
Newtonian physics began
with an attempt to

make precise predictions
about natural phenomena,
predictions that could be ac-
curately checked by observa-
tion and experiment. The
goal was to understand na-
ture as a deterministic,
“clockwork” universe. The
application of probability dis-
tributions to physics devel-
oped much more slowly. Early uses of probability argu-
ments focused on distributions with well-defined means
and variances. The prime example was the Gaussian law
of errors, in which the mean traditionally represented the
most probable value from a series of repeated measure-
ments of a fixed quantity, and the variance was related to
the uncertainty of those measurements.

But when we come to the Maxwell–Boltzmann distri-
bution or the Planck distribution, the whole distribution
has physical meaning. Being away from the mean is no
longer an error, and a large variance is no longer an indi-
cator of poor measurement accuracy. In fact the whole dis-
tribution is the prediction. That was a major conceptual
advance.

In this article we take that idea to its extreme limit
and investigate probability distributions, called Lévy dis-
tributions, with infinite variances, and sometimes even in-
finite means. These distributions are intimately con-
nected with fractal random-walk trajectories, called Lévy
flights, that are composed of self-similar jumps.1 Lévy
flights are as widely applied in nonlinear, fractal, chaotic
and turbulent systems as Brownian motion is in simpler
systems.

Brownian motion
The observation of Brownian motion was first reported in
1785, by the Dutch physician Jan Ingenhausz. He was
looking at powdered charcoal on an alcohol surface. But
the phenomenon was later named for Robert Brown, who
published in 1828 his investigation of the movements of
fine particles, including pollen, dust and soot, on a water
surface. Albert Einstein eventually explained Brownian
motion in 1905, his annus mirabilis, in terms of random

thermal motions of fluid
molecules striking the mi-
croscopic particle and caus-
ing it to undergo a random
walk.

Einstein’s famous paper
was entitled “Über die von
der molekularkinetischen
Theorie der Wärme
geforderte Bewegung von in
ruhenden Flüssigkeiten
suspendierten Teilchen,”

that is to say, “On the motion, required by the molecu-
lar-kinetic theory of heat, of particles suspended in fluids
at rest.” Einstein was primarily exploiting molecular mo-
tion to derive an equation with which one could measure
Avogadro’s number. Apparently he had never actually seen
Brown’s original papers, which were published in the
Philosophical Magazine. “It is possible,” wrote Einstein,
“that the motions discussed here are identical with the
so-called Brownian molecular motion. But the references
accessible to me on the latter subject are so imprecise that
I could not form an opinion about that.”2 Einstein’s predic-
tion for the mean squared displacement of the random
walk of the Brownian particle was a linear growth with
time multiplied by a factor that involved Avogadro’s num-
ber. This result was promptly used by Jean Perrin to mea-
sure Avogadro’s number and thus bolster the case for the
existence of atoms. That work won Perrin the 1926 Nobel
Prize in Physics.

Less well known is the fact that Louis Bachelier, a
student of Henri Poincaré, developed a theory of Brownian
motion in his 1900 thesis. Because Bachelier’s work was
in the context of stock market fluctuations, it did not at-
tract the attention of physicists. He introduced what is to-
day known as the Chapman–Kolmogorov chain equation.
Having derived a diffusion equation for random processes,
he pointed out that probability could diffuse in the same
manner as heat. (See PHYSICS TODAY, May 1995, page 55.)

Bachelier’s work did not lead to any direct advances
in the physics of Brownian motion. In the economic con-
text of his work there was no friction, no place for Stokes’
law nor any appearance of Avogadro’s number. But Ein-
stein did employ all of these ingredients in his theory. Per-
haps that illustrates the difference between a mathemati-
cal approach and one laden with physical insight.

The mathematics of Brownian motion is actually deep
and subtle. Bachelier erred in defining a constant velocity
v for a Brownian trajectory by taking the limit x t/ for
small displacement x and time interval t. The proper
limit involves forming the diffusion constant D x t= 2 / as
both x and t go to zero. In other words, because the ran-
dom-walk displacement in Brownian motion grows only as
the square root of time, velocity scales like t− 1

2 and there-
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fore is not defined in the small-t limit.
A Brownian trajectory does not possess a well-defined

derivative at any point. Norbert Wiener developed a
mathematical measure theory to handle this complication.
He proved that the Brownian trajectory is continuous, but
of infinite length between any two points. The Brownian
trajectory wiggles so much that it is actually
two-dimensional. Therefore an area measure is more ap-
propriate than a length measure. Lévy flights have a di-
mension somewhere between zero and two.

Among the methods that have been explored to go be-
yond Einstein’s Brownian motion is fractal Brownian mo-
tion,1 which incorporates self-similarity and produces a
trajectory with a mean squared displacement that grows
with time raised to a power between zero and two. It is a
continuous process without identifiable jumps, and it has
been used to model phenomena as diverse as price fluctua-
tions and the water level of the Nile. Two other ventures
beyond traditional Brownian motion are fractal distribu-
tions of waiting times between random-walk steps and
random walks on fractal structures such as percolation
lattices. These two examples lead to slower-than-linear
growth of the mean squared displacement with time. But
in this article we focus on random walk processes that pro-
duce faster-than-linear growth of the mean squared dis-
placement.

Another approach to generalizing Brownian motion is
to view it as a special member of the class of Lévy-flight
random walks. Here we explore applications of Lévy
flights in physics.3 The interest in this area has grown
with the advent of personal computers and the realization
that Lévy flights can be created and analyzed experimen-
tally. The concept of Lévy flight can usefully be applied to
a wide range of physics issues, including chaotic phase dif-
fusion in Josephson junctions,4 turbulent diffusion,5,6 mi-
celle dynamics,7 vortex dynamics,8 anomalous diffusion in
rotating flows,9 molecular spectral fluctuations,10 trajec-
tories in nonlinear Hamiltonian systems,11–17 molecular
diffusion at liquid–solid interfaces,18, transport in turbu-
lent plasma,19 sharpening of blurred images20 and nega-
tive Hall resistance in anti-dot lattices.21 In these com-
plex systems, Lévy flights seem to be as prevalent as
diffusion is in simpler systems.

Lévy flights
The basic idea of Brownian motion is that of a random
walk, and the basic result is a Gaussian probability distri-
bution for the position of the random walker after a time t,
with the variance (square of the standard deviation) pro-
portional to t. Consider an N-step random walk in one di-
mension, with each step of random length x governed by
the same probability distribution p x( ), with zero mean.

LÉVY FLIGHT RANDOM WALK of 1000 steps in two
dimensions. For clarity, a dot is shown directly below each
turning point. Limited resolution of this plot makes it
difficult to discern indivdual turning points. They tend to
cluster in self-similar patterns characteristic of fractals.
Occasional long flight segments initiate new clusters. The
longer the step, the less likely is its occurence. But Lévy
flights have no characterisic length. (See the box on page 35.)
FIGURE 1

ROTATING-ANNULUS APPARATUS with
which Harry Swinney’s group at the
University of Texas investigate Lévy

flights and anomalous transport in
liquids. The flow is established by

pumping liquid into the rotating annulus
through holes in its bottom. Showing

off the equipment are (clockwise)
graduate student Eric Weeks and postdoc

Jeff Urbach. FIGURE 2
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The French mathematician Paul Lévy (1886–1971) posed
the question: When does the probability P XN ( ) for the
sum of N steps X X X XN= + + +1 2 ... \ have the same dis-
tribution p x( ) (up to a scale factor) as the individual steps?
This is basically the question of fractals, of when does the
whole look like its parts. The standard answer is that p x( )
should be a Gaussian, because a sum of N Gaussians is
again a Gaussian, but with N times the variance of the
original. But Lévy proved that there exist other solutions
to his question. All the other solutions, however, involve
random variables with infinite variances.

Augustine Cauchy, in 1853, was the first to realize
that other solutions to the N-step addition of random vari-
ables existed. He found the form for the probability when
it is transformed from real x space to Fourier k space:

~ ( ) ( | | )p k exp N kN = −
b

(1)

Cauchy’s famous example is the case β =1, which, when
transformed back into x space, has the form

p x
N

N
x N N

p x NN ( )
( / )

( / )= + =1 1 1
1π

(2)

This is now known as the Cauchy distribution. It shows
explicitly the connection between a one-step and an N-step
distribution. Exhibiting this scaling is more important
than trying to describe the Cauchy distribution in terms of
some pseudo-variance, as if it were a Gaussian.

Lévy showed that b in equation 1 must lie between 0
and 2 if p x( ) is to be nonnegative for all x, which is re-
quired for a probability. Nowadays the probabilities repre-
sented in equation 1 are named after Lévy. When the ab-
solute value of x is large, p x( ) is approximately | |x

− −1 b,
which implies that the second moment of p x( ) is infinite
when b is less than 2. This means that there is no charac-
teristic size for the random walk jumps, except in the
Gaussian case of b =2. It is just this absence of a charac-
teristic scale that makes Lévy random walks (flights)
scale-invariant fractals. The box at right makes this more
evident with an illustrative one-dimensional Lévy-flight
probability function, and figure 1 is a plot of 1000 steps of
a similar Lévy flight in two dimensions.

Despite the beauty of Lévy flights, the subject has
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OBSERVING FLUID FLOW with tracer
particles in the rotating-annulus
apparatus shown in figure 2 reveals
a: a state of six stable vortices that
frequently trap the particle as it circles
around the annulus. b: In another
observed flow state, the particle spends
less time trapped in vortices. c: Plotting
azimuthal displacement of several
particle trajectories against time shows
that the b trajectory (purple), exhibiting
long flights between vortex captures,
gets around the annulus much faster
than the a trajectory (red). (Courtesy of
H. Swinney.) FIGURE 3

A simple Lévy-flight random walk

Consider a one-dimensional random walk designed to illus-
trate the self similarity of Lévy flights. Start with the dis-

crete jump-probability distribution

p x x b x b
j

j j j( ) [ ( , ) ( , )]= − + + −
=

∞
−∑l

l
l d d

1

2 0

where b > >l 1 are parameters that characterize the distribu-
tion, and d(x, y) is the Kronecker delta, which equals 1 when
x y= and otherwise vanishes.

This distribution function allows jumps of length 1, b, b2,
b3 . . . . But note that whenever the length of the jump in-
creases by an order of magnitude (in base b), its probability of
occurring decreases by an order of magnitude (in base l).
Typically one gets a cluster of l jumps roughly of length 1 be-
fore there is a jump of length b. About l such clusters separated
by lengths of order b are formed before one sees a jump of order
b 2. And so it goes on, forming a hierarchy of clusters within
clusters.

Figure 1 shows a two-dimensional example of this kind of
random walk.

The Fourier transform of p(x) is

~( ) ( )p k b k
j

j j= −

=

∞
−∑l

l
l

1

2 0

cos

which is the famous self-similar Weierstrass function. So we
could call this the Weierstrass random walk. The
self-similarity of the Weierstrass curve appears explicitly
through the equation

~( ) ~( ) ( )p k p bk k= + −1 1

l
l

l
cos

which has a small-k solution

~( ) ( | | )p k k≈ −exp b

with b = log log( )λ/ b . That is the form of the Lévy probability
in equation 1 of the main text.



been largely ignored in the physics literature, mostly be-
cause the distributions have infinite moments. The first
point we wish to make is that one should focus on the scal-
ing properties of Lévy flights rather than on the infinite
moments. The divergence of the moments can be tamed
by associating a velocity with each flight segment. One
then asks how far a Lévy walk has wandered from its
starting point in time t, rather than what is the mean
squared length of a completed jump. The answer to the
first question will be a well-behaved time-dependent mo-
ment of the probability distribution, while the answer to
the second is infinity. Specifically, a Lévy random walker
moving with a velocity v, but with an infinite mean dis-
placement per jump, can have a mean squared displace-
ment from the origin that varies as v2 t2. (See the box on
page 37.) Even faster motion is possible if the walker ac-
celerates, as we shall see when we come to the phenome-
non of turbulent diffusion.

Lévy walks in turbulence
To employ Lévy flight for trajectories, one introduces ve-
locity through a coupled spatial–temporal probability den-
sity ψ(r t, ) for a random walker to undergo a displacement
r in a time t. We write

ψ( ψ(r t t r p r, ) | ) ( )= (3)

The factor p r( ) is just the probability function, discussed
above, for a single jump. The ψ(t r| ) factor is the probabil-
ity density that the jump takes a time t, given that its
length is r. Let us, for simplicity, make ψ(r t, ) the Dirac
delta function δ\ ( | |/ ( ))t r v r− , which ensures that r vt= .
Such random walks, with explicit velocities, visit all points
of the jump on the path between 0 and r. They are called
Lévy walks as distinguished from Lévy flights, which visit
only the two endpoints of a jump.

The velocity v need not be a constant; it can depend on
the size of the jump. A most interesting case is turbulent
diffusion. In 1926 Lewis Fry Richardson published his
discovery that the mean square of the separation r be-
tween two particles in a turbulent flow grows like t3. Di-
mensional analysis of Brownian motion tells us that
< > =r t Dt2 ( ) . This means that the diffusion constant D
can be endowed with a specific space or time depend-
ence—for example, D r r( ) ≈

4
3 or D t t( ) ≈ 2—to produce tur-

bulent diffusion.
Richardson chose the D r r( ) /≈ 4 3 route. Note that a
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FRACTAL COMPLEXITY OF THE CANTORI-ISLAND STRUCTURE

around a period-3 orbit emerges with successive magnifications
of a plot of the standard map (equation 5) with K = 1.1. a: An
orbit with a 3-step period emerges when periodic boundary
conditions are imposed in the x direction. Points near this
orbit stick close by for some time before coming under the
influence of substructure. b: A tenfold magnification of the
red island loop in 4a reveals 7 subislands. c: Further
expanding the rightmost loop in 4b reveals 10 sub-subislands.
FIGURE 4



diffusion constant has dimensions of [rv]. Therefore Rich-
ardson’s 4/3 power law dimensionally implies that v r2 ( )
scales like r2 3/ . Then the Fourier transform, v k2 ( ), must
scale like k−5 3/ .

This last result, first stated in 1941, is Kolmogorov’s
well-known inertial-range turbulence spectrum. Although
it looks as if Richardson could have predicted the
Kolmogorov spectrum, the two scaling laws do not neces-
sarily imply each other. Only if the Kolmogorov scaling
(v r r( ) /≈ 1 3) is combined with Lévy flights (p r r( ) ≈ −1 β), so
that the mean absolute value of r is infinite, does one re-
cover Richardson’s result: < > =r t t2 3( ) . If p(r) decays fast
enough so that all of its moments are finite, then one re-
covers the standard Brownian law, even with Kolmogorov
scaling. The main point here is that the Lévy walk with
Kolmogorov scaling describes aspects of turbulent diffu-
sion. The box on this page shows an example of the possi-
ble scaling laws for the constant-velocity Lévy random
walks found in dynamical systems.

An important feature of the Lévy-walk approach to
turbulent diffusion is that it provides a method for simu-
lating trajectories of turbulent particles. Fernand Hayot6
has used this procedure to describe turbulent flow in pipes
by means of Lévy-walk trajectories with Kolmogorov veloc-
ity scaling in a lattice gas simulation.

Two-dimensional fluid flow
In two-dimensional computer simulations of fluid flow,
James Viecelli8 has found Lévy walks and enhanced diffu-
sion with mean squared displacement scaling like tg with
g =167. for point vortices all spinning in the same sense at
high temperatures. At low temperatures the vortices form
a rotating triangular lattice. As the temperature is raised,
the motion of the vortices eventually becomes turbulent.
The vortices cluster and rotate around a common center,
but now with Lévy-walk paths. If both clockwise and
counterclockwise vortices are present, the scaling expo-
nent g becomes 2.6. Oppositely spinning vortices pair and
the pairs move in straight-line Lévy walks, changing di-
rection when they collide with other pairs.

These results suggest that two-dimensional rotating
flows are fertile territory for seeking anomalous diffusion.
They might serve to approximate large-scale global atmo-
spheric and oceanic flows. We predict that Lévy walks will
become increasingly important for understanding global

environmental questions of transport and mixing in the
atmosphere and the oceans.

Harry Swinney and coworkers at the University of
Texas have been investigating quasi-two-dimensional fluid
flow in a rotating laboratory vessel.9 (See figure 2.) In
their experiment, a fluid-filled annulus rotates as a rigid
body. The flow is established by pumping fluid through
holes in the bottom of the annulus. In this nearly
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DISTRUBUTION OF TIME it takes a
standard-map trajectory (with K = 1.03)
to leave the Cantori structure around a
period-5 orbit, plotted as a function of
the trajectory’s initial ( ,x q) position.
The time distribution exhibits a
complex fractal hierarchy of sticking
regions. The black areas mark islands of
stability inside the period-5 orbit, from
which a trajectory will never leave.
FIGURE 5

Mean squared displacement

The mean squared displacement in simple Brownian mo-
tion in one dimension has a linear dependence on time

< > ≈x t Dt2 2( )

where D is the diffusion constant and < >x t2( ) is the second
moment of the Gaussian distribution that governs the proba-
bility of being at site x at time t. The Gaussian is the hallmark
of Brownian motion. In the case of Lévy flights, by contrast,
the mean squared displacement diverges. Therefore we con-
sider the more complicated random walk described by the
probability distribution of equation 3, which accounts for the
velocity of the Lévy walk. For the Kolmogorov turbulence
case, the velocity depended on the jump size. But here we con-
sider the simpler constant-velocity case with

ψ( βr t t, ) ( )≈ + +1 1 1

being the probability density for time spent in a flight
segment. For various values of b, that leads to the following
different time dependences of the mean square displacement:

< >≈

< <
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The enhanced diffusion observed in various dynamical sys-
tems, such as the standard map (equation 5 in the main text),
corresponds to the case 1 2< <b . Similar results, with time
dependences ranging from t 3 down to t, are found in turbulent
diffusion.



two-dimensional flow, neutrally buoyant tracer particles
can be carried along in Lévy walks even though the veloc-
ity field is laminar. In fact, Swinney and company were
able to make direct measurements of Lévy walks and en-
hanced diffusion in this experimental system. (See figure
3.) An instability of the axisymmetrically pumped fluid
led to a stable chain of six vortices, as shown in figure 3a.
Tracer particles were followed to produce probability dis-
tributions for the distance and time a particle can travel
before it gets trapped in a vortex

We use n, the number of vortices passed by a tracer
particle, as a convenient measure of the travel distance r.
When a particle leaves a vortex and then passes n vortices
in a counterclockwise (or clockwise) fashion before it is
trapped again, we count that as a random walker jumping
n units to the right (or left) at a constant velocity. In
Lévy-walknotation,taking ψ ( δ(

walk
t r t n| ) | |)= − , the Uni-

versity of Texas experimenters found

p n r nwalk ( ) | | | |.≈ =
− −2 3 1 β (4)

and they found that the mean time the particle spends
trapped in a vortex is finite. Under these conditions
Lévy-walk theory implies that the variance
< > − < >r t r t2 2( ) ( ) should scale like t3 − b. (See the box on
page 37.) That turns out to be quite consistent with the
experimental data, and it gives us a beautiful example of
enhanced diffusion.

Lévy walks in nonlinear dynamics: Maps
The Lévy-walk case of dynamic scale-invariant circular
motion with constant speed was introduced in 1985 by
Theo Geisel and coworkers at the University of
Regensburg, in Germany.4 Their investigations involved
the study of chaotic phase diffusion in a Josephson junc-

tion by means of a dynamical map, that is to say, a simple
rule for generating the nth discrete value of a dynamical
variable from its predecessor. With a constant voltage
across the junction, the phase rotates at a fixed rate, but it
can change direction intermittently. N complete clockwise
voltage-phase rotations correspond to a random walk with
a jump of N units to the right. Analysis of experimental
data led Geisel and his colleagues to a consideration of the
nonlinear map x x axt t t

z
+ = + + −1 1 1( )ε , with e small. Aver-

aging over initial conditions, they found that

< >≈

>
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where g = − − −3 1 1( )z . This scaling behavior of the mean
square displacement corresponds to constant-velocity Lévy
walk with a flight-time distribution between reversals
given by ψ ( )t t≈ − −1 b, where b = −1 1/ ( )z .

In the above example, one can go directly from z, the
exponent of the map, to the temporal exponent
b = −1 1\

\ ( )z for the mean-square displacement. In most
nonlinear dynamical systems, however, the connection be-
tween the equations and the kinetics is not obvious or sim-
ple. For example, the so-called standard map:

x x Ksinn n n+ = +1 2( )πθ (5)

θ θn n nx+ += +1 1

has no explicit exponent in sight. But when one plots the
progression of points x, q, noninteger exponents abound in
the description of the orbit kinetics, hinting at complex dy-
namics.

Plotting successive (x versus q) points, at first one
might see simple, nearly closed circular orbits, eventually
giving way to thoroughly chaotic wandering. But before
chaos sets in one can see orbits that exhibit hierarchical
periodicities characteristic of the laminar segments of
Lévy walks. The structures that emerge depend sensi-
tively on the parameter K. With K =11. , for example, we
see (in figure 4a) a period-3 orbit. The heirarchical, fractal
nature of its three loops (called Cantori islands, because
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LÉVY FLIGHT BEHAVIOR is seen in the trajectory of a
computer-generated Zaslavsky map with fourfold symmetry.13

The random walk starts near the origin and the color is
changed every 1000 steps. FIGURE 6



they form something like a Cantor set of tori) is revealed
in the successively magnified plots of figures 4b and 4c.
This fractal regime, describing complex kinetics with Lévy
statistics, has been dubbed “strange kinetics.”16

Figure 5 shows the distribution of the time a stan-
dard-map x-versus-q trajectory spends around a period-5
Cantori orbit that emerges when K = 1.03. The time dis-
tribution exhibits a complex fractal hierarchy of sticking
regions in the phase space. The probability densities for
spending time in laminar states near period-3 and pe-
riod-5 orbits have, respectively, the Lévy scaling behaviors
t−2 2. and t−2 8. .

Another example of Lévy walks in dynamical systems
is provided by the orbits in a map devised by George
Zaslavsky of the Courant Institute.12,13 These walks form
an intricate fractal web throughout a two-dimensional
phase space. The Zaslavsky map has only simple trigono-
metric nonlinearities but, like the standard map, it re-
quires noninteger exponents for the characterization of its
trajectories. Figure 6 shows a Lévy-like trajectory in a
4-fold symmetric Zaslavsky map.

Potentials
One might expect that motion in a simple periodic potential
should look simple. But closer inspection of the
phase-space structure of trajectories in a simple
two-dimensional egg-crate potential reveals a behavior as
rich as what we get from the standard and Zaslavsky
maps11–13,15. It turns out that Lévy walks emerge quite
naturally in such potentials, and one finds enhanced diffu-
sion. See figure 7. Although the trajectories possess long
walks with Lévy scaling in the x and y directions of the
egg-crate array, the motion is complicated by intermittent
trapping in the potential wells. This trapping is related to
the observed vortex sticking of tracer particles in the
Swinney group’s experiment. In neither case is the distri-
bution of such “localizing” events broad enough to affect
the predicted enhanced-diffusion exponent.

Lévy walks also appear for time-dependent potentials.
Igor Aranson and colleagues at the Institute for Applied
Physics in Nizhny Novgorod (formerly Gorky) in Russia,
investigated a potential that varies sinusoidally in time
and found that it produces Lévy walks similar to those one
gets with static egg-crate potentials. All of these examples
indicate that we are exploring an exciting, wide-open field

when we venture beyond the traditional confines of
Brownian motion.

We thank Harry Swinney for providing his experimental results
and for sharing his insights into Lévy walks in fluids. We also
thank George Zaslavsky for illuminating discussions and for sug-
gesting the Lévy walk shown in figure 6.
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THROUGH AN EGG-CRATE potential in the x y, plane, a
computer-generated 105-step random walk exhibits Lévy flight.
The second moment of the step-length distribution is infinite.
Between long flights, the trajectory gets trapped intermittently
in individual potential wells. FIGURE 7


