
Chapter II. Runge-Kutta
and Extrapolation Methods

Numerical methods for ordinary differential equations fall naturally into two
classes: those which use one starting value at each step (“one-step methods”) and
those which are based on several values of the solution (“multistep methods” or
“multi-value methods”). The present chapter is devoted to the study of one-step
methods, while multistep methods are the subject of Chapter III. Both chapters
can, to a large extent, be read independently of each other.

We start with the theory of Runge-Kutta methods: the derivation of order con-
ditions with the help of labelled trees, error estimates, convergence proofs, imple-
mentation, methods of higher order, dense output. Section II.7 introduces implicit
Runge-Kutta methods. More attention will be drawn to these methods in Volume II
on stiff differential equations. Two sections then discuss the elegant idea of extrap-
olation (Richardson, Romberg, etc) and its use in obtaining high order codes. The
methods presented are then tested and compared on a series of problems. The po-
tential of parallelism is discussed in a separate section. We then turn our attention
to an algebraic theory of the composition of methods. This will be the basis for
the study of order properties for many general classes of methods in the follow-
ing chapter. The chapter ends with special methods for second order differential
equations y = f(x, y) , for Hamiltonian systems (symplectic methods) and for
problems with delay.

We illustrate the methods of this chapter with an example from Astronomy, the
restricted three body problem. One considers two bodies of masses 1−μ and μ in
circular rotation in a plane and a third body of negligible mass moving around in
the same plane. The equations are (see e.g., the classical textbook Szebehely 1967)

y
1 = y1 + 2y

2 −μ y1 + μ

D1

−μ
y1 −μ

D2

,

y
2 = y2 − 2y

1 −μ y2

D1

−μ
y2

D2

,

D1 = ((y1 + μ)2 + y2
2)3/2, D2 = ((y1 −μ)2 + y2

2)3/2,

μ = 0.012277471, μ = 1−μ .

(0.1)



130 II. Runge-Kutta and Extrapolation

There exist initial values, for example

y1(0) = 0.994 , y
1(0) = 0 , y2(0) = 0 ,

y
2(0) = −2.00158510637908252240537862224 ,

xend = 17.0652165601579625588917206249 ,

(0.2)

such that the solution is periodic with period xend . Such periodic solutions have
fascinated astronomers and mathematicians for many decades (Poincaré; extensive
numerical calculations are due to Sir George Darwin (1898)) and are now often
called “Arenstorf orbits” (see Arenstorf (1963) who did numerical computations
“on high speed electronic computers”). The problem is C∞ with the exception of
the two singular points y1 =−μ and y1 = 1−μ , y2 = 0 , therefore the Euler poly-
gons of Section I.7 are known to converge to the solution. But are they really nu-
merically useful here? We have chosen 24000 steps of step length h=xend/24000
and plotted the result in Figure 0.1. The result is not very striking.

�� �

��

�

74 steps of DOPRI574 steps of DOPRI5
(polygonal and(polygonal and
interpolatory solution)interpolatory solution)

earthearth

moonmoon

RK solution

6000 RK steps6000 RK steps

2400024000
Euler stepsEuler steps

initialinitial
valuevalue

DOPRI5DOPRI5

Fig. 0.1. An Arenstorf orbit computed by equidistant Euler,
equidistant Runge-Kutta and variable step size Dormand & Prince

The performance of the Runge-Kutta method (left tableau of Table 1.2) is al-
ready much better and converges faster to the solution. We have used 6000 steps of
step size xend/6000 , so that the numerical work becomes equivalent. Clearly, most
accuracy is lost in those parts of the orbit which are close to a singularity. There-
fore, codes with automatic step size selection, described in Section II.4, perform



II.0. Introduction 131

much better and the code DOPRI5 (Table 5.2) computes the orbit with a precision
of 10−3 in 98 steps (74 accepted and 24 rejected). The step size becomes very
large in some regions and the graphical representation as polygons connecting the
solution points becomes unsatisfactory. The solid line is the interpolatory solution
(Section II.6), which is also precise for all intermediate values and useful for many
other questions such as delay differential equations, event location or discontinu-
ities in the differential equation.

For still higher precision one needs methods of higher order. For example,
the code DOP853 (Section II.5) computes the orbit faster than DOPRI5 for more
stringent tolerances, say smaller than about 10−6 . The highest possible order
is obtained by extrapolation methods (Section II.9) and the code ODEX (with
Kmax = 15 ) obtains the orbit with a precision of 10−30 with about 25000 function
evaluations, precisely the same amount of work as for the above Euler solution.


