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The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of
dendrites, Reiter’s local two-dimensional model provides a realistic approach to the study of dendrite growth. In
this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization
that is not taken into account in the original Reiter model. By defining two new variables, growth latency and
growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.
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I. INTRODUCTION

Snowflake growth is a specific example of crystallization:
how crystals grow and create complex structures. Because
crystallization corresponds to a basic phase transition in
physics, and crystals make up the foundation of several
major industries, studying snowflake growth helps gaining
understanding of how molecules condense to form crystals.
This fundamental knowledge may help fabricate novel types
of crystalline materials [1].

Snowflakes exhibit a rich combination of characteristic
symmetry and complexity. The sixfold symmetry is a result
of the hexagonal structure of the ice crystal lattice, and the
complexity comes from the random motion of individual snow
crystals falling through the atmosphere (see Fig. 1).

Scientific studies of snowflakes can be categorized into two
main types. The first approach takes a macroscopic view by
observing natural snowflakes in a variety of morphological
environments characterized by temperature, pressure, and
vapor density (e.g., Refs. [3–5]). The second type takes a mi-
croscopic view and investigates the basic physical mechanisms
governing the growth of snowflakes (e.g., see Ref. [1]). While
some aspects of snowflake growth (e.g., the crystal structure
of ice) are well understood, many other aspects such as
diffusion limited growth are at best understood at a qualitative
level [1].

Another approach in which snowflake growth is nu-
merically simulated to produce images with mathematical
models derived from physical principles is through computer
modeling (e.g., see Refs. [6–11]). By comparing computer
generated images with actual snowflakes, one can correlate
the mathematical models and their parameters with physical
conditions. While computer modeling can generate snowflake
images that successfully capture some basic features of actual
snowflakes, certain fundamental features of snowflake growth
are not well understood, and so far there has been only
limited analysis of these computer models in the literature
(e.g., Refs. [6,7,12–14] and references therein). One of the
key challenges has been that the snowflake growth models
consist of a large set of PDEs, and as in many chaos theoretic
problems, rigorous study is difficult.

In this paper we analyze snowflake growth simulated by
the computer models. The models that have been considered

in the past are in essence chaos theoretic models, which
is why they successfully capture the real world phenomena
but prove to be notoriously difficult to analyze rigorously.
In particular, two mechanisms studying the instability of the
crystal have been studied in the past: the Mullins-Sekerka
instability, and the facet instability for a hexagonal prism snow
crystal (e.g., see Refs. [12,15] and references therein). Some
models, e.g., proposed in Refs. [6,7,13], are highly detailed and
sophisticated and meant to almost exactly match snow crystal
growth, while others, e.g., Reiter’s model [10], are relatively
simple meant for understanding, thought experiments and
analysis. In this paper we study Reiter’s model using a
combined approach of mathematical analysis and numerical
simulation. It should be pointed out that the goal of this paper is
to provide mathematical treatment of the computational model.
The model, however, is an artificial one and does not include
the actual growth processes. As such, the paper is not intended
to further the understanding the formation mechanism of actual
snowflake patterns.

After reviewing Reiter’s model in Sec. II, in Sec. III we
divide a snowflake image into main branches and side branches
and define two new variables (growth latency and growth
direction) to characterize the growth patterns. In Sec. IV we
derive a closed form solution of the main branch growth latency
using a one-dimensional linear model and compare it with
the simulation results using the hexagonal automata. Then in
Sec. V we discover a few interesting patterns of the growth
latency and direction of side branches. On the basis of the
analysis and the principle of surface free energy minimization,
in Sec. VI we enhance Reiter’s model and thus obtain realistic
results both for dendrites and plate forms. We summarize
our contributions and present a few future work directions
in Sec. VII.

II. AN OVERVIEW OF REITER’S MODEL

Reiter’s model is a hexagonal automata which can be
described as follows. Given a tessellation of the plane into
hexagonal cells, each cell z has six nearest neighbors. We
shall denote by st (z) ∈ R>0 the state variable of cell z at time

2470-0045/2016/93(2)/023302(9) 023302-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.023302


JESSICA LI AND LAURA P. SCHAPOSNIK PHYSICAL REVIEW E 93, 023302 (2016)

FIG. 1. Examples of real plate and dendrite snowflakes [2]. (a)
Stellar dendrite, (b) stellar plate, (c) sectored plate.

t which gives the amount of water stored in z. Then cells are
divided into three types.

Definition 1. A cell z is frozen if st (z) � 1 (an F cell).
If a cell is not frozen itself but at least one of the nearest
neighbors is frozen, the cell is a boundary cell (a B cell). A
cell that is neither frozen nor boundary is called nonreceptive
(an NR cell). The union of frozen and boundary cells are called
receptive cells (R cells; Fig. 2).

The initial condition in Reiter’s model is

s0(z) =
{

1 if z = O
β if z �= O,

where O is the origin cell, and β represents a fixed constant
background vapor level.

Definition 2. Define the following functions on a cell z: the
amount of water that participates in diffusion ut (z), and the
amount of water that does not participate vt (z). Hence,

st (z) = ut (z) + vt (z), (1)

and we let vt (z) := st (z) if z is receptive, and vt (z) := 0 if z is
nonreceptive.

For γ,α, two fixed constants representing vapor addition
and diffusion coefficients, respectively, in Reiter’s model, the
state of a cell evolves as a function of the states of its nearest
neighbors according to two local update rules that reflect the
underlying mathematical models:

(1) Constant addition. For any receptive cell z,

v+
t (z) := v−

t (z) + γ. (2)

(2) Diffusion. For any cell z,

u+
t (z) := u−

t (z) + α

2
[u−

t (z) − u−
t (z)], (3)

where we have used upper indices ± to denote new functions
giving the state variable of a cell before and after a step is
completed and written u−

t (z) for the average of u−
t for the six

nearest neighbors of cell z.

FIG. 2. Classification of cells.

FIG. 3. Images generated by Reiter’s model [10] for α = 1 and
parameters (a) β = 0.3,γ = 0.0001; (b) β = 0.35,γ = 0.001; (c)
β = 0.6,γ = 0.01; (d) β = 0.9,γ = 0.05.

The underlying physical principle of Eq. (3) is the diffusion
equation

∂u/∂t = a∇2u, (4)

where a is a constant. Indeed, Eq. (3) is the discrete version
of Eq. (4) on the hexagonal lattice, and it states that a cell z

retains (1 − α/2) fraction of u−
t (z), uniformly distributes the

remaining to its six neighbors, and receives α/12 fraction from
each neighbor. The total amount of ut (z) would be conserved
within the entire system, except that a real world simulation
consists of a finite number of contiguous cells. The cells at the
edge of the simulation setup are referred to as edge cells, in
which one sets u+

t (z) := β. Thus, water is added to the system
via the edge cells in the diffusion process. Combining the two
intermediate variables, one obtains

st+1(z) := u+
t (z) + v+

t (z). (5)

By varying the parameters α,β,γ in Reiter’s model one can
generate certain geometric forms of snowflakes observed in
nature (Fig. 3).

III. GENERAL GEOMETRIC PROPERTIES

In what follows, we give new descriptions of snowflake
growth and analyze them with a combined approach of math-
ematical analysis and numerical simulation by considering a
coordinate system of cells as in Fig. 4(a). A cell z is represented
by its coordinate (i,j ), for i,j ∈ Z, with the origin O = (0,0).
Since there is a sixfold symmetry, we focus on only one-twelfth
of the cells, marked as dark dots, for which j � i � 0:

The images in Fig. 3 show that a crystal consists of six main
branches that grow along the lattice axes, and numerous side
branches that grow from the main branches in a seemingly
random manner. The main and side branches exhibit a rich
combination of characteristic symmetry and complexity which
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FIG. 4. (a) Coordinate system of hexagonal cells. (b) Definition
of growth directions in the coordinate system.

we shall study through the rate of water accumulation of a cell
z, defined by

�st (z) = st+1(z) − st (z).

At any time the set of all the R cells is connected. Moreover
since a frozen cell is surrounded by receptive cells and does
not accumulate water via diffusion, and since water flows from
nonreceptive cells to boundary cells, one has that the rate of
water accumulation �st (z) of a cell satisfies the following
general geometric properties:

(A) For an NR cell z, one has 0 < st (z) � β and �st (z) �
0. Suppose that an NR cell z is surrounded by R cells
and disconnected from the E cells. If γ > 0, there exists
t0 > 0 such that st0 (z) � 1 (i.e., a time t0 in which the cell
becomes frozen); otherwise the NR cell will permanently
remain nonreceptive and never become frozen.

(B) For a B cell z the quantity �st (z) is the sum of γ

and diffusion. If γ > 0, there exists t0 > 0 such that st0 (z) �
1; otherwise, if cell z is surrounded by a set of F cells and
disconnected from the E cells, then as in (A), the cell will
never become frozen:

lim
t→∞ st (z) < 1.

(C) For an F cell z, one has �st (z) = γ .
(D) The state variable is st (z) = β only for z an E cell.
Thus, for an NR cell to become frozen, the cell goes through

two stages of growth. First, the NR cell loses vapor to other
cells due to diffusion, as in (A). Subsequently, it becomes a
B cell and accumulates water via diffusion and addition, as in
(B), until it becomes frozen and sees no benefit of diffusion,
as in (C). Becoming a B cell is a critical event between the two
stages.

We focus on the second stage and define two new variables
to characterize growth patterns.

Definition 3. The time to be frozen of a cell z is denoted by
T (z) and defined by the condition sT (z)(z) � 1, and st (z) < 1
for t < T (z). Similarly, we define B(z) as the first time to
be boundary. Finally, growth latency is denoted by L(z) and
defined by L(z) := T (z) − B(z).

A cell becomes a B cell as one of its neighboring cells
has just become an F cell, and thus it is useful to make the
following definition in terms of redistribution of water.

Definition 4. Denote by zd a destination cell, and by zs a
source cell. Then the growth direction of cell zd is denoted
by g(zd ) and defined as the orientation of zs with respect to
zd , where the angle is with respect to the horizontal axis.
The source-destination cell relationship shall be denoted by
S(zd ) := zs .

As shown in Fig. 4(b), the angle is given relative to the
horizontal direction in the coordinate system and satisfies

g(zd ) ∈ {+30◦,−30◦,+90◦,−90◦,+150◦,−150◦}.
Note that while the growth of zd is traced back to a unique zs ,
a source cell may correspond to multiple destination cells.

IV. GROWTH OF MAIN BRANCHES

Consider cells (i,j ) where i + j = K for a fixed K . These
cells are all K sites away from the origin (0,0) on the grid. The
main branch growth pattern is such that T (0,K) � T (i,j ) and

T

(
K

2
,
K

2

)
� T (i,j ) for even K,

T

(
K − 1

2
,
K − 1

2

)
� T (i,j ) for odd K.

Along the lattice j axis, one has g(0,j ) = −90◦ for all j .
Hence, the snowflake growth is fastest along a lattice axis,
which represents a main branch, and is the slowest along the
30◦-offset lattice axis.

We next develop a model to calculate the growth latency
L(0,j ). As cell (0,j ) becomes frozen, cell (0,j + 1) becomes
a boundary cell. Hence the first time to be boundary B(0,j +
1) = T (0,j ), and thus one can calculate T (0,j ) as

T (0,j ) = T (0,0) +
j∑

k=1

L(0,k). (6)

In order to gain analytical understanding, we first study a
one-dimensional model. Consider a line of consecutive cells
z0,z1, . . . ,zN , where ZN is the edge cell. Initially cell O is
frozen. We focus on the growth period [B(k),T (k)] in which
cells z0,z1, . . . ,zk−1 are frozen and cell k grows from boundary
to frozen. Since Eq. (3) describes the diffusion dynamics of
vapor being transferred from the edge cell to cell zk , and cell zk

accumulates water via addition [Eq. (2)], to derive an analytical
solution, we make the following assumption which we justify
shortly.

Assumption 1. For t ∈ [B(zk),T (zk)], assume that in Eq. (3)
one has

u+
t (zi) = u−

t (zi),

for k + 1 � i � N , for N as above and B(zk),T (zk) as in
Definition III. Therefore, the vapor distribution reaches a
steady state, denoted as μ(i|k).

From Assumption IV, we can ignore the notations of ±,
and reduce Eq. (3) to the linear equation

μ(i|k) = 1
2 [μ(i − 1|k) + μ(i + 1|k)]. (7)

Moreover, with the boundary conditions μ(k|k) = 0 and
μ(N |k) = β, the vapor distribution can be written in a closed
form as follows:

μ(i|k) = i − k

N − k
β, for i = k, . . . ,N, (8)

which graphically represents a line that connects the two
boundary condition points.

We shall now explain why Assumption IV is well motivated.
Suppose that the steady state distribution Eq. (8) is already
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FIG. 5. Comparison of vapor accumulation simulations for the
parameters α = 1,β = 0.4,γ = 0.001.

reached at t = B(zk):

sB(zk )(zi) = μ(i|k − 1) = i − (k − 1)

N − (k − 1)
β for i = k, . . . ,N.

Then st (zi) evolves in the interval of (B(zk),T (zk)] in the
following manner. For N � k, one has

sB(zk)(zk) = μ(k|k − 1) = 1

(N − k + 1)
β ≈ 0.

Thus it is reasonable to assume

L(zk) = T (zk) − B(zk) � 1

because cell zk will take several simulation steps to reach
sT (zk )(zk) � 1. Moreover,

|sB(zk)(zi) − μ(i|k)| =
∣∣∣∣ i − (k − 1)

N − (k − 1)
β − (i − k)

(N − k)
β

∣∣∣∣ 
 1

for N � k. Thus, in each simulation step for time t ∈
(B(zk),T (zk)], the function st (zi) varies only slightly and
can be considered approximately constant. Hence, u+

t (zi) =
u−

t (zi).
From Eq. (3) and Eq. (7), we may estimate u+

t (zk) by

û+
t (zk) := α

4

1

N − k
β.

Moreover, since u−
t (zk) = 0 it follows that we can further

estimate �st (zk) and L(zk) by

�ŝt (zk) := α

4

1

N − k
β + γ, (9)

L̂(zk) := 1 − sB(zk)(zk)

�ŝt (zk)
= 1 − 1

N−k+1β

α
4

1
N−k

β + γ
. (10)

In the one-dimensional model with N = 50, we may
compare the vapor accumulation in every simulation step,
as the simulation proceeds from the time when cell k = 25
just becomes the boundary to the time when it becomes
frozen. Figure 5 compares �st (zk) at cell zk determined
by the simulation, and �ŝt (zk) predicted by Eq. (9) for time

FIG. 6. Comparison of growth latency simulations for the param-
eters α = 1,β = 0.4,γ = 0.001.

t ∈ [B(zk),T (zk)]. Initially st (k) 
 μ(i|k) and �st (k) �
�ŝt (k). After about five simulation steps, �st (k) drops to a
flat plateau, which is approximately equal to st (k). At any time
t , one observes that �ŝt (k) � �st (k).

One may also model L(zk) = T (zk) − B(zk) as a function
of cell index of the cells. In the one-dimensional model with
N = 50, Fig. 6 compares L(k) determined by the simulation,
and L̂(zk) predicted by Eq. (10) as the snowflake grows from
the origin O to the edge cell. For any k, one observes that
L(zk) < L̂(zk). This phenomenon is expected, since by solving
the above PDEs one has that there exists α > 0 such that at any
time instance t ∈ [B(zk),T (zk)], for i = k, . . . ,N, one has

μ(i|k) � st (zi)and�ŝt (zk) � �st (zk).

As a result, L̂(zk) � L(zk).
Equation (10) predicts that L̂(zk) drops monotonically with

k. In simulation, we observe that in the beginning the cells grow
from boundary to frozen very quickly, well before the steady
state is reached. As a result, the steady state Assumption IV
does not hold in that time period. Figure 6 shows that L(zk) first
increases, then drops, and eventually matches the prediction
L̂(zk).

Finally, we return to the two-dimensional hexagonal cel-
lular case. With a similar steady state assumption, we can
reduce the PDE to a set of linear equations similar to Eq. (7).
However, the geometric structure is much more complex
than the one-dimensional case. As a result, it is difficult to
derive a closed form formula of the vapor distribution similar
to Eq. (8).

Figure 7 plots L(0,j ) along a main branch. Comparison
with Fig. 6 indicates a similarity between the one-dimensional
and two-dimensional cases in that L(z) increases as the
snowflake grows from the origin. However, in the two-
dimensional case, we observe from simulations that L(0,10) =
L(0,11) = · · · = L(0,195). When the snowflake grows close
to the edge cell, it experiences some edge effect in the
simulation where L drops drastically. This indicates that
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FIG. 7. T (0,j ) − B(0,j ) of cells (0,j ) along a main branch for
j = 1,2, . . . , in the two-dimensional scenario. Here cell (0,200) is
an edge cell, and α = 1, β = 0.4, γ = 0.001.

somewhat surprisingly �st (0,j ) remains almost constant as
the snowflake grows along the main branch.

V. GROWTH OF SIDE BRANCHES

While the main branches of snowflakes represent clean
sixfold symmetry, the side branches exhibit characteristic
features of chaotic dynamics: complexity and unpredictability.
Reiter’s model is completely deterministic with no noise or
randomness involved, and yet the resultant snowflake images
are sensitive to the parameters α,β, and γ in a chaotic manner.
Chaos may appear to be the antithesis of symmetry and
structure. Our goal in this section is to discover growth patterns
that emerge from seemingly chaotic dynamics.

Definition 5. Starting from a cell z0 on the j -axis main
branch, the set of consecutive frozen cells in the i-axis direction
are referred to as side branch from cell z0. We shall denote by
zE(z0) the outmost cell or tip, by E(z0) the length of the side
branch, and the side branch itself by �(z0) := {z0, . . . ,zE(z0)}.

In what follows, we study the growth latency of side
branches. Figure 8 plots the tips of the side branches that
grow from the j -axis main branch using the parameters of the
four images in Fig. 3.

Due to the chaotic dynamics, the lengths of the side
branches vary drastically with z0 in a seemingly random
manner. For image (a), most of the side branches are short
and only a small number stand out. The opposite holds for
image (d). The scenarios are in between for images (b) and
(c). The length of the side branches is indicative of the growth
latency. The long side branches represent the ones that grow
fastest. In Fig. 8 we connect the tips of the long side branches to
form an envelope curve that represents the frontier of the side
branch growth. The most interesting observation is that the
envelope curve can be closely approximated by a straight line
for the most part. Recall that the growth latency of the main
branch is a constant. Thus we infer that the growth latency of
the long side branches is also constant. Denoting by LM and
LS the growth latencies of the main and long side branches,
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FIG. 8. Plots of the tips (thin curves) and envelope curves (thick
curves) of the side branches from the j -axis main branch using the
parameters of the four example images in Fig. 3. Due to symmetry,
we focus on one set of side branches that grow from the right side
of lattice j axis. Here the black curve represents Fig. 3(a), blue for
Fig. 3(b), red for Fig. 3(c), and magenta for Fig. 3(d). The axes are
the horizontal and vertical axes.

respectively, one has that

LM

LS

= sin 2π/3 − θ

sin θ
, (11)

where θ is the angle between the envelope curve straight line
and the j axis. As a specific example, for the magenta curve,
the envelope curve of the long side branches grows almost as
fast as the main branch, such that θ ≈ π/3 and the resultant
image, appearing in Fig. 3(d), is roughly a hexagon.

We shall consider next the growth directions of the cells
on side branches. Figure 9 plots the trace of the growth
direction g(z) (see Definition III) as a snowflake develops in
the simulation. The corresponding snowflake image is shown
in Fig. 3(b). When a cell z becomes boundary, we mark the
cell to indicate g(z) using the legend labeled in the figure.
If a cell never becomes boundary, no mark is made. All side
branches grow from the j -axis main branch, starting in the
direction parallel to the i axis. Subsequently, a side branch
may split into multiple directions. Indeed, all six orientations
have been observed and the dynamics appear chaotic as g(z)
appears unpredictable. However, we do find an interesting
pattern described below.

Definition 6. A straight path from a cell z0 on the j -
axis main branch is the set of consecutive frozen cells in
the i-axis direction satisfying zi−1 = S(zi). The number of
consecutive cells satisfying zi−1 = S(zi) is the length F (z0).
We then denote a straight path from a cell z0 by 
(z0) :=
{z0,z1,z2, . . . ,zF (z0)}.

Comparison between Definition V and Definition V shows
that the paths are nested, i.e., 
(z0) ⊂ �(z0), and hence
the lengths satisfy F (z0) � E(z0). When a cell zi−1 on the
straight path becomes frozen, it triggers not only zi in the
i-axis direction but also other neighbors to become boundary,
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FIG. 9. Trace of relative orientations of source cells with respec-
tive destination cells. A destination cell becomes boundary because
a source cell, which is one of the neighbors of the destination
cell, becomes frozen. Legend is as follows: magenta � : +30◦,
black � : −30◦, green + :+90◦, blue ◦ : −90◦, red · : +150◦, cyan
× : −150◦, where the parameters are α = 1,β = 0.35,γ = 0.001.
Note that not all straight paths are labeled. The axes are as in Fig. 4(a).

resulting in growth in other directions, which we call deviating
paths. The straight and deviating paths collectively form a side
branch cluster.

Definition 7. The set of frozen cells that can be traced back
to a cell on the straight path from cell z0 on the j -axis main
branch is referred to as a side branch cluster and denoted by
�(z0).

A side branch cluster is a visual notion of a collection of side
branches that appear to grow together. Figure 9 shows several
side branch clusters and the cells on the corresponding straight
path marked with cyan ×. Compared with the straight paths,
the deviating paths do not grow very far, because they compete
with other straight or deviating paths for vapor accumulation in
diffusion. On the other hand, the competition with the deviating
paths slows down or may even block the growth of a straight
path. When a straight path is blocked, the straight path is a
strict subset of the corresponding side branch. This scenario is
illustrated in Fig. 10, where three side branches are shown.

The straight path of the middle side branch is blocked by
a deviating path of the lower side branch, which grows into a
sizable side branch cluster. Through the above definitions one
has that if there exists a cell z such that z ∈ �(z0) and z �∈
�(z′

0), then the paths are nested 
(z′
0) ⊂ �(z′

0). Moreover, the
straight path determines the length of the side branch cluster:

Definition 8. Denote by D(z,z0) the distance between z0,z ∈
�(z0), defined as the smallest number of sites on the lattice
between z and z0. The length of �(z0) is

D(z0) := max
z∈�(z0)

D(z,z0).

Through the above definition one can show that there are
K cells zi ∈ �(z0) such that the distances satisfy D(zi,z0) =
D(z0) for i = 1, . . . ,K with K � 2. Furthermore, there exists

FIG. 10. An arrow linking two cells indicates the source-
destination relationship.

zi ∈ 
(z0) for 1 � i � K , and thus D(z0) = F (z0), the length
of 
(z0) as in Definition V.

VI. AN ENHANCED REITER’S MODEL

Plates and dendrites are two basic types of regular,
symmetrical snowflakes. We observe that while the dendrite
images in Figs. 3(a) and 3(b) generated by Reiter’s model
resemble quite accurately the real snowflake in Fig. 1(a), as
seen in Figs. 3(c) and 3(d) and Figs. 1(b) and 1(c), the plate
images differ significantly. The plate images in Figs. 3(c) and
3(d) is in effect generated as a very leafy dendrite. One of the
reasons that Reiter’s model is unable to generate plate images
realistically is that the model only includes diffusion, thus not
taking into account the effect of local geometry.

As described in Ref. [12], two basic types of mechanisms
contribute to the solidification process of snowflakes: dif-
fusion control and interface control. Diffusion control is a
nongeometric growth model, where snowflake surfaces are
everywhere rough due to diffusion instability, a characteristic
result of chaotic dynamics. For example, if a plane snowflake
surface develops a small bump, it will have more exposure
into the surrounding vapor and grow faster than its immediate
neighborhood due to diffusion. Interface control is a geometric
mechanism where snowflake growth only depends on local
geometry, i.e., curvature related forces. In the small bump
example, the surface molecules on the bump with positive
curvature have fewer nearest neighbors than do those on a
plane surface and are thus more likely to be removed, making
the bump move back to the plane. Interface control makes
snowflake surfaces smooth and stable, and it is illustrated
in Fig. 11.

In summary, snowflake growth is determined by the
competition of the destabilizing force (diffusion control) and
stabilizing force (interface control). In the absence of interface
control, Reiter’s model is unable to simulate certain features
of snowflake growth.

The interface between the snowflake and vapor regions has
potential energy, called surface free energy, due to the unfilled
electron orbitals of the surface molecules. The surface free
energy γ (n) as a function of direction n, is determined by the
internal structure of the snowflake, and in the case of a lattice
plane is proportional to lattice spacing in a given direction.
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FIG. 11. Two competing forces of diffusion control and interface
control that determine snowflake growth, an illustration of the
Mullins-Sekerka instability.

Figure 12 plots the surface free energy γ (n) of a snowflake as
a function of the direction n.

The equilibrium shape of the interface is the one that
minimizes the total surface free energy for a given enclosed
volume. Wulff construction (see Ref. [12]) can be used to
derive the equilibrium crystal shape Wγ from the surface free
energy plot γ (n):

Wγ := {r|r · n � γ (n),∀n}. (12)

Wulff construction states that the distances of the equi-
librium crystal shape from the origin are proportional to
their surface free energies per unit area. Figure 12 plots the
equilibrium crystal shape of snowflake. Moreover, it shows
that due to interface control, snowflake growth is the slowest
along the lattice axes, and the fastest along the 30◦-offset lattice
axes.

This can be explained intuitively. Snowflakes grow by
adding layers of molecules to the existing surfaces. The
larger the spaces between parallel lattice planes, the faster the
growth is in that direction. This effect is completely opposite
to the diffusion control we have studied in Sec. IV, where
snowflake grows fastest along the lattice axes. This is an ex-
ample of competition between diffusion control and interface
control.

We next propose a new geometric rule to incorporate
interface control in Reiter’s model. The idea is that the
surface free energy minimization forces the lattice points on
an equilibrium crystal shape to possess the same amount of
vapor so that the surface tends to converge to the equilibrium

FIG. 12. Surface free energy of snowflake as a function of
direction and equilibrium crystal shape of snowflake derived from
surface free energy plot with Wulff construction [12].

FIG. 13. Equilibrium crystal shape used in the new geometric rule.

crystal shape as the snowflake grows. It should be pointed
out that crystals that grow under the control of interfacial
kinetic processes tend asymptotically toward a akinetic Wulff
shape, the analog of the Wulff shape, except it is based on
the anisotropic interfacial kinetic coefficient rather than the
anisotropic surface free energy. The proposed model does not
take into account the anisotropic interfacial kinetic coefficient
based on a lateral motion of steps.

From Fig. 12, we learn that the equilibrium crystal shape is
a hexagon except for six narrow regions along the 30◦-offset
lattice axes where the transition from one edge of the hexagon
to another edge is smoothed. The equilibrium crystal shape
used in the new geometric rule is shown in Fig. 13.

Figure 13 shows the equilibrium crystal shape used in the
new geometric rule and the interface control neighbors of the
cells. As an example, cells A,B,C,D,E,F are on the same
equilibrium crystal shape. Cells F and B are the interface
control neighbors of A, cells A,C are the interface control
neighbors of B, etc.

The new geometric rule is applied after Eq. (5): A new
variable δt (z) is defined to represent the amount of water to be
redistributed for cell z at time t , with initial value δt (z) = 0
for all z.

Definition 9. For a given cell z0, define two interface control
neighbors z1

0,z
2
0, which are two neighboring cells of z0 on the

same equilibrium crystal shape.
Define s(z0) as the average of the water amounts in cell z0

and its two interface control neighbors z1
0,z

2
0:

s(z0) := 1
3

[
s−
t+1(z0) + s−

t+1

(
z1

0

) + s−
t+1

(
z2

0

)]
. (13)

For every boundary z0, if neither of z1
0,z

2
0 are frozen, then

adjust δt (z0) as follows:

δs(z0) = δs(z0) + ε[s(z0) − s−
t+1(z0)], (14)

δs

(
z1

0

) = δs

(
z1

0

) + ε
[
s(z0) − s−

t+1

(
z1

0

)]
, (15)

δs

(
z2

0

) = δs

(
z2

0

) + ε
[
s(z0) − s−

t+1

(
z2

0

)]
, (16)
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FIG. 14. Snowflake images generated by the enhanced Reiter’s
model with the new geometric rule, where the variables are (a) ε =
0.1; (b) ε = 0.01,α = 1,β = 0.4,γ = 0.001.

where ε ∈ R�0 determines the amount of interface control.
After δs(z) has been adjusted for all z according to Eq. (14)–
(16), for every cell z set

s+
t+1(z) := s−

t+1(z) + δs(z). (17)

Recall that in the original Reiter’s model, once water is
accumulated in a boundary cell, water stays permanently in
that cell. The new function Eq. (17) forces water redistribution
particularly among boundary cells to smoothen the snow vapor
interface. Figure 14 shows two snowflake images generated by
the enhanced Reiter’s model with the new geometric rule.

At ε = 0.1, the image above resembles a plate observed in
nature much more closely than the ones in Fig. 3. By reducing
interface control with ε = 0.01, the snowflake starts as a plate
and later becomes a dendrite as diffusion control dominates
interface control.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed the growth of snowflake
images generated by a computer simulation model (Reiter’s
model [10]) and have proposed ways to improve the model. We
have derived an analytical solution of the main branch growth
latency and made numerical comparison with simulation
results. Subsequently we observed interesting patterns of side
branches in terms of growth latency and direction. Finally,
to enhance the model, we have introduced a new geometric
rule that incorporates interface control, a basic mechanism of
the solidification process, which is not present in the original
Reiter’s model.

The present work has shed light into some interesting
patterns that lead to further questions about crystal growth. On
the main branch growth, one may ask why the growth latency
is almost constant (Fig. 7) and whether this phenomenon is
unique to the hexagonal cells or applicable to other two-

dimensional lattices. Concerning the side branch growth, it
was noted that some side branches grow much faster than their
neighbors, and that with slightly different diffusion parameters
the side branch growth latency could change drastically at the
same position while the main branch growth latency remains
virtually the same. The study in Sec. VI shows that this
great sensitivity is attributable to diffusion instability: When
the growth of cells in some direction gains initial advantage
over their neighbors, the advantage continues to expand such
that the growth in that direction becomes even faster. It
was noted in Sec. VI that diffusion instability is caused by
competition among cells in diffusion, and thus the average
number of contributing neighbors is a good indicator to explain
diffusion instability. Finally, the enhanced model described
in Sec. VI can be used to explore the interplay of diffusion
and interface control. For example, one may simulate growth
in an environment where the diffusion and interface control
parameters vary with time so as to generate images similar to
Figs. 1(b) and 1(c).

Recently Reiter’s model was used in the study of snowfall
retrieval algorithms (e.g., see Refs. [16,17] and references
therein), and it was suggested that other mechanisms of
snowflake formation from ice crystals besides aggregation
must be considered in snowfall retrieval algorithms. It is thus
natural to ask whether the enhanced Reiter’s model constructed
here may provide insights in this direction, as well as when
considering crystal growth dynamics as in Ref. [18]. Moreover,
since cellular automata models have been considered for
numerical computations of pattern formation in snow crystal
growth, it would be interesting analyze the outcome of the
implementation of the model presented here to the analysis
done in Refs. [13,19].

Finally, the effects of lattice anisotropy coupled to a
diffusion process have been studied in Ref. [20] to understand
phase diagrams associated to crystal growth. Since this
approach seemed useful recently from different perspectives
(e.g., see Ref. [21] and references therein), it would be
interesting to study the enhanced model constructed here from
the perspective of Refs. [20,21].
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