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The Genesis of Chua’s Circuit

Leon O. Chua

The Genesis of Chua’s Circuit

Following a non-technical personal reminiscence of
the author’s conception of Chua’s circuit, this paper
presents the systematic sequence of technical steps
which the author used to design his chaotic circuit.
The design procedure, though straightforward in na-
ture, could not have been concocted without a work-
ing knowledge of several crucial properties of nonlin-
ear circuits and their physical realizations.

Die Entstehung der Chua-Schaltung

Anhand eines personlichen, nichttechnischen Riickblicks
auf die Grundgedanken des Autors zur Chua-Schaltung
stellt die Arbeit die systematische Folge der technischen
Schritte dar, die ihn zum Entwurf dieser chaotischen
Schaltung fiithrten. Der Entwurfsvorgang ist an sich recht
einfach, erforderte aber dennoch die Erfahrung und
Kenntnis verschiedener Kerneigenschaften nichtlinearer
Schaltungen und ihrer physikalischen Realisierungen.

1. Reminiscence: A Historical Anecdote

The event which led to the discovery of Chua’s circuit
took place in the laboratory of Professor T. Matsumo-
to of Waseda University on a late October afternoon
in 1983, the day after my arrival in Tokyo to begin
serving my JSPS (Japan Society for Promotion of
Science) fellowship. There, in a well-orchestrated and
instrument laden corner of Matsumoto’s laboratory
I was to have witnessed a live demonstration of pre-
sumably the world’s first successful electronic circuit
realization of the Lorenz Equations, on which Profes-
sor Matsumoto’s research group had toiled for over a
year. It was indeed a remarkable piece of electronic
circuitry. It was painstakingly breadboarded to near
perfection, exposing neatly more than a dozen IC
components, and embellished by almost as many po-
tentiometers and trimmers for fine tuning and tweak-
ing their incredibly sensitive circuit board. There
would have been no need for inventing a more robust
chaotic circuit had Matsumoto’s Lorenz Circuit
worked. It did not. The fault lies not on Matsumoto’s
lack of experimental skill, but rather on the dearth of
a critical nonlinear IC component with a near-ideal
characteristic and a sufficiently large dynamic range;
namely, the analog multiplier. Unfortunately, this
component was the key to building an autonomous
chaotic circuit in 1983. Only two autonomous systems
of ordinary differential equations were generally ac-
cepted then as being chaotic, namely.
The Lorenz Equations

x=—a(x—y)

y=Bx—y—xz

Z=xy—vyz

and The Rassler Equations

X==y—z
y=x+ay
z=f+z(x—7y)
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where «, f and y are parameters. Note that the nonlin-
earity in both systems is a function of two variables;
namely, the product function.

Prior to 1983, the conspicuous absence of a repro-
ducible functioning chaotic circuit or system seems to
suggest that chaos is a pathological phenomenon that
can exist only in mathematical abstractions, and in
computer simulations of contrived equations. Conse-
quently, electrical engineers in general, and nonlinear
circuit theorists in particular, have heretofore paid
little attention to a phenomenon which many had
regarded as an esoteric curiosity. Such was the state of
mind among the nonlinear circuit theory community,
circa 1983. Matsumoto’s Lorenz Circuit was to have
turned the tide of indifference among nonlinear circuit
theorists. Viewed from this historical perspective and
motivation, the utter disappointments that descended
upon all of us on that uneventful October afternoon
was quite understandable. So profound was this fail-
ure that the wretched feeling persisted in my subcon-
scious mind till about bedtime that evening. Suddenly
it dawned upon me, that since the main mechanism
which gives rise to chaos, in both the Lorenz and the
Rossler Equations, is the presence of at least two un-
stable equilibrium points — 3 for the Lorenz Equations
and 2 for the Réssler Equations — it seems only pru-
dent to design a simpler and more robust circuit hav-
ing these attributes.

Having identified this alternative approach and
strategy, it becomes a simple exercise in elementary
nonlinear circuit theory [2] to enumerate systematical-
ly all such circuit candidates, of which there were only
8 of them, and then to systematically eliminate those
that, for one reason or another, can not be chaotic.
This simple exercise quickly led to two contenders,
which upon an application of some educated intu-
ition, tempered by 2 decades of daily exposure to non-
linear circuit phenomena, finally led me to the circuit
in Fig. 1. The entire enumeration and elimination pro-
cess was carried out in less than an hour, in the form
of nearly illegible circuit diagrams that I had scribbed
on napkins and blank edges of used envelopes. I had
to resort to these makeshifts because no paper could
be found at that late hour in the dormitory that I had
moved into only the night before.
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(The following section presents a technical version
— of the design episode alluded to in the proceeding
. b . narrative.)
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Fig. 1. Chua’s circuit (a) and the 5-segment vy, — i, character-
istic (b) for the nonlinear resistor #. For computer simula-
tions, chaos can be observed with only the 3 inner negative-
slope segments. The small-signal equivalent circuit corre-
sponding to an equilibrium point lying on any one of these
3 segments is a negative resistance.

The next morning I presented my proposed circuit
to Matsumoto and instructed him to choose the value
of R so that its load line [2] would intersect the 3 inner
segments having a negative slope in Fig. 1(b).

Matsumoto immediately programmed the circuit
equations into his computer. Shortly after that, greatly
excited, he came running to my office and jubilantly
announced that he had found a strange attractor!
Matsumoto’s extreme excitement at that instant was
not unlike that of a little boy’s first jump into a swim-
ming pool, for he has had no prior experience with
either piecewise-linear dynamic circuits, or nonlinear
oscillations, let alone strange attractors.

For several months after this episode. Matsumoto
continued to simulate my circuit over a wider range of
circuit parameters, and to double check his computer
data to ensure that the strange attractor he had ob-
served was not in fact an artifact of his rather unso-
phisticated computer program, which was written in
BASIC. In spite of my numerous proddings, he had
refrained from actually breadboarding my circuit
since his research group has never synthesized a pre-
scribed non-monotonic v—i characteristic before.
Subsequently, I wrote to Zhong Guo Qin and Farhad
Ayrom, who were members of my Nonlinear Electron-
Jdcs Laboratory in Berkeley, and suggested that they
apply the synthesis procedure we had developed earli-
er to build this circuit. Their breadboard worked with
virtually no fine tuning. Consequently, Zhong & Ay-
rom became the first researchers to have documented

experimentally-observed chaos from Chua’s circuit
1.

Since our goal is to build an autonomous electronic
circuit which exhibits a chaotic electronic natural be-
havior, we can formulate our circuit specifications as
follows:

Design a physically realizable autonomous circuit
having exactly two or three unstable equilibrium
points. The circuit should contain the least possible
number of 2-terminal linear passive resistors, in-
ductors, and capacitors, and exactly one 2-terminal
nonlinear resistor characterized by an eventually-
passive, piecewise-linear, voltage-controlled v —i
characteristic.

Clearly, the nonlinear resistor must be active in order
for the circuit to become chaotic. In other words, the
v—i characteristic must have a non-empty intersec-
tion with the open 2nd quadrant, and/or with the
open 4th quadrant. However, in order for such a non-
linear resistor to be physically realizable, it must be
eventually passive in the sense that its v —i characteris-
tic must lie exclusively in the 1st and the 3rd quad-
rants outside of some circle of arbitrarily large but
finite radius.

Note that we have stipulated that the v—i charac-
teristic be piecewise-linear for two strategic reasons.
First, we have had extensive experience on synthesiz-
ing piecewise-linear characteristics, having published
several papers on this subject, e.g. [3] and [4]. Second-
ly, we have had extensive experience in decomposing
the dynamics of piecewise-linear dynamic circuits into
the analysis of several linear (or strictly speaking,
affine) systems [2], [8] and [9].

We have also stipulated that the nonlinear resistor
be voltage-controlled because it is easier to synthesize
such elements using op-amps and pn-junction diodes
as building blocks [5], [10].

2.2 Systematic Design Procedure

Just like designing any circuit to satisfy a prescribed
set of specifications, Chua’s circuit was designed using
a step-by-step systematic synthesis procedure.

1) Determining the Minimum Number
of Circuit Elements

An autonomous system of ordinary differential equa-
tions having less than 3 state variables can not be
chaotic [13]. Let us therefore choose 3 linear passive
energy storage elements for our circuit. Since the
specifications allow only one nonlinear 2-terminal re-
sistor, the remaining elements for our circuit are linear
passive resistors. We do not need any independent
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sources since the nonlinear resistor, being active, will
already have an internal power supply. The number of
linear resistors can be minimized by applying stan-
dard equivalent circuit techniques to the resulting cir-
cuit topology, which we determine next.

2) Determining the Circuit Topology

Let us extract the 3 linear energy storage elements and
the 2-terminal nonlinear resistor # and connect them
across the ports of a 4-port Ng, made of 2-terminal
linear passive resistors. Depending on our choice of
the type of energy storage elements, there are 4 dis-
tinct circuit configurations, as shown in Fig. 2. We
can immediately eliminate the RC circuit configura-
tion Fig. 2(a), and the RL circuit configuration of
Fig. 2(b), because two-element kind reciprocal cir-
cuits can not oscillate, let alone become chaotic [6].
The remaining two circuit configurations in Fig. 2 are
dual of each other, and hence are equally valid candi-
dates. Let us choose the last circuit in Fig. 2(d) be-
cause high quality and tunable precision inductors are
much more expensive than capacitors.

Having chosen the circuit configuration of Fig.
2(d), and recalling that the nonlinear resistor Z is
voltage-controlled (from our specifications), it imme-
diately follows from standard circuit modeling tech-
niques [7] that except for the rather inflexible case
where the two capacitors formed a loop with #, one
of the two capacitors must necessarily be connected
across %, so that the circuit configuration in Fig. 2(d)
can be further simplified to that shown in Fig. 3(a),
where N is now a 3-port made exclusively of 2-termi-
nal linear passive resistors.

At DC equilibriums, the capacitors can be replaced
by open circuits and the inductor by a short circuit, as
shown in Fig. 3(b). Since the resulting one-port N,
contains only 2-terminal linear passive resistors, it can
be replaced by a Thevenin equivalent resistance Ry >0
as shown in Fig. 3(c). Each intersection between the
load line vy = — R, iy with the vy — i characteristic of
A (yet to be determined) identifies the location of an
equilibrium point of the circuit. Since the Specifica-
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Fig. 3. (a) Circuit configuration which defines a well-posed
circuit having 2 linear capacitors, 1 linear inductor, a 2-ter-
minal non-monotonic voltage-controlled resistor, and linear
passive resistors.

(b) the DC equivalent circuit associated with the circuit in (a).
(c) The 1-port N in (b) is equivalent to a single linear passive
resistance R, . Since R, >0, the load line has a negative slope
in the vg—iy plane.
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Fig. 2. Four distinct configurations involving 3 energy stor-
age elements. The 4-port N, is made of 2-terminal linear
passive resistors.

Fig. 4. Assuming the linear 3-port N in Fig. 3(a) contai_ljs a
single linear positive resistance R >0, there are only 8 distinct
circuit topologies.
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tions called for the use of a minimum number of linear
resistors, let us assume that N, contains only one
linear resistor R>0. Having made this simplifying
assumption, the circuit configuration of Fig. 3(a) can
assume only 8 distinct topologies, as shown in Fig. 4.
Our next task is to choose the most promising candi-
date.

The DC equilibrium circuit corresponding to the 8
circuit topologies in Fig. 4 are shown in Fig. 5. An
examination of these topologies shows that the cir-
cuits in Figs. 5(a) and (b) can be eliminated from
further consideration because the equivalent linear re-
sistor R, in each case is a short circuit. The circuit in
Fig. 5(c) and (d) can also be eliminated because R, in
this case is an open circuit. For the remaining 4 cir-
cuits, the one shown in Fig. 4(e) can also be eliminated
because the linear resistor R is in parallel with the
nonlinear resistor 2, and can therefore be “absorbed”
- within £, thereby resulting in an open circuit for R,.
We can likewise eliminate the circuit shown in Fig. 4(f)
- because the two parallel capacitors C, and C, can be
- replaced by an equivalent capacitor, thereby resulting
in a second-order circuit, which can not be chaotic.
- We are finally left with only two candidates, Figs. 4(g)
and 4(h), both of which have R,=R>0.

There is no sound technical reason to favor one
- candidate over the other at this point. However, the
- presence of the L, C, resonant sub circuit on the right
~ hand side of Fig. 4(h) does provide an advantage,
_ since its oscillatory mechanism is often a precursor to
- chaos. Consequently, let us choose the circuit in Fig.
- 4(h) as our most likely circuit candidate for chaos.
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Fig. 5. The DC equilibrium circuits associated with the 8
chaotic circuit candidates from Fig. 4.

3) Determining the vy —ip Characteristic

Our final task is to determine the appropriate nonlin-
earity for # in order to satisfy the specifications that
the circuit must have exactly two, or three, unstable
equilibrium points. Since, except for the nonlinear re-
sistor £, all circuit elements are passive, and hence the
instability condition implies that each equilibrium
point must lie on a segment of the piecewise-linear
v —ig characteristic that has a negative slope. This
negative-slope condition is equivalent to the small-sig-
nal equivalent circuit about each equilibrium point
being a negative resistance, which is essential for insta-
bility [11].

Since R, >0, the load line is a straight line (through
the origin) with a negative slope equal to G=
—1/Ry,<0. In order to have 2 unstable equilibrium
points, there are only 4 distinct types of continuous
2-segment piecewise-linear characteristics that have a
negative slope for both segments, and which could
intersect the load line at 2 points, including the origin,
as depicted in Figs. 6 and 7. The characteristics in
Figs. 6(a) and 7(a) can be eliminated because they are
not voltage-controlled functions. The two remaining
characteristics in Figs. 6(b) and 7(b), which are dual of
each other, are however viable candidates. Unfortu-
nately, they are not eventually passive. The simplest
eventually-passive v,—i, characteristic which con-
tains Figs. 6(b) and 7(b) as a subset are shown in Figs.
8(a) and (b), respectively. Since they are dual of each
other, either one can be chosen. Since this circuit has
only 2 unstable equilibrium points, we could expect
that any strange attractor from this circuit would have
a structure that resembles the Rdssler attractor [1].

To obtain 3 unstable equilibrium points, as in the
Lorenz Equations, only two distinct types of continu-
ous 3-segment piecewise-linear characteristic, with a
negative slope for each segment, could satisfy the in-
stability condition, as depicted in Figs. 9(a) and (b),
respectively. The characteristic in Fig. 9(a) can be
eliminated because it is not a voltage-controlled func-
tion. The remaining characteristic in Fig. 9(b) is, how-
ever, perfectly valid in so far as satisfying the instabil-
ity condition is concerned. However, it is not
eventually passive. The simplest eventually-passive
piecewise-linear characteristic which contains Fig.
9(b) as a subset is the 5-segment characteristic shown
in Fig. 10.

Although the vy —iy characteristics given in Figs.
8(a), 8(b), and 10(a) do satisfy both the instability
condition and the eventual passivity condition stipu-
lated in the specifications, let us choose the latter for
three reasons.

1) The characteristics of Fig. 10(a) contains both char-
acteristics of Figs. 8(a) and 8(b) as subsets, and
hence if the circuit associated with either Fig. 8(a) or
8(b) has a strange attractor, so will Fig. 10(a).
Moreover, the presence of a third unstable equilib-
rium point in Fig. 10(a) provides the strong possi-
bility for the existence of other strange attractors,
thereby making this circuit richer in chaotic dynam-
ics.
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Fig. 6. Only 4 distinct piecewise-linear curves having 2 con-
nected negative-slope segments can exist which intersect the
negative-slope load line at exactly two points. The character-
istic in (a) is a double-valued function of both vy and ip. The
characteristic in (b) is a single-valued function, whose lower
segment, if extended indefinitely, will remain within the 4th
quadrant, and is hence not physically realizable.
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Fig. 7. The remaining piecewise-linear characteristics allud-
ed to in the preceding figure caption are the dual of those in
Fig. 6. Consequently, the characteristic in (a) is also a double-
valued function of both vy and i, while the characteristic in
(b) is a single-valued function, whose upper segment, if ex-
tended indefinitely, will remain within the 2nd quadrant, and
is hence not physically realizable.

Fig. 8. The 2 dual 4-segment characteristic in (a) and (b) are
the simplest eventually passive, hence physically realizable
vg— i characteristic which include that of Figs. 6(b) and 7(b)
respectively, as a subset.

2) It is actually easier to realize the vy — iy characteris-

tic of Fig. 10(a) because it exhibits odd symmetry:
there exist simple techniques to synthesize odd-
symmetrical v—i characteristics [2]. Moreover,
since the associated state equation will also be odd
symmetric, the analytical study of this circuit will be
no more complicated than that of the circuit associ-
ated with Fig. 8.

3) Although the piecewise-linear characteristic of
Fig. 8, has two unstable equilibrium points, an ex-
traneous third but stable equilibrium point 3) had
been inadvertently introduced because this point
falls on the positive-slope segment which we have
augmented earlier to ensure eventual passivity.
While it is theoretically possible to push the break-
point of this segment as far to the right as possible
to prevent it from interfering with the originally
intended dynamics, this approach may not be easy
to implement in practice in view of the limited cut-
in voltage (less than 1 volt) in pn-junction diodes,
and the limited saturation voltage (less than 20
volts) in op-amps.

The above considerations therefore suggest that we
choose the odd-symmetric 5-segment piecewise-linear
function of Fig. 10(a) as the vg— iy characteristic for
the nonlinear resistor #. Note that the two positive-
slope segments we augmented earlier to ensure even-
tual passivity did not introduce any new equilibrium
points, provided the resistance R is not too large to
cause its load line to swing beyond the outermost
breakpoints, as depicted in Fig. 10(b). Having made
this choice, we obtain the Chua’s circuit of Fig. 1.
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Fig. 9. Only 2 distinct piecewise-linear curves having 3 neg-
ative-slope segments can exist which intersect the negative-
slope load line at exactly 3 points. The characteristic in (a) is
- a triple-valued function of both vy and ig. The characteristic
" in (b) is a single-valued function of v,. However, if the end
~ segments are extended indefinitely, the curve will remain in
the 2nd and the 4th quadrants, respectively, and hence is not
physically realizable.

3. Concluding Remarks

The chaotic circuit of Fig. 1 was first announced in
[15] where Matsumoto had named it Chua’s Circuit.
~ However, since this seminal article on Chua’s Circuit
- involves only computer simulations where the two
~ end segments needed for physical realization are irrel-
evant, Matsumoto uses only the 3 negative-slope seg-
ments of Fig. 9(b) and refers to this characteristic in
his article as a “simplified version” of my original
circuit, This sentence by Matsumoto was misleading
because the circuit remains unchanged: only the
Vg — iy characteristic had been truncated to consist of
~ only the negative-slope segments, an obvious observa-
~ tion when viewed from the preceding synthesis proce-
dure. For the more hardware-oriented readers, how-
ever, it is important to stress that any electronic circuit
realization of this 3-segment characteristic — and there
exist many such realizations — will necessarily result in
the eventual characteristic rolling off, either gently, or
abruptly, so that the outermost portion of the charac-
teristic will eventually lie in the 1st and the 3rd quad-
rants, In the simplest cases, each outermost portion of
the v, —i, characteristics will approach a positive-
S?ope straight line. Indeed, the measured characteris-
tics of all known electronic circuit realizations [14],

Fig. 10. The simplest S-segment piecewise-linear characteris-
tic which is eventually passive, and hence physically realiz-
able, and which contains the 3-segment characteristic of Fig.
9(b) as a subset. The load line in (a) intersects this character-
istic at 3 points in the negative-slope segments, as called for
in the specifications. If the value of R, is chosen too large,
however, the two outer equilibrium points will fall on the
positive-slope outer segments, and become stable equilibri-
um points, thereby violating the specifications.

[15], [17] of the 3-segment vy — i, characteristic of Fig.
9(b) are virtually identical to the 5-segment character-
istic shown in Fig. 1(b).

As a final remark, we wish to point out that the
contending circuit candidate in Fig. 4(g) which we had
abandoned earlier in favor of Chua’s Circuit is inter-
esting in its own right. In particular, if we add a linear
passive resistor in series with the inductor L, in Fig.
4(g), we would obtain the canonical realization [12] of
Chua’s Circuit family [16]. More than 30 distinct
strange attractors have so far been discovered from
this canonical circuit!
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Book-Review - Buchbesprechung

P. Bhartia, K. V. S. Rao, R. S. Tomar: Millimeter-Wave Mi-
crostrip and Printed Circuit Antennas. Artech House, Bo-
ston/USA, 1991, 322 Seiten, 184 Bilder, 10 Tabellen,
16 cm x 23 cm, geb. £ 55.00. ISBN 0-89006-333-8.

Die drei Autoren dieses Bandes rekrutieren sich aus einem
kanadischen Zentrum der Verteidigungsforschung, der Uni-
versitiit von Ottawa und der Industriefirma Bell-Northern in
Ottawa/Kanada. Er zielt auf die allgemeine Miniaturisie-
rung von Radargeriten hin, was zu den mm-Wellenlingen
fiihren muB, speziell auf Gruppenantennen in gedruckter
(monolitischer) Schaltungstechnik. Arbeiten von zehn Jah-
ren sind zusammengefalit, um ,Ingenieure in der Praxis™
beim Entwurf zu unterstiitzen.

Begrenzend fiir die Brauchbarkeit solcher Gruppen wir-
ken Substrate, besonders deren Verluste und das Aufkom-
men von Oberflichenwellentypen bei hohen Werten der Di-
elektrizititskonstante (Kap. 1). Der Vergleich von analyti-
schen und numerischen Berechnungshilfen folgen in Kap. 2,
wobei auf Ableitungen auf Kosten von Literaturhinweisen
weitgehend verzichtet wird, was dann interessierte Leser wie-
der auf die Originalarbeiten zuriickwirft. Verwirrend wirkt,
wenn fiir die gleiche Leitergeometrie verschiedene Koordina-
tensysteme verwendet werden (Fig. 3.3, 4.4). Kapitel 3 geht
auf die Auswahl des wichtigen Substrat-Materials (Anisotro-

pien!) und weitere Hersteller-Strategien ein. Kapitel 4 ist den
speziellen Plittchen-Geometrien (patch) und deren elek-
trischen Eigenschaften gewidmet, wihrend Kapitel 5 auf die
verschiedenen Einkoppelsonden-Arten (Hohlleiter, koaxial,
Streifenleitung etc.) eingeht. Weg von den schmalen Band-
breiten, die durch die relativ hohen Giiten der Elemente und
der zugehérigen Dielektrika problematisch sind, zeigt Kapi-
tel 6 Wege zur Steigerung dieses Parameters und Kapitel 7
beschiiftigt sich mit den Gruppen-Topologien bei Steh- und
Wanderwellen-Einspeisung. Leider werden dabei so wichtige
Grundlagen wie das Einfiithren von elektrischen und ma-
gnetischen ,,Winden® nur fliichtig gestreift.

Mannigfaltige Vergleichstabellen und die vielen Grafiken,
in denen die berechneten Kurven mit Messungen sogar ver-
glichen werden, helfen in der Tat beim Entwurf solcher mi-
niaturisierter mm-Wellen-Gruppenantennen unter Berlick-
sichtigung von z. B. des Auftretens blinder Winkel und Flek-
ken (spots) beim (Haupt-)Keulenschwenken mittels elek-
tronisch angesteuerter Phasenschieber.

Der vorliegende Band ist selbst unter der Beriicksichti-
gung der genannten, didaktischen Méngel sicherlich Anten-
neningenieuren beim Entwurf solcher diffizilen, modernen
Gruppenstrahler (phased arrays) eine groBe Hilfe.

R. Wohlleben




