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Chaos, Population Biology, and Epidemiology: 
Some Research Implications 

P. PHILIPPE1 

Abstract In this article I aim to provide some feeling of the new 
paradigm of disease causation (chaos) as it applies to the field of 
population biology and epidemiology. A secondary objective is to 
show, with the aid of qualitative methods, how one can approach 
chaos in time-series data. The multifactorial stochastic paradigm of 
causation is contrasted with the new deterministic approach. This 
approach is embedded in the theory of nonlinear system dynamics. 
Chaos implies that randomness is intrinsic to a nonlinear determin- 
istic system; this is true despite the extent of knowledge of the in- 
tervening causes and, ultimately, despite determinism. Three re- 
search avenues are discussed in depth from the standpoint of chaos 
theory. First, the topic of sporadic epidemics is dealt with. I argue 
that the space-time clustering of cases from a starting epidemic is 
due to a sudden and high increase of the contact rate beyond a 
threshold. Interaction rather than main effects and nonlinear rather 
than linear dynamics are involved. Second, the incubation period of 
disease is studied. I advocate that an individual-level deterministic 
process underlies Sartwell's model of the incubation period. This 
accounts for the robustness of the model vis-à-vis confounding vari- 
ables. Third, monozygotic twinning is analyzed. Assumed by some 
to be a random process, monozygotic twinning proves to be dynam- 
ically different from dizygotic or single-maternity processes; its dy- 
namics can actually be chaotic. Throughout the provided examples, 
the point is made that chancelike phenomena are primarily con- 
cerned with chaos theory. For biological problems showing recur- 
rent inconsistencies by stochastic modeling, dynamic modeling should 
be envisaged. Inconsistencies can suggest that the relevant factors 
are out of the model and that they are related deterministically. Fi- 
nally, spectral analysis and attractors in the phase space are pre- 
sented; these tools can aid the population biologist in tracing out 
chaos from time-series data sets. Several time-series data sets are 
simulated according to a simple nonlinear difference equation that 
bears some relationship to the basics of the dynamics of infections 
in the population. I show how the series can be analyzed and in- 
terpreted. Much research remains to be carried out until the nonlin- 
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ear effects of risk factors can be validated. The undertaking is worth 
the effort, as a new paradigm of causation is at stake. 

Variation is well known to human biologists. Variation is usually in- 
vestigated with the aid of stochastic models. A major feature of multi- 
variate stochastic modeling is that effects that cannot be explained by 
independent variables are ascribed to random variables. This is the so- 
called multifactorial paradigm. This paradigm is also well known in ep- 
idemiology, wherein multivariate models (e.g., logistic regression) are 
used extensively and a large portion of the unexplained variation is as- 
cribed to unidentified independent risk factors. Reality, it is surmised, 
can be known by stochastic models; this contention is directly related to 
the random variation generated by the large number of unknown causes 
of the origin of the population phenomenon. Philosophically, the ap- 
proach is based on the premise that, if the multiple sources of variation 
were known, it would be possible to predict the future state of (and to 
explain) the phenomenon at any time, thus leaving nothing to chance. 
This pretense is not recent; it dates back to the eighteenth century and 
is typified by Laplace's contention that a complete knowledge of the 
universe is awaiting the identification of its various causes (Crutchfield 
1986). 

The multifactorial paradigm is secure for biologists and epide- 
miologists because it suggests that the current indeterminacy is tempo- 
rary. Indeed, it is believed that random variation results from the mul- 
tiple independent factors that the researcher cannot master properly. The 
factors escape either because they are multiple and their effect is small 
or because they are unidentified or, yet, because of the postulated ab- 
sence of covariation of the factors with the studied variables. Noto- 
riously, in the presence of random variation, confounding is absent and 
the multiple independent chance factors do not alter the main pathway 
between the cause and the effect. If, on the other hand, randomness 
invades the studied relationship or, similarly, if the multiple independent 
factors are numerous, there is the drawback that only a small fraction of 
the variation of the effect is explained by the studied factors. Be this as 
it may, a fraction of the variation of the effect is under control, and this 
provides confidence that identifying the multitude of other factors is only 
a matter of time or technology. 

New Paradigm of Causation 

Is there another way to approach the study of variation that can 
provide the advantage of parsimony and generality? A different paradigm 
has emerged lately. It is interesting because it proposes a new way to 
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look at randomness. The new paradigm confounds the classical multi- 
factorial view of external causation by embedding its own apparent ran- 
domness. The new paradigm posits that the disease process is due to few 
causes, that the causes are internal to the system, that the system is de- 
terministic and nonlinear (as opposed to stochastic and linear), and that 
the system is sensitive to its initial conditions (Glass and Mackey 1988). 
These features are the main components of a definition of chaos. The 
essence of chaos is obviously in contradistinction to the prevailing mul- 
tifactorial paradigm. Specifically, simple and closed deterministic sys- 
tems featured by nonlinear components can, under appropriate condi- 
tions, mimic randomness. In other words, the chancelike variations 
surrounding disease incidence in time (e.g., time series of infections) 
can be traced directly to the deterministic and nonlinear components of 
the model (and no more to extrinsic causes). Furthermore, the compo- 
nents are few and, accordingly, there is no need to call for many different 
extrinsic causes to account for what appears to be noise (i.e., the time- 
series random variation). 

This is admittedly a new approach and, to say the least, no less 
than a paradox. In particular, how can a deterministic system generate 
noise? The new paradigm has far-reaching consequences for the theory 
of causation. For one, the epidemiological phenomenon is said to be 
determined; that is, the model does not include the well-known e (error) 
term standing for the independent random factors of variation; it is 
straightforward with no possibility of alteration of the output. Second, 
only a few factors are required to explain the phenomenon; that is, all 
the important control mechanisms hold in a few interdependent param- 
eters. Although the time series can be modeled more accurately by com- 
plex deterministic equations, one differential or difference (in discrete 
instances) equation of first order is often sufficient to fit the observation. 
Third, the deterministic function behaves as though the phenomenon were 
driven by stochastic noise. At face value, it is no less predictable than 
when extrinsic noise is involved, and the phenomenon can altogether be 
investigated by statistical methods. But most surprising, the chaotic phe- 
nomenon is structured and thus is amenable to forecast, at least in the 
short run. Fourth, the deterministic approach implies that the phenom- 
enon is controlled by the initial conditions that induced it. The initial 
conditions are all the small differences that impinged on the signal (the 
true information at the origin of the first values of the series) from the 
start. Because of nonlinearity, the initial conditions acquired an expo- 
nential influence over time. Therefore the observed chancelike variations 
represent disinformation traceable to the enhancement of measurement 
errors and small perturbations from the far past of the series. Because 
the remote conditions remain unknown for most complex systems, it fol- 
lows that the phenomenon also remains unpredictable in the long run, 
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thus the need for statistical tools to characterize the deterministic system. 
From a practical standpoint forecast of a chaotic series is currently im- 
possible except for short-run events; this is true despite the extent of our 
knowledge of the intervening causes and, ultimately, despite determin- 
ism! Indeterminacy is no more temporary here; it is inherent and 
unavoidable. 

The point I wish to raise is the following: Biological phenomena 
that were ascribed in the past to the action of external and random factors 
rather can be explained by fewer deterministic internal variables with 
nonlinear effects. This is not to mean that extrinsic noise is ruled out of 
statistical observations; it is simply that it should occupy a different po- 
sition in the assessment of causation. This new paradigm can drastically 
alter our view of causality. 

Applications of Chaos to Biology 

Origin of Chaos Theory. Chaos theory constitutes a new paradigm 
of causation. The new approach is currently entrenched in the theory of 
dynamic systems. The theory is akin to the study of unpredictable phe- 
nomena, such as the mechanics of turbulent fluids and meteorology, well 
known for its hardly credible forecasts. Chaos theory has been intro- 
duced in ecology to explain the fluctuations of animal populations over 
time and in economics to seize the day-to-day variation of economic 
cycles. More recently, chaos has found its way into medicine. It has 
been applied in the field of cardiology to distinguish normal from ab- 
normal electrocardiograms. Attempts have also been found in the study 
of electroencephalograms to "quantitatively" assess the diagnosis of var- 
ious disorders. The use of nonlinear dynamics is now ubiquitous, and 
the field of population biology has not escaped it (Krasner 1990). Some 
investigators have tried to apply chaos theory to the epidemics of com- 
mon childhood infections (Schaffer and Kot 1985; Olsen et al. 1988; 
Olsen and Schaffer 1990). 

Time-Series Data. Most attempts at deterministic modeling revolve 
around the analysis of time-series data, as underscored by the previous 
examples. But it is in no way exclusive, although analyses of cross- 
sectional data are less developed (Montroll and Schlesinger 1982; West 
and Schlesinger 1990; Bäk and Chen 1991). Box- Jenkins modeling of 
time-series data is forthcoming in population biology, but the model is 
stochastic. Chronological series of infections (Anderson and Grenfell 1984; 
Helfenstein 1986), injuries (Martinez-Schnell and Zaidi 1989), clinical 
parameters (Crabtree et al. 1990), environmental pollution (Schwartz and 
Marcus 1990), and single and multiple maternities (Philippe 1991) were 
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recently studied because they were available for a few large populations. 
However, the parameters of stochastic modeling have no particular sig- 
nificance except to describe the dependencies embedded in the series. 
On the other hand, deterministic models readily yield interpretable pa- 
rameters, as they are incorporated in the model because of their unique 
meaning. A major field of recent population biology investigations has 
been deterministic modeling of infectious diseases. 

Infectious Disease Processes. Throughout time the world has expe- 
rienced various types of epidemics that have had their own specific dy- 
namics (Anderson 1982). Some epidemics, such as common infections 
(chicken pox, measles, mumps, and rubella), come periodically with cycles 
of peaks and troughs; others, when installed, root themselves and be- 
come endemic. Cholera, well known for its devastation of Africa, India, 
and lately Peru, is a case in point. Other epidemics, such as AIDS, occur 
once (although it has not been proved that similar epidemics have not 
spread in populations in the far past) and nearly vanish either with the 
population itself (e.g. , smallpox brought from abroad to Early Americans 
and Polynesians) or because of drastic intervention (e.g., kuru in New 
Guinea). Finally, other epidemics occur sporadically as though the con- 
ditions of their appearance, largely unknown, had fallen together ran- 
domly. These include illnesses such as various toxic shocks (streptococ- 
cal or staphylococcal in origin) and recent aggregates of meningococcemia 
in the Montreal South Shore region (Philippe 1992). What are the dy- 
namics of infectious diseases? What are the forces at the origin of an 
epidemic? Before presenting a first case study, it is worthwhile to briefly 
set forth the theory of epidemics. 

Many investigators have attempted to model the evolution of epi- 
demics in time and space (Anderson 1982). The susceptible-exposed- 
infected-recovered (SEIR) model is an example of such an attempt for 
time series of common infections. It is represented by four differential 
equations specifying the state of the system at any time: 

dS(t)/dt = m[N - S(t )] - bS(t)I(t ), (1) 

dE(t)/dt = bS(t)I(t) ~ (m + a)E(t), (2) 

dl{t)/dt = aE(t) - (m + g)I(t), (3) 

dR{t)/dt = gl(t) - (4) 

where N is the population size and t is time. Equation (1) states that 
individuals enter the population as susceptible individuals (S) (at risk of 
being diseased) by birth (m is the birth or death rate, postulated to be 
equal) and leave by death ( mS ) and through contacts (b) with infected 
individuals (I). Equation (2) states that the number of exposed individ- 
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uals ( E ) (not yet infectious) increases by contacts of susceptible individ- 
uals with infected individuals but is depleted through death and because 
the exposed subjects become infectious (at rate a ). Equation (3) states 
that the number of infected individuals depends on the turnover of ex- 
posed subjects with account being taken of the loss of infected individ- 
uals by acquired immunity (at rate g) and a death component. Last, Eq. 
(4) states that recovered individuals (. R ) are a function of newly immu- 
nized subjects and death. 

A further component (not shown here) is usually inserted into the 
model; it is the seasonal variation in the contact rate. Parameter values 
(a, g, and m) are provided by statistical estimates on real populations. 
The estimate of the contact rate (actually a proportion) is less straight- 
forward (Anderson 1982). As can be seen, an epidemic is a function of 
several well-identified, dynamically related compartments (the popula- 
tion subgroups). The dynamics of a given disease are up to its specific 
parameter value. This model (including the seasonal component) yields 
a good fit to epidemics of common infections when simulated according 
to the relevant parameter values. In fact, the key parameter is the contact 
rate; that is, the proportion of contacts an infected individual has with 
susceptible individuals. Readers interested in applications to common 
infections can consult Schaffer and Kot (1985), Olsen et al. (1988), and 
Olsen and Schaffer (1990) for thorough analyses. 

A more anecdotal example highlights the significance of the contact 
rate for the determination of the dynamics. Several months ago, four 
cases of meningococcemia were diagnosed in young people in a well- 
delimited geographic area of the Montreal metropolitan area (Philippe 
1992). Two of the patients died. The four individuals had attended the 
same disco bar but were unknown to each other and were infected by 
the same strain of bacteria. The cases were followed in the few following 
months by several additional foci of cases over a large geographic area. 
It was far from clear that contacts had been established between these 
highly distant regions. The epidemic nevertheless grew to the point that 
a vaccination program had to be set up in the highest-risk regions. Ac- 
cording to chaos theory, the newly arising cases from this uncommon 
age group were not sporadic (although a few cases were expected in a 
large geographic area as a result of random infection) but the first iden- 
tified cases of a building epidemic. The between-people contact rate in 
disco bars rapidly increased to the point that dissemination of the bacteria 
quickly reached the threshold for a new established epidemic process. 
Two mechanisms explain the time-space aggregation: new foci of infec- 
tion (other disco bars, schools), as if the state conditions for chaos si- 
multaneously came true in different distant regions; and contact with in- 
fectious subjects. 
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To be entertained, an infectious process must be based on a min- 
imal (threshold) contact rate. The contact rate can be seen as a tuning 
parameter. Below the threshold the disease disappears from the popu- 
lation. Beyond the threshold but within given limits the contact rate elic- 
its cases at a periodic rate (such as the repetitive autumn peaks of mea- 
sles). But if the contact rate becomes suddenly high, the phenomenon 
acquires a new dynamics, that of chancelike epidemics, that is, an un- 
predictable aggregation of cases in time and space. According to chaos 
theory, the concept of random occurrence of epidemics should be given 
up. The unpredictability of apparently sporadic events is not due to chance 
but is determined by a dynamics that in many cases (besides the field of 
infections) has not been properly investigated. The French mathemati- 
cian J.-H. Poincaré had intuitively grasped, as early as 1903, the causal 
basis of apparently random events when he wrote that in the long run 
"small causes which escape our notice determine a considerable effect 
that we cannot fail to see, and then we say that the effect is due to 
chance" [cited by Crutchfield (1986, p. 48)]. 

The time-space clustering of sporadic cases of diseases has long 
been observed and scrutinized by epidemiologists. Several investigators 
have suggested a threshold contact rate to explain the observation. For 
example, leukemia was thought to be related to the mixing of unrelated 
populations that had come into contact in a short time-space dimension. 
However, the relevant explanation fell behind until chaos theory had its 
first applications. One can speculate that the threshold contact rate un- 
covers dormant microorganisms that become activated or that the sus- 
ceptible individual's defenses are overwhelmed by the new antigenic 
stimulation or by the interaction of multiple incompatible infectious agents. 
As far as new epidemics are concerned, energy should be spent attempt- 
ing to find the factors at the origin of the pushing of the tuning param- 
eter. High person-to-person contact rates can have a bearing on the 
microorganisms' ecology, thus altering the dynamics. 

The AIDS epidemic has probably grown in a similar way. AIDS 
may have occurred in the distant past as different populations came into 
contact and as the interactions of various infectious agents were multi- 
plied. Similarly, the outbreak of AIDS epidemics from two independent 
African foci calls for the linking of new interdependent conditions that 
may have arisen from time to time in the far past. This emphasizes the 
role of key events for the changing dynamics of infectious processes, 
which can push the tuning parameter into the chaotic realm. Analo- 
gously, the contribution of opportunistic infections such as the herpes 
simplex virus (HSV) to AIDS diagnosis may also be a case in point here. 
Treatment of HSV infections could put off diagnosis. Clearly, interac- 
tions rather than main effects and nonlinear rather than linear dynamics 
are to be privileged. 
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Incubation Period of Diseases. I now illustrate how nonlinear dy- 
namics at the individual level can present itself under the cover of sto- 
chasticity. Because nonlinear deterministic systems can generate, under 
appropriate circumstances, their own chancelike variation, they can be 
studied by statistical methods. This property of dynamic systems is termed 
ergodicity. Suppose that an individual cellular process depends on non- 
linear deterministic dynamics. Furthermore, suppose that the dynamics 
evolve progressively from a steady state (the initial conditions of the 
system) to chaos and then to the extinction of the system. It has been 
shown by Lasota and Mackey (1980) that the waiting time from exposure 
to the initial conditions to the process extinction has a stable invariant 
distributional law. This is true despite the wide variability of the initial 
conditions. In other words, the distribution of the waiting times is in- 
dependent of the distribution of the initial conditions that elicited the 
extinction times. This should be expected because the significant infor- 
mation at the start is progressively replaced by chancelike variation dur- 
ing the process evolution. Lasota and Mackey (1980) simulated the dy- 
namics of leukemic white blood cells. The distribution of the simulated 
patients' survival time was well fitted by a Weibull law; incidentally, 
the estimated Weibull parameters of the simulated data were in line with 
those of observed leukemic patient survival times. 

One may then wonder whether the ergodic theory can also be called 
on to deal with incubation periods. Sartwell (1950) proposed a method 
to study the incubation period of infectious diseases. He noticed that the 
incubation period of common-vehicle single-exposure infectious diseases 
presented with positive skewness and fitted a log-normal distribution. 
Sartwell's model is notoriously robust and apparently free from impor- 
tant sources of confounding, such as the type of design, age at exposure, 
dose, and measurement errors. Most surprising, the method is also robust 
with respect to the population age distribution in age-of-onset studies 
(Horner 1988). Goodness of fit to various infectious and even to chronic 
disease incubation periods was put forth [for a recent account, see Phi- 
lippe (1990)]. Therefore the conceptual difficulties were engendered by 
the nearly generalized goodness of fit to several empirical distributions 
despite potentially confounding factors. A further point is the etiological 
significance to attach to the dependence on the log-normal distributional 
law. The explanation drawn from chaos theory is the following. The 
infectious process, from exposure to disease onset, is composed of two 
steps. The first step is unobserved. It covers a short time lapse between 
exposure and a threshold that sets the magnitude of individual suscep- 
tibility. The threshold is the point of no return after which the process 
is entertained by itself. The second step is observed and goes from the 
threshold to disease onset. This is the incubation period per se, and from 
this time on the process is deterministic. In other words, once the in- 
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dividual infectious process is engaged (at the threshold), it cannot stop 
by itself; it follows a given pathway until symptoms appear or the disease 
is diagnosed. My contention is that the process eventually becomes cha- 
otic and finally elicits clinical disease (corresponding to the process ex- 
tinction). Accordingly, the incubation period displays apparent random 
variation (dispersion of the time lapse from exposure to diagnosis). This 
is because of the wide distribution of initial conditions (at the threshold) 
among individuals; the nonlinear deterministic evolution finally yields 
an unpredictable time of diagnosis. The assumption of nonlinearity leads 
to unpredictable fates given certain values of the dynamics (kinetics of 
the tuning parameter) of the process. Disease symptoms or diagnosis 
therefore occurs at randomly appearing times. 

Now, why should the distribution be log-normal? Because the func- 
tion is independent of the distribution of the initial conditions, it should 
depend on the particulars of the motion law embedded in the nonlinear 
model. It follows that specific models provide typical distributions of 
waiting times, some of which fit the log-normal. The point of major 
interest, for the time being, is why there is a distribution at the outset 
of a deterministic system and why it appears free from confounders. The 
answer lies in the chaotic dynamics of the process. How? For subjects 
who have nearly identical threshold liabilities, small initial differences 
or random impulses near the threshold grow exponentially and elicit large 
variations in time of diagnosis (and vice versa). Although the evolu- 
tionary process is entirely deterministic and leaves nothing to chance, 
the incubation period nevertheless registers among-patient differences 
because of the random initial liabilities. This is due to ergodicity. And 
it supports the nonlinear dynamics of disease processes that show inor- 
dinate resistance to the usual distorting factors. Insensitivity to the pop- 
ulation age distribution in studies of age of disease onset is not new and 
has been the subject of unexpected observations, such as the simulta- 
neous diagnosis of a rare condition in sibs of widely different ages. 

A secondary aspect of the incubation period is the time scale of the 
etiologic chaotic process. Incidentally, the duration of the incubation pe- 
riod is not an asset to establish or even to suggest the type of dynamics 
involved. Short incubation periods are not generally more linear or more 
stochastic than lengthy ones, although it should be easier in principle to 
recognize a small initial influence in a short period because the chaotic 
process allows prediction in the short run. However, even for infections 
with short incubation periods, small influences can have large effects in 
a short time span depending on the kinetics of the nonlinear dynamics. 
The key factor is the chaotic level, that is, the kinetics of the process, 
rather than the duration of the incubation period. With lengthy induction 
periods, even large differences are liable to remain undetected as etio- 
logic influences. This surmise has far-reaching consequences for the ep- 
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idemiology of chronic diseases, which are well known for their long- 
lasting induction period. Chaotic dynamics militates against the finding 
of causes of diseases because disinformation accrues from the beginning 
of the process. However, the history of epidemiology testifies that well- 
validated etiologic relationships were discovered, ensuring the existence 
of either true linear effects in pathways between the cause and effect in 
some chronic disease processes or potent risk factors. Presumably, potent 
risk factors would have been discovered easily. They were indeed pointed 
out in the case of cigarette smoking and lung cancer. But few are as 
potent. A further possibility is a reduced number of steps between the 
action of the cause and the observation of the effect, thus allowing weak 
risk factors to be detected in spite of chaos. Presumably, with many 
small influences acting sequentially, multifactorial diseases are bound to 
remain ill-understood. This might account for the paucity of consistent 
results on the role of risk factors in etiologic relationships involving the 
most popular contemporaneous chronic diseases. One may thus wonder 
whether nonlinear effects are not ubiquitous. 

In addition, many different disease processes could have the same 
dynamics and therefore could be structured by the same type of differ- 
ential equation(s). Accordingly, different epidemiological phenomena 
should behave in the same way. This would suggest that some basic 
pathological processes are based on both simple and universal models, 
a conjecture that, if true, could bring together the evolution of different 
and now postulated independent disease processes. The similar patho- 
logical brain findings for Down's syndrome and Alzheimer's disease are 
a case in point (Rumble et al. 1989). Furthermore, well-established dis- 
tinct disease entities can differ by small differences in the level of their 
risk factors, whether environmental or genetic, that elicited them from 
the start. Those trivial differences are rapidly absorbed by the evolving 
dynamics of the nonlinear system, which in the end keeps no trace of 
the initial difference but produces entirely different diseases. The Li- 
Fraumeni cancer syndrome, the familial pattern of which includes many 
different kinds of neoplasms, seems to be caused by a single family- 
limited anti-oncogene defect (Li et al. 1988). How this single defect can 
be responsible for the neoplastic variability is intriguing. It is likely that 
a given risk factor, processed through the irreducible dynamics of var- 
ious environments or inborn host susceptibilities, will yield different dis- 
ease entities. 

Time Series of Twins. Chaos theory suggests that what appears to be 
random in a time series could rather be the result of nonlinear deter- 
minism. Classically, monozygotic (MZ) twinning has been considered a 
random phenomenon; this position can now be questioned. The Japanese 
high prevalence of MZ twinning in comparison with Western countries 
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and the concomitant opposite MZ and DZ twinning recent evolution re- 
ported from several countries are intriguing observations with no clear 
explanation (Bressers et al. 1987). Chance or determinism? A biologic 
problem worthy of study by the techniques of nonlinear dynamics is 
therefore set forth. It might be that the reasons for the current variation 
in MZ twinning prevalence are due to factors from the distant past of 
the series. Incidentally, the parameters of change can be part of the sys- 
tem much in the same way that a current epidemic reflects the past dy- 
namic interaction of its system compartments, namely, the infected, sus- 
ceptible, exposed, and recovered subjects. The difference with infections 
is that the laws of motion of the twinning process are largely unknown 
and their compartments are related over a much longer time span. A 
likely possibility is that the MZ-twin-prone mothers compartment is not 
independent of that of DZ-twin-prone women and, of course, of single 
maternities. Accordingly, any change in the prevalence of MZ twinning 
would result from the lagged effects of the constitutive key system com- 
ponents; in such a framework no extrinsic risk factor to account for the 
dynamics of the system need be involved. 

Such a perspective is in line with some observations. For instance, 
populations of seemingly similar socioeconomic status or of the same 
level of industrialization and expected (based on the multifactorial model) 
to start a decline in DZ twinning at the same time have proved to main- 
tain their own specific trend. Sweden and Finland are cases in point: 
Sweden started its decline in the nineteenth century and Finland only 
since 1960. These differences cannot be ascribed to any of the known 
confounders, according to Doherty and Lancaster (1986). On the other 
hand, populations sharing similar initial conditions (but actually distinct 
so far as risk factors are concerned) behave similarly. For instance, Aus- 
tralia is closer to Finland and southern Italy over time than the last two 
are to Sweden and northern Italy, respectively. Therefore a simple fit 
with industrialization is patently absent. Again, the observation resists 
the multifactorial model; things go as if the causes of the discrepant be- 
havior were out of reach of the classical explanation. 

I have investigated MZ, DZ, and single-maternity time series in the 
framework of nonlinear dynamics (unpublished data, 1992). Analyzed 
data were from Australia (Doherty and Lancaster 1986). Although the 
data are sparse, an interesting pattern emerged. I found long-term pe- 
riodic cycles in the singleton and DZ twin series; this finding suggests 
that periodicity recurs according to long periods not even available for 
observation. This is in line with the expected long-term lag effects of 
the dynamic system components. If this is the case, the postulated risk 
factors of industrialization, oral contraceptive use, etc. should have no 
significant bearing on the observed time trend. Another point worth 
stressing is that the DZ and MZ twinning fundamental periodicity un- 
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derscores the likely possibility that both series share some common fac- 
tor. This is not new but nevertheless is in line with a deterministic model. 
Furthermore, the MZ twin series seems to have its own specific sec- 
ondary cycles superimposed on the fundamental frequency that provide 
the series with a particular configuration over time. In other words, the 
fundamental signal (shared by the other two series) is altered by sec- 
ondary cycles. The secondary cycles of the MZ twin series are respon- 
sible for the particulars of its dynamics, at variance with the related pat- 
tern of the DZ twin series. The MZ twinning dynamics thus appear to 
be slightly chaotic; this feature is not shared by the other two series. On 
the whole, it appears that the MZ twinning dynamics should be ascribed 
to yet unidentified laws of motion of the involved compartments. Ex- 
planations for the current variations in the MZ twin series are likely to 
be found in the history of the interacting series, such as those of DZ 
twin and single maternities. A model of the twinning process analogous 
to the SEIR model might be useful to set out the details of the dynamics. 
The model might be tested with the basic techniques of nonlinear dynamics. 

Qualitative Approach to Chaos 

A brief account of techniques used to unravel the dynamics of a 
time series might be useful. This account is qualitative, that is, not too 
quantitative. A complex armamentarium to deal with chaotic systems is 
available (including the mandatory specialized software) from the rele- 
vant literature. I attempt to provide an account of chaos with the aid of 
the basic techniques included in most common software. I do not rely 
on the analysis of databases because they are not readily available (or 
have already been analyzed) but rather on the simulation of one simple 
difference equation that anyone can try on a personal computer. This 
will help to assess the value and interest of a field of investigation that 
might well become important in the future. 

I start with a simple difference (recurrence) equation (Lebreton and 
Millier 1982) of the form 

(5) 

To ease things, one may think of the equation parameters in terms of 
the population biology of infections. The equation involves nonlinear 
(exponential and interactive) terms wherein r is the tuning parameter [i.e., 
the rate at which the infection grows (the contact rate in the SEER, model)] 
and / is the proportion of infected individuals and varies between 0 and 
1. It is clear from the equation that the number of infected individuals 
controls itself: When it gets high, its rate of increase drops, and vice 
versa. Obviously, the model is not sophisticated. Notably, it does not 
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account for the time-dependent contact rate included in the original SEIR 
model; nor does it provide a specific term for the number of exposed 
individuals or susceptible individuals, to mention a few changes. Never- 
theless, the pushing in the chaotic region of this simplistic model con- 
firms its appropriateness for the study of the dynamics of real infections. 
The interpretation of Eq. (5) in terms of infections is not intended to 
replace the SEIR model. The SEIR model involves as many as four sim- 
ilar equations whose sophistication makes it the most relevant approach 
to infectious processes in populations (Anderson 1982). 

The difference Eq. (5) is purely deterministic; it is used to simulate 
the population of infected individuals over time; that is, as time pro- 
ceeds, /,+ i is reintroduced in the equation to derive lt+2 and so on. For 
a given simulated time series, r and /0 (the starting number of infected 
individuals) are constant. I simulated four distinct time series involving 
534 data points each (the reason for the sample size will become clear 
later). The time series differ by the value of their tuning parameter only. 
By increasing r, the process moves from a steady state to successive 
period-doubling bifurcations (corresponding to a change in the dynamics) 
and finally to chaos. The selected r values typify some of the expected 
bifurcations the system should go through. 

The study of chaos in time series involves the use of several qual- 
itative and quantitative tools (Schaffer et al. 1990). I have limited my 
approach to the qualitative tools, recalling that this introduction to non- 
linear dynamics is to give the biologist some feeling for the method and 
for its expected results. The simulated time series are therefore analyzed 
by using spectral analysis and by plotting attractors. 

Simulated Series. The simulated chronological series are depicted in 
Figures 1A-D. To gain insight into the series, only the first 100 data 
points are plotted. The first series (Figure 1A) points to a steady-state 
process (r = 1.5). The second series (Figure IB) is periodic (r = 2.6); 
it has in fact two periods repeating themselves indefinitely. The first two 
series have a predictable number of infected individuals at any time, 
whatever the initial conditions. The third and fourth series (Figures 1C 
and ID, respectively) are chaotic in that they have unpredictable chance- 
like variations. At face value they can be taken for white noise series 
with random spikes of infected individuals. However, they also could 
be true monthly observations of measles from New York City (Figure 
IE) (Yorke and London 1973); one can note the impressive qualitative 
similarity between the measles series and any of the last two simulations. 
An even better similarity can be reached with a more precise r value or 
a more complex model (such as the SEIR model). 

Spectral Analysis. Spectral analysis (Gottman 1981), a complex 
mathematical device, is a method that detects time-series cycles and 
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Figure 1. (A-D) Simulated time-series data according to various values of the tuning (con- 
tact rate) parameter and (E) observed monthly infections of measles in New York 
City. 

quantifies their relative importance. This is provided by the spectrum 
that gives the variance ascribed to the identified cycles. Only three dif- 
ferent patterns of spectrum are commented on here; needless to say, they 
do not exhaust all the possibilities liable to be found in real data sets. I 
consider them here because all three models are simulated and one can 
rely on them to distinguish chaotic, periodic, and random time series; 
they are therefore interpreted at face value. 

First, a time-series data set may disclose white noise only; this means 
that the series embeds no particular cycle(s) besides random frequency 
variation, independent of time. Second, the data set may involve one or 
two distinct cycles that occur periodically and can be distinguished ac- 
cording to their frequency, as opposed to random variation. In this case 
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Figure 2. Spectral density of simulated time-series data differing by the value of their tun- 
ing (contact rate) parameter. 

the spectrum has one or two distinct spikes corresponding to specific 
frequencies. Third, the time series may have an infinity of superimposed 
cycles (different scales), a sign of the presence of chaos. The spectral 
pattern in this case, a distribution of many different scales (or frequen- 
cies), is different from that of white noise. Incidentally, simply exam- 
ining a crude series of white noise and one resulting from chaos cannot 
differentiate them. 

Figure 2 displays the spectra of the simulated series. The steady- 
state series (corresponding to Figure 1A) is not shown because its spec- 
trum is flat. The periodic series in Figure 2 A (corresponding to Figure 
IB) does not actually distinguish between the two periods because they 
are of nearly identical frequency. If the data points of the original time 
series are taken as the number of infected individuals per year, the 
two cycles of Figure IB have a frequency of approximately 0.5 (i.e., 
the repeat waiting time of the periods is 2 years). The two chaotic 
series (Figures 2B and 2C, corresponding to Figures 1C and ID, re- 
spectively) show, as expected, multiple superimposed cycles, although 
the series with r = 4.5 is more chaotic than the series with r = 4.0. The 
chaotic spectral density displays no privileged scale (rather multiple fre- 
quencies are present), a feature of chaotic phenomena. Last, the series 
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of computer-generated random numbers (Figure 2D) puts forth no par- 
ticular cycle (no large spike); this is white noise. 

Phase Space Attractor. Attractors represent a three-dimensional dis- 
play of the trajectories of the series, where /, is plotted along with /,+ 3 
and It+6. The attractor can be thought of as a spatial asymptotic or para- 
metric geometric object. The plot provides for the trajectories of the pro- 
cess and is an analogue of the phase space. Because the number of fac- 
tors at the origin of a dynamic phenomenon is ordinarily high and 
impossible to master for complex systems, plotting the lagged values in 
an appropriate number of dimensions gives an unbiased representation 
of the original phase space. This technique is typical of the methodology 
of the study of dynamic systems (Glass and Mackay 1988). It can dis- 
tinguish, at face value, between random, systematic, and chaotic pro- 
cesses, much in the same way that spectral analysis does. The rationale 
is the following. If one tries to display random numbers in one dimen- 
sion, say, on a line from 0 to 1, they will occupy the whole line. If, on 
the other hand, one tries to correlate random numbers on a surface, the 
cloud of points will occupy two dimensions. Finally, if three dimensions 
are available, the whole box will be filled with points. Conversely, if 
the time-series pattern is somewhat systematic, only a fraction of the box 
will be filled. 

Three distinctive patterns (which do not exhaust the number of pos- 
sibilities) can therefore be obtained. First, the trajectories of the series 
may be attracted toward a single point in the phase space; this represents 
a steady-state process (i.e., a stable incidence of infected individuals 
over time). Second, the attractor may look periodic, tracing a circle (or 
two) or a similar form, each trajectory being near the other; this would 
stand for a periodic phenomenon (a purely seasonal infection, for ex- 
ample). Third, the attractor could have a deformed image, folding and 
stretching in many ways and occupying less than the three available di- 
mensions. This is a strange attractor. It is also called a fractal because 
it has a noninteger number of dimensions. Fractal geometry is the sig- 
nature of chaos; it results from the interplay of determinism entrenched 
in the equations (and constrained to the phase space by folding) and 
unpredictability because of the initial conditions of the system (resulting 
in the variation of the trajectories through stretching) (Ruelle 1980). 

Figure 3 displays the attractors. From the three-dimensional per- 
spective (a front view of the meeting point of the three vertices), the 
space occupied by the random number series (Figure 3D) readily distin- 
guishes it from the other three spatial representations. The periodic series 
(Figure 3A) is different from the chaotic series (Figures 3C and 3D) in 
that the trajectories clearly alternate between two different basins of at- 
traction corresponding to the two frequencies. The trajectories follow the 
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Figure 3. Phase space attractors of simulated time-series data differing by the value of their 
tuning (contact rate) parameter. 

same paths indefinitely and therefore yield the same periodic number of 
infected individuals. For the chaotic series the attractors are highly in- 
tertwined and are said to be strange. Because the trajectories of the sys- 
tem are unpredictable, the attractor never crosses the same path twice 
(stretching in multiple directions is followed by folding back), a feature 
responsible for the impression of piling up of an infinity of thin sheets. 
Actually, magnification of a section of a strange attractor shows the end- 
less repetition at smaller scales of its macroscopic shape; such a pattern 
is scale invariant or fractal. A simple fundamental signal (as exemplified 
by the deterministic equation) elicits the macroscopic aperiodic observ- 
able phenomenon, bypassing multiple different increasing scales through 
the exponential amplification of its own small differences. 

I have mentioned that a small difference (a measurement error, for 
instance) in the initial conditions can have a dramatic effect on the ob- 
servable phenomenon. Figure 4 presents the first 100 data points of the 
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Figure 4. Simulated time-series data according to a small difference in their starting value 
(solid line: /0 = 0.50; dashed line: /0 = 0.51). 

chaotic series ( r = 4.5) for /0 = 0.50 and /0 = 0.51 (the dashed line). 
This shows how a trivial difference (2% in the number of infected in- 
dividuals at the start of the epidemic) can allow, even in the short run 
(less than 10 time units after the beginning), the two series to diverge 
exponentially. It also exemplifies the source of macroscopic unpredict- 
ability for a deterministic process. More generally, a deterministic series 
will remain unpredictable simply because of measurement error made at 
the start (and at any other point of the process). On the contrary, steady- 
state or periodic time series are independent of the initial conditions; that 
is, whatever the starting values, the phase space trajectories are identical. 

Finally, Figure 5 displays the spectral analysis and the phase space 
representation of the trajectories for the New York City series of measles 
(Figure 5A) and chicken pox (Figure 5B) infections. The original data, 
534 monthly observations published by Yorke and London (1973), were 
analyzed exhaustively (Olsen and Schaffer 1990). I nevertheless repeated 
part of the investigation. The spectral analysis of measles (Figure 5A) 
shows few peak frequencies corresponding to superimposed cycles. The 
attractor is strange and fills a small part of the three-dimensional space; 
the trajectories (submitted to a three-point smoothing) exhibit obvious 
stretching and folding. Chicken pox, on the contrary, is featured by a 
single peak spectrum, and although it has a structure in the phase space, 
the configuration is elliptic, as one would expect for a periodic process. 
The thickness of the regular attractor is due to the noise associated with 
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Figure 5. Spectral density and phase space attractor of the New York City time series of 
(A) measles and (B) chicken pox case declarations. 

its specific period. Notably, both diseases reoccur with a yearly cycle, 
but their dynamics are fundamentally different (Olsen and Schaffer 1990). 

Conclusion 

Only a few tools have been introduced here that can help disclose 
chaos from time-series data sets. The literature is full of various quan- 
titative techniques that, for the time being, are not readily available to 
epidemiologists and biologists. One should preferentially consult Schaf- 
fer et al. (1990) for the state-of-the-art in time-series analyses. My ob- 
jective was to provide a rather basic account of chaos theory and appli- 
cations. Complexities can be found in the referenced literature. 

Several features of the new paradigm have been expounded, and 
three in-depth applications have been discussed: apparently sporadic ep- 
idemics, the incubation period, and the twinning process. From a prac- 
tical viewpoint, what can one do to investigate epidemiological phenom- 
ena? Obviously, observed time-series data can be studied from the 
qualitative standpoint presented here. Lengthy epidemiological time se- 
ries are needed in the worst way. They may be either population-level 
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or individual-level series of biological parameters. A second approach 
would involve formulating nonlinear differential equations related to the 
studied epidemiological phenomenon. The MZ twin series is a case in 
point. Identification of the main system components and of laws of mo- 
tion is a prerequisite. In this undertaking a mathematician with knowl- 
edge of dynamic modeling should be recruited (Huckfeldt et al. 1982). 
Once equations are available, time series can be simulated. The tuning 
parameter is the key factor in chaotic dynamics. A simulated epide- 
miological series can be generated by the forcing of its appropriate dif- 
ferential or difference equations. The behavior of the system can be ex- 
plored in detail with the aid of a bifurcation diagram, which traces the 
dynamics according to different values of the tuning parameter (Glass 
and Mackey 1988). For instance, chaotic dynamics can be reversed by 
reducing the growth rate. It can be reset at a periodic value, depending 
on the efficiency of the intervention. The disease process can also be 
eradicated (at least on paper). But, by no means can the phenomenon 
be predicted well in advance so long as it is in the chaotic range. At any 
rate, techniques are being developed that will allow short-term predic- 
tions. This can be achieved partly because of intrinsic determinism (Su- 
gihura and May 1990). 

The study of chaos needs so long a series that it is difficult to obtain 
human data commensurate with the requirements of this new type of 
methodology (500 data points is a minimum and this is considered a short 
series). However, new techniques will soon be available and will allow 
shortcuts through the current requirements (Eckmann and Mashaal 1991). 
An empirical investigation of less than 100 data points was nevertheless 
successful (Schaffer 1984). According to some, the outcome of the study 
is up to the kind of dynamics involved; a relatively simple chaotic dy- 
namics from a relatively short series can yield interpretable results (Al- 
bano et al. 1987). Given that the new technology will make the criteria 
of sample size less stringent, it will be possible to study the natural his- 
tory of diseases, such as the evolving episodes of multiple sclerosis, or 
of chronic conditions, such as diabetes. The new approach will also help 
to characterize the heterogeneity of chronic diseases. 

If the number of dimensions of the attractor is low (e.g., measles 
with less than three dimensions), a complete account of the dynamics 
rests with a rather low number of parameters. The number of dimensions 
can be computed as the fractal or Hausdorff' s dimension (Glass and Mackey 
1988). Such results are encouraging so far as intervention is concerned. 
They are even more relevant if any previous modeling has identified the 
parameters at stake along with a good fit to the observed process. 

The new paradigm of chaos undoubtedly can contribute a new ap- 
proach to disease causation. The domain is primarily sporadic phenom- 
ena. Sporadic cases of disease, noisy time series, and robust distributions 
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may never be viewed in the same manner from now on. In addition, for 
biological problems showing recurrent inconsistencies by stochastic 
modeling, dynamic modeling might be more to the point. Inconsistencies 
can suggest that the relevant factors are out of the model and related 
deterministically. Nevertheless, much research remains to be carried out 
until the nonlinear effects of risk factors can be taken for granted; but 
the undertaking is worth the effort because a new paradigm of causation 
is at stake. 

Received 13 April 1992 ; revision received 23 November 1992. 
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