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An analog circuit implementation of the chaotic Lorenz system is described and used to demonstrate
two possible approaches to private communications based on synchronized chaotic systems.

PACS numbers: 05.45.+b, 43.72.+q, 84.30.Wp

In 1990 Pecora and Carroll [1] reported that certain
chaotic systems possess a self-synchronization property.
A chaotic system is self-synchronizing if it can be decom-
posed into subsystems: a drive system and a stable re-
sponse subsystem that synchronize when coupled with a
common drive signal [1-3]. They showed numerically
that synchronization occurs if all of the Lyapunov ex-
ponents for the response subsystems are negative. For
some synchronizing chaotic systems the ability to syn-
chronize is robust. For example, the Lorenz system is
decomposable into two separate response subsystems that
will each synchronize to the drive system when started
from any initial condition. As discussed in [4-6], the
combination of synchronization and unpredictability from
purely deterministic systems leads to some potentially in-
teresting communications applications. In this Letter, we
focus on the synchronizing properties of the Lorenz sys-
tem, the implementation of the Lorenz system as an ana-
log circuit, and the potential for utilizing the Lorenz cir-
cuit for various communications applications. It should
be stressed that the applications indicated are very pre-
liminary and presented primarily to suggest and illustrate
possible directions.

The Lorenz system [7] is given by

x=0c(y—x),
y=rx—y—xz, n
z=xy—bz,

where o, r, and b are parameters. As shown by Pecora
and Carroll an interesting property of (1) is that it is
decomposable into two stable subsystems. Specifically, a
stable (x,z,) response subsystem can be defined by

x1=c(y—xy),

()
z1=x1y—bz;,
and a second stable (y,,z2) response subsystem by
y2=rx —yi—xzy,
3)

z'2=xy2—bzz.

Equation (1) can be interpreted as the drive system since
its dynamics are independent of the response subsystems.
Equations (2) and (3) represent dynamical response sys-

tems which are driven by the drive signals y(z) and x(z),
respectively. The eigenvalues of the Jacobian matrix for
the (x1,z,) subsystem are both negative and thus |x; — x|
and |z —z|— 0 as 1— oo. Also, it can be shown numer-
ically that the Lyapunov exponents of the (y,z,) subsys-
tem are both negative and thus |y, —y| and |z,—z|— 0
as t— oo,

As we show below, the two response subsystems can be
used together to regenerate the full-dimensional dynamics
which are evolving at the drive system. Specifically, if
the input signal to the (y,,z,) subsystem is x(¢), then the
output y,(z) can be used to drive the (x1,z1) subsystem
and subsequently generate a “new” x(z) in addition to
having obtained, through synchronization, y(z) and z(z).
It is important to recognize that the two response subsys-
tems given by Egs. (2) and (3) can be combined into a
single system having a three-dimensional state space.
This produces a full-dimensional response system which is
structurally similar to the drive system (1). Further dis-
cussion of this result is given below in the context of the
circuit implementations.

A direct implementation of Eq. (1) with an electronic
circuit presents several difficulties. For example, the state
variables in Eq. (1) occupy a wide dynamic range with
values that exceed reasonable power supply limits. How-
ever, this difficulty can be eliminated by a simple trans-
formation of variables. Specifically, we define new vari-
ables by u =x/10, v =y/10, and w =z/20. With this scal-
ing, the Lorenz equations are transformed to

u=clw—u),
v=ru—v—20uw, 4)
w=5uv—bw.

This system, which we refer to as the transmitter, can be
more easily implemented with an electronic circuit be-
cause the state variables all have similar dynamic range
and circuit voltages remain well within the range of typi-
cal power supply limits.

An analog circuit implementation of the circuit Egs.
(4) is shown in Fig. 1. The operational amplifiers (1-8)
and associated circuitry perform the operations of addi-
tion, subtraction, and integration. Analog multipliers im-
plement the nonlinear terms in the circuit equations. We
emphasize that our circuit implementation of (4) is exact,
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FIG. 1. Lorenz-based chaotic circuit.

and that the coefficients o, r, and b can be independently
varied by adjusting the corresponding resistors Rs, R,
and R,3. In addition, the circuit time scale can be easily
adjusted by changing the values of the three capacitors,
Cy, C,, and C3, by a common factor. We have chosen
component values [Resistors (kQ): R|,R»,R3,R4R¢,R7,
R13,R14,R16,R17,R19=100; R5,R0=49.9; Rg=200; R,
R1»=10; R,;=63.4; R5=40.2; R 3=66.5; Ry=158;
capacitors (pF): C,C3,C3=500 Op-Amps (1-8):
LF353 multipliers: AD632AD] which result in the
coefficients o =16, r =45.6, and b =4.

To illustrate the chaotic behavior of the transmitter
circuit, an analog-to-digital (A/D) data recording system
was used to sample the appropriate circuit outputs at a
48-kHz rate and with 16-bit resolution. Figure 2(a)
shows the averaged power spectrum of the circuit wave
form u(¢). The power spectrum is broadband which is
typical of a chaotic signal. Figure 2(a) also shows a
power spectrum obtained from a numerical simulation of
the circuit equations. As we see, the performance of the
circuit and the simulation are consistent. Figures 2(b)
and 2(c) show the circuit’s chaotic attractor projected
onto the uv plane and uw plane, respectively. These data
were obtained from the circuit using the stereo recording
capability of the A/D system to simultaneously sample
the x-axis and y-axis signals at a 48-kHz rate and with
16-bit resolution. A more detailed analysis of the trans-
mitter circuit is given in [6].

A full-dimensional response system which will syn-
chronize to the chaotic signals at the transmitter (4) is
given by

ur =G(Ur _ur) s
Oy =ru —v, —20uw, , (5)
w, =5uv, —bw, .

We refer to this system as the receiver in light of some
potential communications applications. We denote the
transmitter state variables collectively by the vector
d=(u,v,w) and the receiver variables by the vector
r=(u,,v,,w,) when convenient.

By defining the dynamical errors by e=d—r, it is
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FIG. 2. Circuit data: (a) averaged power spectrum of u(z);
(b) chaotic attractor projected onto the uv plane; (c) chaotic at-
tractor projected onto the uw plane.

straightforward to show that synchronization in the
Lorenz system is a result of stable error dynamics be-
tween the transmitter and receiver. Assuming that the
transmitter and receiver coefficients are identical, a set of
equations which govern the error dynamics are given by

é1=cle;—ey),
ér=—e,—20u(t)es,
é3=5u(t)e2—be3.

The error dynamics are globally asymptotically stable at
the origin provided that o,b> 0. This result follows by
considering the three-dimensional Lyapunov function
defined by E(e,t) = 5 (1/0)e? +e3}+4e3]l. The time rate
of change of E(e,?) along trajectories is given by

E(e,t) =(1/0')e1é1+e2é2+4e3é3

=—(e;— ¥ex)?— e —4be},
which shows that E(e,t) decreases for all e=0. As
E(e,t) goes to zero synchronization occurs. Note that
the transmitter and receiver need not be operating chaoti-
cally for synchronization to occur. In [8], a similar
Lyapunov argument is given for the synchronization of
the-(y,z) subsystem of the Lorenz equations.

A comparison of the receiver equations (5) with the
transmitter equations (4) shows that they are nearly iden-
tical, except that the drive signal u(z) replaces the re-
ceiver signal u,(¢) in the (d,,w,) equations. This similar-
ity allows the transmitter and receiver circuits to be built
in an identical way, which helps to achieve perfect syn-
chronization between the transmitter and receiver. In [6]
we discuss and illustrate the synchronization performance
of the receiver circuit.
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FIG. 3. Chaotic communication system.

As one illustration of the potential use of synchronized
chaotic systems in communications, we describe a system
to transmit and recover binary-valued bit streams [6].
The basic idea is to modulate a transmitter coefficient
with the information-bearing wave form and to transmit
the chaotic drive signal. At the receiver, the coefficient
modulation will produce a synchronization error between
the received drive signal and the receiver’s regenerated
drive signal with an error signal amplitude that depends
on the modulation. Using the synchronization error the
modulation can be detected.

The modulation/detection process is illustrated in Fig.
3. In this figure, the coefficient b of the transmitter equa-
tions (4) is modulated by the information-bearing wave
form, m(t). For purposes of demonstrating the tech-
nique, we use a square wave for m(¢) as illustrated in
Fig. 4(a). The square wave produces a variation in the
transmitter coefficient b with the zero-bit and one-bit
coefficients corresponding to 5(0) =4 and (1) =4.4, re-
spectively. In [6] we show that the averaged power spec-
trum of the drive signal with and without the embedded
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FIG. 5. Chaotic signal masking system.

square wave present are very similar. Figure 4(b) shows
the synchronization error power, e?(z), at the output of
the receiver circuit. The coefficient modulation produces
significant synchronization error during a “1” transmis-
sion and very little error during a ““0” transmission. Fig-
ure 4(c) illustrates that the square-wave modulation can
be reliably recovered by low pass filtering the synchroni-
zation error power wave form and applying a threshold
test. This approach has also been shown to work using
Chua’s circuit [9].

Another potential approach to communications appli-
cations is based on signal masking and recovery. In sig-
nal masking, a noiselike masking signal is added at the
transmitter to the information-bearing signal m(¢) and at
the receiver the masking is removed. In our system, the
basic idea is to use the received signal to regenerate the
masking signal at the receiver and subtract it from the re-
ceived signal to recover m(¢). This can be done with the
synchronizing receiver circuit since the ability to syn-
chronize is robust, i.e., is not highly sensitive to perturba-
tions in the drive signal and thus can be done with the
masked signal. It is interesting to note that this idea is
not restricted to just the Lorenz circuit but has wider po-
tential; for example, Kocarev et al. [10] have also demon-
strated our signal masking concept in [4,5] using Chua’s
circuit. While there are many possible variations, consid-
er, for example, a transmitted signal of the form s(¢)
=u(t)+m(¢). It is assumed that for masking, the power
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FIG. 4. Circuit data: (a) modulation wave form; (b) synch-
ronization error power; (c) recovered wave form.

FIG. 6.
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Circuit data:

speech wave forms.

(a) Original; (b)
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FIG. 7. Circuit data: power spectra of chaotic masking and
speech signals.

level of m(¢) is significantly lower than that of #(z). The
dynamical system implemented at the receiver is

d,‘l6(vr—u,) )
O, =45.65(t) —v, —20s(t)w, ,
W, =5s(t)v, — 4w, .

If the receiver has synchronized with s(¢) as the drive,
then u,(t)=u(¢) and consequently m(¢) is recovered as
m(t) =s(¢) —u,(¢). Figure S illustrates the approach.

Using the transmitter and receiver circuits, we demon-
strate the performance of this system in Fig. 6 with a seg-
ment of speech from the sentence “He has the bluest
eyes.” As indicated in Fig. 7 the power spectra of the
chaotic masking signal, #(¢), and the speech are highly
overlapping with an average signal-to-masking ratio of
approximately —20 dB. Figures 6(a) and 6(b) show the
original speech, m(t), and the recovered speech signal,
m(t), respectively. Clearly, the speech signal has been
recovered and in informal listening tests is of reasonable
quality.
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