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Synchronization of Lorenz-B ased Chaotic 
Circuits with Applications to Communications 

Kevin M. Cuomo, Member, IEEE, Alan V. Oppenheim, Fellow, IEEE, and Steven H. Strogatz 

Abstruct- A circuit implementation of the chaotic Lorenz 
system is described. The chaotic behavior of the circuit closely 
matches the results predicted by numerical experiments. Using 
the concept of synchronized chaotic systems (SCS’s), two possible 
approaches to secure communications are demonstrated with the 
Lorenz circuit implemented in both the transmitter and receiver. 
In the first approach, a chaotic masking signal is added at the 
transmitter to the message, and at the receiver, the masking 
is regenerated and subtracted from the received signal. The 
second approach utilizes modulation of the coefficients of the 
chaotic system in the transmitter and corresponding detection of 
synchronization error in the receiver to transmit binary-valued 
bit streams. 

The use of SCS’s for communications relies on the robustness 
of the synchronization to perturbations in the drive signal. As 
a step toward further understanding the inherent robustness, 
we establish an analogy between synchronization in chaotic sys- 
tems, nonlinear observers for deterministic systems, and state 
estimation in probabilistic systems. This analogy exists because 
SCS’s can be viewed as performing the role of a nonlinear state 
space observer. To calibrate the robustness of the Lorenz SCS 
as a nonlinear state estimator, we compare the performance 
of the Lorenz SCS to an extended Kalman filter for providing 
state estimates when the measurement consists of a single noisy 
transmitter component. 

1. INTRODUCTION 

HAOTIC systems provide a rich mechanism for signal C design and generation, with potential applications to 
communications and signal processing. Because chaotic sig- 
nals are typically broadband, noiselike, and difficult to predict, 
they can be used in various contexts for masking information- 
bearing waveforms. They can also be used as modulating 
waveforms in spread spectrum systems. 

A particularly useful class of chaotic systems are those 
that possess a self-synchronization property [ 11-[3]. A chaotic 
system is self-synchronizing if it can be decomposed into 
at least two subsystems: a drive system (transmitter) and a 
stable response subsystem (receiver) that synchronize when 
coupled with a common signal. For some synchronized chaotic 
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systems (SCS’s), the ability to synchronize is robust. For 
example, in the Lorenz system, the synchronization is highly 
robust to perturbations in the drive signal as shown numeri- 
cally in Section VII. This property leads to some interesting 
communications applications. For example, the chaotic signal 
masking technique introduced in [4], [5] appears to be a 
potentially useful approach to private communications. In a 
second approach to private communications, the information- 
bearing waveform is used to modulate a transmitter coefficient. 
The corresponding synchronization error in the receiver can be 
used to detect binary-valued bit streams [6], [7]. 

In a somewhat different context, SCS’s can be viewed 
as performing the role of a nonlinear state space observer. 
Indeed, the input to a SCS consists of a single component 
of the transmitter’s state vector and produces an estimate of 
the transmitter’s full-dimensional state vector. In the case of 
noise-free measurements, the asymptotic state estimates are 
exact, with exponentially fast convergence in the case of the 
Lorenz system. Structurally, the SCS can be viewed as an 
open-loop nonlinear observer, since information from feedback 
signals does not not take part in the synchronization process. 
To quantify the robustness of the Lorenz SCS to perturbations 
in the drive signal, we numerically study the ability of the 
Lorenz SCS to provide meaningful state estimates when driven 
by a single noisy transmitter component. We then compare 
the SCS’s performance to an extended Kalman filter (EKF) to 
calibrate the SCS’s performance as a nonlinear state estimator. 

This paper represents an expanded version of work reported 
earlier by us [8] and is organized as follows. In Section 11, 
we summarize the concept of sy;_nchronized chaotic signals 
and systems. In Section 111, we discuss the electronic cir- 
cuit implementation of the Lorenz system. In Section IV, a 
synchronizing receiver circuit that can regenerated the full- 
dimensional dynamics of the transmitter is discussed and 
demonstrated. Sections V and VI provide examples of how 
the transmitter and receiver circuits can be used together 
for the implementation of new algorithms and approaches 
to communications. In Section VII, we emphasize a close 
connection between synchronization in chaotic systems and 
model-based state estimation using EKFs. 

11. BACKGROUND 

The Lorenz system [9] is given by 

k = u ( y  - x) 
y = TX - y - xz 
i = XY - bz 
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where CJ,  r ,  and b are parameters. As shown by Pecora and 
Carroll, the Lorenz system is decomposable into two stable 
subsystems. Specifically, a stable ( X I ,  2 1 )  response subsystem 
can be defined by 

and a second stable (y2, 2 2 )  response subsystem by 

y* = T X  - y2 - x22 

22 = Z Y ~  - bZq (3) 

Equation (1) can be interpreted as the drive system, since its 
dynamics are independent of the response subsystems. Equa- 
tions (2) and (3) represent dynamical response systems that 
are driven by the drive signals y ( t )  and x ( t ) ,  respectively. The 
eigenvalues of the Jacobian matrix for the (xi, 2 1 )  subsystems 
are both negative, thus, 1x1 - X I  and 121 - zI -+ 0 as t --t m. 
Also, it can be shown numerically that the Lyapunov exponents 
of the (yy~, 2 2 )  subsystem are both negative; thus, ly2 - yI and 
122 - zI --t 0 as t + CO. 

As we show below, the two response subsystems can be 
used together to regenerate the full-dimensional dynamics that 
are evolving at the drive system. Specifically, if the input 
signal to the ( ~ 2 ,  2 2 )  subsystem is ~ ( t ) ,  then the output y*(t) 
can be used to drive the ( z l ,  z l )  subsystem and subsequently 
generate a "new" x ( t )  in addition to having obtained, through 
synchronization, y ( t )  and ~ ( t ) .  It is important to recognize 
that the two response subsystems given by (2) and (3) can 
be combined into a single system having a three-dimensional 
state space. This produces a full-dimensional response system 
that is structurally similar to the drive system (1). Further 
discussion of this result is given below in the context of the 
circuit implementations. 

111. THE TRANSMITTER CIRCUIT 

A direct implementation of (1)  with an electronic circuit 
presents one major difficulty: The state variables in (1) occupy 
a wide dynamic range with values that exceed reasonable 
power supply limits. However, this difficulty can be eliminated 
by a simple transformation of variables. Specifically, for the 
coefficients U ,  r ,  and b used here, an appropriate transforma- 
tion is u = 2/10, I I  = y/lO, and 111 = 2/20. With this scaling, 
the Lorenz equations are transformed to 

?i = U ( W  - U )  

i, = ru - w - 20uw 

.Lii = 511' - bw. (4) 

This system, which we refer to as the transmitter, can be more 
easily implemented with an electronic circuit because the state 
variables all have similar dynamic range and circuit voltages 
remain well within the range of typical power supply limits. 

An analog circuit implementation of the circuit in the 
equations in (4) is shown in Fig. 1. The operational ampli- 
fiers ( 1)-(8) and associated circuitry perform the operations 
of addition, subtraction, and integration. Analog multipliers 
implement the nonlinear terms in the circuit equations. By 

Fig. 1. Lorenz-based chaotic circuit. 

applying standard node analysis techniques to the circuit of 
Fig. 1, a set of state equations that govern the dynamical 
behavior of the circuit can be obtained. This set of equations 
is given by 

. '  
U = -  RBCl [ $' - & (' + $) .] 

1 Ri 1 

- -  w - -uw 
R12 Rs R12 Rg 1 

An examination of these equations shows that the circuit time 
scale can be easily adjusted by changing the values of the 
three capacitors C1, C2, and C3 by a common factor. Thus, 
if a factor of R increase in signal bandwidth is desired, it 
can be achieved by dividing the three capacitor values by the 
same factor. In addition, the coefficients CJ,  T ,  and b can be 
independently varied by adjusting the corresponding resistors 
Rg, Rll, and Rls. This property allows for a simple way to 
independently vary the coefficients of the circuit equations. 
For the component values' we have chosen, ( 5 )  is equivalent 
to (4) after rescaling time by a factor of 2505. The resulting 
coefficients are CJ = 16, T = 45.6, and b = 4. 

To illustrate the chaotic behavior of the transmitter circuit, 
an analog-to-digital (AD) data recording system was used to 
sample the appropriate circuit outputs at 48-kHz rate and with 
16-bit resolution. Fig. 2 shows a sample function and averaged 
power spectrum corresponding to the circuit waveform u(t) .  
The power spectrum is broadband, which is typical of a chaotic 
signal. Fig. 2(b) also shows the power spectrum obtained from 
a numerical simulation of the Lorenz equations. As we see, the 
performance of the circuit and the simulation are consistent. 
Fig. 3 shows the circuit's chaotic attractor projected onto the 
uru-plane and uw-plane, respectively. These data were obtained 
from the circuit using the stereo recording capability of the 
A/D system to simultaneously sample the x-axis and y-axis 
signals at a 48-kHz rate and with 16-b resolution. A more 
detailed analysis of the transmitter circuit is given in [6]. 

'Resistors (kn): X1. R2.  X3. R4. R6. R7. R13. R14. R16. R1T. 
R19 = 100 R5. R10 = 49.9 R8 = 200 X 9 .  R12 = 10 E11 = 63.4 
R l 5  = 40.2 R18 = 66.5 R20 = 158 Capacitors (pF): C1,  C2, C 3  = 500 
Op-Amps (1)-(8): LF3.53 Multipliers: AD632AD. 
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Fig. 2. Circuit data: (a) A sample function of u ( t ) .  (b) Averaged power 
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Chaotic attractor projected onto uw-plane. 
Fig. 3 .  Circuit data: (a) Chaotic attractor projected onto uv-plane. (b) 

Iv. THE RECEIVER CIRCUIT 

A full-dimensional response system that will synchronize to 
the chaotic signals at the transmitter (4) is given by 

21, = cr(u, - U,) 

U, = ru - U,,. - ~ O U W ,  
w, = ~ U U ,  - bw, (6)  

This system is obtained from the transmitter equations by 
renaming variables from ( U ,  w ,  w) to (U,, U,, w,) and then 
substituting u(t)  for ~ , ( t )  in the second and third equations. 
We refer to this system as the receiver in light of some poten- 
tial communications applications. We denote the transmitter 
state variables collectively by the vector d = ( U ,  U ,  w) and 
the receiver variable by the vector r = (U,, w,, w,) when 
convenient. 

By defining the dynamical errors by e = d - r, it is 
straightforward to show that synchronization in the Lorenz 
system is a result of stable error dynamics between the 
transmitter and receiver. Assuming that the transmitter and 
receiver coefficients are identical, a set of equations that 
governs the error dynamics is given by 

61 = a(ez - e l )  

62 = -e2 - 20u(t)e3 
6 3  = 5 u ( t ) e 2  - be3 

The error dynamics are globally asymptotically stable at 
the origin, provided that cr, b >O. This result follows by 
considering the 3-D Lyapunov function defined by 

The time rate of change of E ( e ,  t )  along the trajectories is 
given by 

1 .  
E(e ,  t )  = ;elel + e 2 6 2  + 4 e 3 i 3  

Since E is positive definite and E is negative definite, Lya- 
punov's theorem (Theorem 10.2 in [lo]) implies that e( t )  -+ 0 
as t -+ m. Therefore, synchronization occurs as t -+ 00. 

In the Appendix, we show that the rate of synchronization 
is exponentially fast. Note also that the transmitter and re- 
ceiver need not be operating chaotically for synchronization 
to occur. In [ 111, a similar Lyapunov argument is given for 
the synchronization of the (y, 2 )  subsystem of the Lorenz 
equations. 

An electronic implementation of the receiver equations (6) 
is shown in Fig. 4. Comparison of the receiver circuit with 
the transmitter circuit of Fig. 1 shows that they are virtually 
identical, with the only difference being that the drive signal 
U @ )  replaces the receiver signal ur(t )  at a key point in the 
circuit. The practical advantage of this similarity is that the 
transmitter and receiver circuits can be built in an identical 
way, which helps to achieve perfect synchronization between 
the transmitter and receiver. 

To illustrate the synchronization performance of the receiver 
circuit, the appropriate transmitter and receiver signals were 
simultaneously recorded using the stereo recording capability 
of the A/D system. In Fig. 5(a), a plot of the actual circuit 
outputs ~ ( t )  versus ur(t )  is shown. Fig. 5(b) shows a similar 
plot for the circuit outputs ~ ( t )  and w,(t).  The 45" lines 
indicate that nearly perfect synchronization is achieved and 
maintained between the transmitter and receiver. The circuit 
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Fig. 6. Chaotic signal masking system. 

f 

i.e., is not highly sensitive to perturbations in the drive signal 
and thus can be done with the masked signal. It is interesting 
to note that this idea is not restricted to just the Lorenz circuit, 
but has wider potential. For example, Kocarev et al. [ 121 have 
also demonstrated our signal masking concept in [4], [5]  by 
using Chua’s circuit. 

Although there are many possible variations, consider, for 
example, a transmitted signal of the form s ( t )  = u( t )  + m(t). 
It is assumed that for masking, the power level of m(t)  is 
significantly lower than that of u(t) .  The dynamical system 
implemented at the receiver is 

Fig. 4. Synchronizing chaotic receiver circuit. 

(b) 

u ( t )  versus u,.(t). (b) r ( t )  versus < . r ( t ) .  
Fig. 5.  Circuit data: Synchronization of transmitter and receiver signals. (a) 

h, = 1 6 ( ~ ,  - ? L , )  

= 45 .6~( t )  - ‘U ,  - 2 0 s ( t ) ~ ,  
t i J ,  = 5 S ( t ) ? 1 ,  - 4211,. 

If the receiver has synchronized with s ( t )  as the drive, then 
u,(t) rv u(t) ,  and consequently 7 n ( t )  is recovered as riz(t) = 
s ( t )  - u,(t). Fig. 6 illustrates the approach. 

Using the transmitter and receiver circuits, we demonstrate 
the performance of this system in Fig. 7 with a segment 
of speech from the sentence, “He has the bluest eyes.” As 
indicated in Fig. 8, the power spectra of the chaotic masking 
signal u( t )  and the speech are highly overlapping, with an 
average signal-to-masking ratio of approximately -20 dB. Fig. 
7(a) and (b) shows the original speech m(t) and the recovered 
speech signal h ( t ) ,  respectively. For plotting purposes, these 
signals were low-pass filtered and downsampled. Clearly, the 
speech signal was recovered, and was of reasonable quality in 
informal listening tests. 

VI. CHAOTIC BINARY COMMUNICATIONS 

As a second illustration of the potential use of synchronized 
chaotic systems in communications, we describe a system 
to transmit and recover binary-valued bit streams [6]. The 
basic idea is to modulate a transmitter coefficient with the 

outputs shown in Fig. 5 reflect a time span of several minutes, 
indicating considerable stability of the synchronization. 

V. CHAOTIC SIGNAL MASKING 

A potential approach to communications applications is 
based on chaotic signal masking and recovery [4]-[8]. In signal 
masking, a noiselike masking signal is added at the transmitter 
to the information-bearing signal r n ( t ) ,  and at the receiver the 
masking is removed. In our system, the basic idea is to use the 
received signal to regenerate the masking signal at the receiver 
and subtract it from the received signal to recover m(t).  This 
can be done with the synchronizing receiver circuit, since the 
ability to synchronize is found experimentally to be robust, 

information-bearing waveform and to transmit the chaotic 
drive signal. At the receiver, the coefficient modulation will 
produce a synchronization error between the received drive 
signal and the receiver’s regenerated drive signal with an error 
signal amplitude that depends on the modulation. Using the 
synchronization error, the modulation can be detected. 

This modulation/detection process is illustrated in Fig. 9. In 
this figure, the coefficient b of the transmitter (4) is modulated 
by the information-bearing waveform, m( t ) .  The information 
is carried over the channel by the chaotic signal um(t) .  The 
noisy received signal ~ ( t )  = um(t)  + 7 1 ( t )  serves as the 
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Fig. 7. Circuit data: Speech waveforms. (a)  Original. (b) Recovered. 
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Fig. 8. Circuit data: Power spectra of chaotic masking and speech signals. 

{ = o ( v  - U) 
y = ru - v - 2 O u w  
w = 5uv - b(m(t))w 

Fig. 9. Chaotic communication system. 

driving input to the receiver. At the receiver, the modulation 
is detected by forming the difference between r ( t )  and the 
reconstructed drive signal ur(t ) .  If we assume that the signal- 
to-noise ratio (SNR) of ~ ( t )  is large, the error signal e l ( t )  = 
r ( t )  - ur ( t )  will have a small average power if no modulation 
is present. However, if, for example, the information waveform 
is a binary valued bit stream, with a “1” representing a 
coefficient mismatch and a “0” representing no coefficient 
mismatch, then e l  ( t )  will be relatively large in amplitude 
during the time period that a “1” is transmitted and small 
in amplitude during a “0’ transmission. The synchronizing 
receiver can thus be viewed as a form of matched filter for 
the chaotic transmitter signal u(t) .  

To illustrate the technique, we use a square-wave for m(t)  
as shown in Fig. 10(a). The square-wave produces a variation 

I I 
0 01 .02 03 .04 

(b) 

I I 
0 .01 .02 .03 .04 

Time (sec) 
(c) 

power. (c) Recovered waveform. 
Fig. I O .  Circuit data: (a) Modulation waveform. (b) Synchronization error 

in the transmitter coefficient b with the zero-bit and one- 
bit coefficients corresponding to b(0)  = 4 and b(1 )  = 4.4, 
respectively. In [6], we show that the averaged power spectrum 
of the drive signal with and without the embedded square-wave 
present are very similar. Fig. 10(b) shows the synchronization 
error power, e: ( t ) ,  at the output of the receiver circuit. The 
coefficient modulation produces significant synchronization 
error during a “1” transmission and very little error during a 
“0” transmission. Fig. 1 O(c) illustrates that the square-wave 
modulation can be reliably recovered by low-pass filtering 
the synchronization error power waveform and applying a 
threshold test. The allowable data rate is, of course, dependent 
on the synchronization response time of the receiver system. 
Although we have used a low bit rate to demonstrate the 
technique, the circuit time scale can be easily adjusted to allow 
much faster bit rates. 

Note that the ability to communicate digital bit streams 
using this method does not depend on the periodic nature 
of the square-wave used to demonstrate the technique. The 
results apply to aperiodic or random bit streams as well. A 
similar approach using Chua’s circuit has also been shown to 
work by Parlitz et al. [13]. 

VII. CHAOTIC SYNCHRONIZATION 
AND NONLINEAR STATE ESTIMATION 

Synchronized chaotic systems obtain state estimates of a 
nonlinear deterministic system through the stability of the 
error dynamics between transmitter and receiver. This seems 
analogous to using EKF’s to produce state estimates of nonlin- 
ear probabilistic systems. However, SCS’s have an open-loop 
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structure, and it is not obvious that the SCS can provide robust 
state estimates when driven by a noisy drive signal. As a 
step toward further understanding the inherent robustness of 
the Lorenz SCS, we compare the performance of the Lorenz 
SCS to an EKF algorithm. The implementation of the EKF is 
discussed below. 

Chaotic X x + v  
Transmitter 

7.1. EKF Implementation 

Probabilistic state estimates of the Lorenz system can be 
obtained with an EKF by expressing the Lorenz system 
dynamics and measurement model as a dynamical system of 
the form 

A 

Continuous d ,  

i: = f(z(t)) + w(t) 

y ( t )  = H z ( t )  + v( t )  (7) 

d = f ( d )  v(t) - N(O,R) L, 

where w ( t )  and v ( t )  represent zero-mean Gaussian white noise 
sources having spectral intensities Q ( t )  and R(t) ,  respectively. 
The process noise w ( t ) ,  and measurement noise, v ( t ) ,  are 
assumed to be uncorrelated, i.e., E ( w ( t ) v ( ~ ) }  = 0 for all 
t and 7. For our purposes, the observation matrix H will be 
constant with only a single nonzero entry. Specifically, since 
the observations consist of only the noisy IC component, the 
observation matrix H is given by the row vector H = [l 0 01. 

Although, in principle, there should be no process noise 
term in (7) because the dynamical system that we are studying 
is given, numerical experiments have shown that the process 
noise is essential in order to avoid rapid divergence of the 
Kalman filter state estimates for the Lorenz system. A rea- 
son for the divergence becomes clear when considering the 
form of the EKF corresponding to (7). Specifically, the EKF 
corresponding to (7) is given by 

3i: = f(?(t)) + K(t )[g( t )  - H i ( t ) ]  (8) 

where i is the current state estimate and K ( t )  is the Kalman 
gain. Although (8) captures the exact nonlinear dynamics of 
the system, the state estimates will diverge if the Kalman gain, 
K ( t )  becomes small. This follows from the fact that a chaotic 
system possesses a sensitive dependence on initial conditions, 
and any error in the current state estimate will be amplified 
if K ( t )  is nearly zero. 

Linearizing (7) about the current state estimate, the fol- 
lowing incremental system, which is valid for small &(t)  is 
obtained as follows: 

EKF --+ 

6s = F(2( t ) )6z( t )  + w(t) 
v( t )  = H S z ( t )  + .(t) (9) 

The time-varying matrix F ( k ( t ) )  corresponds to the Jacobian 
matrix of the Lorenz system evaluated at the current state 
estimate. Since (9) represents a linear time-varying system, 
the Kalman filter error covariance, P(t )  is governed by the 
matrix Riccati equation given below: 

r = F ( i ( t ) ) P ( t )  + P ( t ) F T ( i ( t ) )  
+ Q ( t )  - P(t )HTR-’ ( t )HP( t )  

K ( t )  = P ( t ) H T R - l ( t ) .  (10) 

Fig. 11. Numerical experiment. 

Equations (8) and (10) determine the EKF state estimates for 
the Lorenz system. In [6], we also discuss the implementation 
of a linearized EKF that uses the state estimates from the 
Lorenz SCS as the nominal trajectory. This approach improves 
the robustness of the linearized EKF to uncertainties in the 
transmitter’s initial condition. 

7.2. Performance Comparisons 

In this subsection, we compare the relative performance of 
the Lorenz SCS and EKF in terms of the input and output SNR. 
The numerical experiment used to evaluate the output SNR of 
these state estimators is illustrated in Fig. 11. As indicated, 
the transmitted signal z ( t )  corresponds to the z component of 
the Lorenz system. The input signal to both the SCS and EKF 
consists of the transmitted chaotic drive signal plus zero-mean 
Gaussian white noise. Both estimators receive the identical 
input sample values, i.e., the received signal z(2) + v ( t )  is 
simultaneously observed by the SCS and EKF. An initial rest 
condition is imposed on the SCS, and the EKF is initialized by 
using the true state of the transmitter at t = 0. State estimates 
were computed numerically for 10 s and the first few seconds 
of data were discarded to eliminate initial transient effects. The 
output SNR was then computed for the state estimates from 
the remaining data. 

Fig. 12 shows a performance comparison in terms of in- 
put/output SNR. The solid curves correspond with state es- 
timates from the EKF, and the dashed curves correspond 
with state estimates from the SCS. The performance of the 
SCS and EKF are comparable over a wide range of input 
SNR’s. A threshold effect is evident for both the SCS and 
EKF at low-input SNR’s. Above the threshold, however, the 
normalized error in the synchronization of each state variable 
is approximately 10 db less than the normalized error in the 
drive signal ~ ( t ) .  We also point out that the SCS is able to 
provide meaningful state estimates when starting from any 
initial condition. The EKF, however, requires accurate initial 
conditions, or the state estimates may rapidly diverge. 

7.3. Modeling Errors 

As a matter of practical significance, we numerically eval- 
uate the sensitivity of the Lorenz SCS and EKF to coefficient 
modeling errors at the receiver. For this experiment, the 
transmitter coefficients are held fixed, and all of the re- 
ceiver coefficients are treated as uniformly distributed random 
variables having mean values equal to the corresponding 
transmitter coefficient. The variance of the receiver coefficients 
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depend on the percentage modeling error being tested, where 
modeling error is defined as the ratio of the standard deviation 
to the mean value of the receiver coefficients. 

Fig. 13 shows a sensitivity comparison between the Lorenz 
SCS and EKF state estimators, where the input signal corre- 
sponds to the transmitters’s noisy IC component having a 10-dB 
input SNR. These curves were generated by selecting receiver 
coefficients from ten independent trials having the indicated 
error. The slopes of these curves indicate that the sensitivity 
of these two state estimators is nearly the same over the range 
of modeling errors tested. 

APPENDIX 

To show that e ( t )  decays at least exponentially fast, let 
V = :e:. + 2eg. Then, V decays at least exponentially fast 
because V = -e: - 4be: 5 -kV for any k < min(2, 2b). 
Integration then yields 05 V(t) 5 VOe-lit. Next, observe 
that +e; 5 V 5 VOe-lit so that e2(t)  5 

Similarly, e g ( t )  5 O ( ~ C ‘ “ ~ / ~ ) .  Finally, integration of 11 = 
c ( e 2  - el) ,  combined with e n ( t )  5 O(e-’”’), implies that 
e l ( t )  5 max {O(e-u t ) ,  O(e-k t /2)} .  Thus, all components of 
e ( t )  decay at least exponentially fast. 
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