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This solution predicts that the waterwheel should ultimately rock back and forth
like a pendulum, turning once to the right, then back to the left, and so on. This is

observed experimentally. m

In the limit r — o one can obtain many analytical results about the Lorenz
equations. For instance, Robbins (1979) used perturbation methods to characterize
the limit cycle at large r. For the first steps in her calculation, see Exercise 9.5.5.
For more details, see Chapter 7 in Sparrow (1982).

The story is much more complicated for r between 28 and 313. For most
values of r one finds chaos, but there are also small windows of periodic behavior
interspersed. The three largest windows are 99.524...<r<100.795.. .;
145<r<166; and r>214.4. The alternating pattern of chaotic and periodic
regimes resembles that seen in the logistic map (Chapter 10), and so we will defer
further discussion until then.

9.6 Using Chaos to Send Secret Messages

One of the most exciting recent developments in nonlinear dynamics is the realiza-
tion that chaos can be useful. Normally one thinks of chaos as a fascinating curios-
ity at best, and a nuisance at worst, something to be avoided or engineered away.
But since about 1990, people have found ways to exploit chaos to do some mar-
velous and practical things. For an introduction to this new subject, see Vohra et al.
(1992).

One application involves “private communications.” Suppose you want to send
a secret message to a friend or business partner. Naturally you should use a code,
so that even if an enemy is eavesdropping, he will have trouble making sense of the
message. This is an old problem—people have been making (and breaking) codes
for as long as there have been secrets worth keeping.

Kevin Cuomo and Alan Oppenheim (1992, 1993) have implemented a
new approach to this problem, building on Pecora and Carroll’s (1990) discov-
ery of synchronized chaos. Here’s the strategy: When you transmit the
message to your friend, you also “mask” it with much louder chaos. An
outside listener only hears the chaos, which sounds like meaningless noise.
But now suppose that your friend has a magic receiver that perfectly repro-
duces the chaos—then he can subtract off the chaotic mask and listen to the
message!

Cuomo’s Demonstration

Kevin Cuomo was a student in my course on nonlinear dynamics, and at the end
of the semester he treated our class to a live demonstration of his approach. First he
showed us how to make the chaotic mask, using an electronic implementation of
the Lorenz equations (Figure 9.6.1). The circuit involves resistors, capacitors, op-
erational amplifiers, and analog multiplier chips.



Figure 9.6.1 Cuomo and Oppenheim (1993), p. 66

The voltages u,v,w at three different points in the circuit are proportional to
Lorenz’s X,y,z. Thus the circuit acts like an analog computer for the Lorenz equa-
tions. Oscilloscope traces of u(f) vs. w(t), for example, confirmed that the circuit
was following the familiar Lorenz attractor. Then, by hooking up the circuit to a
loudspeaker, Cuomo enabled us to hear the chaos—it sounds like static on the radio.

The hard part is to make a receiver that can synchronize perfectly to the chaotic
transmitter. In Cuomo’s set-up, the receiver is an identical Lorenz circuit, driven in
a certain clever way by the transmitter. We’ll get into the details later, but for now
let’s content ourselves with the experimental fact that synchronized chaos does oc-
cur. Figure 9.6.2 plots the receiver variables u, (¢) and v,(7) against their transmitter
counterparts u(t) and v(z).
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The 45" trace on the oscilloscope indicates that the synchronization is nearly per-
fect, despite the fact that both circuits are running chaotically. The synchronization
is also quite stable: the data in Figure 9.6.2 reflect a time span of several minutes,
whereas without the drive the circuits would decorrelate in about 1 millisecond.

Cuomo brought the house down when he showed us how to use the circuits to
mask a message, which he chose to be a recording of the hit song “Emotions” by
Mariah Carey. (One student, apparently with different taste in music, asked “Is that
the signal or the noise?”) After playing the original version of the song, Cuomo
played the masked version. Listening to the hiss, one had absolutely no sense that
there was a song buried underneath. Yet when this masked message was sent to the
receiver, its output synchronized almost perfectly to the original chaos, and after
instant electronic subtraction, we heard Mariah Carey again! The song sounded
fuzzy, but easily understandable.

Figures 9.6.3 and 9.6.4 illustrate the system’s performance more quantitatively.
Figure 9.6.3a is a segment of speech from the sentence “He has the bluest eyes,” ob-
tained by sampling the speech waveform at a 48 kHz rate and with 16-bit resolution.
This signal was then masked by much louder chaos. The power spectra in Figure
9.6.4 show that the chaos is about 20 decibels louder than the message, with cover-
age over its whole frequency range. Finally, the unmasked message at the receiver
is shown in Figure 9.6.3b. The original speech is recovered with only a tiny amount
of distortion (most visible as the increased noise on the flat parts of the record).
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Figure 9.6.3 Cuomo and Oppenheim (1993), p. 67
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Figure 9.6.4 Cuomo and Oppenheim (1993), p. 68

Proof of Synchronization

The signal-masking method discussed above was made possible by the concep-
tual breakthrough of Pecora and Carroll (1990). Before their work, many people
would have doubted that two chaotic systems could be made to synchronize. After
all, chaotic systems are sensitive to slight changes in initial condition, so c?ne might
expect any errors between the transmitter and receiver to grow exponentially. But
Pecora and Carroll (1990) found a way around these concerns. Cuomo and Oppen-
heim (1992, 1993) have simplified and clarified the argument; we discuss their ap-
proach now.

The receiver circuit is shown in Figure 9.6.5.
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Figure 9.6.5 Courtesy of Kevin Cuomo

It is identical to the transmitter, except that the drive signal u(t) replaces the re-
ceiver signal u,(¢) at a crucial place in the circuit (compare Figure 9.6.1). To see

what effect this has on the dynamics, we write down the governing equations for
both the transmitter and the receiver. Using Kirchhoff’s laws and appropriate
nondimensionalizations (Cuomo and Oppenheim 1992), we get

u=0o(v—u)
v=ru—v—20uw , (1)
W = Suv — bw

as the dynamics of the transmitter. These are just the Lorenz equations, written in
terms of scaled variables

e ] — — 1
U=1%X, V=1Y, W=552.

(This scaling is irrelevant mathematically, but it keeps the variables in a more fa-
vorable range for electronic implementation, if one unit is supposed to correspond
to one volt. Otherwise the wide dynamic range of the solutions exceeds typical
power supply limits.) / < '

. ’ ) Ao (wowmd -
The receiver variables evolve according to oM ¥ : 34

u, =0(v, —u,) ‘ 5 = ~ ( 6

v, =ru(t)—v, —20u(t)w, A 3 (2)

W, =5u(t)v, —bw,

where we have written u(t) to emphasize that the receiver is driven by the chaotic
signal u(t) coming from the transmitter.

The astonishing result is that the receiver asymptotically approaches perfect syn-
chrony with the transmitter, starting from any initial conditions! To be precise, let

d = (u,v,w) = state of the transmitter or “driver”
‘ r=(u,,v,,w,) = state of the receiver
e=d-r = error signal

The claim is that e(r) — 0 as t — oo, for all initial conditions.
Why is this astonishing? Because at each instant the receiver has only partial
information about the state of the transmitter—it is driven solely by u(z), yet some-

how it manages to reconstruct the other two transmitter variables v(r) and w(z) as
well.

The proof is given in the following example.

EXAMPLE 9.6.1:

By defining an appropriate Liapunov function, show that e(r) — 0 as t — o .

Solution: First we write the equations governing the error dynamics. Subtract-
ing (2) from (1) yields




e, =0(e,—¢)
é2 = _eZ — 20“([)33
e, = 5u(t)e, — be,

This is a linear system for e(r), butit has a chaotic time-dependent coefficient u(z)
in two terms. The idea is to construct a Liapunov function in such a way that the
chaos cancels out. Here’s how: Multiply the second equation by e, and the third
by 4e, and add. Then

e,é, +4e,é; = —e,” —20u(t)e,e; +20u(t)e,e; — 4be;’ (3)
= —e,” —4be;’
and so the chaotic term disappears!

The left-hand side of (3) is %%(ezz +4e32). This suggests the form of a Lia-
punov function. As in Cuomo and Oppenheim (1992), we define the function

E(e,t)=4(de +e,” +4e7?).

E is certainly positive definite, since it is a sum of squares (as always, we assume
o >0). To show E is a Liapunov function, we must show it decreases along tra-
jectories. We’ve already computed the time-derivative of the second two terms, SO
concentrate on the first term, shown in brackets below:

E=[Leé|+e,é, +4ese,

=]e’ - eje,| e, —4be;’ .
Now complete the square for the term in brackets:

E=-]e ~te,| +(4e,) —e,” —4bey’

2
_ o0 il _3p2_ :
= [el > ez] rd 23 4be3 .

Hence E <0, with equality only if e = 0. Therefore E is a Liapunov function, and
so e = 0 is globally asymptotically stable. m

A stronger result is possible: one can show that e(r) decays exponentially fast
(Cuomo, Oppenheim, and Strogatz 1993; see Exercise 9.6.1). This is important,
because rapid synchronization is necessary for the desired application.

We should be clear about what we have and haven’t proven. Example 9.6.1
shows only that the receiver will synchronize to the transmitter if the drive signal
is u(t). This does not prove that the signal-masking approach will work. For that
application, the drive is a mixture u(t)+ m(t) where m(t) is the message and

u(t) ?> m(t) is the mask. We have no proof that the receiver will regenerate u(r)
Premsely. In fact, it doesn’t—that’s why Mariah Carey sounded a little fuzzy. So
it’s still something of a mathematical mystery as to why the approach work's as
well as it does. But the proof is in the listening!

EXERCISES FOR CHAPTER 9

9.1 A Chaotic Waterwheel
9.1.1  (Waterwheel’s moment of inertia approaches a constant) For the water-

wheel of Section 9.1, show that I(¢) — constant as t — oo, as follows:

a) The total moment of inertia is a sum I =1, +1I,,.., where I, ., depends only

on the apparatus itself, and n(;t on the distribution of water around the rim. Ex-
. ,r .
press I, interms of M = Jm(@,t)d@.
0

b) Show that M satisfies M = Q,_,, — KM, where Oiota = J.MQ(B) do.
0

¢) Show that /(z) — constant as t — o, and find the value of the constant.

9.1.2 (Be.havior of higher modes) In the text, we showed that three of the water-

wheel equations decoupled from all the rest. How do the remaining modes behave?

a) If O(8)=gq,cosO, the answer is simple: show that for n#1, all modes
a,, b, >0 ast— oo,

n?

b) What do you think happens for a more general Q(9)=iq cosnB?

Part (b) is challenging; see how far you can get. For the state of cﬁzr(;ent knowl-

edge, see Kolar and Gumbs (1992).

9.1..3 (Deriving the Lorenz equations from the waterwheel) Find a change of
variables that converts the waterwheel equations

a, =wb, - Ka,
b, =-wa, +q, - Kb,
v mgr

CO='—7CU+TCZI

into the Lorenz equations

x=0(y—x)

y=rx—xz—y
Z=xy—bz



