpendicularly twice, namely at t = 0 and
t = i?7*. But every solution curve of [1] with this property
is symmetric over the real axis and thus closed. Therefore,
try to determine the initially real position and pure imaginary
velocity

= 5(0) = jc(0) = -z(0) = irj

such that the resulting solution of [1] satisfies

[3]

[4]

for some T > 0. Then x(t) will be periodic with T. (A
bar denotes the conjugate complex number.) Clearly, the
functions in [4] depend also upon £, 77, and /x. Since x*(t)
satisfies the periodicity conditions [3] and [4] with T — T*
and n = 0, there is hope that these can be satisfied also for
small p, > 0 and appropriate £, 77 near £*, 77* as given in [2].
This now holds indeed, but it is not obvious at all, as the de-
tailed mathematical and historical exposition to be published
elsewhere shows.

2) Since [4] represents an implicit system of equations for
the unknown functions T(/z), £(/*), 77 (/-t), its solvability is
essentially determined by the rank of certain associated
functional matrices, besides the usually satisfied differenti-
ability requirements, which demand particular care here,
however. Neglecting this care, only the particular func-
tional determinant

t, T?)] = D(t,(,ri, M) = D [5]

is considered here. Its value D* at t = ^T* = mir, £ =

D* = 3nMrij*e[(-l)* - e]/(c* - [6]

which is finite and not zero, if 0 < e < 1, 77* ^ 0, and ac* ^
1. Here 77* is given by [2], and the last condition is equiva-
lent with e 9^ (I — a~3)1/2 for positive c*. Under these
conditions, then, [4] can be solved for T and 77 in terms of
£, ju, and especially with £ = £* and small ju > 0, since [4]
is equivalent with #2 = 0, x\ = 0 at £ = JT.

3) The calculation of D* requires the explicit knowledge
of the dependence of the solutions of [1 ] for JJL = 0 upon time
and their initial values. This dependence, though prin-
cipally known for any rotating Keplerian motion, is rather
complicated and not suited at all to derive [6]. The follow-
ing new variables are appropriate for this task:

F = arctg

U = - cfe +

H = |(x!2 + fr* - r2) -

V = x<Jr + c(x\ — [7]

where r = (x^ + £2
2)1/2, and c = Xi±2 — x&i + r2 is the con-

stant of area of the rotating Keplerian motion. The dynam-
ical meaning of these variables is clear from the usual Kep-
lerian motion; H is the Jacobi integral, for instance. Let h
denote the value of H on any solution of [1] with ju = 0.
Then D in [5] can be expressed as

D = 7)
t*F, V) d(«, h) c)77 [8]

and this leads to a rather convenient calculation of Z)* after
transferring [1] for jj, — 0 into the new variables and making
use of

Fig. 1 Closed path of P
in rotating co-system with

m = 1, k = 2

as implied by [7], which will not be demonstrated here.
This completes the brief outline of the existence proof.

A finer consideration shows a.o. that the only requirement
upon e besides e 5* (1 — a~3)1/2 is expressed by x*(t) ^ I in
0 ^ t ^ T7*. It is conceivable that for fixed a there will be
infinitely many e for which x*(t) collides with M; these e
could accumulate at 0 or 1, for instance. But the commen-
surability of the periods of P and M for /z = 0 actually allows
at most finitely many such e, and the proof shows that for
every closed e interval/ not containing such exceptional values
and for fixed sufficiently small /x > 0, there exists a family
of periodic solutions of [1 ] depending continuously upon the
parameter e in /, which transfers into the corresponding
family of solutions x*(t) for ju -> 0, a = (m/k)2fz being fixed
arbitrarily.

The initial values for these solutions follow by solving [4]
for T, 77 in terms of p and £ = £*, which according to [5] and
[6] is possible under the foregoing restrictions upon c, if also
*7* ?*. 0.

The actual calculation of these values requires the knowl-
edge of the general solution of [1] for small fj, and initial
values [3] near [2] at t = \T with T near T*. This can
always be achieved at least by high-speed computers carrying
out a numerical integration of [1]. Thereby, £ can be
chosen arbitrary as long as e resulting from £ = o(l + e) =
£* is between 0 and 1, the corresponding 77* in [2] does not
vanish, and e is not one of the exceptional values defined
previously. Thus the initial position £ can be chosen inde-
pendent of fji, and only the initial velocity 77 and the period
T will depend upon ju and £, assuming always that a =
(ra/&)2/3 is given. However, this leads to a difficulty, when
77 approaches zero, which happens for a value of £ = £* near
that value, which produces 77* = 0 in [2]. Then D in [8]
will be zero, but this formula shows also that h or T?2 should
be used instead of 77 to solve the appropriately modified
periodicity conditions [4]. Then 77 follows uniquely for
fixed jit > 0 from h by observing that 77 is a strictly monotonic
function of £ near 77 = 0, as can be shown. This situation
can occur only when 2a ^ 1.

The solution curves of [1] become interesting for astro-
nautical applications if they pass at prescribed distances near
E and M. By selecting a = (m/fc)2/3 and e according to

- e) <2d a(l + e) < 1 + d [9]

for instance, with suitable small 5 > 0, this can be achieved
for x*(t) and thus also for the corresponding x(t), which is
reasonably near x*(t) still for /* = -gV ~ the value of ju for
the case E = Earth, M = moon. For example, the choice

Fig. 2 Closed path of P in
rotating co-system with m =
2, k = 5; numbers show
loops made by P in succes-

sion
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m = 2, k ••= +5 gives for a"1 — 1 < e < I a highly inter-
esting family of solutions passing close to E and M, with no
exceptional e values in this range. Solution curves passing
near E and M can also be generated, starting from £* =
a(l — e) and 77* by [2], when k — m is odd. The corre-
sponding solutions x*(t) are obtained from the previous ones
using [2] by rotation through — ir(l — m/k) -sign k, but for
/z > 0 this relation will be distorted. Such solutions can be
made to come close to M at a later time (not at apogee).
The choice m = 1, k = +2 yields promising flight paths
for solar probes returning to Earth after a little less than 1 yr.

Fig. 3 Circular paths of
E, M, and the path from
Fig. 1 in inertial co-system
nearly from t = 0 to t =
2 T; capture and rejection

of P by M

The perturbations encountered on actual flights, for which
the restricted three-body problem is only an idealization,
could be controlled essentially by employing continuous elec-
tric or other propulsions. Practical uses of certain of the
periodic flight paths, whose existence has been established
mathematically, can be conceived readily. This paper men-
tions only a radiation protected heavy Earth-moon ferry

Fig. 4 Circular arc of M and the path from Fig. 2 as seen from E
under space-fixed orientation from t = 0 to nearly t = I T; cap-

ture and rejection of P by M

vehicle perpetually on such a path, to be supplied or boarded
by passengers after rendezvous with much smaller crafts
near E or M, which themselves could return to their bases,
for instance. This would relieve the necessity to launch a
heavy space ship from Earth or to assemble it in Earth orbit
for every new flight to the moon and landing back on Earth.
Thus tourist trips to the moon and back become practical
and more economical.

A few illustrations are included which are calculated for
the case M = sV- Figs. 1 and 2 show synodically closed
solution curves of [1] for m = 1, k — 2 and m = 2, k = 5,
respectively, in the rotating co-system. Fig. 3 shows for
the first case the circular paths of E and M and the path
of P in an inertial co-system with origin at S. Fig. 4 shows
for the second case the paths of P and M in a co-system with
origin at E and space-fixed orientation. Note the short time
capture of P by M with subsequent rejection which happens
after elapse of every T units of tune, i.e., every time when P
has completed nearly k Kbplerian elliptic orbits with focus
at E

Radiation Environment Following a
Nuclear Attack

R. A. PORTER1 AND R. L. HATFIELD2

Martin Company, Denver, Colo.

This article describes an analytical model that
can predict postblast nuclear radiation levels follow-
ing an air burst of any size and proximity. It is also
an attempt to assemble in one place all the salient
subexpressions and considerations that must be
incorporated into a computer program for complete
prosecution of the model's details. The initial
condition assumed is that an overhead nuclear
detonation, sufficiently high to preclude significant
fallout, has just occurred. An oblate, spheroid-
shaped cloud is rising, growing, and emitting
gamma rays at an ever-decreasing rate. The radia-
tion dose rate at any discrete time i and altitude j
is then calculated by the expression

1-602 x 10 ~* X
k—Hboti 1 = 0 m=l

—— ) BjhlmEm

P /m

exp[ -

A sample case of a 20-MT burst is considered, and
curves of dose rates vs altitudes at several discrete
instants in time are generated.

THE effect that nuclear radiation may have on electronic
devices is of crucial concern to designers of weapons

systems. Several informative articles dealing with suscepti-
bilities of components and circuits to radiation have appeared
recently in unclassified literature (2,3),3 but to incorporate
these considerations intelligently into his system concept, the
designer also needs to know the greatest amount of radiation
the system might receive.

It is, of course, impossible to predict numbers, sizes, and
proximities of nuclear detonations that might occur in the
event of attack. However, one can hypothesize an array of
this sort and obtain radiation environment curves, which will
enable the designer to make definitive statements concerning
component selection, "hold" times, etc., required for success-
ful missions immediately following a nuclear attack.

By definition, " . . . a typical air burst takes place at such a
height that the fireball, even at its maximum, is well above the
surface of the earth" (1).

Description of Analytical Model

The initial condition assumed is that an overhead nuclear
detonation sufficiently high to preclude significant fallout has
just occurred. An oblate spheroid-shaped cloud is rising,
growing, and emitting gamma rays at an ever-decreasing
rate. Also, the system, in this case a missile, has been pro-
tected from the burst's primary radiation pulse and peak air
overpressure. Such would be the case for a hardened under-
ground silo (4). It is desired to find radiation levels as func-
tions of times and altitudes following this detonation.

Define the following:

i = time after air burst, sec
j = distances pf a fictitious aboveground radiation "de-

tector," cm. At each discrete time i chosen follow-
ing the burst, this detector will be moved from one

Received by ARS September 27, 1962.
1 Design Specialist.
2 Supervisor, Small Computers Unit.
3 Numbers in parentheses indicate References at end of paper.

D
ow

nl
oa

de
d 

by
 C

hr
is

to
ph

e 
B

ai
lly

 o
n 

M
ar

ch
 5

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/3
.1

51
6 


