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ABSTRACT

The aim of the present work is to investigate the possibility to retrieve the original sets of dynamical equations directly from
observational time series when all the system variables are observed. Time series are generated from chosen dynamical systems,
and the global modeling technique is applied to obtain optimal models of parsimonious structure from these time series. The
obtained models are then compared to the original equations to investigate if the original equations can be retrieved. Twenty-
seven systems are considered in the study. The Rössler system is first used to illustrate the procedure and then to test the
robustness of the approach under various conditions, varying the initial conditions, time series length, dynamical regimes, sub-
sampling (and resampling), measurement noise, and dynamical perturbations. The other 26 systems (four rational ones included)
of various algebraic structures, sizes, and dimensions are then considered to investigate the generality of the approach.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081448

In many domains in science, one important problem is to
unveil the equations underlying the observed dynamics.
Equations’ reconstruction is generally performed through-
out a long historical process in a movement back and forth
between observations and modeling. Though, since equa-
tions do arise from observations, one could expect that these
equations could be directly derived from observational data.
It is shown in the present paper that, in numerous nontrivial
cases, the algebraic structure of original dynamical sys-
tems can be retrieved from observational time series when
the original structure is polynomial or close to polynomial.
One interest of such an approach is to obtain interpretable
equations when these are unknown which is the case for
numerous physical, ecological, and biological systems.

I. INTRODUCTION

It is only recently that the idea to obtain dynamical equa-
tions directly from observational time series has emerged.
Historically, model-building from data originates from the
fields of Electric Engineering and Statistics1 and was almost
exclusively focused on linear problems.2,3 Nonlinear problems
started to be investigated later, mainly based on discrete
modeling approaches.4–6 Modeling in Ordinary Differential

Equations (ODEs) started to be investigated in the 1990s but
exclusively based on single time series.7,8 The theory of non-
linear dynamical systems offered a fertile ground for such
an objective for various reasons. First, it enables to gener-
ate complex deterministic behaviors from low-dimensional
systems which is one important difficulty to tackle with
before considering higher-dimensional systems. Second, its
theoretical background is well adapted for modeling deter-
ministic behaviors presenting a high sensitivity to the initial
conditions (chaotic behaviors) which is the case for numer-
ous real world behaviors (e.g., climatic, hydrological, eco-
logical, and epidemiological dynamics). This theory is a for-
tiori also adapted for modeling linear and weakly nonlin-
ear dynamics. Third, the global modeling technique derived
from this theory has proven to be a powerful approach to
obtain models from observational time series resulting from
synthetic data,7,9–13 experimental data,8,12,14 and real world
observations.12,15–18

It is much more recently that this technique could be
used to obtain continuous equations from multivariate time
series19,20 (discrete equations could be obtained earlier21) and
to detect nonlinear couplings.22

Even much fewer studies have explored the question of
equation re-constructibility of which difficulties have been
pointed out associated with non-uniqueness of the solution
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either relating to time scaling or resulting from identical jerk
forms or to common statistical properties.23–25

In a single case, for a model directly obtained from obser-
vational data, an interpretation could even be proposed for
each term of the reconstructed model.19 Specific questions
arise from this result: Can equations’ structures obtained from
the time series be interpreted? And thus, just before: Can orig-
inal equations of the dynamics be unveiled from observational
time series?

To investigate these questions, simple low-dimensional
systems should be considered first in order to have pro-
hibitive examples of the potential of the approach: if it is
possible to retrieve the equations entire structure from a set
of observational time series, then it should be possible to do
it—at least—for equations of the simplest formulation. In that
respect, the dynamical systems considered in this study will
be nontrivial—low-dimensional (d = 3 to 5)—systems. Twenty-
seven systems of various algebraic structure and dynamics will
be considered here.

The paper is organized as follows. The theoretical back-
ground is introduced in Sec. II, where the global modeling
technique is presented, the problem is stated, and the algo-
rithms and modeling procedure are described. The synthetic
data generated for the analysis are explained in Sec. III. The
results of the experiments are then presented in Sec. IV and
separated in five subsections. In Sec. IV A, the Rössler system
is first considered under ideal conditions to provide a careful
description of the procedure (this procedure will be applied
to all the experiments). The robustness of the approach is
then tested under various restrictive conditions (still on the
Rössler system) in Sec. IV B. Analyses are then tested on
other three-dimensional quadratic systems (in Sec. IV C),
cubic and higher-dimensional systems (in Sec. IV D), and non-
polynomial systems (in Sec. IV E). Conclusions are drawn in
Sec. V.

II. THEORETICAL BACKGROUND

A. Global modeling

The aim of the global modeling technique is to obtain sets
of discrete, continuous, or delayed equations directly from
observational time series.7,11,26 In its principle, the approach is
quite general and can also be applied to splitted time series,
that is, either presenting gaps in time or observed at differ-
ent locations (concomitantly or not).13 It has also been proven,
both analytically and numerically that, under conditions of
phase synchronicity, it is possible to apply this technique to
spatially aggregated time series.13 In the present work, we will
focus on ODEs of general form











ẋ1 = F1(x1, x2, . . . , xn),
...

ẋn = Fn(x1, x2, . . . , xn)

(1)

that will be modeled by polynomial structures, with the aim to
retrieve the original equations’ structure when it is polynomial
itself, or to get good polynomial approximation for it when

it is not. The objective of the present work being to obtain
the original algebraic formulation of the original system, it
will be assumed that all the system variables (x1, x2, . . . , xn)

are observed. The initial data set, for each system, will then
consist of n time series {xobs

i (tk)}i=1...n,k=1...Nech
where Nech is the

number of data point for each observed time series xobs
i at

time tk.

B. Statement of problem

The objective of the present study is to investigate under
which conditions the original formulation of a dynamical sys-
tem can be retrieved from observations. The problem is very
general since our objective is not just to reproduce the obser-
vations (that is, a specific trajectory provided by observed time
series): our aim is retromodelling, that is, to retrieve an alge-
braically interpretable set of equations and ideally, the original
set of equations. This implies that the methodology should be
general enough not to reproduce strictly the particular tem-
poral pattern of the original system but rather to unveil all the
solutions of the original system. The phase space is an ori-
ented space well designed for this purpose, since enabling to
represent all the system states. For a deterministic system,
all the solutions are included in this space. To retrieve the
original equations, the phase space generated by the model
should be equivalent to the phase space reconstructed from
the observed time series.

To investigate the possibility to retrieve the original equa-
tions from observational time series, the following methodol-
ogy is used: (a) Time series are generated from known dynam-
ical systems. To investigate the robustness of the approach,
the original system may be perturbed and the time series
degraded by various factors. (b) The global modeling technique
is applied to get a dynamical model of optimally concise for-
mulation. For this purpose, a selection technique is designed
based on the rejection of the models of which phase space is
of bad agreement with the original phase space (see Secs. II C
and II D). (c) Then, the algebraic structure of the best model is
compared to the original system. Ideally, the retrieved struc-
ture should be identical to the original system structure used
to generate the observational time series.

In practice, it is thus required to have an algorithm
enabling to obtain optimal models (structure and parameteri-
zation) based on appropriate criteria. Moreover, this algorithm
should run in a reasonably short time. In the present context,
it is assumed that all the variables of the system are observed.
To retrieve the complete set of equations, it will be required to
retrieve one equation of polynomial form

Ẋl =
∑

µi2i (2)

for each variable Xl, where 2i =
∏

j,kj
X
kj
j are the polynomial

terms (such as
∑

kj ≤ q) and µi are their corresponding coef-
ficients.

To run the algorithm, the following parameters are
required: (1) the dimension d of the reconstruction, that is,
the number of variables used as input if derivatives are not
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used in the reconstruction (since it is assumed here that all
the system variables are available, we have d = n, where n is
the number of observed variables); (2) the maximum polyno-
mial degree q used for the description (this degree is assumed
to be a priori unknown). The number p of possible terms for a
single equation directly relies on d and q, such as p =

(n+q)!
q!n!

. (3)

The maximum number Nmax
p of model parameters which can-

not exceed n × p. To reduce the computing time, it may be
limited intentionnally and increased progressively.

The algorithm is organized in four stages. Without any
knowledge nor information, the number of possible models for
each equation will directly depend on the number of variables
considered in the formulation and on the maximum polyno-
mial degree used in the formulation. The resulting number of
possible model structure is absolutely huge: 2n×p. For instance,
for d = 3 and q = 2, a single equation can have p = 10 polyno-
mial terms (X1, X2, X3, X2

1 , X
2
2, X

2
3, the cross terms X1X2, X1X3,

X2X3 plus the constant) leading to 210 potential structures
for one equation. Since three equations have to be retrieved
(n = d = 3), the number of possible models will be 23×10. Our
algorithm has to find the original model structure amongmore
than one billion models. For d = 6 and q = 2 with six equa-
tions to retrieve, the number of possible models will be 26×28

(≈ 3.7 · 1050), etc. To be able to tackle with such tremendous
numbers of potential model structures, a drastic (but also very
accurate) selection technique is required.

C. Structure selection technique

In the present context, one equation has to be obtained
for each variable Xl, that is, Ẋl = Pl(X1,X2, . . . ,Xn) for l = 1 . . .n.
In the first stage, the equation for each variable Xl is consid-
ered individually, for which an ensemble of possible structure
is preselected. The selection is performed as follows. At the
beginning, all the p terms of the polynomial are included. A
Gram-Schmidt technique is used to compute the model coef-
ficients µi. The first possible equation structure E1,p is then
obtained for Eq. (1) (corresponding to variable X1). The variance
σ of the residual signal ε(t) defined as

ε = Ẋl
obs

−
∑

µi2
obs
i , (3)

is computed for it. To estimate the contribution of each term
in this first equation, a leave-one-out method is used: each
term 2i is set aside one by one by setting its parameter µi

to zero. For each corresponding sub-model i (such as µi = 0),
the variance σ 2

i of the residual signal is computed. The relative
contribution of each monomial is deduced from the ratio

Ki = σ 2
i /σ 2. (4)

The smaller the K-ratio, the smaller the usefulness of the cor-
responding ith monomial. The term of smallest contribution
is thus removed, and the Gram-Schmidt technique is used
again to estimate the parameters of this new formulation in
order to have a precise estimate of this potential equation
structure corresponding now to E1,p−1. Indeed, in a context
of strongly nonlinear relations between the variables, even

removing a single termmay strongly modify the coefficients of
the remaining variables, and therefore, the parameters should
be re-estimated for each substructure. The contribution of
each remaining p − 1 monomial is thus re-estimated from the
E1,p−1 equation using again the leave-one-out technique. The
monomial of least importance is then definitively removed
and a precise computation of the parameters is performed
with the Gram-Schmidt technique fromwhich equation struc-
ture E1,p−2 is deduced. The same algorithm is repeated until
no monomial remains (corresponding to E1,0). The p + 1 possi-
ble equations E1,p to E1,0 constitute the ensemble of potential
equation structures for the dynamic of variable X1. We have
thus reduced our ensemble from 2p to p + 1 possible struc-
tures for variable X1, among which the original formulation
should be included if our selection technique is appropriate
and accurate enough.

The same selection technique is used for all the variables
Xl leading to an ensemble of (p + 1) potential equations for
each variable. Their combinations represent (p + 1)n poten-
tial models {El,k}l∈[1...n],k∈[0...p], which remains considerable but
which appears manageable for numerical integration tests if
the number of variables n and the maximal polynomial degree
q are sufficiently small (e.g., 113 models for n = 3 and q = 2).
In order to accelerate the model search, only models of size
Np ≤ Nmax

p may be considered where Np may be increased
progressively as long as no valid model can be obtained.

D. General model selection procedure

The following model selection procedure is used: (1) The
automatic selection technique presented in Sec. II C is applied
to the time series to obtain an ensemble of automatically pre-
selected models. (2) This ensemble of preselected models is
then tested in terms of numerical integrability (divergingmod-
els are rejected). (3) The remaining models are then selected
by default, based on their performances to reproduce the
original phase space: fixed points and period-1 cycles are auto-
matically rejected (except if the original phase portrait is a
period-1 cycle); remaining models that are obviously not able
to reproduce the original phase portrait are rejected by a
visual inspection (illustration of such a rejection will be given
in Sec. II A). A rejection based on more refined characteri-
zation may be required when the models’ performances are
visually not obvious. If several models remain after this rejec-
tion process, the model of more parsimonious formulation is
preferred. When several models of same size remain, then the
structure common to these suboptimal models is considered
as best. (4) This optimal structure is then compared to the
original system.

III. DATA

To test the ability of the global modeling technique to
unveil the original form of the dynamical equations from
observational time series, it is necessary to generate synthetic
data sets that will be used for the various experiments consid-
ered in this study. The first ensemble of experiments aims to
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characterize the sensitivity and the robustness of the global
modeling technique to external factors: sensitivity to (1) initial
conditions, (2) data sampling time, (3) time series length, (4)
dynamical regime, (5) measurement noise, and (6) dynamical
perturbations. All these analyses will take the Rössler system
(R76)27

ẋ = −y − z; ẏ = x + ay; ż = b + z(x − c) (5)

as a case study. This system is paradigmatic of chaos and
has been extensively studied. It has seven terms and only a
single nonlinearity (xz in the third equation). For (a, b, c) =

(0.432, 2, 4), it produces a phase-coherent chaos which is a
common situation in chaos that should thus be considered in
first.

The other parts of the analysis aim to test the generality
of the tools by investigating a wide diversity of systems. The
description of the other systems considered in the analysis
will be given throughout the analysis, in order to facilitate the
comparison between the original equations and the models
retrieved by global modeling.

For all the models presented in the study, the time series
were generated using a fourth-order Runge-Kutta method.
For all the analyses, the time series of the first derivatives
are required that will be computed using a Savitzky-Golay
filter. This filter will also have a slight smoothing effect on
the time series. Various time series preprocessing may also
be applied depending on the type of degradation. When nec-
essary, resampling will be performed using cubic splines and
smoothing using Butterworth filter. The main characteristics
of all the time series considered in the study, as well as the
detailed equations of all the dynamical systems used in the
analysis and the models obtained for them are provided as the
supplemental material.

IV. APPLICATION AND RESULTS

A. An example: The Rössler system

A first analysis is given under ideal conditions to exem-
plify the process. The three time series x(t), y(t), and z(t)
presented in Fig. 1 and obtained by numerical integration of
the Rössler system are used in this example. A phase space

FIG. 1. Original time series (no unit) x(t) (in red), y(t) (in green), and z(t) (in
black) generated with the Rössler system [Eq. (5)] with (a, b, c) = (0.432, 2, 4)
and initial conditions (x0, y0, z0) = (0.6,−0.6, 0.4).

FIG. 2. Global models (in red) superimposed to the original (black) phase
portraits in (x,y) projection.

projection reconstructed from these time series is presented
in Fig. 2 (black curves). These time series are of moderate
length (six oscillations), free of noise, and have a sampling time
that provides a very good description of the time evolutions
for the three variables (Nech = 2000 data point for each time
series).

The global modeling technique is applied to this set of
three time series using the following input parameters: model
dimension d = 3 (one dimension for each measured variable),
maximum polynomial degree q = 2, and model maximum size
Nmax

p = 8 (with the idea to restart the modeling process with
alternative algorithm parameters if no satisfying model can be
obtained). Fifty-six models are preselected by the automatic
structure selection procedure defined in Sec. IV C, and their
numerical integrability is then tested. Thirty-one models are
automatically rejected (not shown), either (1) as diverging if

Chaos 29, 023133 (2019); doi: 10.1063/1.5081448 29, 023133-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-064902


Chaos ARTICLE scitation.org/journal/cha

Not a Number are produced by numerical integration or (2)
if the estimated trajectory is going too far from the original
data set (by default, a four sigma test is applied to each vari-
able). Models that remain are rejected manually if the models’
dynamic is obviously too simple compared to the original data,
that is, either (3) when a model converges to a fixed point [it
was the case for six models, one example is given Fig. 2(a)] or
(4) to period-1 cycles, which phase portraits are poorly com-
patible with the original phase portrait [as it is the case for 15
other models, e.g., Fig. 2(b)].

Once these models rejected, only four models remained
[see Figs. 2(c)–2(f)]: one 7-term model (#25) and three 8-term
models (#40, #43, and #44). The four ones can reproduce
the complexity of the original dynamic. Their phase portraits
are highly consistent with the original one. Therefore, it is
not necessary to investigate models of larger size (Nmax

p > 8)
or of larger polynomial degree (q > 2). Note that it should
not be expected to retrieve strictly the original trajectory.
Indeed, for chaotic behavior, to obtain exactly the same origi-
nal trajectory, it would be required to retrieve—both the initial
conditions and the model parameters—with an infinite preci-
sion which is impossible in practice, and which is not our aim
here since our method aims to apply under various degraded
conditions (subsampled and noisy time series, perturbed sys-
tems). Based on the phase portraits, there is a priori no reason
to prefer one model or another among these four. To choose
among them under such conditions, the model of more con-
cise formulation should be preferred, that is, here, model
#25











ẋ = −0.9979 y − 0.9987 z,

ẏ = 0.9990 x + 0.4316 y,

ż = 1.9874 − 3.9747 z + 0.9937 xz

(6)

(the number of digits was truncated to facilitate the read-
ability, see the supplementary material for more details). The
algebraic structure of this model #25 effectively corresponds
to the original set of equations [Eq. (5)]. The original system
structure is thus effectively retrieved from the original time
series and the error on the estimated parameters does not
exceed 3%. The largest error is found in the second equation
[it is associated to parameter a, Eq. (5)], it does not exceed 1%
elsewhere.

Interestingly, the other three models have the same alge-
braic structure plus one extra monomial, such as











ẋ = −α1 y − α2 z (+α3z2),

ẏ = β1 x + β2 y (+β3xz),

ż = γ1 − γ2 z + γ3 xz (+γ4x2),

(7)

with (α3,β3, γ4) = (0, 0, 0.001238) for model #40, (0,−0.000
1493, 0) for #43, and (0.0008870, 0, 0) for #44. The four mod-
els thus all have the same common structure. This structural
consistency, as well as the small amplitudes of the additional
terms contribute to strengthen the conclusion that, at least
under ideal conditions, the equations’ original structure of a
dynamical system of polynomial form can be retrieved from

observational time series. The robustness and the generality
of the approach will be investigated in Secs. IV B– IV E.

B. Sensitivity analyses

1. Initial conditions

To illustrate the low sensitiveness of the approach to the
initial conditions, an ensemble of 40 non-overlapping time
series was generated, each starting from different initial con-
ditions on the attractor. The procedure illustrated in Sec. II A
was used in each case. The original model formulation could
be retrieved for 36 simulations. For the four remaining sim-
ulations of this ensemble, no model was obtained (all were
rejected, that is, no detection but also no erroneous detec-
tion). This shows that it may be useful to restart a simulation
with another window analysis when no model is obtained.
The error associated with the seven model parameters are
plotted in Fig. 3(a) that shows that the parameter precision
is weakly dependent on the window, and that both high and
low heterogeneity may take place between the various model
coefficients, even in the same equation. Note that consid-
ering transients (with initial conditions located far from the
attractor) led to similar results (not shown).

2. Dynamical regime

In this experiment, four alternative dynamical regimes of
the Rössler system are considered, three of lower complex-
ity (periodic cycles of periods one, two, and four) and one
of higher complexity (a phase non-coherent chaotic regime).
Their original phase portraits are plotted in Fig. 4 (in light
gray). The global modeling technique was applied to these four
situations following the procedure presented in Sec. IV A. For
all the cases, most of the models were rejected automatically,
and the remainingmodels could be separated in two classes. In
the first class, the correspondence with the original dynamic
was quite poor [as previously observed for the reference case
in Figs. 2(a)–2(b)] and could be rejected straightforward; in the

FIG. 3. Models parameter error (in %) estimated (a) from an ensemble of 40
non-overlapping time series and (b) from time series of increasing length T =

Nech × δt (Nech = 700 to 16 000). Parameters from the first, second, and third
equations are, respectively, plotted in red, blue, and orange. For the third equation,
it is difficult to distinguish the three lines (in orange) since the error is almost
identical for each. Vertical lines correspond to T = 24 and T = 100.
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FIG. 4. Phase portraits of the Rössler-1976 system for periodic regimes: period-1
cycle for a = 0.33 (a), period-2 for a = 0.37 (b), period-4 for a = 0.38 (c), phase
non-coherent chaos for a = 0.52 (d). Other parameters: (b = 2, c = 4). Origi-
nal phase portrait are plotted in gray, global models in red. For periodic regimes,
original and model phase portraits are indistinguishable because almost identical.

second class, models were very similar to the original portraits
[see Fig. 4(d)] or even almost identical to the original phase
portrait presented in Figs. 4(a)–4(c) for the periodic cases. In all
the cases, the models obtained in the second class had exactly
the same algebraic structure as the models #25, #40, #43,
and #44 obtained for the reference case [Eqs. (6) and (7)]. The
models corresponding to #25 were preferred in all the cases
for their higher concision. The equations’ original structure
was thus retrieved in all cases, the parameters error progres-
sively increasing from 0.36% for period-1 cycle to 1.08% for the
phase non-coherent chaotic regime.

3. Time series length

To test the sensitiveness of the modeling technique to the
time series length, experiments with time series of lengths
varying from Nech = 400 to 16 000 data points were tested,
the smaller size corresponding to a single oscillation along
the chaotic attractor. No model could be obtained for the
smallest time series which probably comes from a lack of
data leading to a low representativeness of the original phase
space. Models could be obtained for all the time series of
lengths equal to or longer than approximately two complete
cycles (Nech ≥ 700). For these models, the parameter errors
vary from 0.07% to 2.7%. The parameter errors were found to

converge for a time series of duration T = 24 time units (1200
data points), corresponding to approximately four oscillations
[see Fig. 3(b)]. Smaller errors were obtained for the shortest
time series (Nech < 1000 data points), which results from the
fluctuations of the observability in the phase space.

4. Sampling time

The computation of the derivatives being necessary to
apply the global modeling technique, a sufficiently good sam-
pling time is thus required. Unfortunately, under experimental
conditions, it is not always possible to choose the sampling
time. Under subsampling conditions, it may be necessary to
resample the observational time series at a higher resolu-
tion. Various levels of subsampling were considered in this
experiment to investigate the conditions for retrieving the
original equations’ structure. Since it was shown in the pre-
vious paragraph that the error associated with time series
length converges for a time series length of four oscillations
(T = 24 units of time), this duration was used for the present
experimentation. The analyzed time series were thus resam-
pled at various sampling times from a time series of four
oscillations to test the sensitiveness to the sampling time,
decimating the number of points for each time series by a
factor N = 2 to 80, corresponding to sampling times of 1t =

N × δt with an initial sampling time δt = 1/50. Still following
the same procedure, it was first attempted to get models from
this set of subsampled time series. Results are presented in
Table I. The algebraic structure of the original system could
be retrieved for moderate subsamplings, with a parameter
error quickly increasing from 2.66% (for 1t = 0.04) to 14.9%
(for 1t = 0.1). A model could also be obtained for 1t = 0.2
but this included one extra term (+0.055766x2) in the third
equation and with error levels reaching 54.4% for the prop-
erly detected coefficients. All models were rejected for more
degraded subsampling conditions (no erroneous detection).

The set of subsampled time series was then resampled
using cubic splines, and the approach was applied again to the
resampled time series (results also presented in Table I). It was
found possible to retrieve the original system structure for
1t = 0.04 to 0.6. For more degraded conditions, results were
found more erratic: models were all rejected for 1t = 0.8, 1.2,
and 1.4, but a model could be obtained for 1t = 1.0 and 1.6. The
formulations of the two latter models did not exactly corre-
spond to the original formulation: six terms over seven were
properly retrieved in both cases (i.e., one term undetected) but
one extra term for 1t = 1.4, and two for 1t = 1.6, were erro-
neously detected. In terms of parameter error level, it is found
that, for moderated original subsampling (1t = 0.02 to 0.4),
the parameter error remains extremely low (< 1.5%). Obvi-
ously, time series resampling can improve highly the model
structure detection and the precision of the model param-
eters. For more degraded sampling conditions 1t ≥ 50 × δt,
which corresponds to seven or less data points per oscil-
lations, higher error levels can be reached (up to 50%-70%
here). Moreover, the chances to get a model becoming more
erratic (higher probability to have all the model rejected) and
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TABLE I. Structure and parameter maximum error (in %) of the models obtained from the subsampled and resampled time series as a function of the original sampling time 1t

(with T = 24 for all the experiments).

N 1 2 5 10 20 30 40 50 60 70 80

1t 0.02 0.04 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Subsampled time series

Proper 7 7 7 7 . . . . . . . . . . . . . . . . . . . . .

Missing 0 0 0 0 . . . . . . . . . . . . . . . . . . . . .

Extra 0 0 0 1 . . . . . . . . . . . . . . . . . . . . .

Err. (%) 0.67 2.66 14.9 54.a . . . . . . . . . . . . . . . . . . . . .

Resampled time series

Proper 7 7 7 7 7 7 . . . 6 . . . . . . 6

Missing 0 0 0 0 0 0 . . . 1 . . . . . . 1

Extra 0 0 0 0 0 0 . . . 1 . . . . . . 2

Err. (%) 0.67 0.67 0.68 0.72 1.33 5.6 . . . 61.a . . . . . . 53.a

aEstimated for the parameters detected by the model.

less robust (some erroneous detections) under such condi-
tions, it may be useful to try several time series windows when
attempting to get a model. Eight points per oscillations can be
considered as good conditions for the global modeling tech-
nique, although models can be expected down to four. To
check the robustness of the analysis, the same experiments
were performed again considering a longer time period T =

100. Very similar results were obtained (see the supplementary
material).

5. Measurement noise

Measurement noise is a common limitation when consid-
ering observational time series. It refers to perturbations that
alter the measured signal without perturbing the observed
system. Such noisy time series sobs(t) are easily generated by
adding a noise to the original (free of noise) signal such as

sobs(t) = s(t) + εs(t), (8)

where εs(t) is the measurement noise applied to the original
time series s(t) and ε(t) is assumed here to be independent
and identically distributed (iid) Gaussian noise. The level of
measurement noise is defined as

lm = σ 2
m/σ 2

s × 100 (9)

(in percent) with σ 2
m the variance of the measurement

noise ε(t) and σ 2
s is the variance of the original signal s(t);

here, (σ 2
x , σ

2
y , σ

2
z ) ≈ (1.8542, 1.7582, 1.1222). Levels of noise rang-

ing from 0.01% to 50% were applied. Following the procedure
defined in Sec. IV A, the global modeling technique was applied
to this set of noisy time series. However, the results in terms
of model structure detection were found partly erratic, the
original structure being recurrently partly retrieved, only. To
investigate the probability to unveil the original system struc-
ture, an ensemble of 25 simulations was launched for each
measurement noise level, and the modeling procedure was
applied to each time series. Results are summarized in Table II.
For each ensemble, results are separated in four classes: (a)

Original system retrieved straightforward; (b) Original model
approximately retrieved (i.e., with either one term undetected
or one erroneous term); (c) Original model not retrieved (with
more than one erroneous or missing detection); and (d) No
model obtained (all the models are rejected). Results show
that, even for low levels of noise (lm ≤ 5%), there is a non-
negligible probability (15.5%) to have an imperfect detection
of the original system structure. For high level of noise (lm ≥

20%), the risk to obtain an erroneous model structure [class
(c)] is also high (23.0%), although the probability not to obtain
any model becomes much higher (74.0%). These results may
be improved using a refined analysis. Indeed, when imper-
fect models are obtained, it is common to have several models
of same size (number of parameters identical). In such con-
ditions, there is no reason to prefer one model rather than
another. In such a situation, the algebraic structure common
to the valid models can be considered as more robust. The
optimal structure is then obtained indirectly (e). The results
after taking this refined analysis into account can thus be
separated in four new classes: (f) Original system properly
retrieved (directly or indirectly); (g) Original system almost
perfectly retrieved (with either one undetected or erroneous
term); (h) Original system erroneously retrieved (with more
than one term erroneous or missing); the class (d) with no
model detection remaining unchanged. This additional pro-
cedure enables to improve the detection. However, the risk
to have an imperfect detection remains high (6% on average,
against 15.5% before) even for low levels of noise, and the risk
to have erroneous detections remains almost unchanged for
higher noise levels. A smoothing was then applied to each
time series and the global modeling applied again (results
also reported in Table II). Smoothing appears very efficient to
improve the model structure detection: the number of direct
detection is globally increased, in particular, when higher
levels of noise are concerned. No situation of class (c) and
(h) is met anymore. Most of the detections with a single
erroneous/undetected term (b) now give rise to a proper
indirect detection (e). Situations for which no model can be
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TABLE II. Structure and parameter maximum error (in %) of the models obtained under various levels of measurement noise.

lm 0.01 0.2 0.5 1 2 5 10 20 30 40 50

Noisy time series

(a) Direct 23 16 21 22 22 21 13 3 0 0 0

(b) ±1 2 9 4 2 2 4 6 1 2 0 0

(c) ±n 0 0 0 0 0 0 0 7 3 7 3

(d) No model 0 0 0 1 1 0 6 14 20 18 22

(e) Indirect . . . 5 3 2 2 4 2 1 0 0 0

(f) Proper (a)+(e) 23 21 24 24 24 25 15 4 0 0 0

(g) Almost perfect 2 4 1 0 0 0 4 1 2 0 0

(h) Erronous 0 0 0 0 0 0 0 6 3 6 3

Smoothed time series

(a) Direct 22 22 23 22 24 24 23 20 21 20 15

(b) ±1 3 3 2 3 1 1 1 4 1 2 6

(c) ±n 0 0 0 0 0 0 0 0 0 0 0

(d) No model 0 0 0 0 0 0 1 1 3 3 4

(e) Indirect 3 3 2 3 1 1 1 4 0 1 3

(f) Proper (a)+(e) 25 25 25 25 25 25 24 24 21 21 18

(g) Almost perfect 0 0 0 0 0 0 0 0 1 1 3

(h) Erronous 0 0 0 0 0 0 0 0 0 0 0

obtained (d) becomes rare and only for the highest levels of
noise. In terms of parameter error [see Fig. 5(a)], it is found
that the effect of noise becomes more effective for noise levels
such as lm ≥ 0.5%. Error increases regularly with rising noise
for all the parameters but one in the second equation which
error remains stable even for higher levels of noise. In sev-
eral cases, parameter smoothing [see Fig. 5(b)] will tend to
increase the parameter error [see the error parameters for the
third equation in Eq. (5)], although this is not systematic. The
main interest of the smoothing is to make the global model-
ing technique applicable and much more robust in terms of
model structure detection, especially when no model would
be obtained otherwise.

FIG. 5. Sensitivity to measurement noise before (a) and after (b) smoothing. Mod-
els’ parameter error (in%) is plotted as a function of the percentage of added noise
lm (respectively, up to 10% and 50% for non-smoothed and smoothed signals).
Same color codes as Fig. 3.

6. Dynamical perturbation

Dynamical perturbation is defined here as a perturbation
of the original dynamical system that will alter the current
state of the studied system. Such a perturbation may thus
change the system long term evolution. It is therefore fun-
damentally different from the measurement noise which will
affect only the observational time series not the system itself.
To investigate the influence of dynamical noise, observational
time series must be generated by perturbing the dynamical
system during the integration process. The Rössler system can
thus be rewritten as stochastic differential equations







ẋ = −y − z + µx(t),
ẏ = x + ay + µy(t),
ż = b + z(x − c) + µz(t),

(10)

where µx, µy, and µz are assumed to be iid Gaussian noise of
amplitude level

ld = σ 2
d /σ̇ 2

s × 100 (11)

(in percent) with σ 2
d is the variance of the dynamical noise

µ.(t) applied to variables x, y, or z at each integration time
step, and σ̇ 2

s is the variance of the original signal derivative
ṡ(t); in the present case (with δt = 1/50), we have (σ̇ 2

x , σ̇
2
y , σ̇

2
z ) ≈

(0.03952, 0.03392, 0.03482). In practice, µx(t), µy(t), and µz(t)
are chosen in order to have the same level of dynamical noise
ld for each variable. Levels of dynamical noise ranging from
ld = 1% to 800%were applied (note that, compared to the vari-
ance of the original variables, this level would appear three
orders of magnitudes lower since 1040 > σ 2

s /σ̇ 2
s > 2700). The

procedure presented in Sec. IV A was then applied to this
set of noisy time series. For high dynamical noise levels (ld ≥

700%), models were found to be all systematically rejected in
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FIG. 6. Sensitivity to dynamical noise before (a) and after (b) smoothing. Models’
parameter error (in %) is plotted as a function of the percentage of added noise
lm (up to 600% for both non-smoothed and smoothed signals). Same color codes
as Fig. 3.

both noisy and smoothed cases. The analysis will thus focus
on noise levels such as ld ≤ 600%. Starting with the non-
smoothed time series, the original formulation of the Rössler
system could be retrieved in almost all cases with an error on
the parameters increasing with the level of noise (see Fig. 6).
The effect of the dynamical noise on the parameter error level
appears qualitatively very similar to the effect of measure-
ment noise (Fig. 5). Punctually, for ld = 20% and 300%, all the
models were rejected (no detection). Starting from the same
time series after a smoothing was applied to them, the orig-
inal Rössler system was retrieved in all the cases except for
the largest level of noise (ld = 600%) for which a model was
obtained which algebraic structure of the last equation did not
entirely match the original system (the constant term b was
missing and two extra terms were erroneously detected; note,
however, that the magnitude of the spurious terms x2 and z2

was comparatively low). The approach can thus be considered
as robust to dynamical noise although some erroneous detec-
tion may happen when dynamical perturbation level becomes
too high. A smoothing preprocessing appears superfluous to
deal with dynamical noise. The Savitzky-Golay filter applied
to compute the derivatives that will also have a slight smooth-
ing effect on the original time series (see Sec. III) is therefore
sufficient to tackle with low to moderate levels of dynamical
perturbation.

C. Other quadratic three-dimensional systems

In Sec. IV B, all the experiments were based on the Rössler
system in order not to mix the influence of the system struc-
ture with the one of the tested factor. The object of Sec. IVC is
now to test other algebraic structures. Nineteen other dynam-
ical systems are now considered, all three-dimensional and
quadratic. In each case, the procedure introduced in Sec. IV A
is used; additional details are punctually given when further
analyses are required. Results are synthesized in Table III,
and additional information are provided as the supplemental
material.

The Nosé-Hoover (NH84) system28,29

ẋ = ay; ẏ = yz − x; ż = b − y2 (12)

is a very interesting case of study because its three vari-
ables—although fully deterministically coupled—are almost
completely uncorrelated. For the parameterization (a, b) =

(0.2, 3), its dynamic is chaotic and the correlation between the
three variables does not exceed 0.15 (Cx,z ≈ 0.142, Cx,y ≈ 0.025,
and Cy,z ≈ 0.016). It has only five terms among which two non-
linear ones (yz in the second equation, y2 in the third one). The
model







ẋ = 0.196y,
ẏ = 0.854yz − 1.08x,
ż = 2.744 − 0.916y2

(13)

was obtained when applying the global modeling technique.
Despite very low correlation levels, the structure of the orig-
inal system is directly retrieved with a precision on the
parameters ranging from 2% to 15%.

The same procedure was applied to the Genesio-Tesi
(GT92),30 and the Sprott-F, G, H, K, M, O, P, Q, and S systems,31

that all have six terms with a single nonlinear one included.
Their formulation is thus very concise. In all these cases,
still following the same procedure, the original system struc-
ture was retrieved directly from observational time series, the
parameter error varying from 0.1% to 2.1%.

Systems of higher algebraic complexity were then con-
sidered. The Lorenz-1963 (L63) system32

ẋ = ay − ax; ẏ = −y + bx − xz; ż = −cz + xy (14)

has seven terms including two nonlinearities (xz and xy in
the second and third equations, respectively). For the param-
eterization (a, b, c) = (10, 28, 8/3), it produces the famous two-
scroll chaotic attractor. The following model was obtained:







ẋ = 9.748y − 9.748x,
ẏ = 24.482x − 0.913xz,
ż = −2.581z + 0.968xy,

(15)

in which one term (−y in the second equation) is missing. The
seven-term original formulation was actually included in the
preselected models but it could not be retained because of
its less parsimonious formulation. The obtained model cor-
responds to one of the three smallest subsystems of the
general Lorenz-like (sLL1-3) systems discovered by Lainscsek24

and characterized by an identical differential formulation.
This result highlights here the ability of the approach to
retrieve minimal algebraic formulation of the equations rather
than the original equations. Note that the sLL1-3 systems
are algebraically equivalent exclusively when reformulating
the dynamics from variable x. But their original algebraic
formulations being different, it is thus possible to retrieve
their original structure when the three variables (x, y, z) are
observed, as confirmed here by applying the global model-
ing technique. This result clearly confirms the ability of the
approach to distinguish equations of minimal formulation one
from another.
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TABLE III. Systems detected and undetected structure, and sensitivity to noise: system name, dimension n, polynomial degree q, number of monomial (nonlinear ones included),

parameter error range, number of properly detected terms (nonlinear ones included), of undetected ones (nonlinear ones included), and of erroneous detection, maximum

measurement noise lmaxm for which the result could be confirmed.

System n q NP err Proper Miss. Erroneous lmax
m

R76 3 2 7(1) [0.09; 0.6] 7(1) 0 0 50

NH84 3 2 5(2) [2.0; 14.7] 5(2) 0 0 50

GT92 3 2 6(1) [0.6; 2.1] 6(1) 0 0 10

SprF 3 2 6(1) [0.6; 2.0] 6(1) 0 0 20

SprG 3 2 6(1) [0.5; 1.8] 6(1) 0 0 40

SprH 3 2 6(1) [0.9; 1.8] 6(1) 0 0 20

SprK 3 2 6(1) [0.6; 1.9] 6(1) 0 0 5

SprM 3 2 6(1) [0.1; 0.3] 6(1) 0 0 40

SprO 3 2 6(1) [0.1; 0.6] 6(1) 0 0 2

SprP 3 2 6(1) [0.1; 0.4] 6(1) 0 0 10

SprQ 3 2 6(1) [0.2; 0.4] 6(1) 0 0 2

SprS 3 2 6(1) [0.3; 0.5] 6(1) 0 0 5

BS81 3 2 6(2) [2.3; 5.4] 5(2) 1(0) 0 30

L63 3 2 7(2) [2.5; 12.6] 6(2) 1(0) 0 5

sLL1 3 2 6(2) [2.9; 5.2] 6(2) 0 0 5

sLL2 3 2 6(2) [0.7; 1.4] 6(2) 0 0 20

sLL3 3 2 6(2) [2.5; 4.9] 6(2) 0 0 5

Li12 3 2 9(4) [3.5; 12.0] 9(4) 0 0 2

cord12 3 2 11(4) [8.4; 30.1] 6(3) 5(1) 0 10

L84 3 2 11(6) [3.4; 66.2] 6(4) 5(2) 0 10

M02 3 3 5(1) [0.01; 0.1] 5(1) 0 0 0.2

RFOsc 4 3 9(3) [1.1; 23.7] 8(3) 1(0) 0 0.5

dyn15 5 2 15(3) [0.05; 43.8] 10(3) 5 0 0.2

The same procedure was also applied to four other sys-
tems: the Lorenz-like Burke-Shaw (BS81) system,33 the Li (Li12)
system34 that produces toroidal chaos, the Lorenz-1984 (L84)35

that produces a weakly dissipative chaos, and the cord system
(cord12).36 The completed algebraic structure was retrieved
directly only for the Li12 system. Simplified algebraic struc-
tures (i.e., one or more undetected terms) were obtained for
BS81, L84, and cord12 systems, without erroneous detection
(see Table III).

A sensitivity test to measurement noise was applied to
each system. This showed that the approach is robust to
noise although sensitivity can highly vary from one system to
another (from lmax

m = 2% for SprO, SprQ, and Li12 up to 50% for
R76 and NH84, see Table III for details).

D. Non-quadratic and higher-dimensional systems

The approach was then tested on three other sys-
tems, higher-dimensional and/or cubic. The five-dimensional
(dyn15) system37



















ẋ1 = −ax1 + x2x3 − px4 + qx5,
ẋ2 = −bx1 − ax2 + x1x3 − px4 + qx5,
ẋ3 = 1 − x1x2,
ẋ4 = cx2,
ẋ5 = q(x1 + x2 + x4)

(16)

derived from the Rikitake dynamo system38 has 15 terms,
among which three nonlinearities, and produces a hyper-
chaotic behavior for a = 1, b = 1, c = 0.7,p = 1.1, and q = 0.1.
The 10-term model























ẋ1 = −1.185x1 + 1.089x2x3,
ẋ2 = −2.095x1 − 0.706x2 − 0.76x4 + 0.95x1x3,
ẋ3 = 0.998 − 0.998x1x2,
ẋ4 = 0.700x2,
ẋ5 = 0.144x1

(17)

was the smaller model able to reproduce the two scrolls
observed in the original (x1, x2) projection. Compared to the
original system (16), five terms are missing, without any erro-
neous detection.

Compared to quadratic systems, cubic systems are rela-
tively rare. The simplest cubic system (M02)

ẋ = y; ẏ = z; ż = −az − x + xy2 (18)

was introduced by Malasoma.39 No quadratic model could be
obtained for this case, and the original system structure could
be entirely retrieved with its cubic term, with parameter error
lower than 0.1%.
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The Reciprocally Forced Oscillators (RFOsc)
{

ẋ = y ẏ = aw − by − cx3,
ż = w ẇ = dw − ez2w − z3 + fy

(19)

is introduced here in order to have a study case of mixed com-
plexity (n = 4, q = 3). For (a, b, c,d, e, f) = (0.7, 0.01, 5, 0.2, 2.206,
0.25), a chaotic regime is produced. No valid quadratic model
could be obtained for it. The best model able to reproduce the
complexity of the original phase space is

{

ẋ = 0.968y, ẏ = 0.534w − 4.56x3,
ż = 0.985w, ẇ = 0.179w − 1.99z2w − 0.99z3 + 0.24y

(20)

in which one term is undetected (−by in the second equation)
and that does not include any erroneous detection. The sensi-
tivity test to measurement noise showed that systems MO2,
RFOsc, and dyn15 are more sensitive to noise than the 3D
quadratic systems.

The results obtained in Secs. IV C and IV D clearly illus-
trate the fact that the algebraic structure of dynamical sys-
tems can be retrieved, and often completely, when the system
is polynomial and sufficiently concise. This proves that statis-
tical criteria (such as the ones used in the structure selection
process, see Sec. IV C) can be very efficient for model prese-
lection. Nonetheless, since such statistical properties depend
on the model complexity (number of parameters, polynomial
degree, etc.), the same properties may be obtained with differ-
ent model structures (as shown by Ref. 25). By construction,
classical statistical properties are not adapted to character-
ize unambiguously the deterministic properties of a dynamical
system, in particular, its phase space. As a consequence, such
properties may not be sufficient to identify the best model
and may not enable the retrieval of the the equations origi-
nal structure. Note that criteria including a penalty increasing
with model size should a fortiori be avoided in the structure
selection process because such criteria will add a strong con-
straint on the model size (and thus on its structure) generally
without any objective knowledge. From this respect, a quali-
tative comparison between the original and the model phase
portraits appears to be a much more powerful criterion to
reject spurious models among potential models preselected
on statistical properties. At the mean time, it was also found
that the less parsimonious the systems, the more difficult
the complete retrieval of the original equations. Several fac-
tors can contribute to this limitation: (1) More terms in an
equation will lead to increase parameters error (and the resid-
ual signal) during the identification process. (2) Terms of low
amplitude will be more affected by such a situation and there-
fore more difficult to detect unambiguously. (3) Polynomial
terms may also be more difficult to distinguish one from
another when variables are close to synchronization. Finally
(4), although polynomial enables to define a non-redundant
basis, non-uniqueness cannot be guaranteed systematically
under numerical conditions due to finite precision and finite
data length. For these reasons, models of more concise form
should be systematically preferred if the validation cannot
justify the contribution of additional terms. The principle of
parsimony (Ockham’s razor) appears to be a powerful element

of selection for equations structure identification but it should
advantageously take the dynamical properties into account
rather than common statistical properties.

E. Non-polynomial systems

To test the approach under non-polynomial conditions,
four other systems with rational terms were also investigated:
the host-immune-tumor system (HIT01),40 the phyplankton-
zooplakton-nutrient system (PZN14),41 as well as one equivari-
ant double cover with Reflection symmetry (EDCR) and one
double cover with RZ(π) symmetry (DCπ ) of the R76 system.42

The HIT01 system














ẋ = ρ1x(1 − x) − α13xz,

ẏ =
ρ2yz

1 + z
− α23yz − δ2y,

ż = ρ3z(1 − z) − α31xz − α32yz

(21)

produces a chaotic behavior for ρ1 = 0.518,α13 = 1.5, ρ2 =

4.5,α23 = 0.2, δ2 = 0.5, ρ3 = 1,α31 = 1, and α32 = 2.5.43 Themodel






ẋ = 0.5171x − 1.498x2 − 0.5171xz,
ẏ = 2.7697yz − 0.4029y,
ż = 0.9823z − 0.9836z2 − 2.464xz − 0.9773yz

(22)

was obtained for it. All the terms are properly detected (i.e.,
neither erroneous nor missing detection) except the ratio-
nal one which was approximated by a Taylor series to zeroth
order (see the supplementary material). A similar result was
obtained for the EDCR system, except that the rational term
was approximated by a Taylor series to second order. For
the other two systems (PZN14 and DCπ ), the models were
all rejected (no spurious detection). The equations of all
the systems and models are provided as the supplementary
material.

These examples show that the obtained polynomial mod-
els can be the result of an approximation. These experiments
also show that the probability to fail to detect a deterministic
behavior is high when the original system is non-polynomial.
Though, it was proven that polynomial can be often obtained
to approximate rational functions in the case of differen-
tial models reconstructed from univariate time series, for
instance, for modeling the Rössler-76 dynamics from variables
x or z.7,12 Such a situation is, however, much less probable when
all the system variables are observed since an approximation
of a rational can be a big source of perturbation. Multivariate
global models are much more sensitive than univariate ones
because errors will propagate from all the equations in the
multivariate case whereas it will mostly originate from a single
equation in the univariate one. It is probably another reason
whymultivariate models in ODEs could not be obtained earlier
from real world data.

V. CONCLUSIONS

Several experiments have been carried out in this study to
investigate under which conditions, the original equations of
dynamical systems can be retrieved, in part or entirely, from
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observational time series, when all the system variables are
observed. It is shown that, for polynomial systems of con-
cise formulation, the original structure can be exactly and
entirely retrieved. For polynomial systems with more terms,
most of the terms of the original equations can generally be
efficiently retrieved and erroneous terms are found to be rare
and comparatively of much smaller amplitudes.

The sensitivity tests showed that the approach is inde-
pendent to the initial conditions, and that, up to a certain
extent, it is robust to measurement noise and dynamical per-
turbations (respectively, up to lm = 50% of the original signal
variance and ld = 500% of the incremental signal variance for
the Rössler-76 system). However, sensitivity can highly vary
when considering other systems. It is also shown that a sig-
nal of two oscillations and a sampling time of four to six data
points per oscillation may be sufficient to retrieve the original
system equation structure. Experiments show that smoothing
and resampling preprocessing can improve considerably the
detection of the original equations under measurement noise
and subsampling conditions, respectively.

It is also proven that the approach can be potentially
applied to dynamical systems of various dimensions and not
exclusively to systems of quadratic form and to very diver-
sified dynamical regimes (periodic, chaotic, hyperchaotic,
toroidal or not, phase coherent and phase non-coherent
chaos, weakly and strongly dissipative chaos). It is noted that,
using the algorithms and procedures introduced here, obtain-
ing models with erroneous terms is relatively rare but that
termsmay be undetected when the original structure is poorly
concise. It is observed that, using the present technique, it
is much more common not to detect any model rather than
to detect a model with a single or more erroneous terms.
One consequence of this latter observation is that alternative
analysis windows can be tried when no model, or non-valid
models, are obtained.

It is also proven that the approach can be applied to
detect deterministic couplings even when the variables of the
system are almost fully uncorrelated (C < 0.15).

To investigate the generality of the results, the approach
was also tested on four non-polynomial systems. For the two
more complex systems, all the models were rejected (no spu-
rious detection). For the two other systems, the polynomial
part of the systems could be detected and the rational part
approximated by a Taylor series.

The present study strongly supports the possibility to
retrieve the exact original system structure when the origi-
nal system formulation is polynomial and sufficiently concise
and to obtain a good polynomial approximation of the orig-
inal system otherwise. These overall conclusions therefore
suggest that process-based interpretations can be reasonably
proposed for models directly derived from observational time
series.

SUPPLEMENTARY MATERIAL

The supplementary material includes information about
the time series used for the analyses. The results of an

alternative test to subsampling. The equations of the dynami-
cal systems and of the models obtained for them under free of
noise conditions.

ACKNOWLEDGMENTS

Part of this work was supported by the French programs
LEFE (INSU) and Défi InFiNiTy (CNRS).

REFERENCES
1L. A. Aguirre and C. Letellier, “Modeling nonlinear dynamics and chaos: A
review,” Math. Probl. Eng. 2009, 238960 (2009).
2P. C. Young, “Parameter estimation for continuous-time models—A sur-
vey,” Automatica 17(1), 23–39 (1981).
3D. C. Saha and G. P. Rao, Identification of Continuous Dynamical Sys-
tems—The Poisson Moment Functionals, (PMF) Approach (Springer-Verlag,
Berlin, 1983).
4S. A. Billings, “Structure detection and model validity tests in the identifi-
cation of nonlinear systems,” ACSE Rep. 196, 22 (1982).
5S. A. Billings and I. J. Leontaritis, “Parameter estimation techniques for
nonlinear systems,” IFAC Proceedings 15(4), 505–510 (1982).
6J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data
series,” Compl. Syst. 1, 417 (1987).
7G. Gouesbet and C. Letellier, “Global vector field reconstruction by using
a multivariate polynomial L2-approximation on nets,” Phys. Rev. E 49(6),
4955–4972 (1994).
8C. Letellier, L. Le Sceller, E. Maréchal, P. Dutertre, B. Maheu, and G. Goues-
bet, “Global vector field reconstruction from a chaotic experimental signal
in copper electrodissolution,” Phys. Rev. E 51(5), 4262–4266 (1995).
9C. Letellier, L. A. Aguirre, and U. S. Freitas, “Frequently asked questions
about global modeling,” Chaos 19, 023103 (2009).
10C. Lainscsek, C. Letellier, and C. Schürrer, “Ansatz library for global
modeling with a structure selection,” Phys. Rev. E 64, 016206 (2001).
11C. Lainscsek, C. Letellier, and I. Gorodnitsky, “Global modeling of the
Rössler system from the z-variable,” Phys. Lett. A 314(5–6), 409 (2003).
12S. Mangiarotti, R. Coudret, L. Drapeau, and L. Jarlan, “Polynomial search
and global modeling: Two algorithms for modeling chaos,” Phys. Rev. E 86,
046205 (2012).
13S. Mangiarotti, F. Le Jean, M. Huc, and C. Letellier, “Global modeling of
aggregated and associated chaotic dynamics,” Chaos Solitons Fractals 83,
82–96 (2016).
14C. Letellier, S. Mangiarotti, I. Sendiña-Nadal, and O. E. Rössler, “Topologi-
cal characterization versus synchronization for assessing (or not) dynamical
equivalence,” Chaos 28(4), 045107 (2018).
15S. Mangiarotti, L. Drapeau, and C. Letellier, “Two chaotic global models
for cereal crops cycles observed from satellite in northern Morocco,” Chaos
24(2), 023130 (2014).
16S. Mangiarotti, “Modélisation globale et caractérisation topologique
de dynamiques environnementales,” Theses and habilitation to direct
researches (Université de Toulouse III, 2014).
17S. Mangiarotti, A. K. Sharma, S. Corgne, L. Hubert-Moy, L. Ruiz, M.
Sekhar, and Y. Kerr, “Can the global modelling technique be used for crop
classification?,” Chaos Solitons Fractals 106, 363–378 (2018).
18J. Maquet, C. Letellier, and L. A. Aguirre, “Global models from the Canadian
lynx cycles as a direct evidence for chaos in real ecosystems,” J. Math. Biol.
55(1), 21–39 (2007).
19S. Mangiarotti, “Low dimensional chaotic models for the plague epidemic
in Bombay (1896-1911),” Chaos Solitons Fractals 81, 184–196 (2015).
20S. Mangiarotti, M. Peyre, and M. Huc, “A chaotic model for the epidemic
of Ebola virus disease in West Africa (2013-2016),” Chaos 26, 113112 (2016).
21L. A. Aguirre and S. A. Billings, “Retrieving dynamical invariants from
chaotic data using NARMAX models,” Int. J. Bifurcat. Chaos 9(2), 449–474
(1995).

Chaos 29, 023133 (2019); doi: 10.1063/1.5081448 29, 023133-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-29-064902
https://doi.org/10.1155/2009/238960
https://doi.org/10.1016/0005-1098(81)90082-0
https://doi.org/10.1049/ip-d.1983.0034
https://doi.org/10.1016/S1474-6670(17)63039-8
https://doi.org/10.1103/PhysRevE.49.4955
https://doi.org/10.1103/PhysRevE.51.4262
https://doi.org/10.1063/1.3125705
https://doi.org/10.1103/PhysRevE.64.016206
https://doi.org/10.1016/S0375-9601(03)00912-5
https://doi.org/10.1103/PhysRevE.86.046205
https://doi.org/10.1016/j.chaos.2015.11.031
https://doi.org/10.1063/1.5011325
https://doi.org/10.1063/1.4882376
https://doi.org/10.1016/j.chaos.2017.12.003
https://doi.org/10.1007/s00285-007-0075-9
https://doi.org/10.1016/j.chaos.2015.09.014
https://doi.org/10.1063/1.4967730
https://doi.org/10.1142/S0218127495000363


Chaos ARTICLE scitation.org/journal/cha

22S. Mangiarotti, I. Sendiña-Nadal, and C. Letellier, “Using global modelling
to unveil hidden couplings in small network motifs,” Chaos 28, 123110 (2018).
23C. Lainscsek, “Nonuniqueness of global modeling and time scaling,” Phys.
Rev. E 84, 046205 (2011).
24C. Lainscsek, “A class of Lorenz-like systems,” Chaos 22, 013126 (2012).
25A. M. Barbosa, R. H. C. Takahashi, and L. A. Aguirre, “Equivalence of non-
linear model structures based on Pareto uncertainty,” IET Control Theory
Appl. 9(16), 2423–2429 (2015).
26L. A. Aguirre and S. A. Billings, “Dynamical effects of overparametrization
in nonlinear models,” Physica D 80(1–2), 26–40 (1995).
27O. E. Rössler, “An equation for continuous chaos,” Phys. Lett. A 57(5),
397–398 (1976).
28S. Nosé, “A molecular dynamics method for simulations in the canonical
ensemble,” Mol. Phys. 52(2), 255–268 (1984).
29W. G. Hoover, “Nonlinear conductivity and entropy in the two-body
Boltzmann gas,” J. Stat. Phys. 42(3–4), 587–600 (1986).
30R. Genesio and A. Tesi, “Harmonic balance methods for the analysis of
chaotic dynamics in nonlinear systems,” Automatica 28(3), 531–548 (1992).
31J. C. Sprott, “Some simple chaotic flows,” Phys. Rev. E 50(2), 647–650
(1994).
32E. N. Lorenz, “Deterministic non-periodic flow,” J. Atmos. Sci. 20(2),
130–141 (1963).

33R. Shaw, “Strange attractor, chaotic behavior and information flow,” Z.
Naturforschung A 36, 80–112 (1981).
34D. Li, “A three-scroll chaotic attractor,” Phys. Lett. A 372, 387–393
(2007).
35E. N. Lorenz, “Irregularity: A fundamental property of the atmosphere,”
Tellus 36A, 98–110 (1984).
36C. Letellier and L. A. Aguirre, “Required criteria for recognizing new types
of chaos: Application to the cord attractor,” Phys. Rev. E 85, 036204 (2012).
37S. Vaidyanathan, V.-T. Pham, and C. K. Volos, “A 5-D hyperchaotic Rikitake
dynamo system with hidden attractors,” Eur. Phys. J. 224, 1575–1592 (2015).
38T. Rikitake, “Oscillations of a system of disk dynamos,” Proc. Cambridge
Philosoph. Soc. 54, 89–105 (1958).
39J.-M. Malasoma, Chaos Solitons Fractals 13, 1835–1842 (2002).
40L. G. De Pillis and A. Radunskaya, “A mathematical tumor model with
immune resistance and drug therapy: An optimal control approach,”
J. Theor. Med. 3, 79–100 (2001).
41A. Sharma, A. K. Sharma, and K. Agnihotri, “The dynamic of plankton-
nutrient interaction with delay,” Appl. Math. Comput. 231, 503–515 (2014).
42R. Gilmore and C. Letellier, The Symmetry of Chaos (Oxford University
Press, New York, 2007).
43M. Itik and S. P. Banks, “Chaos in a three-dimensional cancer model,” Int.
J. Bifurcat. Chaos 20(1), 71–79 (2010).

Chaos 29, 023133 (2019); doi: 10.1063/1.5081448 29, 023133-13

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5037335
https://doi.org/10.1103/PhysRevE.84.046205
https://doi.org/10.1063/1.3689438
https://doi.org/10.1049/iet-cta.2015.0408
https://doi.org/10.1016/0167-2789(95)90053-5
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1007/BF01127730
https://doi.org/10.1016/0005-1098(92)90177-H
https://doi.org/10.1103/PhysRevE.50.R647
https://doi.org/10.1175/1520-0469(1963)020{\T1\textexclamdown }0130:DNF{\T1\textquestiondown }2.0.CO;2
https://doi.org/10.1515/zna-1981-0115
https://doi.org/10.1016/j.physleta.2007.07.045
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.1103/PhysRevE.85.036204
https://doi.org/10.1140/epjst/e2015-02481-0
https://doi.org/10.1017/S0305004100033223
https://doi.org/10.1016/S0960-0779(01)00201-6
https://doi.org/10.1080/10273660108833067
https://doi.org/10.1016/j.amc.2014.01.042
https://doi.org/10.1142/S0218127410025417

	I. INTRODUCTION
	II. THEORETICAL BACKGROUND
	A. Global modeling
	B. Statement of problem
	C. Structure selection technique
	D. General model selection procedure

	III. DATA
	IV. APPLICATION AND RESULTS
	A. An example: The Rössler system
	B. Sensitivity analyses
	1. Initial conditions
	2. Dynamical regime
	3. Time series length
	4. Sampling time
	5. Measurement noise
	6. Dynamical perturbation

	C. Other quadratic three-dimensional systems
	D. Non-quadratic and higher-dimensional systems
	E. Non-polynomial systems

	V. CONCLUSIONS
	ACKNOWLEDGMENTS

