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FOREWORD

- This bookAis a comprehensive and unified treatment of the mechanisms

of flow-generated sound that occurs on ships and in marine machinery.

Often the control of these mechanisms involves the essentials of both

fluid mechanics and structural dynamics.

Dynamical properties of various types of flow and of various structural

elements that are typical of ship application are thus examined in detail

beginning with the fundamentals of each physical source. -Organization

-of the book' provides for the treatment of elementary sources of flow noise

and the principles of random vibration.4n Volume 1s- Normal mode

analysis is the cornerstone of the methods used tbere to describe the

behavior of flow induced vibration. Naval applications that involve

turbulent boundary layer and lifting surface flows are diecussed in

Volume 2f Aerodynamic noise sources, in so far as they occur anogously

in underwater acoustics, are examined in detail for low Mach number

marine application. ".
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PREFACE

The requirements for reduced levels of shipboard sound and vibration have "

become increasingly demanding as each technological advancement in ship systems

leads to a more sophisticated design goal. It is now clear that many traditional

means of control that invoke the obstruction of transmission paths and the mechan-

ical isolation of sound sources have now been fully exploited and in many instances 0

are proving inadequate. This is particularly true in cases involving fluid flow.

Modern technology now requires noise and vibration control that is fully integrated

with the design of hydraulic machinery, propulsion equipment, and turbo machinery, .

to name only a few. It is often the case that the physical fundamentals of design .. ..

also involve parameters which are essentially common to noise and vibration produc-

tion and that very useful performance and acoustic tradeoffs may be conducted in

design if only the noise-producing fundamentals are recognized by the designer.

These tradeoffs may even be conducted as early as the preliminary design stage. 0

These tradeoffs are as feasible in the private sector as they are in the Navy. In

fact in almost every aspect of noise and vibration control which is important to the ._

Navy, there is a parallel development of understanding in some other application.

The purpose of this book is thus to provide an integrated description of the funda- -

mentals of fluid-dynamically generated sound and vibration which is founded on the

combined principles of acoustics, classical fluid mechanics, and vibration.

It is the aim of this book to set down the fundamentals of sound generation by

different classes of fluid motions and flow-body interactions. Since the generation -7.

of sound is intimately connected with the creation of turbulence and other manifes-

tations of flow unsteadiness, it is important to understand both acoustics and the - .

appropriate elements of unsteady fluid mechanics. Thus a great deal of attention

has been placed on the essentials of various turbulent flows, hydrodynamics of cavi- S

tation, boundary layer theory, and lifting surface theory. The purpose is to

develop understanding and perspective on the part of the reader; for this reason,

theoretical relationships that are derived are copiously illustrated with experimen-

tal data. This is often done through the use of dimensionless forms which give 0

generalized presentations to support and extend the theory. In most cases that

involve experimental resuls not collected by the author, ,iis has required a

vii
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complete reworking of the data into a form that is consistent with tte philosophy

of the book. Fluid dynamic sources so treated include such classes of flows as flow

tones, jet noise, cavitation, vortex shedding sounds, all forms of subsonic lifting 0

surface noise, and sources which occur in axial flow machinery. Since in underwater

acoustics, vibration often plays a dominant role, there is a chapter on the funda-

meuLals of random vibration as it relates to flow-excited structures.

The scope of the book is broad, and all topics could not be covered completely.

So, each chapter includes an extensive reference list. The lists are not exhaustive,

but are reasonably complete.

The book is written for scientists and engineers who are not experts in fluid

mechanics or acoustics; however, a knowledge of the fundamentals of each, particu- 0

larly fluid mechanics, would be helpful. The treatment of structural vibration and

structural acoustics is relatively cursory because there are already rather good

monographs on those subjects that are available, as referenced. Althoukh much of

the mathematical treatment used is rather sophisticated, the analyses have been con-

centrated and kept identifiably separate from physical discussions whenever possible.

This is so that readers desiring a more descriptive approach may also be served by

the book.

The book has evolved from the author's own research experietes, as well as -

from the literature of both the aeroacousLics and hydroacoustics communities. The

author is indebted to his colleagues at the Center and, in particular, to those in

* the Hydroacoustics Branch of the Ship Acoustics Department for their continuing

interest in the project. Many people contributed to the preparation of the various

chapters. Special thanks go to Professor Patrick Leehey of MIT whose graduate

course on flow noise provided me with both instruction and inspiration, and to

Drs. Alan Powell and Maurice Sevlk who provided continuing understanding, stimula-

tion, and encouragement as the work progressed. The work could not have been under-

* taken at all without the help of S. Blazek and A. R. Paladino of the Naval See

. Systems Command who sponsored much of the writing. Technical consultations with

current and past colleagues at the Center on as many aspects of the work as possible

were necessary to give the work depth and perspective; thanks are extended to

G. Franz, J. T. C. Shen, G. Maidanik, M. Strasberg, F. C. DeMetz, as well as to

T. Brooks of NASA, and R. Schlinker of UTRC. From time to time I imposed on a

*. variety of experts to review selected chapters for content; gratitude is extended to

viii



M. Casarella, D. Crighton, M. Howe, R. E. A. Arndt, R. Armstrong, F. B. Peterson,

A. Kilcullen, D. Felt, M. C. Junger, F. E. Geib, R. Henderson, R. A. Cumming,

W. B. Morgan, L. J. Maga, and R. E. Biancardi. Thanks are also due to

* D. Paladino and J. Gershifeld who read all or part of the manuscript and located

many of the inconsistencies and errors.

The creation of camera-ready copy was made possible by a team of B. Devaney,

B. Hay, J. Seidenstricker, and M. Gotthardt of DTNSRDC. C. Naas (also of DTNSRDC)

and K. Simon (of Forte, Inc.) did the exceptionally difficult job of editing.

T. Gilleland and R. Schmidt of the Center's Publications Department coordinated

the typing and artwork.

Finally, the main debts are owed to my wife Donna who initially suggested the

project and whose enduring gifts of love, support, and patience made possible its

completion and to our daughters Kristen and Helen for their cheerfulness as they

virtually grew up with the book around them.

,0

W. K. Blake

Bethesda, MD

June 1984
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A Area of a panel, or hydrofoil
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b Shear layer length scale (Chapter 3)
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n
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k Geometric roughness height

k Equivalent hydrodynamic sand roughness height

* k Acoustic wave number Lo/c
*0 0

k, k Wave numbers of n-th or m, n modes

kp Plate bending wave number, kp =W/Cb 

k Thrust and torque coefficients for propellers and rotors,
q Equations (9-4), (9-5)

K Cavitation index (Pn P.

L Lift or lift per unit area

Li , L3  Length across the stream, span

L. Geometric leng.h in i-th direction

k Length scale used to denote a characteristic of fluid motion

z c,- f. Spanwise correlation length, eddy formation length

M Mass

m Structural plating mass per unit area P

mm, rn Fluid added mass per unit area for m or mn vibration mode

M M 1 Mach numbers: convection (c), tip (r)
C T ,

n s  Shaft speed, revolutions per second
B

n(k), n(w) Mode number densities

n, n Unit normal vector

n(R) Bubble distribution density number of bubbl.es per fluid volume
per radius increment

N Number of bubbles per unit fluid volume

p Fluctuating pressure; occasionally subscripted for clarity:
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P Average pressure

P Upstream pressure
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q Rate of mass injection per unit volume .
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Rb  Bubble radius
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R Correlation function of pressure, normalized
pp

Rn a Correlation function of velocity fluctuations u. and u.j,
normal ized

r Acoustic range, occasionally subscripted to clarify special
source point-field point identification

r, ri  Correlation point separation - the distribution from r is clear
in the text

Strouhal number f Z/U where k and U depend on the shedding body

S M (k) Modal spectrum function

Sel S2D One- and tuo-dimensional Sears functions

S (r,w) Spectrum function used in Chapter 4 for cavitation noise

t time

T Lighthill's stress tensor (page 54)ij
U Average velocity, advance, U

a
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hydrodynamic friction, U = /P
W 0

shedding, U = U /l-C .
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u, u fluctuating velocities

T Average time

T, T(t) Thrust, steady and unsteady

V Vane number in Chapter 10

v Volume fluctuation

v(t) Transverse velocity of vibrating plate, beam, hydrofoil

W Weber number in Chapter 4

X, x I  Acoustic field point coordinate
+

Y, Yi Acoustic source point coordinate

yf Cross-wake shear layer thickness at point of maximum streamwisevelocity fluctuation in wake

GREEK SYMBOLS:

Complex wave number, used in stability analyses and as dummy
variable

Volumetric concentration (Chapters 3 and 4); fluid loading

factor Qoc /p ho (Chapters 1, 6, 7, 8)
00p
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y Adiabatic gas constant (Chapter 4), rotor blade angle (Chapter 1.o)
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6(x) Dirac delta function, f6(x)dx = I
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e Angular coordinate
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a W )Power spectral density
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CHAPTER 1
INTRODUCTION

1.1 THE DISCIPLINES OF FLOW NOISE .
Sound and vibration produced by the flow of fluids has provided important

limitations to various types of ships, aircraft, and fluid machinery. In many -.

industrial and marine applications, thresholds are set for allowable levels of

sound and vibration for reasons of habitability as well as the acceptable perform- ,

ance of onboard acoustic sensors on marine vessels. Flow-induced vibration may

also generate fracture and damage in many structures that are exposed to flow; such

structures include turbine blades, propellers, and buildings. Yet, in spite of this

importance, the control of flow induced sound and vibration in engineering applica- P
tions is a discipline that is more-or-less reserved for specialists. This is in

some contrast to other more classical areas of sound and vibration for which the

practicing engineer has at his disposal any number of texts. One of the purposes

of this book is to fill that gap. The problems of vibration and sound that involve P

fluid flow are made worthy of separate and special treatment because of a three-way

intnraction of unsteady fluid mechanics, structural vibration, and acoustics. Thi"

book, then, presents an interdisciplinary look at a truly interdisciplinary subject

.,:ea. P.

In a practical sense the generation of vibration an so,,nd may be expected

whenever there is a relative motion between two adjacent bodies of fluid, as i, ..he

case of jet noise, or between a fluid and a body moving through it, as in the case

of noises from air frames, propeller fans, and helicopters. Thus, the sounds gen- P
erated by sources such as cavitation, the formation of gas bubbles, propellers,

ventilation fans, fairings over sonar systems, flow ove-: cavy ies and discontinu-

ities in surfaces, and the flow past wings, control surfaces, and rotor blades,

and many more, are all determined by the nature of the flow disturbances as well _

as by the vibrational acceptance of the surfaces to flow excitation and the ability

of those surfaces to then radiate sound. This book will deal with each aspect of

this process.

Also, by tradition, hydroacoustics has often been regarded as the subject area
produced by a flow-body interaction, particularly when the fluid is a single phase,

and the direct result of the time-varying forces exerted at the fluid-body interface

which are set up by the locally-generated flow disturbances. The interaction can

be made more complicated if the motions of the body and fluid become coupled by

, i " n ¢ "n . . . . . .. .n " " *. .. i " i. ......... "...... * i' *" "* ' " " "
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some feedback mechanism; such cases are referred to as "self-excited." The emitted

sound is a superposition of fields created by the fluid forces as well as the

induced body vibration. Noise control in all such situations may be possible by

- modifying the flow-induced forces, the structural response to those forces, and the

- efficiency by which structures radiate sound. Clearly then, efiective engineering

.. of sound and vibration requires an understanding of the many features of fluid-

structure interactions in the machine under design.

Traditionally, the subject of aeroacoustics has been regarded to include those

flow-induced noises that involve aerodynamic interactions of fluids and bodies.

Therefore, it includes jet noise, air frame noise (which includes noises from flow

over slots, gaps, and leading and trailing edges of lifting surfaces), the Aeolian.

tone (the singing of wires in the wind), and cabin noise due to boundary layer flow

over aircraft fuselages. By accident, really, it is generally. assumed that if the

noise arises from a flow-body interaction, the surface is either rigid, or if it

does vibrate, the noise primarily results from the distribution of aerodynamic

forces on the body and only secondarily from the vibration of the body itself.

Quite often pL. -ical interest will lie in high speed flow noise because of the

application to modern aircraft.

Also, by tradition, hydroacoustics has often been regarded as the subject area

of two-phase flow noise, e.g., sounds from cavitation, bubble formation, an,! splashes.

Application generally lies with low speed marine vehicles and so such topics as jet

noise are of little importance to marine application because the radiation effi-

ciency of this noise is very small at low speeds. The other sounds due to inter-

actions between bodies and single-phase flow, that are important to aeroacoustics

-i are equally important here, but they are made complicated by the fact that the body

ceases to act as a reflector, but rather as a more active contributor to the overall

O sound field. Quite often the structurally-generated sounds are more important

because of the poor radiation efficiency of the fundamental fluid dynamic noise

. source. Propeller singing falls within this class of sources.

This book will take a broader look at the subject of vibration and sound. We

* begin with a comprehensive theoretical treatment of acoustics and sound generated

by fluid motions and surface vibration in chapter 2. Following this we shall deal

*I  with three classical source types that do not necessarily involve vibration of a

* structure. These are monopole (cavitation, chapter 4) dipole (vortex-shedding

sounds, chapter 5) and quadrupole (jets, chapter 3). General theoretical analysis

2
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is again presented in chapter 6 when we examine the fundamentals of random vibra-

tion. The next three chapters deal with specialized topics that involve boundary

layers (chapters 7 and 8) and flow around lifting surfaces (chapter 9). The broad

and important subject of sound radiation from axial flow machines is examined in

chapter 10.

1.2 DIMENSIONAL ANALYSIS
Three elements, then, must be considered in a comprehensive solution of a

problem of flow induced sound and vibration: the unsteady fluid mechanics (turbu-

lence characteristics), the response of any contiguous structure (impedance distri-

bution, damping), the acoustic radiation field of any body vibration and turbulent .
flow sources. In view of this variety of interacting components of flow--noise

problems, it is necessary to establish a systematic approach toward identifying the

controlling parameters. This will be done now using dimensional analysis for the

example of turbulent flow past a lifting surface such as is typical of turbo-

machinery, aircraft, and marine components without cavitation. The analytical T
approach used here has wide application. As illustrated in Figure 1.1, the surface

has a chord L, and thickness h; the fluid moves past the surface at velocity U and
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Figure 1.1 - Illustration of a Body Subjected to a Disturbed Flow; Body ".""'.
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surrounds it with a turbulent field of intensity ut (lut1 <0.3 Uo, generally) and

length scale A t . Forces are exerted on the surface from a pressure distribution

of magnitude Ph and length scale Af. Just how these pressures are developed will

be the subject of later chapters (5 through 10), but for now we simply say that they
2are only correlated over the area A Therefore, we may think of a distribution of

localized forces Fh of magnitude

2

Fh= Ph f f

If A is the area of the surface, and if the pressures are evenly distributed over 0
S2

it, then the number of such forces is of order As/A . The lengths A f and At may

not be equal, one having to do with the ambient turbulence, the other with the

bounding flow adjacent to the surface. In either case, each may be proportional to

the chord L if all the turbulence is created by the subject surface. The force dis- S

tribution will induce a flexural vibration level us on the surface, with a wavelength

s . To complete the picture, the sound pressure radiated from the surface pa has a

wavelength X . Having introduced the vibrational wavelength, the acoustic wave-a

length, and the fluid length scale, we have acknowledged the existence of laws of

similitude based on relationships among them. We shall identify next the circum-

stances under which these scales become important. The turbulent pressures are

distributed over a range of frequencies f with a continuous spectrum function G (f)
p

which is bounded by the upper and lower frequencies f and f u The pressure is S
related to its spectrum by (see section 1.4.2)

f2 2 2 f~uGpf "-

Ph =(PU) G .(f)-df

and similarly for the power

= (f) df

fg Z

The sound pressure is a superposition of contributions from the free turbulence

region, the force distribution over the surface which is imposed equally aad in

phase opposition to the force on the fluid, and the flow-induced vibration. In

actuality, the superposition of radiated pressures from each source type must

4
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regard bcth the amplitude and phase, but for now we are only interested in the gross

relative magnitudes of sound power that are possible from each source acting

separately.

First, the total radiated sound power P from the dynamic shearing motions in

the turbulent region alone (neglecting the surface stresses and vibration due to the

presence of the body) will follow the similarity law (Sections 2.3.3 and 3.6)

U8 V
0O30

T (11)
C t
0

where co is the speed of sound in the liquid and V is the total volume occupied by
0 0

the turbulent region. Equation (1.1) shows that F T increases as Mach number to the

fifth power. This shows that radiation from free turbulence at low Mach numbers is

significantly less important than at high values. If we assume, for the moment,

that the free turbulence is created only by the motion of the body, and accordingly
3that V is proportional to L and At is proportional to L, then the law of simili-that

tude will be

P U3 L2M5LT  CO o= :7 '.

where A. V /c is the Mach number of the flow. The power consumed by the surface
0 0

in working against the flow will behave as

IP PoUCt iJ' -L :",-.-. .
°

so that we may define an acoustic power loss factor as
S

IT
ac
T

and

fl .J5 I~l~(1.2)
ac
T

5
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Thus, the relative efficiency of sound production by the dynamics of the turbulent

region increases as the fifth power of Mach numbec in agreement with the previous

assessment of quadrupole sound power. This dependence on speed is shown in

Figure 1.2. -

f

logo

log A4l

Figure 1.2 -Dependence of Radiated Acoustic Power on Mach Number for
Elementary Compact Flow Dipoles and Qadrupoles. Acoustic Power is

Shown in Relation to the Available Fluid Power

The radiated power spectrum from the force distribution over the surface,

assuming that the surface is rigid, has a frequency spectrum (Sections 2.4.3, 5.6,

and 9.2) which may be expressed as

D 2 2

f000

2
The function Fh(f)f represents the frequency spectrum of the rate of chjange of hy'-

*drodynamic forces at a point on the surface. The first term represents contribution

to the total power by each of the uncorrelated force elements, the second term

6
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represents the number of such elements on the surface, and the third term represents

the various scattering effects which may occur when the chord exceeds an acoustic

wavelength, A = c /f, or when the correlation length A exceeds X . The factor D.
a o f a

expresses the spatial matching between the pressures on the surface and the sound

an it approaches one when L/X or A /X are both much less than one. These effectsa f a

are discussed at length in Chapter 8. From the above it can be stated that Fh(f)

will depend on the parameters of the problem as

2 2 2 4(
Fh(f) (PoUM) A Gp(f) (1.3)

therefore, we may write the acoustic power spectrum as

2W 3A 2 /L)2 fA f
7r(f) - oU3 L2  ) (f) • D fL, Cof (1.4)

or

,2(f) oU 2 L G(f) fL 2 (Af)2 L fAf
o~ p kc,\L/(cc /•

D 0 P 00 0

The predominant frequency of the flow excitation is f which we shall let be f,_

UcJf* Now, if we let Af - L, as done for the noise from free turbulence, then the

ratio of the total acoustic power to the mechanical power depends on Mach number as

Tac (1.5)

D.

Thus, the total sound power efficiency for the force-dipole increases with Mach

number less rapidly than for the quadrupole po.,er, as shown in Figure 1.2. This

means that at low Mach numbers, dipole sound caused by acoustically compact surface

forces may be more important than quadrupole sound emitted by the distribution of

shear stresses in the turbulent flow around and in the wake of the body. Note the

above analysis has shown the relationship between these co-existant sources to be

speed dependent and that quadrupole sound may tend to become relatively more impor-

tant than dipole sound at high speeds.

7
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A third source of sound power arises from the surface vibration, the sound

power spectrum from which is dependent on the vibrational surface velocity as

7 (f)- cA r s, u (f)

0p

The function a (fX /Co, fL/c) <1 is the radiation efficiency (see Section 6.5) of
r s o' 0the structure. It is a function of the overall geometry of the structure, and of the

ratios X /X and L/X . As X /X - I and LiX > 1 then a 4 1. The vibrational
s a a s a a

velocity of the surface is related to the surface impedance, Z(f) and to the local

force spectrum F 2 ) as (see Sections 6.3, 6.4, 7.6.1, and 8.6.1)

F2 M A s

S,
u2(f)(--f) Af- -

usf = zf G s ::":L

where Lt factor A /A2 accounts for the number of local force units of magnitude Fs f h
on the surface where G(Af / ) is a coefficient that expresses the spatial matching

of the hydrodynamic force distribution with the wavelength of vibration in the

structure; it is analogous to V(L/Xa, A f/X of Equation (1.3) and it also is a

function of geometry. If each vibrational mode of the structure behaves as a linear

harmonic oscillator, then at a given frequency (Section 6.2) the flexural impedance

of any mode will behave as

Z(f) -- i (P phf A) [( ) ( ) 3.

or, introducing a nondimensional impedance function z(f/fr),

Z(f) = (Qphf A) z W )•(L

where r is the loss factcr of the structure. The rr:sonance frequencies f form a

discrete set which, for a given structural geometry, vary with the body length

scale L and bending wave speed cb, as

8
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f L~ cb
r b

and c varies as
b6

b (f hc )l1/2
C b fh

where cZ is the bar wave speed in the structural material. If we fix the value of

f/fr and combine terms then we can write the power spectrum in the general form 0O

-w s 0 c (A p h 2f 2 9z(L 1

Introducing Equation (1.3), and rearranging, we find the sound power spectral density

radiated by each mode in the same form as Equation (1.4)

(f - C oU L 2 0 f 0 'O o f.s fL G (1.6)

" 0 L- phfr  "r fc ' -j-) 2 Gpf) (.)------...
ir Of UZ ."\2

as the general similarity function for the sound power spectral density radiated

from flow-induced structural vibration. Equation (1.6) contains in general fashion

all the factors pertaining to the hydroacoustic coupling of the unsteady fluid

motion, the structural vibration, and the acoustical properties of the fluid medium

To proceed further it. our assessment of the importance of structural vibration versus

radiation from flow-dipoles we must invoke certain particularities of the factors 0

C z(f/f and V(fL/c fAf /c) in Equations (1.4) and (1.6).r' r f o
Part of Figure 1.3 shows Equation (1.4) to arbitrary scale nondimensionalized

on the mechanical puwer factor poU3L 2 and normalized on the hydrodynamic pressure

spectral density acting on the surface. The curve represents an "acoustic radiation

efficiency" as a function of frequency of the hydrodynamic dipole forces acting on
2

the surface as if it were completely rigid. The departure of the curve from an f. .

dependence at frequencies fL/c > I is provided by the fact that D(fL/c ) decreases
0 0

9
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Figure 1.3 - Relative Spectra of Radiated Sound Power from Fluid

Dynamically Induced Vibration and Surface Forces

inversely with frequency when the surface becomes larger than an acoustic wave

length. The fundameiitals of this are given in Section 9.2.

We deal now with the behavior of IF (f) also shown in Figure 1.3. The coupling

factor GOfA8 ) may be assumed to vary slowly or not at all with frequency in com- p

parison with the other factors in Equation (1.6). Very low and very high frequency

regions may be identified in which certain simplifications may be made. In the very

low frequency limit, which lies below the fundamental structurdl resonance, i.e.,

for f < f the impedance function behaves as Iz: = 1. The fundamental resonancer

frequency may be thought of as "scaling" on the length parameter 1. and the thickness
2 "

parameter h as indicated above, so we may say roughly that f r C-h,'/  for a partic-r 4 .

ular structural configuration. At these low frequencies, the acoustic wave lengths

are larger than the extent of the body, i.e., for fL/c < 1, considerations of' 0

Sections 2.1.2 and 6.5.4 suggest the behavior

10 . i
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where the minimum value of M is 2 for a baffled structure, or for a volume source

(Section 2.1.2). Accordingly, equation (1.6) may be rearranged into the form

(with rtrn2)

2

I f G M p h G.G

for f < f and fL/c 1<< . This result differs from Equation (1.4) in two important
res o :

characteristics which provide for th. importance of structural vibration. First the
2

factor (p c /ppC) provides for very different radiation impedances for similar

structures in dissimil.r fluids. For example, two geometrically similar structures

of a given structural material in air and in water will radiate acoustic power in . S

proportion to the r.-tio of fluid acoustic impedances squared. Since P c of water is
10larer'thn'forhe"c0 0

4.5 x 10 larger than for air, the term will account for 70 decibels greater

sound output in water than in air. The second important feature in comparing
42 -

Equations (1.4) to (1.7) is the presence of f compared to f. Thus, low-frequency

energy conversion will increase more rapidly with frequency for flow-induced vi-

bration than for radiation due to the forces themselves.

We now consider a high frequency limit. At frequencies above the fundamental

resonance of the structure, the behavior of Iz2 is marked by a sequence of minima , 0

and maxima which are due to the many structural resonances of the structure. A

simple means of conceptually avoiding this complication is to obtain an average

value of T (f). This is obtained by summing the responses of all resonant modes
5

between two limiting frequencies, f 1 and f 1 + Af, where Af increases in direct
proportion to f. I Dividing the summed power by f we find the average power

spectrum

f +Af

L 1 L (f) df
fl

fS
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In Section 6.3.2 it is shown for flexural vibrations of a plate that the effective

value of I/Izi 2 behaves in proportion to fA(nhC)-. We take this behavior as rep-

resentative of typical structural impedances. Also at high frequencies such that

the acoustic wavelength is smaller than both a structural wavelength and the dimen- 0

sions of the structure, i.e., f X /c >1 and fL/c >l, then a = 1 (see Section
s o o r

6.5.4). Ine average power spectrum then is of the form (assuining constant G

P (f ° p U3L2C (f) • _oo -zq) (1.8)

which is also shown in Figure 1.3. We note that the frequency for which f X /c = 1 :0
S 0

is called the acoustic coincidence frequency fC of the flexural waves; equation

(1.8) only applies at frequencies greater than this. Between the two frequencies f
and f the function Ps peaks at somu maximum value as indicated. The details of

the fluid-structure interaction would determine both the magnitude and the frequency

of this maximum. Figure 1.3 shows that for a given structure geometry the relative

importance of the two radiation contributions will increase or decrease in propor-

tion to (p oc)/(p C9 ). It is therefore often, though not exclusively, the case that

in certain frequency regions T (f) > PD(f) in hydroacoustic applications and that .

ip (f) > T (f) in aeroacoustic applications. As Figure 1.3 implies, there may be
D s

frequency ranges for which the roles of the sources may be reversed.

The above remarks, therefore, are not to be taken to suggest that aeroacoustics

is exclusively a rigid body phenomena. Two prominent examples of aerodynamically- P

induced structural radiation are cabin noise of aircraft and certain sounds of circu-

lar saw blades. Therefore,the above equations are derived to be suggestive of the

parameters which control radiation from the two sources. A specific example is

worked out in Chapter 9.

1.3 SIMILITUDE IN AERO- AND HYDROACOUSTIC MODEL TESTING
Equations (1.1), (1.3), (1.4), and (1.6) through (1.8) indicate what essential

conditions of dynamic similitude must be maintained in model testing for the respec-

tive source strengths. First, regarding the fluid, Equation (1.3) reflects the fact

that the fluid forces will be simulated when U , , and p are maintained in appro-

priate relationship. This relationship is assured when the inertial forces, which

12
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are proportional to pU , are maintained in the correct proportion to viscous

forces which scale on pU Af. Thus, hydrodynamic similitude requires that the ratio

inertial forces P0U Af

viscous forces _

is fixed in two scales. Now, when this ratio of forces is maintained for models of

two sizes, Af will be proportional to the body dimension, i.e., Af L, so that we

finally state that the requirement is that the ratio

poUCoL ... .

is constant for both scales and that, in general, Af/L is a function of R

- F(R)

The ratio R is the Reynolds number of the flow. Dimensional arguments further
dictate that the frequency will scale as.

fAf fL

so that a dimensionless representation of the flow-induced force field is

p2U4L4 p . . . .

where G (fL/U,,) is a dimensionless function of the dimensionless frequency and
p

Reynolds number. Also required is the maintenance of the function D(fL/c ) in the -"
0•. ..

I



two scales; this requires acoustic similitude which implies that the ratio of the

inertial to compressive stresses in the fluid is also maintained. This ratio is .

20
24

which means that the Mach number Almust be comparable in both scales. Reynolds number

and Mach number similitude also ensure appropriate representation of both quadrupole

noise (Equation (1.1)) and force dipole noise (Equation (1.4)), as can be seen by

* examining the terms involved.

A contradiction arises, however, when we hold model and full-scale measurements

to the same fluid medium. In this case equality of both Reynolds numbers and Mach

numbers can only be achieved when the model size L equals the full-size, L There-

fore, the only practical resolution is to select one of these dimensionless parame-
ADters to be maintained equal in both scales. Generally the selection is made to

maintain Mach number similitude and to assume or verify by some indirect mean--. that

the dichotomy in R caused by the smaller size L < does not seriously limit the

validity of results.-

Similar arguments apply when structural vibration is the dominant sound source.

* First, maintenance of acoustic similitude requires that

Al ..Al _. - _-

m f

If the fluid and structural media are the same in both scales, then we also have r

/ 2

Opc \ pc,

[m f

14
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At the scaled frequencies,

ff

then, we therefore have equal coupling coefficients: in Equation (1.6)

radiation efficiency (a r) = (Cr )f

structural impedance (Z)m = (Z) f

fluid structure coupling (Ga) = (C a)f

if and only if we can be sure that

f (Af)f
L L

iii f

and that the nondimensional hydrodynamic force spectra are similar, i.e.,

Cp (LL, R C;,,....-•f

U . .

even though it might be stipulated that the Reynolds numbers are disproportionate

by a factor

LR =0- R

m L mf
f

If the integral scale and spectrum function are each weak functions of Reynolds

number then the above near equalities in A /L and G (fL/U) will hold. This is what
f p

often happens in practice when the flows are fully turbulent. Exceptions occur when

-

15 .l.-
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the flow is transitional between laminar and turbulent, the flow is characterized by

a discrete vortex formation, and flow-structure-acoustic interactions are mutually

coupled through a complex feedback mechanism. In these three interaction classes

the fluid mechanics will be especially sensitive to the delicate force and impedance

relationships that characterize each aspect of interaction. Another variable which

must be either simulated or measured is the damping in the structure ri. This is a

difficult parameter to scale when it depends on internal friction in joints of

structural members. Damping is scaled when it is due to hydrodynamic or radiation

losses so that similarity in the above structural and acoustic variables is

maintained.

Table 1.1 summarizes the various force relationships which must be simulated in

aero- and hydroacoustic modeling. The parameters Weber (We), Froude (FT), and cavi-

tation indices (K) apply to the simulation of two-phase fluid mechanics. These

variables will be discussed in Chapter 4. The table is exhaustive for all processes

that do not involve heat conduction, mass transfer, or chemical reaction. It is not

possible to rank the dimensionless variables in the order of importance in similitude,

because such a ranking depends on the test objective and the groupings that are im-

portant in each test. About the only generalization to be made is that We, Fr, and

K are irrelevant in single-phase fluid media. The compressibility pc- applies to

both two-phase fluid and fluid-structure interactions. Also listed, although not

previously discussed here, is a similarity in surface finish shape and size. Along

with similarity in R this requirement maintains proper simulation of flows which are

transitional between laminar and turbulent. The similitude in Wc for fluid-body

interactions also implies similarity in wettability.

1.4 REPRESENTATIONS OF SOUND LEVELS

1.4.1 Sound Level Definition
In dealing with acoustic signals radiated by a source into free space, the

parameter most often measured is the sound pressure at some point in the fluid.

This quantity may be related very simply to the acoustic intensity radiated from the

source as long as the pressure measured is entirely due to dilatational (acoustic)

deformation of the fluid. Also, it is required that the measurement must be made

far enough from the radiating source so that the radius of curvature of the acoustic

16



TABLE 1.1

DIMLNSIONLESS RATIOS APPROPRIATE TO REQUIREMENTS OF SIMILITUDE

Similitude Parameter Application

(Inertial forces) (Viscous forces) R = po Ul/, All flows

Geometry G 1oss: Body size, shape All flows
I .Surface Finish: (kg/Ll)1  

=  (kg/L)7 - ikf

(Inertial stress) (Compressive stress) - U/c All flows S

2 2 Fluid [1] - fluid [2] and fluid [I]
Material (fluid) compressibility (,c ( ( 2 structure [21 interactions

(Fluid (acoustic) impedance) : c /luid-structure interactions
(Structural mass impedance) o O p 

......

Fluid-structure interactions, .
(Energy dissipated) (Kinetic energy) hydroelastic coupling

(Pressure stresses) (Inertial stresses) K = (P -Pv)/l/2 ITU2 Cavitation

(Inertial forces) : (Gravitational forces) F = !!!(gL) 1/2 Buoyancy and hydrostatic
r effects

(Gas inertial stresses) "W = 2 L/S Gas jet disintegration in
(Surface tension) e g liquids, bubble splitting

wave fronts is much greater than an acoustic wavelength. When these conditions are S

met then the "far field" intensity I and acoustic pressure p are related by

2
I

where 0oc is the specific acoustic impedance of the fluid. The time average of the

intensity or of the pressure squared is the reported parameter

T/2

Y = l(t)dt....-.-

-T/ 2
. •

or

17
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T/ 2

p u! p (t)dt

-T/ 2

which is also called the time mean square of the pressure.

The sound pressure level is defined in decibel notation as*

LS  10 log 2
Pref

2 -6 2
where p ref is 10 n/m (1 vPa or micropascal) for sound pressures measured in -

liquids, or pref is 2 x 10 5 n/m2 (20 PPa) for sound pressures measured in gases.

Similarly, a sound intensity level may be defined

LI =10 log 1
'ref

wher I s 112 2
w refis1 W/m .A third level determinant, the sound power level, is

defined as

L =10 log i
P Tref

where = 10- 1 2 W. The sound power is obtained by integrating the sound intensity
ref

flux across a surface circumscribing the source. The full meaning of acoustic pres-

sure, intensity, and power will become clear in Chapter 2 when we discuss radiation

from particular sources.

1.4.2 Sound Pressure Spectra

The sound pressure, being a temporally dynamic variable, is composed of a super-

position of disturbances at different frequencies. In the traditional sense, in

order to sample the acoustic pressure at specific frequencies, the signal sensed by

a microphone or hydrophone is electronically filtered over a frequency band, squared,

*One decibel is an increase of sound power or intensity by a factor of 1.259.

is
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and time averaged. This quantity p (f,Af) is the mean square pressure measured with

bandwidth Af centered on f. If Af= f2 -fl then f is defined as the geometric

mean of f2fl, i.e., f = (flf2 )./2. Figure 1.4 describes the functional operation of

a "frequency analyzer" that performs this operation.* The overall mean square

2 2
pressure p of all frequencies and p (f,Af) of the filtered pressure are related

(see the appendix of Chapter 3) by the spectrum function G(f). This relationship is

found as follows:

2(f,f) $ G(f);H(f) 12 df (1.9)f
0

where IH(f)i 2 is the filter response function which ideally passes signals only

between f2 and fl and no other frequencies; accordingly, we may have
2w 1

p ,Af) -- G(f)df .i -

fl f
f

for a flat filter pass band. We can deduce from the above that the spectrum function

is given in the limit of narrow bandwidth, i.e.,

2
lim j = G(f)Af
Af-o Af

Put in a more operationally significant form, if G(f 2) G(f) G(f I) this says

that 0

2
p (f,Af) G(f)Af

*The filtering and averaging process shown is known as an analog frequency

analysis and was, at one time, the only method used. The frequency analysis of time
dependent signals is now accomplished with modern sophisticated digital or hybrid
digital-analog instrumentation. For the purposes of the current discussion, no
distinction needs to be made between them.

19
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WAVE FRONTS

* p(t) ACOUSTIC PRESSURE
SOURCE

U Co

I 2

FILTER p(tfAf) SQUARE p2 (t,f,Af) AVERAGE-pWt 10 Hif ,Af) I 1 f2 ,! f dt 2 ,1

T

Figure 1.4 - Illustration of Acoustic Pressure Measurement and theFunctional Diagram of a Frequency Analyzer

(Symbol p represents instantaneous voltages proportional to
acoustic pressure. Identical notions hold for such measurements

as acceleration, displacement, velocity, and force, etc.) -

The overall sound pressure level is found from the spectral density function by

00

2 f G(f)dt (1. 0)

0

27Therefore, if, as illustrated in Figure 1.5, we have p (f,Af) in a series of adjacent

bands between fl and f2 1 i.e., Afl, Af2 , L f3 1 ... , etc., then

N

f 1f
2- 1-

and

2
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160 1 1 130 1 1 i

ONE-THIRD-OCTAVE SPECTRAL DENSITY
RAND LEVELS

ISO 120

140 11

130, 100 11)1

FREQUENCY (Hz) F-REQUENCY (Hz)

Figure 1.5 - Example of a One-Third Octave spectrum (L) and the
Equivalent 1-Hertz Spectral Density 0(f)

N

2~ 1

thwhere f, center frequency of the i band

Af. = bandwidth

N number ofbands in f - f
2 1

When the bandwidth of the pressure spectrum is narrower than the bandwidth of

the filter, as illustrated in Figure 1.6, then Equation (1.9) gives

22p(f,A f) IH(f ) (f)df
0

m p for f < f < f
1 o 2

= 0 for f < f or f > f2

21



G(f)

.1.0..o -I I

I IH fl

II I?

I I -

fl fo f2f

Figure 1.6 - Filtering of a Narrow Band Signal; the Filter
Output Equals the Mean Square Level

*lhis means that the filter passes the overall mean square pressure of a narrow band

pressure and the increasing or decreasing of the filter bandwidth f2 - f has no
i 2
effect on the value of p2 (fAf) unless f - f is reduced to be smaller than the

bandwidth of G(f). For broadband pressure spectral densities, Equation (1.10) shows

that the value p 2fAf) increases with increasing Af.

Commonly used frequency bands are proportional bands for which Af is propor-

tional to the center frequency of the filter. An octave band is that for which
1/3Af - f - f and f = 2f One-third octave bands are those for which f = 2 f2 1 2 1) 1 2 1'

I/m octave bands are those for which f 2 (2 1/m)f Accordingly, for the most

commonly used proportional band, the 1/3 octave band, Af 0.232f where f is the S
1/2

center frequency (f2f 2 In general,

pAf 2/m I
f 21/2m

2

where typically m = 1, 3, or 10.

22
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1.4.3 Combination of Levels
Sound pressure levels radiated from two uncorrelated sources A and B power-sum;

i.e., the net contribution from the sources is 0

2 2 2 .

P = PA B

the sound pressure level is

S(L)/10 (L )B/10)
(L ) =10 log 1 0  +10 SB

(L -L )/10

SLS + 10 log 1+10 SB.S
A

The rather complicated-looking term on the right is the quantity to be added to LSA .

to obtain (Ls)T. For example, if the individual sound pressure levels are equal
S TOT*

2 2(LsALsB) the net sound pressure level will be 10 log (2 p2/P or (L ) + 3PA Ba Pref or () A +3.-7--?

Figure 1.7 shows the number of decibels to be added to (Ls)A to obtain (Ls)TOT as a

function of LSA - LSB.

To find the average of two mean square sound pressures, we note that

2 1 2
PAV 2 PTOT ..

accordingly,

0, S)AV= (Ls)TOT -3

These level combination formulas are useful in obtaining overall sound pressure

levels from spectra of one-third octave band levels. Equation (1.11) formally

describes this process. The overall sound pressute level, which we may denote as

N N [(Ls -(LS) ]/10 }  ;:
LOA =(Ls)I + 10 log 1 +1 0 oL.i:.lJ

i=2

A

23
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0

0

0 2 46 8 10 12 14 16

Ll- 12

Figure 1.7 -Decibel Addition Chart for Combining Levels L and L
1 2

*can be evaluated by successively combining pairs of levels. Figure 1.8 illustrates

*this pairing process for a spectrum of band levels defined as

2 21
L (f,Af) -10 log ff/rf

1.4.4 Use of Dimensionless Spectrum Levels
* In this book we will be continuously relating engineering estimations of

L S(f,Af) with both theoretical relationships and laboratory measurements. Analyt-

* ical treatments as used in this book introduce the Fourier transform pair

A ((0 a(t) e cit2TrJ

and

24
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.. 'r7. -T,

165 I

wu B
LU 160
-. "OASPL

z LS
< 155 ,

> 15

00

-J 145

zI- 140

135 °

FREQUENCY (Hz)

Figure 1.8 - Level Combination Scheme to Determine the Overall Sound

Pressure Level (OASPL) of the Spectrum Shown in Figure 1.5.

(Note LS levels at 6300 Hz through 10,000 Hz

contribute little to the OASPL.)

- . - .

a(t) A(0W) e-i dw__00

.-.

where (k is angular frequency. As we shall see in Chapters 2 and 3, if the mean

square pressure is independent of both the duration of time from averaging and the

instant that the averaging is begun, then it is related to the spectral density 4(W)

p = ((A)dw (1.12)

where ?(wi) is symmetric about W = o. This integral relationship is fully consistent

with the above definition of the Fourier transform.

25
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The angular frequency w is related to the frequency f by

= 27Tf (1.13)

The spectrum functions G(f) and O(N) are also proportionately related. Equations

(1.10) and (1.12) give the equation

2 (W)A, G(f)Af

the 2 on the left-hand side accounts for the symmetry of 1(w) on w < o and w > o.

By virtue of Equation (1.13) we can write

G f) (1.14)

in terms of the operation used for obtaining G(f) we can calculate ¢(W) from meas-

ured band levels using the formula

I lim p (fAf)
( i) = f-- Af

If we can assume that G(f) is nearly flat over Af then the following may be

written:

2!
10 log G(f) 10 log p (fAf) - 10 log Af

or

10 log Ls (f,Af) _ 10 log Af (1.15)

Pref

and, thr.refore,

26
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10 log () Ls(f,Af) + 10 log Pref - 10 log 4 7 -10 log Af

L s(f,Af) + 20 log pref - 11 - 10 log Af (1.16) 0

Equations (1.15) and (1.16) may be used to determine the required spectrum quanti-

ties from measured sound pressure levels.

It is typical in flow-induced noise problems that the sound levels increase as

speed to the fifth or sixth power, and for dominant frequencies to increase in direct

proportion to speed.

Accordingly, if we normalized G(f) or (Du) on the standard acoustic reference

pressure, we would need a spectrum for each velocity condition. However, theoret-

ically the spectrum function may be scaled on definite functions of speed. Using

the nomenclature introduced earlier to describe similitude, we often find that the

sound pressure spectral density can be expressed in dimensionless forms such as

(see for example pages 515, 516 for vortex sound)

U "
( L (L"

2 2 (L) 2 U
qM

2

in which the spectrum may be also written 4(w)U/L = €(w L/U). The factors q and

U/L take account of the dimensionality of ¢((w) which is pressure squared times

time. The factors ,M2 and (L/r) 2 are scale factors determined by acoustical proper-

ties of the source; 4(w L/U) has dimensions *: pressure squared. These parameters

will vary from case to case as we shall see in various chapters. Current interest

is in relating the Equation (1.16) to Equations (1.14) and (1.15). Figure 1.9

shows dimensionless and dimensional representations for spectral functions for the

sound pressure as described by Equation (1.16). At a scaled frequency

wL 27rfLb

with

A= 2nAf

27
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ONE-THIRD OCTAVE2 BAND LEVELS

NORMALIZED SPECTRAL
DENSITY

-2 E 140
-200

0 0. .0.0100 
20 

ISo ~io

FREOUENCY (Hzl
wL

U

Figure 1.9 -Dimensionless and Dimensional Spectral Levels of a
Flow-Induced Noise in Water

(L =2.5 cm, r l m, V 15 rn/s and 30 m/s)

the scaled spectrum level is

10 log T(W) =10 log L + 20 log q +20 log Md + 20 iog P-10 lo U

q2 2 (L) 2 rL

Accordingly, using Equation (1.15)

L~f~L qo- - logog L
L f =f 10 log 20lg +10 lg41r-+ log- X +2

2 +2 rfU 20lgM 0 rS 2~~M2 (!L) 2P

or combining

L (fAf) 10 log ~ ~~(~j + Lq 20 log Al+ 20 log (1.17)

q ref*

28



Returning momentarily to the expressions relating 4'(w) and G(f), we note that

spectra of dimensionless scaled frequencies and of absolute frequencies are simply

related. If S1 wi L/U then

2VO~w 2(D()ASI G(f)Af

accordingly,

I = G(f)

with

wL 2xfL
U U

Also incremental bandwidths of scaled frequencies are simply related to incremental -

bandwidths of absolute frequencies; that is if true similitude exists for given L

and U,

AWL L A L A
UU

Accordingly, we have all the simple identities

(Po L 2 (Wj) AWo

C(f)Af

that allow a particularly simple interpretation of spectrum functions. 0

The commonly used scaling factors L - 20 log q/p 10 log M, and 20 log M.
q ref'

are shown in the nomographs in Figures 1.10 and 1.11. The determination of dimen-

sionless sound levels from absolute sound pressure measurements will be conducted

using the above equations in a reverse process. When dealing with propellers and .

rotor-, the primary variable on which scund levels must be normalized is the~ tip

speed of the blades UT . The forward velocity of the rotor is Va, so that since Q
T*

is the angular velocity of the rotor and R D/2 is its radius, the tip speed is
T
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Figure 1.11 -Nomograph for Computing 20 Log M 20 Log U/C0
for Velocities of Various Fluids0
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1/2
UT [ (RTQ) 2+V2 I

the advance coefficient of the rotor J is defined as

V

a a
Dn

V
a

where n is the shaft rotation frequency, expressed in revolutions per second when .0

the velocity is expressed in ft/s. Therefore,

r 211/2

U T Tr (Dn) [I+ (+J"
The tip velocity is completely determined by any three of the parameters 0, J, Val

and D. The nomograph in Figure 1.12 allows computation of U for any such combina-
T

tions of these parameters. Rather than specifying J, often the ratio 60n/V = N/V 0
a a

where N, in revolutions per minute, is specified for a propeller of diampter D. .-. ... ,

This ratio, in the units rpm/knots (turns per knot or TPK) is also given in the

center of the nomograph. -

Accordingly, if an L based on rotor tip velocity is desired for a given for- S
q

ward velocity (knots) of a rotor of known TPK and D, one finds U in Figure 1.12

and L in Figure 1.10.
q
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LINE 10:
ADVANCE COEFFICIENT:0

J = 101.4/(TPK-0)
EG. 0 13T, TPK 8 RPM/kt. J =0.98

LINE 20
TIP VELOCITY ___

10= UIT = Va(ktl x 6.3 'fT+(J/vd'/J
EG. J =.918-
Va = 2D kt
UIT = 110 ft/S 2

10
-2.0 A

9
30 1.5 6

1.0 7

40 0.8

A. 0.6
so 6

- 0.5

70

M0 TPK
so RPM/kt 3=- 2.2

so=-2

100 2 1.7
2-6-

20- 1.4
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150 15 -w 0.9
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tz 10 00.7
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6

Figure 1.12 -Nomographi for Computing Tip Velocity of a Propeller
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CHAPTER 2
GENERAL THEORIES OF FLOW-INDUCED NOISE

In this chapter we will discuss the theories and derive the equations which are

the foundations of theoretical hvdroacoustics. The general relationships will be

specialized in later chapters for application to experimental acoustics. First, the

common relationships of simple linear-acoustic theory will be explored to emphasize

the fundamental qualities of single and multipole source-types. The general theory

of fluid-induced noise generation will then be derived with considerable attention

given to the classification of source-types and noise mechanics, as well as to the

influences of solid boundaries of various types on radiated intensity.

2.1 FUNDAMENTALS OF LINEAR ACOUSTICS THEORY
2.1.1 The Wave Equation

We begin with the equations of continuity and momentum for inviscid, fluid

motion.* in tensor notation, these are, for a fluid free of volume sources

-. + --- (Ou.) = 0 (2.1)
dt ;X.

1 m a

and the momentum, or Euler's, equation is

= + Pu (2.2)P +Pj--j x - x1

respectively, where P = instantaneous fluid density

p = instantaneous pressure

u. = three-dimensional local fluid velocity1""

x. and t = space and time variables, respectively

*The equations are derived in this form in a number of basic texts, among them
ae* 2 3Aco..--

are those of Milne-Thompson, Batchelor, and Sabersky and Acosta.

**A complete listing of references is given on page 113
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We will have occasion later in this chapter, and elsewhere in the book, to

manipulate these equations in vector form for which we make use of the del operator,

which is

a -i+ + k

ax.

in three dimensions, where i, J, and k are the unit vectors in the x, y, and z

directions, respectively. In this notation, the equations of continuity and momentum

then are

t + V (pu) 0 (2.3)
at

where V (pu) is the divergence of ou and -

. -au -. i .
p - -t P(u.V) u = -VP (2.4)

-5t

respectively, where u = (u i+u J+uzk) = (ui) and Vp is the gradient of the pressure.X y z
These equations apply to fluid regions which are free of local mass, momentum, and

heat introduction, or of gravitational (or body) forces. For barotropic fluids we

can write the pressure in terms of the density as

p - P ; constant (p-p)

in which = has special values depending on the thermodynamic equation of state of the

fluid. For ideal gases undergoing isothermal expansions a - 1; conversely, for

adiabatic expansions (vanishing heat transfer among adjacent fluid elements)ca= a y=

c /Cv, where c and c are the specific heats at constant pressure and volume, --pp v 4
respectively. For liquids, the state equation takes on a more complex form, however,

the variations in pressure and density are related through the fluid compressibility.

35
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The speed of sound in the fluid is determined by the rate of change of pressure

with density at constant entropy using the relationship:

• "i c o (2.5) "-: . .0 . )

For the present, we will restrict considerations to lossless (or inviscid) fluids so

that the acoustic compression-expansion process is certainly adiabatic. The so-

called linear acoustic approximation results from the assumption that local veloci-

ties u are much less than the speed of sound in the fluid. Even for real fluids, if

the disturbances are of long enough wavelength then the fluid gradients are small so

that nearly adiabatic expansions occur. Under t9 ese conditions small deviations of

pressure and density from an equilibrium can be expressed as an acoustic pressure pa

p P P =c 2 (0-P) (2.6)

where P and P are the equilibrium pressure and density, respectively.

The linear wave equation is obtained by taking the time derivative of Equation

(2.1) and the gradient ;3/3x 1 of Equation (2.2). Neglecting the resulting second-

order terms we obtain (see also e.g., refs 28, 38, or 39)

.2 a 2u -au

2 P i i + iai

dp = c d •
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Combining these equations, the wave equation for density fluctuations in a homogene-

ous fluid is obtained

0

2 2
2p c2 p 2 = 0 (2.7)t2 ox2 ,i;?r

or 5

2 2
a a c2 3  a 0 2 P (2.8)

2 o 2 ax (2.8)
Dt a

for the pressure fluctuations, where /ax V2 is the Laplacian operator.
Specific functional forms of solutions of the wave equation depend on the

geometric order (one-, two-, or three-dime.isions) of the fluid region. The solutions

are also obviously dependent on whatever temporal and spatial character the boundary

of the fluid has. In consideration of the sound field that is realized at some

distance from a vibrating body, the sound pressure at a given time is the linear

superposition of the acoustic contributions from each of the spatial wave harmonics

that are invoked to describe the surface motion and all the frequencies that describe

the time variation of each of the spatial harmonics. In a few instances, however,

consideration of acoustic energetics can be simplified. These are classified into

two options. Either the motion is spatially uniform over the surface, i.e., of the
AD

zero-order spatial harmonics, or the motion has a prescribed spatial variation of a

given harmonic and the time behavior has a single frequency. In all other more

general cases the temporal wave forms It fixed values of differences (r-c t) but
0

varying r will depend on r.

Considering, now, only those cases which fall into the above options; solutions

of the wave equation consist of functions

f(r,t) = G(r+c t) + g(r-c t)
0 0

where r is the magnitude of the distance to the observation point from the source.

Wave functions g and G with arguments of the form r + c 0 t = constant are constant

valued for decreasing r as time increases. These correspond to waves travelling
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toward the origin of r. Alternatively, wave functions for which r - c t - constant
0

apply to disturbances which remain constant as r increases with time; these are ....

outward-travelling waves. The functions g and G may be the same or different de- .

pending on the boundary conditions, e.g., in the case of standing waves on a string

they are the same.

We examine the general characteristics of the radiated sound at distances from

a source which are large compared to a typical dimension of the source and compared

• to an acoustic wavelength. This point we shall call the acoustii far field. We

express this sound pressure in the form

-m

Pa(Xi, t) = r S(s) g(r-cot) (2.9)

which separates the radial and surface functions from the characteristic wave

behavior. In this representation S(s) is a surface function of the surface vector

coordinate s which is independent of distance from the source and which depends only

on the shape of the body and the coordinate system used, i.e., whether it is spheri-

*cal, cylindrical, elliptical, etc. The surface function satisfies a requirement that

the Laplacian with respect to variations in the surtace plane describes node lines
• 2  -"* _ 2  - -M

. of wavelength 27/ks, i.e., V S(s) -k 2 S(s). In the radial function r , i depends
Ss.

on the dimensionality of the radiatiou; m is greater than zero and it will be deter-
m

mined below. The function r Pa(xi~t) = S(s) g(r-c t) clearly satisfies the wave

equation

2 ni 2 m
2 d (rp ) 3(rmp)

c (- 0(.1.. o .0 r2  t2  ""'

If k 0, i.e., the surface motion is the lowest order, or breathing mode, S(s) , "
S

where a is a constant. The linear form of Equation (2.2), i.e.,

r _(2.11)
t'o at = r ".2

gives the perturbation velocity in the r-direction u, as
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au i7- -' .
r r(m+l) -m-a+o cLg(r-c t) r ag' (r-c t)

o F 0

(2.12) 4.

- - rm g' (r-c t)

in the far field since, for r >> 1, the term r dimi.Lishes with respect to the
* -M

. term r

Now, by integration we find the radial velocity in the far field

u f~ r a -A , r C t ( o )

u - ( -- dt g(r-ct) d(ct)
r f f 0cu 0

o o o r

Ur -- . .c g(r-cot) .

_ This shows that the far field radiated sound pressure and fluid velocity are related

by the specific acoustic impedance of the fluid poC0 , since

2p
( )=u (,t) (2.13).'-

0 0

This relationship is fundamental to all far field acoustics. The radial component

" of the acoustic intensity I (x,t) which is the instantaneous power flux along the

radially oriented acoustic ray, is

pr (Xt) P a (x't) Ur (x,t) (2.14)

so that, using Equation (2.13)

L . .

2I (x,t) -- p_(.t) (2.15)

r p c
0 0
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These relationships permit a determination of m in Equation (2.9) by considering

the acoustic power which is transmitted through a surface s located a distance r
r

from the source. At this point we must make a distinction between cylindrically

(two-dimensional) and spherically (three-dimensional) radiating surfaces, for these

determine the precise radial dependence. In any case, the instantaneous acoustic

power transmitted across a far field surface S is

2+

!Pa s ' t ) a9

F(t) = o ds r  (2.16)
S 0

where s is the coordinate in the plane of the surface and s is the surface vector.
r

Examples are shown in Figures 2.1a and 2.1b for cylindrical and spherical geometries.

In the case of radiation from a line source oriented along the z-axis we consider

the power per unit axial length which is

27T
d 2 -2m+l 2

I (. 0t r g (r-c t)dO
C 0

00

for the cylindrical coordinate system as shown in Figure 2.1a. We see that the

power is conserved only if m = 1/2 because only this radial dependence ensures that

the total power radiated through a closed fluid surface is independent of the surface

chosen. This condition must be satisfied because the fluid is assumed to be fric- '.

tior,less. Thus the cylindrically spreading far field acoustic pressure is given by

-1/2
pa(x,t) = Pa(r,z,O,t) r a g(r-Cot) (2.17)

Similarly, for a spherically radiating source, the instantaneous power is

22
r(t pa(x ' t) . •.

= r sin 4 dqde

(2.18)
1 27

- ( r g(r-c °  sin .d

o 0
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Figure 2.1a Cylindrically Spreading Acoustic Waves for a Line
Source Parallel to the z-Axis

dS

--

x

r..

0

z

Figure 2.lb Spherically Spreading Acoustic Waves

Figure 2.1 Cylindrical and Spherical Coordinate Systems

* Integration is over the spherical surface, as shown in Figure 2.1b. The condition

M n ensures power conservation at all distances from the source. Thus, a

spherically spreading sound wave behaves as

Fiue21- yidia (2.19)ca oodnaeSytm .-.-..

p (x,t) .:g(r-c t) (.9
a r

in the acoustic far field. On the surface of a sphere, the first term of Equation

(2.12) gives the volume acceleration V(t),
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V(ra)ds = S) ds

3t 42
P a

0

2
mg(a-c t) a

2
P a

0-

since S(s) = S(4,e) 1. The acoustic pressure fluctuation in the fluid is found by

substituting into Equation (2.13)

Pa (r,t) = 4 )Tr (2.20)

Analogous results for waves propagating to the far field when S(s) is not a

constant on the surface may be derived for a fixed frequency by using the methods of

Section 2.6. In this case, as we shall see in Chapter 6, nondecaying outward propa-

gating waves o!cur only when there are surface harmonics such that k is less than

or equal to k. 

2.1.2 Characteristics of Multipole Radiation

In the later analytical treatments of this chapter, complex formulations will

be interpreted in terms of combinations of simple sources. In the following analysis

it will be shown that these source combinations can represent the driving of the

fluid by localized time-varying volumetric (or dilatational) changes, forces, and .41

moments.

Monopole Sources. To begin, the relationship for acoustic radiation from a

volumetric pulsation is derived. Physically, this source can represent the radiated
l0

sound from an axisymmetric bubble vibration. The time-varying characteristic of the ". - =

pressure at a single frequency is assumed to be given by

p(r,t) = p(rc) ei ct (2.21)

where j(r,ui) is a complex pressure amplitude. The source motion is completely radial

so that the wave equation for the radiated acoustic pressure is

U" i
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22 ';( ) 0 :22a
(r + (r,w) 0 (2.22a1

r c 2
0

S7. which is equivalent to -

22;'~ 2r (r,w)] 2,"'.""
+ [ri(r,w)] = 0 (2.22b)

r2  L c
a(r .

The acoustic wave number is
. . .- . .. .

k (2.23)
0 C

0

and the solution to Equation (2.22) is

A ikr
p(r,w) e (2.24)

r

The positive root of -i +i is chosen for outward-travelling waves. The instan-

taneous volume of the sphere of radius a is

3Tra
43

and the (small) amplitude of the time rate of volume change, the volume velocity, is

) 47a 2 u M (2.25)

The amplitude of radial motion of the surface must be small compared to the radius

of the sphere. The boundary condition on the surface is given by Equation (2.1).

Combination of Equations (2.11), (2.24), and (2.25) yields -

A~ "- e.'-..%

2 e u (w) " r

so that

-lip Q(w) -ik a
o 0A = (2.26) " ""...

4n(l+ik a)
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therefore,

-iWP Q(w) +ik (r-a)-iwt
Pa ( r t )  r e 0(2.27)

a 4TTr e

is the radiated pressure from the source when k a << 1. This condition states that .'-.
70

the diameter of the sphere is small compared to the acoustic wavelength, X0 = 27T/k 09

so that 2a/) 0 << 1/71. This result is identical to Equation (2.20).

Dipole Sources. The next order of source complexity is the dipole which can be

represented by the case of the heaving sphere. This, and equivalent interpretations

which will be described subsequently, are demonstrated in Figure 2.2. The center of

the sphere oscillates along the z-azis with velocity U(t) = U e ; the sphere isz

impervious. In this case, the motion of the sphere causes a back and forth
"sloshing" of fluid without any net volume change. As the sphere moves forward,

fluid moves to its rear. The motion is symmetric about the z-azis and unsymmetric

about the angle 4. The acoustic pressure amplitude satisfies the equation4,5 : .

- 1 .sin + ko 0 (2.28)

2 ar r 2 sin4~ 9 \ Dr r

the boundary condition

1 ?(a, ) - i.u (w,) -iwU (W) cos (2.29)
P Dr r z

0

and the far field radiation condition .S
1Jm (r,,) r (2.30)
r-).00i

The formal solution to these equations is derived in Appendix A. On the surface

of the sphere, which is assumed to be small, the amplitude of the pressure is
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3
p(a,) 2 2uCos 4,(2.31)

r

for k a << 1, r a, and in the far field
0

U cos i(k r-wt)
1rOt 3 c 0ka (2.32)pa 20 00 kr e

0

* for k r > 1 k a.
0 0
The pressure on the surface of the sphere is directly proportional to the radial

acceleration iwU cos 4,and, therefore, it represents the inertial loading of thez
* oscillating fluid. The total force in the z-direction required to overcome the

inertial loading is

Fz =f (a,4,) nz dS(a,4,) (2.33)

s

where the component of the outward normal in the z-direction is n =cos 4,and the

incremental surface element is

2

dS(a,4) a sin 4)ded4).

thus, the inertial force is

F f f [L aiwU cos [ cos flHa2 sin )ded4)]

0=0 (P0 (2.34) 9

-12Ti 3
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Since this force is inertial it may be regarded as an entrained fluid mass times the

acceleration (-iwU ) of the surface. The added mass at low k a for the heaving
Z 0- - -

sphere is .hus simply (1/2) PoVs, where V is the displaced volume of fluid.

The radiated sound pressure is shown by Equation (2.32) to be directed along the

z (or q=O) axis. It is zero in the antisymmetric about the x-y plane. We emphasize

that Equation (2.32) applies in the cases for which k r >> 1. In the intermediate

region of k a < k r < I the field is given by the spherical Bessel function, as ex- .
0 0

plained in Appendix A, but the angular directivity is still cos . This directivity

is characteristic of dipole radiation which results from the imposition of a con-

centrated force to the fluid. The equivalency can be seen by substituting the axial

force F from Equation (2.34) into Equation (2.32) to obtain .
z

-iwF +ik r
=(r, ) cos c e (2.35)

This shows that the radiated pressure is proportional to the time rate of change of
the inertial force exerted on the fluid by the sphere. The sound has the cos di- P -

.
rectivity in the direction of the force. This result has a much more general sig-

nificance as will be discussed later on, see Sections 2.5.3 and 5.6.3. The

dipole-force representation is shown in Figure 2.2b.

These resu]ts can also be derived by considering the acoustic field of a pair

of simple sources which are aligned with the z-axis as shown in Figure 2.2c. The

vector distance between the sources is 2d z . The field point from the centroid of the

system is at the coordinates r, 4, with individtual ranges r, and r 2 . The resultant

sound pressure is given by the sum of individuol contributions

i r -- r+ik
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z0

r2

* - 2d r

Figure 2.2a - Oscillating Figure 2.2b - Point Figure 2.2c - Image System

Sphere Force of Sources

Figure 2.2 - Equivalent Dipole Forms

The sign applies to the phasing of the sources. For separations d << r, we need .O
z

not make a distinction between the small directivity differences for the two sources.

Thus, we can write

2 2 d 2 2 ..
=r +d -2rd cos4-r -2rd cost

2 2 2 2
= r + + 2rd cos r + 2rd cos "

z z z

for r >> d in the far field so that the far field acoustic pressure is

2wP Q(w) cos (k d cos +ik rp(r,(P) - 4- rz (2.36) ;
4 r isin (k d cos (2...)

S.z

where the cosine and sine apply to sources which are either in phase or out of phase,

respectively.

In the case that k d << 1, the cos (k d cos ) is replaced by unity at all
o z 0

angles because the sources simply reinfcrce each other. The interesting function,

from our point of view, is sin (k d cos ) which becomes simply k d cos ¢ for

k d << 1. In this case the resultant acoustic pressure is

47



+ik r0
k3 [2d Cos T 4 -k(2.37)

(r, 0 0 0oo z (2,T r7
0

and 2d Q(w) is the dipole strength. So comparing Equations (2.37) and (2.32) wez
obtain

22d Q(w) = ) .U M..
z z

as the effective dipole strength of the oscillating sphere. This treatment shows

that, although the sound from two sources reaches a given point in space, because

the disturbances were not produced in phase, they interfere. Thus, even though there

is a certain degree of near field fluid motion ("sloshing") because there is no net

introduction of fluid into the region, the radiated sound pressure is greatly

diminished. The treatment also demonstrates that the nature of the dipole is such

that it pertains to a gradient of a disturbance in the fluid. In this case the ._

gradient, represented by the two closely placed sources in phase opposition, gives 0

rise to an additional k -dependence in the radiation compared to that arising in the

radiation from the simple source.

The result has other important implications regarding sound pressures radiated

by sources near boundaries. 5  In the case depicted in Figure 2.2b, the x-y plane is

a model of a rigid boundary when the sources are in phase. This can be seen by

evaluating the tangential gradient (l/r) 9p(rlc)/3d as = '/2 and noting that it1"
vanishes there. Thus we see that the normal velocity vanishes everywhere in the

z 0 plane as it would physically on a rigid surface. Alternatively, sources in .

Dhase opposition give a vanishing pressure and a velocity-maximum on the z 0 plane.

This is as it would be on a free-surface. Thus, a compact simple source (i.e., one .

whose largest dimension is smaller than acoustic wavelength) in water near the sur-

face would be expected to behave as a simple dipole as long as 2hk << 1 where h is
0the depth of the source. These boundaries can influence the acoustic power output.

The time averaged, far field acoustic power for the simple source is obtained

using Equations (2.27) and (2.18);

Jr 'r 2 2 si 2 2000 0
-- dOl d$ sin =° [[].

fM f c 161 2  0 c .
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where the factor 1/2 accounts for time averaging. For the dipole we use Equation

(2.37) to obtain

2Tr it 2 21 W
P w Q 1'[2kd~~J~ de p P z 2

TD 2 dO dcos sinf o Poc  16T2""t ' '

0 0 0 0

p2w 21(w)12

0 1 2
- 8~p c ~ [2k dl

0 0

= -1 2P= M 3 [2k d]

The presence of the free (pressure-release) surface reduces the power output of the
2

monopole by the factor 1/3(2k d) . In contrast, Equation (2.36) shows that the

presence of a r9. surface increases the acoustic power output by 2 when k d i

Quadrupole Sources. Compositions of quadrupoles witl dipole pairs are shown in

Figure 2.3. In sketch a, the quadrupole is represented as an array of four simple

sources, or two dipoles in the z-y plane separated by a distance 2d . In sketch b,y
the quadrupole is shown as a pair of force couples separated a distance 2d and 2d

x y
This pair of force couples imposes no net moment. These two orientations of dipoles

which impose a fluid moment-pair are called lateral quadrupoles. Another orientation

of dipoles in which the forces are in-line is called a longitudinal quadrupole,

which imposes no net moment and no net force on the fluid.

Of importance in most fluid applications is the lateral quadrupole for which

the far field directivity will now be derived. 'The far field pressure amplitude from
the dipole system of Figure 2.3a can be written in the terms of Equation (2.37) as

Pr, ,Q c [2d Q(w)] e e 0ri - +ik r 21

0e 47,k r zr I  r 2  (2.38) ' "
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Y0

xS

Figure 2. 3a -Four Simple Figure 23b - Force Couple Figure 2.3c -Longitudinalfo

Sources Lateral Lateral Quadrupole, Quadrupole

Quadrupole Net Moment = 0

Figure 2.3 -Quadrupole Forms

where Equation (2.21) applies. As in trie analysis of the d4.po'e *.write

r 1 r + d sin sin 0

2

for r >> d .Substitution into Equation (2.38) yields
y

+ik r

~(,,P c k 4 [2d 2d Q M) sin 2 sine e (2.39)
p2 0 00 z y 47ik r

0

where we shall call 2d z2d YQ(w) the quadrupole strength. This can be written in

terms of the dipole force, Lqaation (2.34),

2d 2d (.)2d F
z y Pk c y z

that
+ik r

0

k2 [2d F Isin 2 sin 0.4 (2.40)
2o y z 4r
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This expression shows that the quadrupole pressure is of order 2k d less than the
o y

equivalent dipole pressure. Thus, the spatial gradient represented by two closely ... .."...

spaced dipoles gives rise to an additional k -dependence compared to dipole radia-

tion. In other terms, the two spatial gradients represented by four monopoles gives
2

a k-dependence compared to simple monopole radiation. The net force on the fluid0

is also instantaneously zero, yet since the fluid disturbances emitted from each

dipole do not cancel identically; sound is still radiated. Statements which were

made above for the monopole imaging apply equally well to the imaging of the dipole.

The directivity of the sound from the lateral quadrupole is concentrated on four

lobes which are oriented at = (2n+l) ir/4, n 1,2,3,4. The sound pressure level

is zero on the x-y and x-z planes.

2.2 SOMMERFELD'S RADIATION CONDITION

The far field r-diation from multipole sources has been shown to be dependent
+ik rO

on the distance from the source as e /47r. This can be seen by reference to O

Equations (2.27), (2.37), and (2.39). Further reference to Equation (2.19) shows

that for outward travelling waves the general spherical wave propagation is given by . -

ik (r-c t) o
rg(r-cot) = e 0.0

Therefore, for these outward travelling waves we have the f r field condition that

lim r -ikop) 0 (2.41)
r -r

Alternatively, for inward travelling waves, we have

ik. (r+c t)

1so that

lim r +ikr) 0 (2.42)
r -
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6
This has been termed the absorption condition by Sommerfeld.

6
These radiation conditions have been shown by Sommerfeld to be necessary for

the uniqueness of a solution of the wave equation for an unbounded medium surround- G

ing the source. In two dimensions, the radiation condition is

lim vr -ikr) =0

and similarly for the absorption condition. Quite simply, the radiation condition

ensures that for a single source distribution which radiates to the far field the

solution of the wave equation excludes inward radiation. It amounts to a far field

boundary condition. Similarly, in the case of a surface source distribution which

radiates to an interior, the absorption condition rules out any internal sources

which radiate outward.

2.3 LIGHTHILL'S THEORY OF AERODYNAMIC NOISE

2.3.1 The Wave Equation

We will now determine the wave equation for the acoustic pressure which results

from turbulent motion. For a spatially concentrated region of turbulent fluid

motion, Lighthill's 7 ,6,9 formulation is unique in that it considers this region as

an acoustic source which drives the surrounding fluid. The starting point of the

analysis will again be the equations of continuity and momentum. However, now the

velocity disturbance u i that we are considering, includes both acoustic and, in a

restricted region, hydrodynamic contributions. We will not assume inviscid motion

in the region of turbulence.

In this case, the equation of continuity is, again,

+ (pu ) - 0 (2.43)at ay -

and Euler's equation is

P i + (2.44)

52. °
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10
where T is the Stokes stress tensor. This stress tensor is written

Tij=P -P (6)J£ i i (2.45)

where

+ (2.46)°

A berfore, the fluid pressure is P and E are the fluid strains, The momentum.

hi equation can be written in the form

a 2- (uu) (2.47)
t a Y-y"

as long as the fluid region is free of volume sources

j pu au au. apu.i- -i a

Thus, taking the divergence of Equation (2.47) and the time derivative of Equation

(2.1) for a fluid medium that is free of volumetric. sources, we have

22

+ 
.yu 

i
ti i  uu ) 3-

2 2 .-- I

22 [PC 6
Now, since covp we have

(Piu 2 2 ___ 
2

2 C V0 yj c " .u +c 0 6

By rewriting the stress tenscr as
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T =-Pi +.T (2- 48)
ij- ii i

we can separate the contributions of the viscous stresses and the pressures, or

normal stresses to obtain the wave equation in the final forn

2 32T
p c 2 V2R2 = -3 (2.49) "2  0 yiYj.

where

2
T. Ou.u. + (P-c o) 6 - T (2.50)

ij i 0 ij ij

is Lighthill's stress tensor. The tensor puiuJ is called the Reynolds stress, and

it expresses the intensity of the turbulence in the source region. In a strictly •

irrotational or vorticity-free flow, Phillips has shown that ui u 0. The pres-

sure p and density P are the local instantaneous pressure and density of the fluid. . .-

The noise producing character of the fluid field is such that outside a speci- -

fied region of the disturbances

2- -

Now, the pressure and density in the far field ambient, undisturbed fluid are P and

p . These quantities are constant so that spatial and temporal gradienLs of Po and

Po are both zero. Thus, we can write the wave equation for the instantaneous 0

density fluctuation (in the absence of mass injection) as

(P - c= y uiuj + [PP - co(p-o ] 6 ij - T
'i  (2.51) -
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where we now introduce the fluctuation of pressure P -P into the stress tensor.
0

If, in the fluid region, the fluctuation in pressure is a thermodynamic variable with

adiabatic fluctuations, then the pressure and density fluctuations are related by

Equatirin (2.6). Under this circumstance the pressure and density terms cancel

identically in Equation (2.51). Often the magnitudes of the Reynolds stresses domi-

nate the viscous stresses in turbulent motion. The wave equation in the absence of

mass injection is now finally reduced to the mnore simplified form

2 ~2 ( .
0 c 2 2 () o2.J (2.52)

which shows that the acoustic field is driven by the region of fluctuating Reynolds

stresses. Outside the region of the Reynolds stress fluctuations, the velocity fluc-

tuations are acoustic. Thus, outside the region of turbulent fluid motion Light-6

hill's equation reduces to the wave equation of linear acoustics theory. As we shall

see later in this chapter, the knowledge of the behavior of the stress tensor

in the source region is crucial to the analytical modeling of acoustic radiation.

It is often the case in hydroacoustic applications that sources of mass in- O

jection (simple sources) coexist With turbulent sources in the fluid medium. These

sources may be represented by adding a term pq to the right hand side of Equalion

(2.43). This term represents the rate of mass injection per unit volume to the

- . -. • .

region. It is the modified continuity equation which connects the mas and dila- ..

tational variations of an elemental volume of the fluid to q. When q 0 these two

variations compensate and the standard "otLtinuity equation holds. The momentum

equation in the form of Equation (2.47) is unaffected by the presence of the mass

source, as long as it can be stipulated that the source injects fluid with no ds

additional momentum, say at zero velocity. This can be deduced by examining the

momentum of an elemental control volume enclosing the source and fixed with the

cfluid. The elemental force on the volume is

6F. DI(pu .)6V]/Dt

-[ D(pui)/Dt+puiV.U] 6V
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Equation (2.47) follows directly from this equation. The new wave equation may be

derived as above and includes an additional volume source q or, nearly equivalently,

p V in the context of Equation (2.20). The appropriate form of the wave equation 0

which applies to mass injection co-existant with turbulent stresses is

2 (pp (Pu
C2 V2 (p-p) = (y-y + P (2.52a)

t 2  0 0 a y a yo at

in which the second order term q(p-po) has been neglected compared with the first-
0

order poq.

2.3.2 Kirchhoff's Integral Equation and
the Retarded Potential
The acoustic field radiated outward to a point in free space from a distributed

region of sources is the summation the individual contributions which result fLui,.

each of the sources which compose the region. In the physical summation process that

occurs, contributions reinforce and interfere depending on the instantaneous phase

relationships among the various sources. In a rudimentary sense, this summation

process has already been demorstrated in Section 2.1.2 to determine the acoustic

fields of dipole and quadrupole source distributions. In more complicated physical

situations, the acoustic radiation is determined as a weighted integral of the

source distribution as well as the propagation to the far field. In the mathemati-

cal integral formulation described below, this is accomplished by the use of the

retarded potential. 0

We begin by deriving an integral equation for the density fluctuation P = p-P
a 0

in the manner of Reference 12, although References 13, 14, and 15 have alternative

derivations. The wave equation is written

2
V2 1 -(,t) (2.53)

a2 2c- @t c
0 0

2

where c(y,t) is the source term of Equations (2.51) or (2.52), and where o - ij

is specified over a volume V contained in the problem volume V as illustrated in

Figure 2.4a. The field point x is considered to be surrounded by a small surface S

while the point y is located somewhere within the region V which is surrounded by -
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surface E. A function that. is defined as v(x,y,z,t) = Pa(X,y,z,tr/co) where r =
12Ix-y , can be shown to satisfy the equation

r (t) + o t- 0 (2.54)c ay 2 2 c12:i

* 0

/ \.
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Figure 2.4a - General Radiation Figure 2.4b - Radiation Field for a ..

Geometry Heaving Sphere

Figure 2.4 - illustrations of Control Volumes Surrounding Source Regions
and Fields of Interest
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by substitution into Equation (2.53). Multiplication of Equation (2.54) by 1/r and

integration of that relationship throughout the entire volume contained within the

surface E yields '4

VT dV (Y) + ff I-[

I v r

+ 2~ J{J r --= dV(y) =0

c0 V

Green's theorem yields the relationship

x

Therefore, in conjunction with Equation (2.54), we obtain

LS
3V (1

jjj~rV -vv dV(y) -vdS(y)

V +
x U

00

_ 2 rjni(~ Sy

0 r

The surface integrals include all surfaces. If x lies within the circumscribing

surface L and if this point Is surrounded by a surface S of vanishing radius thenx0

58



$ v~ ~ dS(Y) =v6x) lim jj .S- ) rrdS2
sx

However, if x does not lie inside S ,then

Jv ( d~ dS(y) 0

Thus, we have

47v(x) =Yt 0 d(* +ff 3r av+. Y- dS~y
2ff ryc0r~r M 3n 2 i

for x inside Z and

* 1 {$ % ) ~c1 1 3r / v a v I i
rff c r n 3t r 3n~ n\

for x outside Z. Now, considering only that x lies within E, we have that v(x,t) =A.

p a(x~t), and that

DV3 /~ ["'a] Lir a
- LaV t  i = Lan] c ti

where the brackets denote that the function is evaluated at the retarded time t-r/co,

i.e., [f] = f(t-r/c ).Use of this function now yields the instantaneous density

00
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4T[pa(Xt) =-r ' dV(y) + a ('17
a (Xt 2 an n c r [" -3"c [ .ffi\ ffE 0"_1.

Co 2.

(2.55)

- dS

which is Kirchhoff's equation for the fluctuating fluid density. The surface integral

is taken over all surfaces which are contiguous to the subject volume, V; the volume

V has been introduced since the source density is presumed to vanish outside V .0 0J

Unless other surfaces are present, the bounding surface E may be expanded indefinite-

ly far from both V and x so that the surface integral vanishes. This can be seen by
0noting that if the disturbance is initiated at t = to, a surface Z can be selected

suitably far from the sources that p (L -r/c ) and its derivatives vanish identi-
a 0 0

cally. The condition is analogous to the radiation condition. Thus, the instantan-

eous density fluctuation is given by volume integral

4p a(Xt) = f r dV(Y) (2.56)

C
o V0

If V is finite, then this equation shows that p (x,t) 1 /r sufficiently far from

V.
0

Now, using a comparison of Equations (2.52), (2.53), and (2.56), we find the

Kirchhoff formulation from Lighthill's wave equation as

47[p(x,t)-p] ~ j u) dv(y) (2.57)

o V 00 -

2 -where c (p(x,t)-p -- (x,t). As before, the bracket in the integrand denotes that0 0 '°-°

the retarded time is used. This equation is the central result of this section
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because the integrand includes the required retardation or phase effects which give

rise to the multipole nature of complex source regions.

The source term in Equations (2.49), (2.52), and (2.57) involves two spatial O

gradients. Now, in Section 2.1.2 it was shown that the quadrupole radiation results

from two spatial fluid gradients. Lighthill's source term is, therefore, interpreted

as having a quadtupole nature. Furthermore, the source term is determined by cor-

related fluid velocities which give rise to the stress tensor Ti. Physically, those S

local stresses are either in-line or lateral, as illustrated in Figure 2.3. Thus,

the compressive stresses T T Tkk represent longitudinal quadrupoles, while the

shearing stresses T~. (i~k) represent lateral quadrupoles.
SJ

2.3.3 Acoustic Radiation from Free Turbulence

In Chapter 3 the radiation from subsonic jets will be examined in considerable

detail. However, it is instructicnal to examine here some of the elementary aspects

of the radiation from stochastic fluid motion in order to illustrate the types of .

analytical manipulations that are common in applying the previous results to hydro-

acoustic problems. This is most easily accomplished without the reference to

specific detailed applications. It is the purpose of this section only to examine

some basic concepts. The first treatment of Lighthill's source term in this manner S
16. "

was done by Proudman...

We will recast Equation (2.57) into a form which permits an estimate of the

radiated sound intensity from a restricted region of convected turbulence when solid

surfaces are not present. This estimate will depend on an appropriate statistical .

representation of the turbulence. We no! the following relationships for the re-

tarded function [F] F(y,t-r/c), and its derivatives:

d{[, =  1F - (xi-yi) IF] (xi-yi

(y) 2 2 r dV(y)3 r 2 r

and

[ff F Fi(xi-Yi) [F] (x i-Yi)

Ja dV(y) = dV) + + -- dV(y)O r r
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so that combining we have,

r a

Now, Gauss' theorem provides that C '"

Jj{. [~]dV(y) jj ii '-( dS(Y) -

where n. is the outward normal to the surface Z. Since this surface can be arbi-

trarily selected to be far enough from the source region that outward-travelling

waves have not reached a range r > c t, we can set the surface integral equal to

zero. Thus we have the identity (in free space, no surfaces) 0

ffl[-i rVy _ f ~ Vy 258)

ff[ff] dVVy)

y r ax i 

This relationship is a formal mathematical statement of the operation leading to

Equation (2.37). Recall, that expression for the far field radiation from two .

closely spaced sources in phase opposition involved a gradient of the acoustic field .

pressure from the single simple source. This can be seen by comparing Equations

(2.27) and (2.37). Similarly, by the repeated application of these operations, we

have

4-n(p(xt)-p) = 1 8x~ J fffT] dV(y) (2.59)
c i-"ji
c0

as a free-space form of Lighthill's equation which applies only when there are no

solid surfaces enclosed by the surface . Under the assumption that the largest

linear dimension of the source volume is small relative to the range r, and that the

62



.... .... .... ....

%

velocity of the source relative to the receiver is small compared to c the deriva-

tives in Equation (2.59) yield

1)- (X (-y.)(x .- y. 2
4 r( (, ) J 3 dV(y)

o c r t- :

00

- .2.1

1 x i' j
1-4-j3 L dV(y) (2.60)

C r ft - l

since = 0 Near field terms of the order r- 3 are neglected compared to terms
2

of the order r

Our next objective will be to determine the time averaged acoustic intensity in

the far field due to fluctuations in the Reynolds stresses using Equation (2.60).

The intensity is (Equation (2-15))

- c2- - -

(x) = o (-po)
P 0

0

or, using Equation (2.60) we have

i x x Xk
I(X 21 5 3 ( 3xl ff . 0

(4TY)2 c o

2 _2 2 2  --'.

**X 2 2 dV(y I dV(y2) (2.61)

where
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ij ij 1

31
and T, must approach zero at least as fast as iy- as IyI-' (see also Crow7). The
term in brackets is the spatial covariance of the retarded stress tensor which is a

function of both position vectors yi and Y2. The integration with both of these -

vectors extends over t, 3ource volume V . The covariance of the stress tensor in-
0

volves products of velocity fluctuations of the form

2 _T . .
(Puiuj)- ,2 . (PkUZ)-+

aty2 at2 tt2 Y=Y t  Y=Y 2

where (Pu ) = uu p u.u. and where we have used the source teims introduced in
1] 01 3

Equations (2.52) and (2.57).

We shall formally con3ider Lhe mathematical consequences of specific forms of

covariance functions in future chapters. However, for now we will develop certain 0

general notions as they apply to turbulent fluid flow. Let us consider that the

disturbances are the result of the irregular motion of a collection of eddies of

typical correlation length A. This length is interpreted as a limiting separation -.

ot two velocity sensors in the flow so that the temporal average of the prr -t of 0

the signals from the sensors is considered negligible compared to the tempt -ean

square of each signal separately. Por example, letting the velocities in the i and

k directions at two points in the volume V be ui(ylt) and uk(y 2 ,t) we can wriLe,
-> _ -I0

with y2  I' + 0

ui(Y2 t) 2 k Y+() l -  ,t) Uk (yl+At) (2.62) ,
i 2','A t °.

S

., .



i.e., the mean squares of the separate signals exceed the covariance of the signals

for > A. For small separations < '< A the covariance approaches the product of

the root-mean-squares of the separate signals; i.e., .0

2 ~ 2-* 1/2urn Lu i(y,t) uk(y l+ ,t)] [u.(ylt) uk(y+ ,t)] (2.63)

The covariance of u. and uk is a continuous function of c . Now, we will assume
k~

that the turbulent patch is translated at a constant velocity U which is uniform
c

throughout Vo. Under this assumption, the individuial eddies are locally translated

in a wavelike manner according to the formula x U Ii t constant. Thus, a measure

of the time variation is

U 

.-

2 2
Now, we further assume that u .i U cand that U c < c 0 Under these simplifications

Equation (2.61) can be written as

-*1 1 2 22 3
(4Tr) 2p c r (A 0 c

This result follows directly from Equation (2.62) which ixn4.. ies the representation

Tj Ylt I"~ ) Y 'rZ;+ t- c ') P~ u~ 11 R6Xy (2.65) -
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where R(y,Q) is a correlation function of the stress tensor fluctuation and where by

definition R(y,0) - 1, and R(y,A) 0. Finally, by neglecting the retardation

effects we can write

(Ti) --t (Ty) dV(O)" .•'

4

2 2( ) R(, )dV()...

4

as long as the eddy correlation length A and the characteristic length scale of V°0
are much lcss than an acoustic wavelength and propagation velocity, respectively.

Equation (2.64) is rearranged as -0

1 u V
c o

1(x) 2 1 - o (2.66)x4)Po 5 2
4 T)? c Ar 2

in order to emphasize that the acoustic intensity from free convecting turbulence

increases as the eight power of the convection velocity and is linearly DroDortional

to the acoustically compact volume of the volume of turbulence. A review of the

derivation leading to Equation (2.60) will show that the existence of the two

spatial gradients in Lhtt compact source gives rise to the c dependence in the

acoustic intensity. 'Fte high exponent on the Mach number is, therefore, set by the

double spatial gradient in the source term and is thus a characteristic of Sound

emitted from a distibution of subsonic flow quadrupoles in an unbounded acoustic

medium.

This fundamental result gives the often quoted eighth power velocity dependence -

Gf radiated sound power from free turbulence. Equation (2.66) is a much simplified
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relationship which gives some variable dependencies that apply to noise from free

jets and wakes. Chapter 3 will consider some more exact theories which will account

for explicit forms of the correlation function, R(y,), effects of turbulence convec-

tion on radiation efficiency, and kinematic scaling.

2.4 EFFECTS OF SURFACES ON FLOW-INDUCED NOISE
It must be emphasized that the expression for the acoustic radiation from a

restricted zone of fluid stress fluctuations given in the last section applies only

when there are no reflecting boundaries in the field of consideration. When a

boundary exists and its surface impedance is not identically equal to that of the

fluid, its effect is to physically alter the sound field by causing acoustic reflec-

tions. It may also disturb the flow locally causing surface pressures which act as

radiating dipoles. The mathematical fundamentals of this class of situations have

been developed by Curle1 8 and by Powell.1 9

Pr

2.4.1 Curie's Development of Lightheill's
Wave Equation

Provision has already been made in our discussions for considering these

effects. Equation (2.55) is a general formulation which applies as long as the ob-

servation point x remains somewhere within the control surface fixed with respect to

the acoustic medium which we havu designated as Z, as shown in Figure 2.4a.

Let us now let E not necessarily be so far from the source region that dis-

turbances have not reached r c t. This is a relaxation of c ur former conditioni on T. and it allows for reflections from some surfaces in the control volume. Equ-.

* tion (2.55) expresses the acoustic density fluctuation as a volume integral of the

* source region plus surface integrals over Z of the density fluctuations. The surface

integrals can represent the effects of reflec-tion6 if the surfaces of integration

coincide with physical boundaries. Equation (2.55) for d-nsity fluctuations in the

fluid is now rewritten
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41T(p(,t)-p ~=L JJa T ] -
0a 2 B 4jdy 1

0 V 0

+ar [a ap] ' [ dS(y) (2.67)

J c 0 ran L t5-tj an r n

to reintroduce the control volume V and to explicitly denote the source term. Since

all derivatives of the ambient density 0 are necessarily 0, we can use p and P0 a

interchangeably. We have let Z be any closed region which includes both V and the . -

observation point x. Applying Gauss' theorem to the volume integral as in the

beginning of Section 2.3.3, we obtain

ka. ~ (,y) 2 axfax dV(Y')y r axiax r r
VV 0

+ [T ij + Z [T Ls-Y

i Ty4 r a. j [Ti] dS()

(2.68) 7

where the only part of the region within V for which Tij 0 is V
ij 0

Substitution of Equation (2.68) into Equation (2.67) yields

- ~ 1 2  T
4n(p(x,t)-p o = I a2 [J] dV(y)2 xi x j  "16'o :

0

+ (Tj+pc i)] dS(y)

S I Li j c ij

2.
Si C 6 .] dS(y) (2.69)2 Sx r - 0 Ij "...-

ci

since the surface integral in Equation (2.55) can be rcwritten
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-0p

L, ., +. dS

or i -t - i [-a + -I dS(y )

j coraxi ~t r LaYJ

-- zi ax r P r -. " -_

= rj + [p6i) +1 [ Yia ] dS() (2.70)

=~~- -..T, y

Now, since Lighthill's stress tensor is given by Equation (2.50), Equation (2.69)

becomes, by substitution

2(ft - - dV- --
0 0 xiax. r 0 a ax r.Y)

iJ V0

+ f -- (Puiuj+ij+pij dS(y)

a r [Pu u.+T'j+6j] dS(y) (2.71) -".--..1

18 i ' 2  2

which is Curie's result. Equation (2.71) states that the acoustic pressure is

directly radiated from a volume distribution of quadrupoles plus a contribution from

motions and stresses existing on any surfaces present. The surface effeCL can be

interpreted as a distribution of dipoles as can be deduced by comparing the surface
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integrals to a model of the dipole in Section 2.3. Recall that the method leading to

Equation (2.37) involved the calculation of radiation from two sources in phase

opposition. To do this, it was necessary to determine the gradient of the free 41

-ik r
space Green function, (1) e , in the direction of the vector between the source

centers. This is a limiting form of the operations on the surface integrals in

Equation (2.71). Those integrals provide contributions which are proportional to the " -

resultant fluid forces on the surfaces.

The momentum theorem, Equation (2.2), rewritten as

9(pU -I = - i (2.72) .S

y [Puiu +TI +P 6 ij] = (2.72

is used to change the integrand in the first surface integral of Equation (2.71).

Thus, •
S

22 [Tz 1 1(Ui
2T L2Ti-] dV(y) dS(y)40 (P(x,t)-p) J JJ r ' j r L at

+ + [i-+P6- dS(y) (2.73)

•. .-. -.

The second term is, thus, a dipole contribution from the acceleration of the body in

a direction normal to its surface.

Therefore, the sound pressure is the resultant of three contributians: the 7

radiation from the turbulent domain, radiation due to the instantaneous contiguous 0

surface motion with phase cancellations included, and radiation from a distribution

of forces acting on the region. Equation (2.73) could as well have been derived from

direct use of Equation (2.56), but with the source term representing a superposition

of monopole, dipole, and quadrupole sources. An equivalent inhomogeneous wave .

equation may accordingly be written

70
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2 2
2 1 a = - Po + F  (2.74)
a 2  2  0 3t 3Y YiYJ

C0

where q = volume velocity of simple source

F = ith component of the force vector per unit area normal to i,

T = stress tensor

In using Equation (2.74) poq denotes all the mass flux and Fi denotes all the forces

acting on the region. In the context of the integral form above, F includes all of

the Zj (uiuj+tI +p 6i). As we shall see next, the efficacy of Curle's result and of

Equation (2.74) in describing the nature of flow-induced noise is particularly .

realized when the surface in question is much smaller than an acoustic wavelength;

then ;Fi/ay represents a divergence of the concentrated force exerted on the fluid.
i

V

2.4.2 Illustration 1: Radiation from a
Heaving Sphere
To illustrate the dipole equivalency particularly with regard to surface accel-

eration we will reexamine the radiation from a heaving sphere. Figure 2.4b is a

diagram of the source region as it pertains to Equation (2.71). The amplitude of

heaving motions is infinitesimal compared with the radius of the sphere. The surface

E, therefore, consists of a surface S1, which encloses the moving physical surface

and the far field control sutface of the complete fluid region S The source point

y is shown to be on the surface of the sphere of a radius a which is translating in .

an oscillatory fashion along the z-axis (see Figure 2.2a for the coordinate system)

as

*- iwt S
Uz(t) = Ue

Expansion of the 3/ax derivative of the second surface integral, yields terms
i

of the order u /c and a/r compared to the first integral. Far enough from the
y o

sphere and for small velocity amplitudes, this term may be neglected. The quadrupole

71'
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term is also neglected because only very weak Reynolds stresses are generated by the

oscillating vortical flow setup in the hydrodynamic near field of the sphere. There-

fore, Equation (2.73) gives the far field radiated pressure as

fT [~~ aui(yt)] Sy

P0p (x P ~"~k dS(y)

S1

r R 0 a otc-~()

e'~ f (t~ )~iWoj (Cos- 1lC~ co 0~~yj(.5

where Z~. is the ngl umad ubytheg positncor x wth the sraeto ofe motrtionn

soy isa that axpnentmadectom Thsalwsteaoutcpesuetsb rte

down as

pa~~xpt) 2 c a 3U ~ -i(wjt-k R)2iJ 2 *sn(d(y

0
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which is functionally identical to the result obtained in Section 2.2. This can be

seen by combining Equations (2.34) and (2.35).

Note that if we had carelessly ignored the retardation effect, the resulting

surface integral would have been exactly zero. Thus, the dipole radiation emerges

here as a second order effect of the motion of the sphere; it is a mathematical con- -. -

sequence of the series expansion of Equation (2.75) and a physical consequence that

the excess pressure and suction at opposite poles of the sphere do not instantane- .

ously cancel identically.

2.4.3 Illustration 2: Radiation from a Concentrated
Hydrodynamic Force: The Force Dipole

'.

If, instead of a surface in motion -n a stagnant body of fluid, we consider a

fixed surface in a moving fluid we are led to another important relationship which

characterizes dipole radiation. The geometry of Figure 2.4b applies to this problem,

except that now S is a rigid surface on which u.Z. = u = 0. Specific instances* 11 n"O _

will be considered in later chapters. The flow around the surfaces is presumed to be

unsteady, generating dynamic pressures on SI . For a closed rigid surface, Equation

(2.73) reduces to

2( t ) j r dS(y) (2.76)4TrCo(P(x't)-P) X -- , i p Cy, - 1-)(.6

1

if we ignore the viscous surface stresses T'. and the contribution of Reynold's2j
stresses in the wake. (This latter simplification is considered in more detail in

Chapter 5.)

For any surface whose dimension is substantially less than an acoustic wave-

length, Equation (2.76) reduces to give the acoustic pressure fluctuation as

Ff.
4-.c (p(x,t)- o ) .

0 0 x. r
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which expands to

4 - 1 xi [afi
4 -(a L-t (2.77) 0

o r

as the radiated pressure resulting from the concentrated force, fi, exerted on the

fluid. Note that the pressure is greatest in the direction of the force since x-

r cos P where 4 is the angle measured from the force direction, see Figure 2.2b and

Equation (2.35).

Note that we could have derived this result by replacing 0(y,t) in Equation

(2.53) by the concentrated force gradient, i.e., .

2
a 1 pa afi(t)

a 1 a 
oat

as in Equation (2.76). Incorporating Equations (2.56) and (2.58) yields (2.77)

directly. The result could also have been derived from Equation (2.74).

2.4.4 Powell's Reflection Theorem

In Figure 2.5, we specify the bounding surface to come in contact with the

source region. Now, we have dissected E to be

,
E =S + S I + S2

0 1 2

where S = control surface of the region of igterest
2

S 1 = an impedance boundary which can reflect sound and which intersects S2
far from V

0

S= adjacent to the disturbance region and it does not necessarily have0 the same impedance as S --

As before, we select S2 to lie far enough from V0 that disturbances have not yet

reached S2. Since Ti= 0 outside V it vanishes on Sl. but not on So. Therefore,

using Equations (2.59) and (2.72), Equation (2.71) can be written (since Zui -.

n n U n
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T 0

T 0

Figure 2.5a -Simple Boundaries lacluding Figure 2.5b -Fluid Stress Region

Surfaces Contiguous to a Fluid Adjacent to a Physically Closed

Disturbance Region Reflecting Body

b Figure 2.5 -Surface Geometries Used to Illustrate Powell's Analysis of

the Influences of Surfaces on Radiation

4T xt dV(y)

-. . . . . . " d. . . ... • un+ "-'.--,dS'y

0

ff dS (y) + 1P (ya) dS(y) (2.78)

S •I

This expression, which is really just a restatemFige -of Equation (2.73), emphasizes

the multiple effects of the adjacent boundary. On the boundary contiguous to the

source volume, a contribution is emitted by the acceleration in the direction normal

to the surface, 5u /3t. Another contribution arises from the distributed stresses on

the surface which are . uun+fs+P6  
= Pu u + TI + p6. The fluid pressure 

J ] ij ij i n in in'
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fluctuations include both hydrodynamic and acoustic contributions and they account
for the normal stresses on the surface. Viscous, T', and Reynolds stresses, puiuj ,

which involve normal motions and gradients on the surface will also radiate. The

contributions fro'.i the adjacent surface S1 involve the normal motion of that surface

as well as the scattering of the acoustic pressure pa" The integral relationship of
19 18Equation (2.78), originally derived by Powell, is an extension of Curle's result

that emphasizes the influences of boundaries adjacent to the region of the turbulent

stresses. The result is general and it includes all of the acoustic and hydrodynamic

effects on the fluid region. Although the result applies for boundaries of any

shape, it will be seen in later chapters* that evaluations of Equation (2.78) are

not trivial. When the turbulent region encloses a physical body, as shown in Figure

2.5b, the surface of the body consists of S and part of S I is extended on both sides

of a strip of vanishing thickness to connect to control surface S . It is clear the

contributions from the connecting surfaces S i and S" must cancel. This analytical

situation could apply to noise from a wake behind a body in flow.

Another situation could arise in which surfaces S' and SI coincide with the

physical boundaries of a wedge. Thus, in Figure 2.5 the surface S + S reduces to
1 o

a point at the apex of the wedge and the turbulent region could be adjacent to the

wedge surface. This problem includes acoustic diffraction about the sharp apex and _

so is difficult to solve using straightforward estimations of the integrals in

Equation (2.78). The difficulty arises because a priori knowledge of the acoustic

pressure on the surface is not available.

A situation which consists of V being adjacent to a plane boundary has appli-
0 19

cation to boundary-layer induced noise. This problem was considered by Powell and

its result has important general implications for any flow region adjacent to a

boundary of large radius of curvature.

An illustration of Powell's problem is given in Figure 2.6. The plane surface

S + S 1 separates a r'al fluid region from its virtual image, denoted by primes.o 1

'Ihis image system is provided to account for reflections at the boundary S + S0

For the image stress system T'!., enclosed by the surface S' + 3' + $2 the acoustic
_* io 1 2 S '

field outside at position x vanishes identically. Velocity fluctuations in the

plane of the surface are designated by u . Thus, using Equation (2.78) we have
S . -

*In Chapter 8 this integral relationship will be further exa-nined for applica-

tion to turbulent boundary layer noise.
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Figure 2.6 -An Illustration for Powell's Reflection Theorem

2 W.
o ax'fx r dV(Y',)

VI
0

n. n

S1 S
0 0

ff~ F7' r yd 2.9I ul ~dS(,' + JJ -I"W')1 ,

S Ori S!i

Equat ion (2.79) will be added to Equation (2.78). OTI the boundary and in the

volume V +V,
o 0
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£=-V u =-U' 'us u'

but

u =ZU,nfn nfn

Thus, we have

tpu~ ~ dS(y) = tuu+('' dSy)
ax [ in n r ax +(Tin in) "r

S

when ij

and

[pju2+ p dS(y f - o~u2 +T +P] dS(y')

x n nn r nx n nn r
nS St

then

32 [TJ jjj dl

0 0

r 1

SS

0
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When the surface SI + S is rigid and the fluid is assumed inviscid, i't = 0, we
0 sn

have the simple result that

47Pa (xt) = rjdV (Y) (2.81)
J V +V' '-1 '

which is the statement of Powell's 19 reflection theorem. This theorem states that:

"The pressure dipole distribution on a plane, infinite, and rigid
surface accountb for the reflection in that surface of the volume dis-
tribution of acoustic quadrupole generators of a contiguous inviscid fluid
flow, and for nothing more, when these distributions are determined in
accordance with Lighthill's concept of aerodynamic noise generation and
its natural extension."

Powell goes on to state that the result, Equations (2.80) and (2.81), are independ-

ent of the Mach number of the mean flow as well as the wavelength of the sound. The

stress tensor itself accounts for all effects of refraction and scattering by fluid

inhomogeneities. The above result emphasizes the confusion that could arise from

the interpretation of Curie's result, Equation (2.73), as indicating that the pres-

ence of a surface contiguous to a turbulent region results in the generation of three

physically distinct acoustic sources. This is patently not the case when the con-
tiguous surface is large compared with an acoustic wavelength whether or not the .

surface may react to the stresses induced on it by the turbulence.

In these more general cases, Equation (2.80) isolates the importance of dipoles

oriented in the plane of the surface whose strengths become doubled by the plane.

Ffowcs-Williams2 0 considered the more general case of a flow source region over

nonrigid, plane, homogeneous boundaries. To consider the simple case of a very soft

boundary, the difference between Equations (2.78) and (2.79) is taken which gives

4fff fffq
4 Pa(X't) = x JdV - axix T dV (Y)

V V1
0 0

I [pu 2 +TV +p dS(y) + J -2 [p] dS(y) (2.82)Dx n r nnnx n r

S S
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If the surface is limp enough so that no normal stresses may be maintained, then

p = 0 (i.e., it is pressure release) on S . The surface S1 Ffowcs-Williams takes
0

far enough from the source region that it vanishes. The sound field then consists

of the interference of the primary source field with its negative image except for

the addition of the term involving the induced surface motion. This term Ffowcs-

Williams speculates is second order. For more complicated boundaries whose imped-

ances are intermediate between hard and soft, Ffowcs-Williams shows that the effect

is still only to modify the sound field by adding to the primary wave field given by

the integral over V., a reflected wave, given above by the integrals over V'. A

reflection coefficient appropriate to the surface impedance causes a phase shift, but

no resonances. Thus, the sound resulting from a turbulent flow over any plane

homogeneous surface is essentially quadrupole or higher order with no alteration in

the physical mechanism of the radiation, barring the possible contribution of shear

stress dipoles. This has broad implications since what is required for enhancement

of the sound field are inhomogeneikies of surface impedance (scatterers) or inhomo-

geneities in the surface stresses. These implications will be discussed at greater •

length in Section 8.5.2. The benefit of Equation (2.82) over (2.80) for the case of

pressure release boundaries lies in the removal of the unknown integral of u overn

the bounding surface.

Equations (2.81) and (2.82), in the latter with p = 0, for the completely rigid

or completely soft surfaces, respectively, bring out an interesting aspect of imaging

multipole sources. Consider the thickness of the stress layer in a direction normal

to the surface to be much smaller than an acoustic wavelength. Then, using the

idealizations for the lateral and longitudinal quadrupoles shown in Figure 2.3, it is P
easy to see that a rigid surface causes destructive interference of lateral quadru-

poles (call the result an octupole!), but a doubling of the sound for longitudinal

quadrupoles. The converse holds true for quadrupole sources near a soft boundary.

Similarly, one can deduce alternate reinforcements for dipoles near either hard or

soft surfaces. Therefore, in Equation (2.82), the volume integrals do not cancel.

2.5 POWELL'S THEORY OF VORTEX SOUND

2.5.1 General Implications a
The formulation of a region of vortex motion as an acoustic source was a major

step towards a physical undt-sLanding of turbulence induced noise. However, the
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consideration of the acoustic sound pressure as a volume integral of the Reynolds

stress sheds little light on the details of the mechanism. Lighthill's theory does
not identify the characteristics of vortex dynamics that are noise producing. It

seems that Lighthill was motivated toward a description of sound intensity in terms 0,

of the statistical characteristics of the turbulent source region. It was necessary

to use representations which could be substituted by measured velocity correlations

and length scales. Furthermore, the identification of the acoustic character of the

source field as a distribution of quadrupoles and then the subsequent establishment

of the effects of eddy convection on the acoustic pressure, were directed at an

understanding of the observed acoustic aspects of jet noise.Powell,21 "-

Powell, on the other hand, was apparently interested in the aerodynamic

(hydrodynamic) aspects of the ilow which caused the noise. The question involves an .S

.- understanding of what characteristics of the eddy motion actually produce the noise.

From this perspective Powell examined the connection between vortex motion and sound

generation. The identification of the formation of vortices in the flow as the

fundamental noise-producing mechanism is the result of this analysis. O

2.5.2 Derivation of the Wave Equation with
Vortical Sources
In our discussion we will first derive Lhe- ource term in Powell's2 1 form and

* then discuss its physical implications. As before, we consider the fluid motions to

be isentropic. Powell. makes use of the well-known vector identities:

Il 2\ F(9u 9u. u uS u) U i. uk -u i  uk u i u.
dx L9 i 'k / j diL

S(u'V) u - (Vxu) x u M (u'V) u- w x a (2.83)

and

(__9 Ou.u.
Vj 2. . k _ (2.84)

2." JX ~ ) - ~~ x] O~D..
Ii Ox X O X TX a-k3 -a

or
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2-+ V(V.u) = + V X (Vxu)

The curl of the velocity, V x u, is the vorticity vector w. These relationships* 4

are used to transform the equations of continuity and momentum to

+ (u-V)p + pV u - 0 (2.85)

and

u + + ! )V u2  -Vp (2.86)

The combination of Equations (2.85) and (2.86) can be performed in the same manner

as in Section 2.2 to obtain the wave equation for the density as

24 V2 - * ' i+v(+ i - u2 )
- P- +V p(u) -u 2- + +pD + VP (2.87)

2t 0-' P

This equation is an analog to Lighthill's equation where the divergence term

is identical to Lighthill's source term. The equation is exact except for the

neglect of the Stokes' stress tensor Tjj, but the above representation exposes the

influence of changes in vorticity on the radiated density fluctuations. The term

W x u incorporates the sound due to the stretching of vortex filaments by an imposed

velocity U. Lhe term u 3p/ t is a contribution caused by local convection of density
-4 2

disturbances and it is generally second order since lu 0 c . The term V(p+pu /2)

includes both the hydrodynamic as well as the acoustic pressure. Inside the source

region it the flow is perfectly irrotational, i.e., w = 0 everywhere, the Bernoulli

equation for the hydrodynamic pressure is

-

*Both the vector and the tensor notations have been shown in order to effect

ior the reader an easy transition from one notation to the other. In the following

we shall make liberal use of vector notation in order to compress expressions

dealing with the curl operation.
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2 30
S + h-- = constant (2.88)

where h is the fluid potential. Thus,
h

,~~ ... ;L+- t V( h

and, since h = 0 only for irrotational flow, this term may be legitimately
-* 2

neglected only when w = 0. Regarding the acoustic pressure, we note that when c .

>> u /2 (as is found in most situations involving flow of low Mach number) the2

acoustic pressure exactly balances cP. Therefore, Equation (2.87) can be now

written to include only the first-order terms;

41

2
V2 1 -V • p xu)+V p c p+p (2.89)a 2 a 2 2

0

to give the wave equation for the acoustic pressure. Equation (2.89) should be com-

pared to Equation (2.49). This equation is essentially that which was derived by

Powell and, in terms of exactness, it departs from Lighthill's in the neglect of the

viscous stresses, T and of terms for which u << c.ij' 0

2.5.3 The Physical Significance of the
Vorticity Source

In order to appreciate the importance of the vorticity as a source of radiation,

Powell considered the generation of fluid disturbances by the motion of an isolated

ring. An equivalence is sought between changes in vorticity and changes in fluid

momentum which can be interpreted as dipole and quadrupole acoustic sources.

The well-known relationship for the incompressible fluid velocity u(x)

generated by a vortex filament is
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1~x ' - 1 P - 1 Vy, (r) ~ ~Y) (2.90)
r

As shown in Figure 2.7 the vector from the source point to the field point is

r =x - y; dt(y) is an increment of che vortex filament of vorticity (note that

Wxl 0). By definition the circulation is

r u *dC? (2.91)

C,

cVORTICITY VECTOR

S2 ~Fx1ID POINT

/S

AREA ENCLOSED f
BY CONTOUR, CONTOUR ENCIRCLING

S VORTEX FILAMENT, C'

K igure 2.7 -Application of Stokes' Theorem
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where C' is a closed circuit in the fluid. As long as C' encircles a vortex fila-

ment, as shown in Figure 2.7, the circulation is nonzero. Otherwise, it is

identically zero. Stokes' theorem states that

r - • (2.92)

C1

f n • (Vxu) dS (2.93)

S

fJJ n S dS (2.94)

S S

where dS - an element in the surface enclosed by the circuit C' .6

W
n =the component of the normal vector to this surface in the direction of"'"

dt (or of W)

S = a component of S projected in the plane that is perpendicular to the

vorticity vector wo

We will assume that F is constant along the vortex filament . Also, by Stokes'

theorem we have

u(x) = .dl(') x V y r =n 4Xr X fS~
S
W

S . ..1 "

- f (V (Xn~ X Vy r dS (y) (2.95)jj ~

Si

where S Z is circumscribed by the vortex filament and nj is the normal to the surface,

see Figure 2.8. Since

"085 . .......
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Figure 2.8a - Ideal Vortex Filament Figure 2.8b - Cross Section of Vortex
Stretching Pair with Streamlines

Figure 2.8 - Geometry of Vortex Filament

(nXVy) xV (F) = V yn) r V2  y n r
y n y r r y r'

Equation (2.95) becomes

u) -- JJVy nV(r dS(n)= _ Vx JJ- n × (I)dS() (2.96)
47 r. y 4!

If the distance to the observation point is large compared to the dimension of the

vortex ring, Equation (2.96) becomes . --

U xJ xV (2.97)

| -Z

where FSr is the strength of the vortex and n2 is the average normal to the surface

of area S . Equation (2.97) is now of the form of a potential gradient, u = Vx(q),
x

and so we recognize the term in brackets to be the far field potential due to a con-

centrated vortex filament.

The important step in the analysis was Powell's recognition that the analog of

Equation (2.97) for a slightly compressible flow is
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u(x,t) V (2.98)

where the term in brackets [ ] is now evaluated at the retarded time t - r/c
0

" Equation (2.98) holds as long as the wavelength of sound is much larger than the

vortex ring and it implies that the vortex streamlines in the slightly compressible

flow are the same as if the fluid were incompressible. This is an important notion 9

since it states that the flow field is established hydrodynamically and the sound is

a by product of the hydrodynamic motion.

The pressure disturbance in the far field is found by carrying out the indi-

cated operations, and noting that pa o= c u O

0 r~
Pa(,L) 4= 'o r_ (2.99)~a 4,.t)c-o4 r 3 ;

The far field velocity is proportional to the time differential of the rate of

change of the vortex strength. Also, since the fluid momentum M associated with the

vortex ring is

p Fn S

the velocity perturbation is also seen to be proportional to the time derivative of

the rat: cf change of fluid momentum in the direction of observation. The force

applied to the fluid by the motion of the vortex ring is related to the rate of

change of momentum by

F

Thus, Equation (2.99) can be rewritten as

-e

i F F
Pa (X t) 2 d (2.100)
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which is the same es Equation (2.77). The radiated velocity is determined by the

rate of change of the force applied to the fluid by the vortex motion. This rela-

tionship will ',e considered extensively in Chapter 5; it is the fundamental relation-

ship for dipole sound radiation.

If the area of the votex ring Sz remains constant, the strength changes with

the circulation so that the velocity perturbation is given by

n rS

u(x,t) = - [
4 2  r3  LtJ

0

In the alternative instance of a constant circulation F yet changing area S9
2 2the velocity perturbation is proportional to 3 S,./3t. This change c~r arise from

vortex-line stretching by flow as depicted in Figure 2,8. The vortex line stretches

9 due to translation at velocity U so that the change in the enclosed vector area

n 4S in the time interval 6t is n6S-,, (u6t) x dk. Thus, the Equation (2.99)
X

becomes

a t r r [7
4uic r L d t

0

If we consider the vortex lines to exist throughout the region of flow and introduce '"""

Equation (2.94) we find ari

- . .",d

•u(x,t) -i r -= • " u Id(ndS.

4r rc r

-rr d (2.101)
4nTc 2  r L 

.,

0 0
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since (n W S ) U x dT W d~dS and because the dT and w vectors are coin-

* cident. This shows that the velocity perturbation is proportional to the change in

the rate of vortex stretching by the fluid. The intensity is maximum in the plat.e

. normal to the vector w x u, i.e,, normal to the surface enclosed by the vortex ring

. of vorticity w. Powell gives the term "vortex sound" to the far field sound radia-

tion from a finite region of vorticity since it emanates from changes in the net

vortex strength of the region.

Thc inLegrand in Equation (2.101) is also recognized as the first of the source

terms of Equations (2.87) and (2.89). This equivalence complements the interpreta-

tion, given at the end of Section 2.4.1, of the source term so that we now have a

hi complete physical explanation. The sound radiation from a localized region of tur- •

bulent unsteadiness is caused by the stretching of vortex lines and the rate of

change of fluid potential associated with the dynamics of the region.

An important physical example of the generation of vortex sound is the Aeolian

* tone rak iated from a circular cylinder in a cross flow. In this situation diagrammed -0

in Figure 2.9 (dealt with in detail in Chapter 5) fluid flows steadily past a

cylinder so that the direction of fluid motion is perpendicular to the axis of the

o WAVE FRONTS OF

CONVECTION VELOCITYFIXED RELATIVE T9 .
CYIDRCYLINDER U

IMAGE VORTEX 3

Z ~VORT!CES OF OPPOSITE
SIGN

Figure 2.9 -Diagram of Cylinder and its Vortex Systems in a Cross-Wind
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cylinder. Vortices are shed downstream of the cylinder with alternately varying

changes in sign. Since the circulation of an element of tO'e fluid incident on the

cylinder is zero, the net circulation in the flow-cylinder system must remain zero0

*downistream of the cylinder. This requires Lhd-t for every vortex formed in the fluid

an image vortex must be formed in the cylinder. The resulting vortcx pair is corn-

*.posed of two legs of a closed ring as sho,.n in Figure-- 2.9 and 2.8b. In this manner

we can gee that the periodic formation of vortex pairs, one bound to the cylinder

and the other formed in the wake and convected downstream, results in a similarly

periodic change in vortex strength and, therefore, sound radiated in a direction

* . normal to the plane of the vortex ring. This direction is also the perpendicular to

the plane formed by the flow vector and the axis of the cylinder. The magnitude of

the sound in this direction is proportional to the circulation (+ F) of the vortices

formed and to the square of the reciprocal of the temporal period of the vortex

* formation. Another derivation of Equation (2.100) which pertains specifically to

r this problem, will be discussed in Chapter 5.

2.5.4 The Effect of Solid Boundaries
We now turn our attention to the integral form of the wave equation analogous

to Equations (2.71) and (2.78), yet Incorporating Powell's source t- rm. Combining

Equations (2.67) and (2.89) we obtain the acoustic pressure as

"" u i i + f f f [2 2  1 2-d , (y"-

.2 F 2
f l ar [OC. 11) [PC 2 +1 • -

cr n I J - n [0c] -.- dS(y) (2.102)

where E is the total surface enclosing both the source volume and the observation

point as in Figure 2.4 a. Noting that r/an -3r/y f ar/ax , using the divergence

theorem as in the beginning of Section 2.3.3 and in Equation (2.68), and using

Equation (2.86), it is a simple mater to write down the acoustic pressure as
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.he .e .d . . . .t . n .e . . ....... .. . Td .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. .- ,



[P~~- 2+ 

,u2 

dV 

.''

4Pa(X, t) =-O ._ su

a r y 2t 2  f 0' 2 r.'
0 V..

F 1 2] dS .;.u.

PU ] ALL (2.103)

The surface Z may be interpreted to pertain to specific applications, e.g., as shown

in Figure 2.5. As Powell21 explains, Equation (2.103) gives the acoustic pressure

as the sum of four contributions:

1. A volume distribution of dipoles proportional to w x u.

+ I 2
I2(..p~ pu2l. .

02(pO2 . .

2. A volume distribution of nondirectional sources 
2

3t

3. A surface distributon of dipoles whose strength is proportional to the

2
Bernoulli pressure on the surface, p + 1/2 Pu

4. A monopole distribution whose strength is proportional to the acceleration
of the surface normal to itself, u n /t.

Furthermore, the surface-integral terms are equivalent to those in Equations (2.71)

and (2.78) (note being taken of the inviscid nature of the current problem), while

the volume distribution has been reexpressed. The second volume integral involves

2 2-1quantities of order (u/c ) and p(pc ) which can be safely ignored in favor of the
0 0

other terms for low Mach number flows. The pertinent nature of the Reynolds stress ,0

distribution as involving a change in vortex strength is thus exposed.

2.6 REPRESENTATIONS IN THE FREQUENCY DOMAIN

When the integral relationships of this chapter are used for the solution of

specific physical problems it is of:..., convenient to invoke various types of harmonic

analyses. In this text the Fourier Lransform, applied for both time and space vari-

ables, will be used almost exclusive of other transforms when harmonic analysis is

necessary. We have already used a simplified form of Fourier analysis when we
-iwot •' -

specified time dependence to be of the form e in sections 2.1.2, 2.2, and 2.4.2.
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2.6.1 Helmholtz Integral Equation
We begin by deriving analogous forms of Equations (2.53) and (2.67) using the

time Fourier transform. The Fourier transfor-m V(w) of a variable v(t) is

i fV~w ~ e v(t) dt (2.104)

and its inverse is

v(t) =f e-t V(w) dw (2.105)

2 -

Thus, since p a(X,t) coa p(x,t), then the transform of the inhomogeneous wave equa-

tion, Equation (2.53), is called the inhomogeneous reduced wave equation

2 -~ 2
V Pa (Y , ") + k 0 a =YW 6Yw (2.106)

where k w i/c is the magnitude of the acoustic wave number and 6(y,w) is the
0 0

Fourier transform of 0(y,t). The solutions of the homogeneous wave equation are of

the form

+ik r
0

p (y,w) =A e (2.107)
a r

which are appropriate for propagating waves in free space. In fact, the function

+ik r
0

g)- e (2.108)
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is called the "Free-Space Green Function." The selection of +i and -i depends on

the invoking of the radiation or absorption condition of propagating waves (Section

2.2). For outward travelling waves, we select -i. Now, the retarded potential is •

*- given by

/f\ c +ikr .-

v t ) e-iwt e 0 V(w;) dw (2.109) 0

-00

Substituting inverse Fourier transform, Equation (2.109), into Equation (2.67) gives:

V ff y ey ' o dV(y) '"

+k r p+ikor .

r e dS () (2. 110) w)..

Here we have let Ti ;  be the Fourier transform of Tij (;,t), using the tilde and :i:::!.i'. .

'! the changed independent variable to denote the transform. Equation (2.110) is the :'.2::."

Helmholtz integral equation. It could have been derived4 ' 5 from Equation (2.106) i ' ' "

by using the divergence theorem and the equation• '

gI + g)= -(x-y) (2 111) -" " 
"

"e a d" (2.110

y )

for the free-space Green function when V denotes the Laplacian operation with re-

spect to the variable only. Y

We see, regarding Equation (2.110) and Figure 2.4, that if Z is a control

surface a distance R from a compact source region of volume Vo, then
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2 + +ik r

III~w fff ey 4r dV (y) (2.112)

V9
0

if

p Pa (Rw)
lim. (j+ik Rp CR,ow)+R 0r )

Recall that this last condition is just Sommerfeld's radiation condition (Section

2.2). Equation (2.112) is the equivalent to Equation (2.57), but in the frequency

domain.

A more general use of the Helmholtz integral equation lies in situations for

which impedance boundaries or surfaces are present in the control volume. In these --

situations the free-space Green function in Equation (2.108) is replaced by C(x,y,w)

which is a solution of

72 2~+&~~ 213* ~G(x,y,Lw) + G (xy2oi) 6x 213
y

In contrast to the free-space Green function, the function G(x,y,w) is determined

for the geometry under consideration and subject to certain boundary conditions.

The Helmholtz integral equation is i-

Pa(x'o ff JJJ a G(x,y,w) dV(y)

+j {fG(x~y~w) an _a_7__an____2.14

SSy
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where S is the surface of the boundary that is present, e.g., S1 + S in Figure 2.5.

The radiation condition has been invoked to eliminate the integral over the control

- surface, S2. Now, if p a(y,w) is known on the surface, then the imposition of the

boundary condition G(x,y,,) = 0 on S will put Equation (2.114) into a form involving
4

. known functions. This boundary condition is known as the Dirichlet boundary con-

dition. Alternatively, if the normal gradient 3p (y,w)/3n is known on S then the

boundary condition 3G(x,y,w)/3n = 0 on S, known as the Newmann boundary condition, S

puts Equation (2.114) into a form which may be evaluated. The potency of the method

is especially apparent if we consider the case of the rigid boundary. In this type

problem the velocity normal. to the surface u is zero. Thus, =p(y,w)/3n 0 so that
n a

the imposition of a Newmann boundary condition reduces Equation (2.114) to the form

32

pa(X, ) = JG(x,y,) dV(y) (2.115)a f yi y "
i0

The Green function G(x,y,w) now accounts for both the impedance and the geometry of

the boundary.

The method was used to solve problems on aerodynamic noise by vfowcs-Williams

22
- and Hall to determine the sound field from turbulence convected past a half plane.

* Some other aerodynamic noise problems have been attacked in this manner by Howe,23

Chase,24 ,2 5 Davies and Ffowcs-Williams, 26 and Crighton and Ffowcs-Williams, 2 7 see

Chapter 9.

A simplified example of the use of the Green function for the Newmann boundary

condition can be shown for the case of the plane boundary. A solution of Equation

(2.113) which is valid for the rigid plane boundary is given by

+ikor +ikor

G ,y,w) _-+ e" (2.116)i" 4Tr I  4 Tr2  ..r)
12

(2l-222 2 (y-22 Z+2 2

wherer 2 = (xx + (yl-Y2 )2 + (z-z) 2 and r2 = (xl-.X 2  + + (z +zS 12 112 2 2 12- 2.
The ranges rl, r2 are the same as those shown for the primary and image source

2S
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system in Figure 2.2c and they correspond to the r,r' in Figure 2.6. The field point

is x - (xlYlz 1 ) and tne source point is - (x2,Y2 Also it can be easily

shown that on the surface z 2  0 0

29 (XI.YI _) _ G(x~y'W)0
2 z 2 =0  2 z 2 =_0

and for kz 2 << 1, Equation (2.116) reduces to the functional form of Equation

(2.36). Substitution of Equation (2.116) into Equation (2,115) yields -.

2r 2T ) ik Ix-YI
oa (xe) JJ D dV(y) (2.117)

V +eV4T -I
01l02 0

where integration now extends over both the physical source distribut: 3 its

image distribution. The mechanics of such an integration would have -uunt for

the symmetric and nonsymmetric reflections of the Tij about Y2 = 0, as discussed in

Section 2.4.4. Equation (2.117) is identical to Equation (2.81).

Other known functions G(x,y,w) for a wide variety of geometries have been given
2845

in books by Morse and Feshbach, by Morse and Ingard, and Junger and Feit. 5

Generally simple closed-form functions exist for circular cylinders, spheres, infi- -

nite planes. Analytically more complicated functions also exist for slits, half

planes, and spheroidal bodies.

2.6.2 Generalized Transforms and Stochastic Variables
In Section 2.3.3 we utilized the correlation function of the stress tensor to

determine the time averaged acoustic intensity, Equation (2.61), far from a turbulent

region. The introduction of the correlation function was necessary because the

temporal and spatial variations of the velocity fluctuations are uncertain, yet

occurring within certain limits of probability. For example, the velocity at any

instant and location can be given by
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u ( xt) u(x) + u (x, t)

where U is the time averaged velocity and u i is the stochastic velocity fluctuation

with zero mean value, i.e.,

T/2_____._":.2--r

uiiXt) U i f u x ,t dt lii i J ui(x,t) dx 0 (2.118) -ui( t -- fi lxt V ff -= .=

-T/2 V

where T is the time of averaging and V is the volume over which the velocity is in-

stantaneously sampled. Fluid fields for which the equivalency of Equation (2.118)

holds are said to be homogeneous. The time mean square velocity fluctuation is

.t 2 t
u (x,t) - ((x) + u (xt))

T/2

1im- f ui(x-,t))2 dt
T-- T

-T/2

2~ 2
U + ui (x,t) (2.119)

If the fluid region is truely homogeneous, then

t X -2 2 -1
u (Xt) ul(X,t) =u

also, note that the average over space of the fluctuating velocity at any instant in

time will also be zero in the homogeneous turbulent field. Notice now that we have

introduced the vincula and to distinguish between time and space

averaging, respectively.
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We now consider some general representations of the turbulent field and its

resulting sound. More extensive analyses will be given in Chapter 3. Equation

(2.118) constitutes a boundedness on the integral of ui (x,t) and it permits a
2930

definition of a generalized Fourier transform2 9' which we will write as

i( )  1 +iwt
= X L2r e ui6xt) dt (2.120a)

and

u it) e('x'W) dw (2.120b) '.,'i=

T', ace-time covariance of the velocity fluctuations is given by (see also

Batchelor,30 Lin,31 and Kinsman 
32 )

.t - t
2( t 2 -' 1/2 (yxZ

[ui  Ii(xt) R u u "" -j ?'

- . 2T (,t) u(y,,t+T) dt

pT

1 rr dt edw' e ('' dw (2.121)
2T t u( x ) J

-T -..

where R ¥= R (yyO) 1 > R xy,) > R (xy,T). We have
uu uiu u u uiu

replaced the physical velocity fluctuation by inverse transform of u(x, w) using

Equation (2.120b).
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The complicated integral can be cleared up by examining the behavior of

TI/2 Te______

i~w w')T/2  - i(w-w')T12 sin (~
-TI2 d =T 21(w-w') T(Ww).

-' As T increases, this function becomes more and more peaked near w w' so that if

their integrals over all frequency are to be equal we can write

2T T
in T 1 (2.122)

T 7

* The equivalence

6 (W-W i e+i(w-w' )t d

6(-IT=e-d (2.123)

* where 6(0) =1 and 6( I#0) =0 is the delta function. Formally, it has the integral

definition

f -I f (Q) 6(S -Q2 dQ

This relationship can also be established by virtue of the definition of the Fourier

transform and its inverse.

This equivalence converts Equation (2.121) to the form

2-- t 2-
ui(xt) uC~t ui (Y' ,T)

T S

-00 -iuU

=J e L ) 2h (X'i) (ijy ) dw
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30-33
This defines the covariance function as an inverse Fourier transform of a func- ,

tion which we will call the two-point cross spectral density of the velocity

fluctuation. We will write this function as

t
~ y U (=,t) u (Yt) (ysx,w) (2.124a)

in the limit as T-, so that the space-time covariance R(y,x,T) and the two-point

cross spectral density are Fourier transform pairs:

*i
R(y,X,T) e-iT 0(y,x,w) dw (2.124b)

In Section 3.5 we will see how to accomplish these analytical manipulations without

having to constantly carry the formal T- limit.

The acoustic pressure from a region of turbulence will be a stochastic variable

that is related to the turbulence through a Green function for the geometry involved.

Thus, the Fourier transform for the acoustic pressure in Equation (2.115) must be ..

considered in the same generalized sense as we have also done for the velocity.

Therefore, the acoustic pressure spectral density at the field point x is given by

- . •

- t " .- •

22T

where p is the total mean square pressure and the integral of the spectral density

over all frequency is normalized according to

(x,w) dw = 1
f cpp
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In the specific instance of radiated sound from a turbulent region, the pressure

spectral density is related to the cross spectral density of the source term,

ri 2p.-~w

.-lim.271

by an integral relationship that is analogous to the one for deterministic processes,
Equation (2.115),

Pa (XW) ff5 fff DTTyly 2,w) G*(xy 1 u) G(X, 2,w) dld 2  (2.125)

V V

Equation (2.125) is perfectly general, it is essentially the spectral representation

of the acoustic pressure and it is the spectral analog of Equation (2.61), in which

the Green function is the one for free space. (The formal equivalence can be appre-

ciated by the reader by making the necessary substitutions into either of Equations

(2.61) or (2.125).) The importance of Equation (2.125) lies in the fact that the

covariance or the cross spectral density of the turbulence are physically identifi-
2uu

able and measurable quantities, while the instantaneous quantity 3 uiu /ayiYj is

not a practical physical quantity to work with because it is a random variable of

time and space. The value of the spectral representation is found in the fact that

it is often the acoustic intensities of specific frequencies, rather than the overall .. .

intensity, that is of importance in many applications. There are many other forms of

Equation (2.125) that will be used in subsequent chapters, which involve some of the

alternative source functions. For example, rather than a cross spectrum of the

stress tensor as above, it may be more suiLable to invoke cross spectra of any of the

other source terms appearing in Equation (2.74) whenever there are localized surface

forces induced on a body placed in the flow. Extensive use of Equation (2.125), or

of the methods to obtain it will be the underlying feature of the remainder of the

chapters, excepting perhaps Chapter 4. 9

We will, in fact, make liberal use of the stochastic representations of this

section in the remainder of this monograph. Most fluid dynamic processes which are
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unsteady are also turbulent. Their stochastic nature makes these or similar time-

(or space-) averaged quantities the only useful means of representing the properties

of the flow. Yet, as can be seen from a study of this chapter, the acoustic propaga-

tion characteristics are often deterministic. In these cases, far field acoustic

power is just a convolution integral involving a measurable covariance or cross spec-

tral function and a geometrically influenced deterministic Green function. In the

case of acoustic reflection and refraction by local turbulent density and velocity

fluctuations even the propagation characteristics must be considered in a stochastic

sense.

Generalization of the stochastic representations to include both space and time

is simple especially when we are concerned with the far field acoustic spectrum.

Restricting our attention to one frequency, the Green function G(x,y,w) can be

separated into a product of separate functions of the source coordinate and the

field coordinate, i.e.,

G(x,y,w) G (XL) G (y,W) (2.126)
y 

-

as long as the field point is in the far field IxI > lyi and k0 .Ixl. We introduce

the spatial Fourier transform pair of the source Green function P

V (kW)II G,(y,w) e dy

and

C (y,u)= JJJ y e" dk (2.127a)- (2:) 3

IV

with a complex conjugate
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pp.'!

G*- (2.127b)
y (2 TO fff Y

Substitution of Equations (2.126) and (2.127) into Equation (2.125) yields

-t 00 00

2 2 " .---. "+
a Cp(X,w) - IG (x. o) l dk dKPa 'p " X- '  -

f; f00 -CO

× y dy2 ' TT(;I, 2,u0) e y( ay(

V V

(2.128)

This integral expression for the far field sound spectrum can be simplified consider-

ably if the statistics of the turbulent source field are spatially homogeneous, i.e.,

that

$TT(I,'Y2,w) = *TT(y2,yl, w) = 'TT(Y2- y',) (2.129) •

The cross spectral density of the source function is, in this case, a function only

of the difference in the separation variables. Then, letting

- . - " . •

Y2= yl + r -

and

d, 2 = dr

Equation (2.128) may be rewritten
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- )2 .12 k

) J di dK (*W) *((, ) . .... .

" ... co,
00 -00

I+ iK.r

x J TT(r,w) e dr • 1 e (2.130)
(2Tr) (27T)

The integrals over y and K are analogous to Equation (2.123) and give

i(k-K:)'y 1 3 i(k-K)'y 1_ 
.Q...

Jd = dy 1 = 6(k-K) (2.131)

where

3
6(k-K) = [ 6(k i-K)

It is to be noted that occasionally one is interested in the approximation of

a bounded source zone with characteristics of a much larger, effectively unbouiided . . -

one. In such cases note that

li sin _LI (k-K)i 2 6(k-k) (2.132)
Li L T(k-K)i

for all values of (k-K) > . Thus we see that wave number overlap caused by a

finite spatial region always diminishes as the extent of the zone increases.

Now, returning Lo the anstream of the analysis, the spatial Fourier transform

of the cross spectral density of the sources is called the "wave number spectral

density" .

?TT(k,w) 1 3 (r,u/ e i  d k r (2.133)
(2') TT
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Equation (2.130) now reduces to .he simple form

Gpp(X,w) -G(X ( ) 62k" ) (k, ( ),2 dk (2.134) '

Since the integrals are shown to extend over the infinite domain of wave number and

physical it must be stipulated that all effects on the wave number spectrum of

spatial finiteness of the sources are included in the definition of (D (k,W). -
TT

Equation (2.134) shows that an acoustic field can be regarded as a linear

system driven by a spatially and temporally random input. In this case, however, 0

the filtering is spatial rather than temporal and what Equation (2.134) gives is the

acoustical response to a spatially steady state (homogeneous) input field. Equa-

tions (2.125) and (2.134) are therefore equivalent alternative expressions for the

radiated sound pressure, except that Equation (2.134) presupposes spatial homoge- • 0

neity of the source field. If the homogeneity assumption, Equation (2.129), were .

to be introduced, then Equation (2.125) would give the autospectrum of the acoustic

pressure as a spatial convolution integral which is analogous to the initial value

temporal response cf a linear filter. Although the integrals over infinite wave

number domains given in Equations (2.128), (2.130), and (2.134) are formally correct,

it must be understood that the far field acoustic pressure is determined by the

wave number range jk! < k . In most applications the Green function 0 (k,w) is
0 v

strongly peaked as the magnitude I k; approaches k in the region 0 < I kj < k
0 0

Therefore, the integrals such as in Equation (2.139) are frequently dominated by

a region I. k as shall be illustrated in some detail in the later Chapters 3
0

and 6 through 10. Contributions from sources at wave numbers which are outside

I kj < k do not radiate sound. Rather these disturbances result in so-called near -

field pressures which decay exponentially with distance away from the source. Such

near field motion is inertial, and in the case of a source comprised of an oscillat-

ing body, accounts for the added mass.

Equations (2.125) and (2.134) will be used in various forms throughout this _ .

book. Equation (2.125) is, in general, the less restrictive of the two because its

application is not limited by the condition of spatial Iomogeneity. These relations
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have direct application to jet noise (Chapter 3), Aeolian tone (Chapter 5), and

lifting surface noise (Chapters 9 and 10). They have two-dimensional analogies in

flow-induced sound from shell-like structures (Chapters 6 and 8).
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2.7 APPENDIX A - DIPOLE RADIATION FROM THE HEAVING SPHERE:
EXACT AND ASYMPTOTIC SOLUTIONS

The radiation from the heaving sphere in free-space will be reexamined from two

aspects. First, we shall determine alternative expressions for the pressure field

which are valid either far from or near to the sphere. Second, we shall write down

a formal expression which is valid for all field points. In the first approach, our

analysts will formalize the notions of the near and the far fields of radiating

bodies. Liberal use of these concepts will be made In later chapters.

2.7.1 Asymptotic Formulas
Equation (2.28) can be rewritten in the form

20

sin rinr ) + (r0) = 0 (2.A135)
0 

0

Using this equation we clarify the limits

1. k r >> I with a/r << 1 applying to the far field and
0

2. k a << 1 with a/r - 1 applying to the near field,

where a is Lhe radius of the sphere, Figure 2.2. For the far field solution, if we

let

-ik r=]A kr 2+ 0-""-' "
rp [Ao+A(kor) A.(k r) -]-----] cos P e (2.A136)

we rule Out the existance of acoustical singularities at large values of k r.* In0

limit of k r approaching infinity, both Equation (2.A136) and its solution, Equation0

(2.A135), approach the k r dependence for the monopole shown by Equations (2.22b)

and (2.24). We determine the coefficients A by the substitution of Equation S

(2.A136) into (2.A135) which yields a relationship of the form

*The specialization of cos ¢ direLivlty provides a slight lose of generality,
but as we shall see in Section 2.7.2 of the appendix it is an unavoidable consequence
of the normal velocity being U - U cos 4 on the surface of the sphere.

n z
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2 K2

3K

where g(K) g(k r) is the term in brackets in Equation (2.A136). The function on
0

the right vanishes in the far field for K k r >> 1, leaving only the simple reduced
0

wave equation which has a solution characteristic of spherical spreading. Carrying

out the substitution and matching of the real and imaginary parts which are combina- -0

tions of the coefficients A we find for the first three terms,
n

A I i (A2-A (2.A137)

The near field expansion can be examined by rewriting Equation (2A.135) in the

form

2b

e

+ (koa)2 (rp) + 1 .L L sin- 0 (2.A138)
;x 2  0 sin 2..+

where x r/a is a stretched radial coordinate which allows for a separate examina- .

tion of variations of distances on the order of the radius of the sphere and of

changes in acoustic wavelength relative to the radius of the sphere. In the long

wavelength limit, k a approaching zero, the term which is quadratic in (k a) may be
0 0

neglected. The general solution to the remaining differential equation is

rp = a xm+b x - m cos (2.A139)
m m

IDl
MS

which reduces to

rp - {a x -2+a2 x 2 cos
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as can be seen by substitution into Equation (2.A138). This solution must be bounded

for distances large compared to a, i.e., for x >> 1, so that we must have a2  0.

Also the boundary condition on the sphere,

1 -_= -iwU (w) cos
P ar z

0

yields

-iwp 0aALTz
o z' "

a 1 1 2

Thus, our near field pressure becomes

-1
rj(r,$) = al x Cos * .6

(2.A140)
2 oiwp a U Cos-

0 Z
x

and the far field pressure (combining Equations (2.A136) and (2.A137)) is

-1 -2 -i..
r((r,) 0Ao+i(A 2+Ao) .AK + ----- cos e (2.A141) 0

To complete the solution we match the near field and far field solutions by

using a rudimentary and greatly simplified matching procedure. We do this (see

Reference 34 for a complete general examination of matching procedures and Reference -

35 for application of those methods to acoustics) by expanding the far field solu- '. " *.. -

tion in terms of the variables which are characteristic of the near field solution.

Reexpressing Equation (2.A141) in terms of the stretched variable x = r/a so that

k r k ax, we have
0 0
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-2
+iA (k ax) +A (k ax)-------Cos c~(2.A142)

0 0 2i0

which is valid for k 0ax <<~ 1. We have used the small argument expansion for e +i
2 03

1 + ix - 1/2x + i/6 x For k 0ax << 1, the leading terms in the expression

for pressure amplitude are

rp {-iA (Vax) +A (k ax) +------Cos de0 0 2

However, comparison with Equation (2.A139) yields the first and second terms

-1
-iA 0(k0a) -a_ (2 .A143)

and

A =0
2

Thus, the far field expression for the pressure amplitude is

1 2 -r~r,) ~+ p pc (k a) aU cos [l-i(k r) ) (2.A144)
200 0 z0

Pfor ka «<1, 0
0

* This expression becomes equal. to Equation (2.A140) for simall values of k r. It
0

is also equal to results tha. were obtained in Section 2.2. Note that taking the

*limit of small k 0a, with a finite value of x, permitted the truncation of the wave

P equation to emphasize the inertial loading on the sphere. The second-order terms,

those invol-ing high~er powers in k 0r in Equation (2.A136), would be required for
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* situations in which k a > 1 and k r > 1. This simplified matching technique could
0- 0

* be extended to higher-order terms to accomplish this calculation. It could also be

i expanded to include other angular functions and to verify the cos dependence. For

methods of pursuing such elaborations and extensions the reader is referred to

Reference 34.

2.7.2 Exact Solutions

An exact solution to Equation (2.28), or for that matter Equation (2.A135), has

been given by a number of authors, e.g., References 4, 5, and 13. We will, there-

fore, only outline the analysis. The pressure amplitude is written as

mCO.
A ~ h~ (k 0 P (cos 4)(2.A145)

mm 0

th363 ()

where P (cos ) is the m degree, order zero, Legendre polynomial,3 6'3 7 h(1 (kor)m m .0:.
37

is the spherical Hankel function of the third kind and the coefficient A is to be

determined from the boundary condition. For our purposes, we need only to consider

the first three degrees of the infinite set of Legendre functions,

P (cos 0) - 1
0

P.(cos C) cos ""

1 3
P2 (Cos ) 2 (3 cos i) POW

because all others contain higher powers of the cosine. Matching Equation (2.A145)

to the boundary condition results in all the coefficients A being equal to zero " -

except A. This is because only Pl(cos ) contains a (cos ) function. Thus,

Equation (2.A145) becomes 0

h{I) (kor)
p(r,) - ipcU () cos h (2.A146)

S0 [ (koa)]
0 1 0

::).i
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The function h 1)(kor) and its first derivative have been tabulated by Abramowitz
37

and Stegun. That Equation (2.A146) reduces to the functions already derived is
5

seen by noting that 0

ik r
0

lim h (kor) - -e
k r- ko 0', r'

0

and that

lim h I ) (k r) = -i 2

kr-+O 0 (kor) 2

and substituting these equations into Equation (2?.A146).

We have only touched on the mathematical techniques of determining this formal

solution of the wave equation, because an emphasis on the physical aspects is

desired. For a more complete study of these mathematical aspects, the reader is

referred to the references quoted in this Appendix.

1 .
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CHAPTER 3
JETS, WHISTLES, AND OTHER SHEAR-FLOW NOISES ..

3.1 INTRODUCTION
Whether or not a moving fluid is stable or unstable to some applied stimulation,

for example an incident sound field, adjacent surface vibration, or buffeting from

upstream turbulence, has largely to do with the spatial gradient and curvature of

the mean velocity profile in the flow. A wide range of flow types are not stable

to applied disturbances; such as jets, wakes, and flow over cavities. Often the

time dependence of fluid motions in these types of flow is characterized by a

predominant frequency that is dependent on a characteristic average velocity and a . ".

characteristic linear dimension of the flow region. As shown in the preceding
chapter (e.g., Equations (2.49) and (2.89)), sound is potentially produced whenever

there is a disturbance-filled fluid region. Furthermore, as shown in Chapter 2,

the presence of surfaces complicates the sound field by providing not only acoustic

reflections but also modifications in the primary hydrodynamic flow field that is

responsible for the disturbance region. Therefore, in this chapter, we will

consider in a basic fashion the unstable characteristics of flow which are required

to create fluid disturbances, and relate those characteristics to the eventual

breakdown into both regular and random vortex structures. We will also introduce

many of the analytical and experimental techniques that are used when the flow

disturbances become irregular or turbulent.

As practical applications of the general theory of shear-layer disturbances, we

will develop rules for predicting the occurrence of various types of vortex induced

tones in holes, cavities, and obstructed jets. The part played by ambient turbulence

in the basic flow and the influence of Reynolds number on the vortex structures will

be shown. Finally, some fundamental concepts in the similarity principles that

govern noise from turbulent jets and some experimental approaches to validate those

concepts will be introduced as a foundation to other flow types to be discussed in

the body of this monograph.

The disturbances in wakes behind cylinders and hydrofoils are, by themselves,

so important that they will be dealt with separately in later chapters. 4
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3.2 SHEAR-FLOW INSTABILITIES AND THE GENERATION OF VORTICITY

Unstable flows are generally those which have gradients of mean velocity; the

classical, types which have been extensively examined analytically and experimentally -

are illustrated in Figure 3.1. Profile (a) was the first one to be theoretically

Ut(Y 2) U1 (Y2 )

U1 y 2 ) 0

(a) (b)

6 U1 (sech y 2 ) 2

-1 0.5 (1 +tanh Y2 )

(c) (d)

-y 2

-a2
U =I-ae Y2

(e) (F)

Figure 3.1 - Classical Types of Slhear Flo,.: (a) Discontinuous; (1) I.inar;
9_

(c) Hyperbolic Tangent; (a) J2L, sech 2 v; (e) Ga iSsian Wake; and

(f) Bla .,s Laminar P"oundarv Laver

- .-. _-.....-..



1* 2examined by Helmholtz in 1868 (see Rayleigh or Lamb 2) who showed that the arrange-

ment is unstable to disturbances of any frequency or wavelength. In this instance,

the gradient of the velocity in y is singular at the interface y2 - 0 and the .

interface is therefore said to constitute a vortex sheet, i.e.,

aul(Y 2 ) UI(y2= c) - UI (y 2 =-c)-""""(y 2 )
= lim 2c = 3(y2)

DY2  E -.0

showing that the vorticity, w3 - aul/3Y2 ' is zero everywhere, but on the surface

Y2 = 0. In more realistic circumstances the interface between the two moving fluids

is less well defined as in illustrations (b) and (c). The former case of a linear

velocity profile provides a constant region of vorticity w 3 = U1 /6 inside the

region of fy2 1 < 6. This case has been examined by IRayleigh 1 and Esch 3 while the
4-6 7 3 8latter has been extensively examined by, e.g., Michalke, Browand, Esch, Sato,

Schade, 9 and Tatsumi and Gotoh;
I0 the hyperbolic tangent profile has been experi- A

7mentally examined by Browand and it has practical application in the production of

cavity tones.** The jet profile (d) approximated by a hyperbolic secant squared,
11 12

has been examined by Sato and Sakas and Sato, the wake (e), approximated by a
13

gaussian velocity profile has been examined by 3ato and Kuriki both analytically

and experimentally. Finally, the Blasius form of the boundary-layer mean velocity

profile has been exhaustively examined analytically and experimentally; extensive
14 15 16 K -

surveys include those of Lin, Betchov and Criminale, and Schlichting. We

shall reserve further comments on boundary-layer waves and stability for Chapter 7.

The traditional analyses of flow stability begin with an assumption that a

small-magnitude disturbance is present in the flow and we are interested in the

growth of that disturbance in time or space as it moves along with the remainder of

the fluid. Thus, the total fluid velocity (mean plus fluctuating) is written in a

two-dimensional mean flow field as***

*A complete listing of references Is given on page 219. "

33
**The definition of 6 is such that d3U1(6)/dY2 = 0, i.e., that the curvature

is a maximum.

***These problems are generally set in two-dimensional mean flow. Then, . ",o'

according to Squires' theorem, the most unstable disturbance waves are those whose
wave propagation directions are aligned with the flow direction.
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= l(Y2) + U(ylY 2 ,t) (3.1)

where the disturbance velocity u(Y2 ,t) vanishes as Y2 -
+ : in an unbounded medium

and simply as y2  in a boundary layer. Now it is generally assumed further* that

the disturbances may be written as ..-.

4 ia(yl-Ct )

u(YlY2,t) u(y 2 ) e (3.2)

where the real wave number a is related to the frequency at which waves travel .. -

passed a fixed point of observation at the wave speed Cr,

w
-= C (3.3)

rf

where C is the real part of the complex velocity

C C + iCC = r i. .

Thus described, the disturbance amplitude is modeled to grow exponentially in time

at a rate

Iu(y2'Yl) aCit C cr Yl
ee .... -..

u(Y2) 1-'- '-'

so that the least stable disturbances are those with the largest positive value of

C.
V

In an alternate formulation, the wave is assumed to grow exponentially in

space, i.e., instead of Equation (3.2) we have

- - ~~i(aYl-Wt) 21 ..il .

U (y2,y1,t) = (Y2) iei 1 -i

*See also Chapters 5 and 7. -
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where a is complex ( _.=cx +ii ) and w is real. The two points of view are not
17

identical, as pointed out by Gaster, but only roughly equivalent as long as

C << C or Cc. << a . Then the near equivalencies hold:
i r I r

i[Cl

spatial r~~Stemporal

spaia temporalspatial

In this text we shall generally refer to temporal growth rates, although for shear

flows the equivalency may break down due to similar values of CR and C.

When Equations (3.1) and (3.2) are substituted into Equations (2.1) (with q-O)

and (2.44), and all terms that include products of disturbance amplitudes are

ignored in relation to others, the resulting equations retain only the linear first

order terms. It is called the Orr-Sommerfeld equation:

[U(y 2)-c] [-a 24] - U" 

+ -i2 ( aiv2 2"II4) - 0 (3.4)

for small disturbances in an incompressible shear flow of a mean velocity distribu-

tion Ul(Y 2 )  In this equation we have expressed the fluctuating vertical velocity

u2(Yly 2,t) in terms of a fluctuating potential 4(y2) of the linearized disturbance;

i.e., from Equation (3.2)

ia(Yl-Ct ) .. _

u 2 (yly 2 ,t) a 2 (y 2 ) e y-ct

which may be used to introduce the potential function

• i'. ~ic (YlCt )  .. ,,

u 2 (yly 2,t) = - ic(y 2) e
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The wave speed C and the wave number a are assumed to be independent of both y1 and

Y2 " However, the relationship between Cr and Ci will depend on the shape of U l(y2 )

and on the Reynolds number •

U 6

For a given type of flow, there is a crl.tical value of R above which Cis positive .
,

and the disturbances grow. For the free shear flow types (c) through (e) this

critical value can be as low as 30 (see also Figure 3.15), while for the Blasius

layer bounded by the rigid wall it is of order 2500. Thus in relation to the wall

layer, the free shear layer is less stable. Furthermore, when R >> (R t then

the dependence of Ci on Reynolds number diminishes while the dependence of Ci on

iiwave number 0. remains dominant. This independence of Ci on Reynolds number generally

pertains to the growth rates shown in Figure 3.2 for all the free shear layers

026 l i~ ' I II I I I .-.
0.2_b

0.20 1 " .. .0
;. ~~~~(b).- .'.--.

0.15 / 1 - * (d9)\

A / .J

0 * SM ERIC J "T.I *.. (,\ \
o.o o\ \.' '"

I...* ... ,,

Fi ur 3. -Th o ei alG ot at sB sd onT m o a

121

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 1.8 - 9

FURTHER DESIGNATgON: "::'." '

A - ANTISYMMETRIC JET INSTABILITY .- ""'",
S * SYMMETRgC JET INSTABILITY.-,.'.''

~~~Figure 3.2 - Theoretical Growth Rates Based on Temporal '-

i Instabilities in the Shear Layers of Figure 3.1
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illustrated in Figure 3.1. The relative instabilities of disturbances in the various

shear layers at Reynolds numbers well above the critical value is thus quahtified.

Profile (a) is unstable to waves of all wavelengths, while the remainder of profiles

are unstable to restricted ranges of wave number, generally greater than zero and

-1
less than 26

The large instability associated with the jets and wakes is caused by the pair

of inflection points on either half of the shear layer which makes these flow types

very sensitive to acoustic and hydrodynamic stimulus. Furthermore, the character-

istic length scale of the wavy motion is dependent on the shape of the velocity

profile, as illustrated and as discussed later in Section 3.4.1.

The jet is capable of two degrees of freedom, both of which have been observed

in experimental environments. The least stable mode is the wavy pattern diagrammed

in Figure 3.3a, while the more stable (symmetric) mode is diagrammed in Figure 3.3b;

LA1 011¥2) Ul(V 21  - -.-

D

Figure 3.3a - Antisymmetric Jet Mode, Early Stage
for Laminar Jets, 6 = D

ID

Figure 3.3b - Symmetric Jet Mode, Early Stage
for Laminar Jets, 6 D

Figure 3.3c Symmetric let Mode with Plug Flow, 6 < D,
Later Stage for Laminar J"ts

Figure 3.3 -Illustrations of Jet Modes
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12both modes can often be reinforced by sound. Jet instabilities can also involve

dynamics of thin annular shear layers when the efflux contains a central region for

which the mean velocity is constant, Figure 3.3c. In these cases, an annular shear

layer of thickness 6 undergoes instabilities, much like those of single free shear

layers. The waves are of shorter length relative to the diameter of the jet than

the waves shown in Figures 3.3a and 3.3b however, and the characteristic length

scale of the waves is 6 rather than D. In all cases of axisyummetric jets, the
18 0

growing waves, as shown in the excellent photographs of Brown and later by Becker
19and Massaro, begin to "crest" as sketched in Figure 3.3c causing a necking-down.

In subsequent stages of development the necked-down regions separate the successive

ballooned-out portions forming a street of rings or "puffs." Each of these puffs is -

a ring vortex. In the asymmetric mode, the later development results in a spiral

vortex. The mode of instability determines the initial spatial scale for the

vortices formed in. later disturbances. This shall be seen more clearly below.

The development of a vortex structure from a particular mode of instability is

an important concept in the generation of flow noise. It implies that a relationship

ultimately exists between a flow type and the amount of noise produced. This

relationship is made possible by the dependence of the sound pressure on unsteady :".'-

vorticity as expressed in Equation (2.89). The less stable a type of flow, the more

likely it is that the generation of vortices is possible. However, a formal mathe-

matical connection between the mode of linear first-order instability of the type

expressed in Figure 3.2 and a vortex structure has been limited to only idealized

shear-layer types. These shear layers consist of one or more parallel vortex sheets P

of the type (a) in Figure 3.1. In this idealization, the physical shear layer is
20concentrated into sheets. Rosenhead's calculation for the single layer, Figure

3.4, shows the gradual transition from a wave-like motion that involves a sheet of

vorticity that is initially independent of x1 into a discrete set of point vortices -

as time increases. Each wave steepens at the downstream side of a crest to

ultimately form a single vortex. The character of flow changes from a crested

sinusold at tUWX 0.30 to a vortex at tU/X = 0.35. The far field disturbance

caused by the redistribution of vorticity is given by Equations (2.99) or (2.101)

and it is maximum when the local acceleration of momentum due to the redistribution

of vorticity with time maximizes; this occurs in the interval between tU/ = 0.30 to
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:

80 0

ttt3

t 00 t i

t3 =* T0

Q TIME6

Figure 3.4 -Shear Layer Represented by a Set of Point Vortices 
2 1

(The time T 0 is the periodic time IJ/2Q.. The maximum

intensity of the rotating sound field is also shown, F,

corresponding points in the two diagrams being
indicated.)

0.35. The dependence of the sound on time is also illustrated in Figure 3.4, taken

from Reference 21. To quantify the illustration somewhat we combine Equations

(2.92) and (2.99) to find the acoustic particle velocity in the radial direction

(per unit length normal to the page) as

Pa(m 4 -Tc r - 2- .,.- -d;.

where e is the angle between the y1 direction and the field location. When the flow

lines3 begin to roll back on one another, the instantaneous spatial distribution of

vorticity changes rapidly even though the total vorticity and circulation in the

fluid remains constant. Therefore, the phases of the induced notion of the fluid
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particles change with the development of the vortices so that the above integral is

not instantaneously zero, but is time-varying giving the double derivative shown in

I Figure 3.4. The most noise is generated at the moment when the change of this

2 circulation distribution with time is greatest as illustrated. other shear-layer
4-6

-. motions have been calculated by Michalke for the hyperbolic tangent profile and

they show similar circulation regions, although far-field acoustic disturbances have

not been calculated for such motions.

* Deflections of streamlines, similar to those calculated by Rosenhead, have been

calculated on a computer for a pair of parallel vortex sheets by Abernathy and

Kronauer 22and by Boidman, Brinich and Goldstein. 23In the case of two vortex sheets

S each wavelength results in the formation of two concentrations of vorticity of

opposite sign, see Chapter 9.

3.3 FREE SHEAR LAYER AND CAVITY RESONANCE
An important application of the concept of flow instability occurs with the 0

passage of flow past a slot in a wall and the occurrence of separation-Induced vi-
24bration in gate valves. In these situations (Figure 3.5) the flow external to the

slot may consist of a thin laminar boundary layer or a possibly thicker (reative to

the opening dimension) turbulent boundary layer. Each of these situations, it turns

out, has a somewhat different relationship governing the disturbance frequency,

speed, and cavity dimension.

In the case of a laminar boundary layer, in which the thickness of the layer 6

is less than the streamwise dimension of the opening b, the passage of the fluid

beyond the upstream edge into the opening resembles the development of the classical
25free-shear layer. This layer is well described by the hyperbolic tangent

profile (Figure 3.lc) and it is theoretically least stable to disturbance wave

numbers (Figure 3.2) of magnitude

a 6 =0.42 (3.6)

where a is given by Equation (3.3). For the hyperbolic tangent velocity profile,

the momentum thickness, given by
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U0S

FREE SHEAR LAYER

TRANSVERSE MOTION
IN SHEAR LAYER

CAVITY

Figure 3.5a -Laminar Boundary Layer

MIXING R~EGION OF
U0  HIGH ENTRAINED

VORTICITY

CAVITY

Figure 3.5b -Turbulent Boundary Layer -A

Figure 3.5 -Idealizations of Flow Past Cavities which are Coupled
to External Boundary Layers by Slots or Orifices

(1 -l y(3.7)

where U is the local freestream velocity, is identically equal to 5/2. Theoretical-

ly, the wave speed is equal to the mean velocity at the inflection in the velocity

profile, i.e. where d2  2~ ) is maximum,

r 2o
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so that Equation (3.6) gives the dimensionless frequency, or Strouhal numoer* at

which the disturbances are propagated or convected downstream from the upstream

edge as 4.

f " 0.017 (3.9)

U
0

This is also the frequency at which the disturbances encounter the downstream edge. -

Now, the motion of this shear layer has associated with it a transverse

velocity which is, in the approximation of linear disturbances, nearly sinuous

across the opening. At the upstream edge, the velocity transverse to the flat

surface is zero so that separation is avoided. At the downstream edge of the

apecture the transverse velocity magnitude in the shear layer will be approximated

by

C otb/C
u2 (yl=b,y2) = 2(Y) e sin (cb+W)

where C and C are based on the average mean velocity profile found in the opening.
r i

The mean streamwise velocity in the opening U will combine with this transverse

velocity to give a local small angle of attack to the edge of approximately

U (YlTb, y2/U. If the edge is sharp, separation of flow can occur leading to

the formation of additional unsteady vorticity at the edge at a frequency given by

Equation (3.8). For more blunt edges, the alternate influx and efflux of fluid "'

from the cavity at this location will set up synchronous motions within and these

will, in turn, influence the initial conditions at the upstream origin of the shear

layer. In either case a condition for maximum transverse velocity at the down-

stream edge of the cavity is that sin (ab+6) is unity. This requires that

*1

a b + 27, ,+ ) for n = 1,2 ...... (3.10)

- . -.

*A Strouhal number is a dimensionless frequency of a fluid perturbation which

is formed with a length scale of the flow and the flow velocity. It is so named
in honor of V. Strouhal who first studied the vortex shedding from cylinders, as
discussed in Chapter 5.
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vhere 4 is an arbitrary phase angle that accounts for the possibility of a phase lag

between the encounter of the disturbance with the edge and the response of the shear

to this encounter, and where the plus or minus sign allows for motions either into 6

or out of the orifice. Since cx = 2;r/X, where X is a representative wavelength of

the instability mode across the opening, we have alternatively

b in + (3.11)
S +-4 2iT

The possible relationships between the wavelength and the phase that can be deduced

from Equation (3.3) are

fb= -21 (n+ 4 __) for n 1,2.... (3.12a)

0 0

or S

C
r n- 1 for n =1,2 .... (3.12b)
o

where, now, C is a hydrodynamic phase velocity averaged across the opening. -. 0
r

Equation (3.12b) with 0 most generally applies to a shear layer at the mouth of

an enclosure.

The representation of the disturbance frequencies in this manner has been
26suggested on similar grounds by Dunham who proposed the existence of selected

modes corresponding to integer numbers of vortices entrapped within the orifice.
27

It was Rossiter who proposed a relationship similar to Equation (3.12b) with = ")

and with n - ,/4. A velocity at the downstream edge into the cavity will provide an

increased pressure in the cavity that will exert an upward stimulus on the leading -

edge. This upward disturbance will be exerted instantaneously when the cavity is

small. * Og 29 i- -" [-

Another rationalization proposed by King, Doyle, and Ogle and later extended
30 31

by Martin, Naudascher, and Padmanabhan and by Rockwell concerns the integrated

*A similar condition of reinforcement was found to apply to a round jet passing

28through a sealed enclosure. It was found that fL/U (n-O,25-fL/Co) U /U where

U - 0.6 U,, n = 1,2 ..... and L is the length of the enclosure. -
c
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32disturbance across the opening. Following Bilanin and Covert the vertical dis-

placement of the shear layer across the cavity 2 is given by the proportionality

ciy C C
lr

(Ylt) X 0e cos (ay -wt) (3.13)

so that the instantaneous volume change per unit width imposed on the interior is

6V = { 2(Y,t) dy1  (3.14)

0

This volume must be absorbed in the elasticity of either the fluid or the cavity

structure, but the important point is that a negative volume change will cause a - -

positive pressure. This positive pressure reinforces a positive value of "

deflection at the origin of the shear layer, 62 (O, t). Integration of Equation

(3.14) using Equation (3.13) gives the volume change explicitly in terns of t-he

parameters Ci, Cr' and, a. Further, the condition that (abC i/Cr) > I provides a
31simple relationship just as Equation (3.12) with # = 0 and n - Tr/4. Rockwell has

treated the relationships more exactly, replacing a yl by integrated values across

the opening. This procedure accounts for the fact that, for long cavities,

particularly, the shear layer changes with yI" For example, in Equation (3.12), the

wave speed C is a function of distance from the leading edge of the opening.

Equations (3.9) and (3,12) provide alternate nondimensionalizations of the fre-

quencies of disturbances in the opening in terms of the size of the opening and the

velocity of the external fluid. The first definition, Equation (3.9), is based on

stability conditions, while the second, Equation (3.12), is required by geometric

constraints. In reality, the disturbances are neither exclusively propagating nor

always representative of standing modes.

Measuze-ments of the frequencies of cavity tones have been made for a variety

of external turbulent boundary layers. The measurements in Figure 3.6a show a

general decrease in Strouhal number as the boundary layer thickness increases in

relation to the streamwise dimension of the opening. The values reported by DeMetz
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Figure 3.6a -Cavity Resonance Frequency
Scaling for Turbulent Boundary Layer

Excitation
25

(From DeMetz and Farabee

1.0 - --- - - - - - - n-2
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0.7 n-1
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Figure 3.6b - Frequencies of Cavity Tones Driven
by Laminar Boundary Layers

(Data courtesy of DeMetz and Farabee)

Figure 3.6 -Representations of Cavity Tone Frequencies
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25
and Farabee were obtained on both circular openings and rectangular slots in air:

Dunham' s 26cesults were obtained in air and water media with slotted openings. The

two tones shown by DeMetz and Faralbee,~ Dunham, 26East, '3 and Harrington 34can be

explained from the flow-visualizations of Dunhamn. These frequencies correspond to

the entrainment into the cavity mouth of either one or two vortices in the cavi~cy;

the vortices originating from the rapid breakdown of Lh-i shear-layer instabilities

downstream of the upstream lip. The convection velocity of th- se vortices across

the mouth as reported by Delletz and Farabe. was approxdiimately 0.33 U .Each of the

modes of oscillation, then can be predicted from Equation (3.12) with C r/U o 0.33

and =0. The horizontal line., in Figure 3.rn show t~he vat Thus -nodes for n + 1/4

which generally bracket the observed Strouhal frequencies and which represent

either one or two -tanding waves or vortices in the opening. The measured results

of Heller and Bliss 3 and of Heller, Holmes, and Covert 36were obtained with very

lcing cavities and appear to correspond to a higher mode of oscillation. The uncer-

tainty in selection of ±1/4 that is apparent in !-igure 3.6a is additionally caused

by the fact that the actual value of C and is v'ariation with $/b is unkrovn.

Recent discussion of this question may be found in ref. 143.

"hen the external boundary layer was lami-ar, De~etz and Farabee reported

Strouhal numbers that take on a mocre continuous rather than the discrete behavior

observed with external turbulent flow. In the laminar flow case the tone frequency-

increised cot1in1uously with velocity according to LL form that is similar to Equation

(39,i.e., with

0.022

which is deterininedc 1by the observed value of C 0.56 U .The limited reinforce-

mcnt that ccoold be observed was evident: only at the nl 1Mode of Equation (3.12b).0

Thus far, we lwave hoeru concerned only with the shear-layer dynamics in the

.)pening vi-thliit c3nsiuezing the influence of the cavity %olume behind thle aperture.

The general agri~cm~nt amonp irvesrigators in the reported values of Strouhal numboer

att~st to the tirst-orcier incepend6ence of fb/U on the cavity shape. For rcctangiilar

"-1mhpQci t; ts, Ehmaogu(reorted! by Rockwell ) reports a slight increase in
37

fbr/U; at; thi- ~idth exceod - tho depth of the Lo.Fdi n Ma r tin have e>xawine1i

theuret ically the radiatiort Troper ties of these type cavities irn terms of the-,ir
25

entraired vortices. 'Mearurem(=nts of DeMeuz and Farahee were made with the
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openings of cylindrically-shaped llelmholtz resonators with the center of the hole
at the axis of the cavity. Relatively large pressure amplitudes were measured in

the cavity at coincidence of an aperture resonance and a volume resonance of the

cavity or any of its harmonics. The limiting maximum amplitude of pressure at the

bottom of the cylindrical cavity occurring at the cavity resonance frequencies

appears to be limited by

Pcav
_ -

"-<

where

1 2
q0  2 0U

At disturbance frequencies unequal to the cavity resonance frequency, the cavity . - .

pressures can be as low as 10 - qo.

The pressure in the cavity can be related to the far field acoustic pressure.

When the dimension of the cavity is smaller than an acoustic wavelength then, using

the notation of Figure 3.7, the piston-like motion in the opening causes a sound

pressure

Y2

PARTICLE MOTION ACTS
AS A BAFFLED PISTON

I ap 0

Pca v

Figure 3.7 -Geometry of Radiation Problem Involving a Resonating
Cavity Coupled to an Unbounded Acoustic Fluid Medium
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00_ _ P. e0 (3.15)Prad 2r

when k a << 1 and the wall is essentially an infinite plane. This result is easily
0

derivable from Equations (2.114) and (2.116) for the otherwise source-free region

(T 0) external to the rigid plane. For this classical situation the Green
ij

function is (Equation (2.116))

ik r
0

C' ,to = 2 r 

since r I = r2 = r, and

Ilim ; = 0

y2 2

Therefore, when Y 0,

a iWP U -
I = iOop

only in the small opening and is zero on the surface otherwise. Then Equation

(2.114) gives the result, Equation (3.15), directly.

Depending on the size of the cavity, the pressure in the cavity is related to

up by either of two asymptotic forms. In either case, if the medium is an ideal

gas, the pressure change for a fractional change in a unit volume is given by

d= - PoCo Y (3.1$) .. .

2 6V

*2
If the cavity is small compared to a wavelength, the 6V = na u and V = V so

p cav
Equation (3.15) gives (6Vw=6V where w is the resonance frequency of the cavity),

1 33
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Use is made of the Helmholtz frequency (given below) and we assume that the hole

radius is much larger than the length (depth) of the hole that connects the inner

and outer fluid. The alternative expression can be written for a cavity whose

dimension exceeds an acoustic wavelength. Then the unit volume, for example, for

an organ pipe of radius a

po

where X is the wavelength of sound. The pressure fluctuation in the cavity is
0

6pe

cav P oop

and we find

Srad_' (3.18)
c r

IPcav 0

where A is the area of the ca ' ThiL. relationship, previously derived by Elder3 8
C

for organ pipe excitation, shows an omnidirectional sound field with a sound pressure

level which is inversely proportional to the sound speed. Thus, the soui-d pressure

has a monopole-like directivity, but a dipole-like wave number dependence. The

factor (p A) represents the time rate of change of the force exerted on the .
Cayexternal fluid by the pressure in the cavity. Equation (3.1.8), therefore, includes

the !ame parameters as Equation (2.77) for the true dipole with the exception of the
39 40directivity factor. Howe and Elder have given more extensive treatments to the

flow excited Helmholtz resonator and other resonators. S

The elastic character of the cavity structure has received little attention,

however, in the case of rigid walled cavities with fluid compressibility governing

1-3
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the cavity stiffness. Relationships for the frequency have been given by Raleigh.1, 41 i.[[2 !-

The classical Helmholtz resonance frequency can be found in numerous tests. For

circular openings

c2
f - (3.19)

-..T "'.-

where a - radius of the opening

V volume of the cavity

L f length of the opening

AR = end correction approximately equal to 1.64a 2

This can be generalized to openings of other dimensions by replacing 7a by the area

26 42
of the opening S, and AR by (TS) /2. Dunham and later Covert, Ingard and

Dean, 4 3 and Elder,38 '4 0 have considered some general impedance characteristics of

cavities and how these characteristics influence coupling of the cavity and shear-
44

layer dynamics. Miles and Watson measured the flow-excited pressures of acoustic

modes in a nearly cylindrical cavity with its axis set perpendicular to the flow . .-.

direction and slotted along its length.

3.4 SELF-EXCITATION OF LAMINAR JETS

3.4.1 Dimensionless Frequencies of Tonal Disturbances

The disturbances that occur in circular jets are dependent on the character

of the mean velocity profile of the efflux, and, therefore, somewhat on the type of

* nozzle used. It should be emphasized that the dependence of the jet tone frequency

on efflux velocity will depend on the shape of the velocity profile at efflux. For

short, potential-flow nozzles (a) in Figure 3.8, the efflux contains a modestly- -

sized potential core with an annular shear layer so that 26/D << 1, where 6 is the

shear-layer thickness illustrated in Figure 3.3c. When the nozzle is made many

diameters longer, the flow in the tube is fully sheared so that velocity profiles *".

with shapes generally similar to those shown in Figure 3.1d occur (in these profiles

the shear layer incorporates most of a half-diameter). These two extremes, 5 < D .

and 6 = D provide alternative dependence of Strouhal number on Reynolds number as

shall be described below. The efflux will be laminar for Reynolds numbers (U D/V)

less than 1400 whr, the inlet to the nozzle is well formed to avoid separation of

flow inside the nozzle. For jets ensuing from long square-edged orifices such as (c), •
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NOZZLE TYPE (RD)CRIT REFERENCE

BECKER AND MASSARO
4 5

SHORT RADIUS 1400 CROW AND CHAMPAGNE 4 8

> 
BROWAND AND LAUFER

4 7  --

L < 2D
(b) ./- -

SATO AND SAKAO 1 1

LONO NOZZLE -1000 SATO12

IL> 201 CHANAUD AND POWELL61

I -L>

SQUARE. 54-.0

EDGED 600 ANDERSON " -

ORIFICE KURZWEC 72

(d) "

KNIFE BEAVERS AND WILSON 5 0
EDGED Soo. .."

N ORIFICE JOHANSEN
4 9

R REYNOLDS NUMBER FOR WHICH VORTICES BEGIN
(R)1IT TO FORM IN THE JET FLOW. AMPLIFIED SINUOUS

DISTURBANCES OCCUR AT LOWER REYNOLDS
NUMBERS .".

Figure 3.8 - Illustrations of Nozzles and Orifices that Produce Jet Tones

the efflux is laminar only for RD < 600 because vortices caused by separation of

flow are generated at the inlet for larger Reynolds numbers. Finally, in the case

of knife-edged orifices, the jets are disturbance-sensitive at Reynolds numbers

greater than 500 because of the rather thin shear layer in the efflux. The refer-

ences cited in Figure 3.8 are those for which extensive flow visualizations and

quantitative measurements were obtained over a wide range of Reynolds number, The

critical Reynolds numbers cited are the minimum values for which growing sinuous

disturbances give way to clearly-defined vortex structures. This critical value of

Reynolds number is not well defined since it is often influenced by the presence of

extraneous disturbances and its identification also depends on experimental detail

and on the manner of observation. Jets are disturbance-sensitive at Reynolds numbers

that are as low as 100. .
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Visualizations of large-scale vortical structures in circular jets have been

made by numerous experimenters for the last 40 years or so, see ref 143. The photo-

graphs of Becker and Massaro which cover a wide range of Reynolds numbers are

shown in Figure 3.9. Their efflux was laminar at least until moderate values of RD

and the vortex structures are clearly evident. "

The frequencies of disturbances in this case are determined by the thickness

of the annular shear layer and are typical of cases for which 6 < D/2. The shear-

layer, therefore, is thought of as two parallel hyperbolic tangent profiles so that

the unstable wave numbers of the jet correspond to

c = constant

Now for an initially laminar jet, resulting from a laminar boundary-layer on the

wall of the nozzle, the shear-layer thickness will depend on Reynolds number ap-

proximately. as

12 3 4
016 20 3300 4000

5000 6600 9000 > 10000

Figure 3.9 - Smoke Jets from Larninat Flow Exiting an ASME
Short-Radius Circular Nozzle (By Becker and Massaro 45

(Numbers refer to approximate Reynolds numbers)

*See Chapter 7.
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Since we can write

7r 2T Tf 2Tif
C Cr

where U is the efflux velocity of the jet, the Strouhal number for these
J

naturally-growing jet instabilities can be written as

fD 1 a /2
U l(D) (3.20) .

J

The constant of proportionality appears tci range from 0.012 to 0.0195 (Michalke and

Schade) as shown in Figure 3.10. Trends are shown as well as the isolated ob-
47 48servations of Browand and Laufer and of Crow and Champagne. This behavior with

Reynolds number is apparently not reported at R greater than 20,000 or 30,000.D
Strouhal numbers observed for other types of round jets are also shown in -

Figure 3.10. Values of S for tones of knife edge orifices are constant with RD .

D 9 50
Flow visualizations of Johansen4 9 (6-D/2) and of Beavers and Wilson show that the

responsible jet modes are axisymmetric. See also ref 143.

For two-dimensional jets with shear layers that include most of the width w,

measurements of Sato and Sakao show freauencies of antisymnetric modes given by

Sw  0.14 for 2000 < R < 10,000, while for low Reynolds number* they found
* V w

f= S- (7.7xi0 - 5) RwUj w w"-7-
J

12Frequencies of axisymmetric modes followed S 0.23 for 1500 < R < 8000; while
W w4

at values of R on the order of 3 x , Sw on the order of 1.25 was repoi ted. Inw
the range of Reynolds numbers less than 104, the oscillations of both jet modes were

accurately described by the theory of hydrodynamic stability based on profile (d)

of Figure 3.1.

*Based on the mean centerline velocity at the jet-exit.
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INSTABILITIES IN LAMIN4AR JET& OTXSRCUE t UBLN

KNIFE-EDGE ORIFICE AND TRANSITIONAL JET

0 JOHANSEN (1120) ORIFICE INSIDE PIPE FROM POTENTIAL FLOW NOZZLE$

ZrE" IAVER2dWILSON 411701 ORIFICE 4D LAU/FIEI4ER (11751 ELUCIDATED FROM
AT PIPE OPENING TURBULENCE BY WAVE EDUCTOR

CROW/CHAMPAGNE 119711
POTENTIAL FLOW NOZZLE, HOLE TONE *ACOUSTICALLY-FORCED INSTABILITY

<CIIANAUD/POWELL (19651 MODES
~~~~~~ REFtOTtE QREOUENCIESOF-PUFFS- CAUSED

BECKERAARAO (19158) BY 4 INSTABILITY WAVES AT
ASMIE NOZZLE Ill CONTRACTOR X 1(D > 1-2
RATIO) TREND at; TONES RWNMLF 176

INSTABILITY WAVES AT X,<0.50

*FREQUENCIES OF PAIRED VORTICES
AT XID - 3

2.6

2.42

21 - LAMINAR EFFLUX FROM
2,0 - JET MODE SHOWN IN
2.0 ~FIGURE 3.31C)

1.6 -.

1.48
1.4 TURBULENTAJT

1.2 - / REGIME

1.0 -0

0.8 REF. 48 6
0.6 & ~ *ORDERLY LAU/FISHER/FUCNS 62

-

0.4 -. h/D6 00 0

0.2 .

RE)
AXISYMMETRIC0

VORTEX "PUFFS"
IN TURBULENCE

Figure 3.10 -Strouhal Numbers for Vortex Formation in Circular Jets
with Axisymmetric Disturbances

51
The hole tones observed by Chanaud and Powell are bounded between the -

Strouhal numbers being either constantL or proportional to R D . These tones are

reinforced by placing a second orif ice opposite the ef flux, as shown in Figure 3.lIla.

Separation of flow and the subsequent formation of vortices at the downstream knife

edge cause disturbances which feed back and reinforce the axisynunetric-mode instabil-

ities of the primary efflux. Although the frequiencies of tones will depend on the

ratio of orifice spacing to diameter h/D., in a manner to be examined subsequently,

139



# . DIRECTIVITY

UN'

Figure 3.11a - Hole-Tone, Involving Axisymetric Modes and-
62

Causing Omnidirectional Radiation Observed for
hID= 2.0, 2.5, and 3.0

/ (b ) 4-4 -x , -x -.--- -

UJJ U-- "- - •

1-2:i 1)";. 2

D l _h C O,-' '-' "' -'

Figure 3.11b Edge-Tone, Involving Antisymmetric des and -.

Causing Dipole Directionality, Observed7 for 3 <h/D < 30 i''ii-.
(See Section 3.4.2) .i:.i!?:)

Figure 3.11 -Hole-Tone and Edge-Tone Geometries

the tones are possible only because of the available range of wavelengths for jetI 1 - I

instabilities to occur (Figure 3.2). hus, the region enclosed within the branches.-

in Figure 3.10 describes the available Strouhal numbers of amplification. °0

4/

".

As Reynolds numbers exceed 104  larger, clearly defined growing waves are less"..

apparent and axisymetric vortex structures begin to dominate the jet dynamics. In

470

the measurements of Crow and Champagne, wave-like disturbances initiated at the

lip of the jet coalesce as they propagate downstream forming longer waves. After

i t( 3sech h

in igue 310desribs he vaiabe Sroual umersof mpifiatin..-. .. •.

4.
As Rynols nubersexced 10, lager clerly efind grwingwave areles

appaent nd aisyimetrc votex trucure begn todomiate he"jt"dyamic. I



two stages of coalescence, the wave-like disturbances breakdown to vortices (or

"puffs"). Strouhal numbers for the formation of waves and of vortices downstream

of the nozzle (yI>(1-2 )Dj) are both shown. The Strouhal number for vortex formation 0
was on the order of 0.3; at this frequency the jet could be acoustically driven to

larger-magnitude axisymmetric disturbances. Observations of Browand and Laufer4 7

disclosed a similar breakdown of wave-like dynamics into vortex-pairing. In both - .

cases, the observed Strouhal number of vortex formation was 0.5. At still larger

values of RD measurements by Lau, Fisher, and Fuchs of the frequency spectra ofDL

velocity and pressure fluctuations in the potential core were peaked about fD/Uj

0.5 to 0.6. This frequency was later confirmed as related to a regular pattern of

large vortices by the use of signal-conditioning techniques by Lau and 
Fisher.

3 5

The fluctuations sensed in the potential core are impressed by these axisymmetric
143" o

vortices in the annular mixing layer. In a recent review of some early sound

measurements of Powell, it is shown that high Reynolds number tones may be generated

by separating flow nozzles. Strouhal frequencies of these tones are roughly 0.45

at Reynolds numbers ranging from 5 x 105 to 9 X 106. Also some measurements b\

144 145
Quick and Ho disclose tones emanated by subsonic wall jets at high Reynolds

numbers with Strouhal numbers of order 0.38. These tones are clearly seen in photo-

graphs to be related to the motion of large vortices of the same form as reported

by Crow and Champagne.

Tonal disturbances have also been observed emanating from square-edged orifice54-60 -i- i
plates, (c) of Figure 3.8 by Anderson. Strouhal numbers based on the orifice

diameter and efflux velocity are shown in Figure 3.12 together with a schematic of

the experimental arrangement used. The sloped lines show that the numbers are

functions of the ratio of thickness to diameter. For each parameter

S ft
t j

the values of SD generally range from 0.4 to 1.0. This range corresponds roughly

to the observed range of numbers observed for free laminar jets in Figure 3.10.

The limit of t/DJ = 0 corresponds to the knife edge orifices used by Beavers and

Wilson and Johansen. Parametric dependence of S on t/D will be discussed at the
P

end of the next subsection.
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1 ANDERSON 5 6  0
2 ANDERSON57

1.4 x 103 <RR <1.4x10 4  L

3 ANDERSON 58  u t
2 2 5 6 < RD< 4 23 3  N "

5775 < RD< 30,000 F-i 02.0 -- D ,

KNIFE-EDGE ORIFICE t-0
f(t/=0) 2x10 2 <RD<3.5x10 3 j 2

SD

St = 0.2 0.6 1.5 2.1 2.7 3.1.

o.11Il. .0.2 0.1 1.o010 .

t/O

Figure 3.12 - Tone Frequencies for Square-Edge Orifice Plates
Terminating a Pipe, from Anderson, Compared with S for

D
Knife-Edged Orifices from Johansen4 9 and Beavers

and Wilson 6 3

3.4.2 Hole, Ring, and Edge Tones
The general sensitivity of jets to external stimulation by sound, vibration,

and by reflected hydrodynamic and acoustic disturbances is recognized as the primary

cause of the many varieties of musical tones observed over the years. It is

interesting to note the variety of commonplace observations of such instabilities

afforded by acoustically excited flames (Tyndall61 and Rayleigh ), bird calls and
I.1 62whistling tea kettles (Rayleigh and Chanaud and Powell ) human whistlcs (Wilson,

63 54-60Beavcrs, DeCosler, Holger, and Regenfuss ), Pfeifentone (pipe tone), and a
1 "."

variety of musical instruments (also, e.g., References 64-67 are some of the more
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recent and include interesting bibliographies) The fundamental feature of all

these tones is that the jet is an oscillating system, with its available continuum

of "resonance" frequencies, becomes dynamically coupled to another mechanical system.

Figure 3.11 shows two of the most important generic jet oscillators.

The hole tone, previously discussed, is generated when a plate with a sharp-

ed-ed orifice is placed coaxially with a circular jet. Rayleigh discusses in great

detail the aspects of construction of this oscillator which is the source of bird

calls, tea kettle whistles, and human whistling. Axisymmetric disturbances are

ca.u-sed at the hole which reinforce the initiating disturbances at the efflux. Sound -,

r.dl~iaic:. results fro-r the pulsating efflux at the second plate. In the experiments

a: vnanauC anild Po-well, the second plate was larger than the wavelength of the
51 - .

sourn/ emaated so that the radiation was omnidirectional. The ring tone works on

the same principle, however, the hole is replaced by a coaxial ring. Toroidal

vortices shed from the ring cause alternating forces on the ring. These dipoles

radiate in the direction of the jet axis. The edge tone, (b) of Figure 3.11

involves the interaction of the asymmetric modes of a jet with a rigid edge. The

to and fro oscillation of the jet causes an alternating force on the edge. It

generally occurs with two dimensional jets, but it can occur with square circular

jets. This force has a reaction at the jet efflux.

The edge tone, which is typical of self-excited jet tones, has been given ... ...

considerable attention in recent years because of its clear manifestation of the

relationship between jet stability and geometric constraint. The relationship

between the frequency of the tone and geometry that is generally accepted today has
68 69

been given b% Curle and by Powell. The accepted mechanism of edge tones as
69,70

given below was f irst elucidated by Powell. The coupling between the edge and

the efflux comes about at the generation of a vortex at the edge. This generation

occurs when there is a disturbance velocity perpendicular to the edge causing

separation and a vortex. As the jet undulates, the transverse velocity (and,

therefore, the vortex strength) changes sign. At separation, as a vortex (a) is

formed at the edge, a disturbanc- at the nozzle occurs at (b) which reinforces

the direction of deflection. The example of the edge tone carries with it many,

aspects which are common tc all self-sustained tonal fluid-structure interactions.

As depicted in Figure 3.13, the shear layer undergoes a spatial amplification of " "

disturbances which are subsequently incident on the edge. Te interaction of the--

edge with the incident flow results in the generation of ano r disturbance,
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FEEDBACK PATH -
STRUCTURAL OR FLUIDIC

DISTURBANCE 1FLUID-
IN THE FREE STRUCTURE

SHEAR LAYER jINTERACTION

AMPLIFICATION
OF DISTURBANCES

IN THE SHEAR
LAYER0

Figure 3.13 -Necessary Ingredients in the Feedback Loop Conmnon to
all Self-Sustained Tonal Vibration or Sound Radiation;

Characteristic of Many Fluid-Resonator Interactions

of ten manifested in the production of vorticity. These secondary disturbances

occur only because of the presence of the surface in thi, flow stream and they must-

be transmitted back to the origin of the initial flow-instabilitv. Reinforcement

of this instability is essential for the self-sustained tone and it, therefore,

requires the establishmrent of a distinct phase relationship between the initiating

disturbance and the interaction disturbance. The mechanics of transmission of this

feedback is -. 'aricd, depending cn the structure geometry and the type of flow. In

the case of the edge tone, the feedback was fluid-burne resulting in the formation

of lip vorticity at the jet efflux, while in the case of the cavity it was a mode

of recirculation of flow entrained beneath the shear flow. The feedback Uf hole

and ring tones is similar to that of the edge tone, but involving symmietric jet

miodes. Flow over cv) indere and hydrofoil s, Chnpters 5 and 9. results in the ftorira-

ti rn of a vortex street in the wake. Thie induced forces on thle shedding, body can

causec that body, to vibrate resultIng ii, a structural transriission of at disturbance

back to the point of ijwsuparation on the lbod,.. ThusI., all thiese self -excitation

plienoiu.ena iiust heve tht! elemnents oI a shear laver which is unstalble to stimulat ion.9

a fluid-structLure interiction, and a feedback pati-. Disruption of' any one of th~ese

eleneat s will. t.;eak the lea p and njducc- the intensity of the tone . insofar as

th L disturbanccs in the iet are sinuous, the transverse velocity at the edge

will he -:vich as to reinforce the initial direction of efflux disturbance every0
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: 1/4 wavelength into a cycle. The geometric constraint on ':einforcement is,

therefore, deduced from Figure 3.11b as

h -n + - for b 1,2,.... (3.21)

where X is the wavelength of hydrodynamic jet disturbances, which is similar to the

relationship derived for cavity-shear-layer interaction (Equation (3.11)). In the A
event that h is not small compared to an acoustic wavelength, a phase angle must be

included in Equation (3.21). A Strouhal number can then be defined as

C 0
S n+ (3.22)

.1 J

where C /U is the average disturbance wave speed from the jet exit to the wedge.
r J

This wave speed will depend on the details of the jet efflux and the ratio h/D; it
70it is roughly limited by 0.3 < Cr/U J < 0.5.

To determine the frequency-speed relationships for a given type of jet, the

geometric requirements for the tone given by Equation (3.22) must match the -

conditions for stability. As an example, Figure 3.2 shows that the range of wave

numbers sf unstable modes is 0 < a 2 with the least stable being a 6 0.8. The
m

length scale 6 is approximately D/3, as indicated by the two-dimensional experiments

12
of Sato, so the wavelengths of the unstable modes are crudely determined by the

condition

D

wher, D is the slit height shown in Figure 3-]lb. The least stable mode occurs at . .1

MA 2.5D
least
stable

althouglh the numerical values will vary somewhat from case-to-case. Since
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C 0. 5U J
f f

these stability requirements will restrict the allowable tones to within the

approximate limit

0 < -D < 0.5 (3.23)UU

and

! =(r ) (n+)() (3.2')

although in specific instances these limits will be so-'7hat governed by Reynolds
68-70 ..-. i

number, nozzle geometry, and the spacing L/D. .. .e 3.14 shows the Strouhal

71
numbers observed by Brown for a two-dimensional jet of width D. These results are

70
gcncrally in agrcemcnt with valucs reported by Powell at a Reynolds numbcr of 300, .,

0.15

0.10

0.08 -

0.06 -

uJ 0
00

EQUATION (3.24)

Cr= U /2

0.01 .. IL I I I I I I
3 4 6 8 10 20 30 40 60 80100 0

h/D

Figure 3.14 - Strouhal Numbers for the First Four '.1tages of

Brown's 7 2 Edge Tone
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although Powell's results disclose a significant dependence on Reynolds number.

The important aspect of Figure 3.14, aside from the range of absolute values of SD

quoted, is the confirmation of the n + 1/4 relationship among various edge tone

stages that depend on the Reynolds number and h/D. Powell quotes Strouhal numbers

anywhere from 0.01 to 0.3 for 100 < R < 2400; this dependence on Reynolds number is

illustrated in Figure 3.15 with the curve of neutral stability of the two-dimensional

jet. The cross-hatched region corresponds to the upper and lower limits of validity -

of Equation (3.24) which replace the limits in Equation (3.23). There is apparently

100 |

NEUTRAL STABILITY INDICATEDRIANGE OF NEUTRALBYFGR3. 
"

STABILITY (C -0) 
BY

INDICATED.
FORCED MOTION

c 1 > 0.

o E ELEAST

C <0 T STABLE, -
.. A- I Y FIGURE 3.2

JET LESS
UNSTABLE10! !

io I I

10 100 1000 104

RD)

Figure 3.15 - Stability Diagram of the Antisym metric Mode,

for Two-Dimensional Laminar Jets (see Fig. 3.3a)

Showing the Region of Edge r'one Activity 9

700

Observed by Powu!7ll" 
.

1_47J

" S".%-.



a region R < ~ 30 for which no tones exist because the jet is stable, and an upper

region % > 2500 beyond which the jet is turbulent. There is a.so apparently a
62

minimum value of L/D between 2.5 and 4.5 (with the larger value required at low O

values of R.0) for which edge tones will exist..70

The unsteady force exerted on the edge by the jet has been shown by Powell to .-

have an amplitude bounded by

K ..

20 2 40
IF 9- PoU L3 D = - qjL3D (3.25)

where L3 is the width and D is the thickness of the jet. This upper limit was

deduced from measurements in air of the sound pressure radiated from laboratory

edge tones which showed that the force is actually a function of both L/D and R

The relationship between the force and the sound pressure is deduced from Equation

(2.77), as long as L 3 , D, and h are all less than the wavelength of sound. Letting
-3t~

i'-S
f.(t) = IF e. -

Equation (2.77) gives --

ik r-iW Cos 0 ~ 32)_
pa(rw) "- -e (3.26)a47,C r ,

0

where wu = 2- f, and 6 = 71/2 coincides with the vectorial direction of jet flow. This
70

limit given by Equation (3.25) has been supported by kinematic considerations which

take into account the strengths of vortices formed at the edge and their influence

on the unsteady transverse momentum of the jet. Therefore, this upper bound is "

expected to be generally applicable. Both the sound pressure and the force were

70
simultaneously measured by Powell and found to obey Equation (3.26) in magnitude

and directivity. This represents one of the earliest unambiguous confirmations of

Curle's theory. 62

l'he hole tone of Chanaud and Powell (Figures 3.10 and 3.lla) can now be

interpreted. For h/) > (h/D) Cit, the tone was emitted at one or more Strouhal

numbers contained within the cross-hatched zone of Figure 3.10 in the region

900 < R D < 2500. For a given value h/I), the Strouhal number was constant over a

148
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range of R and it would change to a second stage at some critical value of R.

For example, at h/D 3, S = 0.5 for 1350 < R < 1900, changing 0.65 at
D chnigto SD

RD = 1900 and continuing at this value until R - 2500. When the Reynolds number L .

is reduced by reducing speed, this value of S was maintained down to RD = 1400 when

S reverted to -0.5. This type of hysteretic behavior is commonly observed in self-

sustained fluid osci.lations.

The behavior of the Strouhal numbers observed by Anderson, shown in Figure 3.12,

may also be interpreted in the above terms. Flow in sharp-edged orifices observed
72

by Kurzweg disclosed a train of axisymmetric ring vortices. Parallel to Equations

(3.11) and (3.20), we write this condition as

t =nA

where A = vortex spacing

t = thickness of the orifice plate

n = integral number of vortices in the orifice

Letting nS

fA
-f _ ~ constant

UJ

where U is the velocity of the orificial flow, so that

ft
- = n forn>1

t U

describes the Strouhal numbers for the various stages of tones. If we let the

allowabie range of S for the jet to be between 0.2 < S < 1 (as suggested byD.- .

Figure 3.10) at the appropriate value of %, then the dependence of stages on d/t is

given by

0.2 < SD - (St) -

which corresponds to the diagonal lines shown in Figure 3.12 with the indicated

values of St
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3.5 A SUMMARY OF STATISTICAL DESCRIPTIONS OF TURBULENCE

3.5.1 General Comments
We have seen that in the case of jets and all other flows, the disturbances 0

become disordered, or random, at large values of Reynolds number. In order to

conveniently deal with such disordered flows, it has been necessary to look toward

statistical representations which usefully characterize the average, or expected,

behavior of certain properties of the flow. These properties generally include -

fluctuating velocities in the turbulent region, fluctuating pressures, and density

fluctuations. When radiated sound is the result of a random, or turbulent, process,

then the far field sound pressure will be a temporary random variable. Therefore,

in order to apply the deterministic relationships derived in Chapter 2 to realistic

noise-producing flows, techniques have been developed for relating the statistics of

flow fields to statistics of radiated sound. An example of the use of a deterministic

Green function for sound production from a field of random (in time and spatial dis-

tribution) sources has already been given in Equations (2.125) and (2.133). In this .0

section we will extend our analysis to cover alternative statistical formulations

and apply them, in an elementary way, to the production of sound from turbulent jets.

The foundations of the modern statistical approaches to turbulence measurement

are probably found in Taylor's series of papers on the statistics of isotropic .
73 74" "

turbulence and on the spectrum of turbulence. In these, the interrelationships

between time and space through eddy convection were first realized, and methods of

extracting measures of the largest and smallest eddies through correlation were

outlined. In the forty years since, the importance of these statistical measures -

has become well-recognized. Electronic instrumentation has also become more so-

phisticated allowing observations of identifiable turbulence events through the

merits of signal conditioning; interpretations of correlations have, therefore,

recently matured, leading to more elaborate hypotheses of turbulence structure which 0

relate to the production and maintenance of turbulence in virtually all forms of

turbulent shear layers; jets, wakes, and boundary layers. The most extensive treat-
75 " .-.

ments of stochastic representations of many types of flows are those of Batchelor,
76 77 78Hinze, Townsend, and Lumley. The reader is referred to these sources for _

rigorous derivations and theorems of mathematical validity. Our discussions will

deal with review and applications.
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Noise and vibration are caused by fluidic and structural reactions to the

contiguous turbulent field. In Chapter 2 linear cause and effect deterministic

relationships were derived for the radiation process and in Chapter 6 similar

relationships will be derived for structural response as well. In either case the

input is stochastic, the transfer function is postulated as linear, so that the

output of the linear system is also stochastic. The fundamentals in the treatment

of these systems have been developed in communication theory (see for example

Reference 79), with subsequent development8 0 of sampling criteria, frequency-time

relationships, and nonstationarity. Treatises on the application of these

techniques to physical systems have been developed for the generation of water
818-4

waves and the vibration of structures by random disturbances. 82-84
. "

3.5.2 Correlation Functions of Random Variables

In the formal treatment of random phenomena, the variable in question, for

example, a vector component of velocity or a pressure, has a certain probability of

attaining a value. Giving the symbol u' to the random property and the symbol P(u')

to its probability of occurrence, then if the disturbance is to occur at all we have

P(u') du - 1 (3.27)

ie., there is certainty that u will have some value between plus infinity and minus

infinity. The average of u', or the expectation of u, is defined as

E(u') = u' P(u') du'

(3.28)

Equation (3.28) is also called the first moment of P(u). In the hydroacoustic sense,

Equation (3.28) just defines the mean velocity, or in the case of pressures, the .'.
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static pressure of the random quantity. A third property of the probability is the

mean square,

2 f u,2
E(u' = u P(u') du'

Su'2  (3.29)

and the variance is defined as

2 2

Var(u') - E(u'2) - (E(u'))2 (3.30)

In fluid mechanical applications, the manipulations of relationships are r

simplified by treating the random variable as a variation about the mean. This

permits us to decouple the mean and turbulent motions, finding first the mean, or

steady, component of velocity or pressure and then deduce the behavior of the random

component to varying degrees of precision. In this way, the random motion is viewed

as superimposed on the mean flow. Thus, if we have been defining our random variable

as

U' =U+ u

with a probability density of u given by P(u), then it is easy to apply Equations

(3.27) through (3.30) to see that

E(u) 0

and

2 2
E(u 2 ) - u

= Var(u 2 )

which are simpler relationships to deal with. .-
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.- To apply these notions to the problem of describing real turbulence quantities

which are random in time and space, let

u u(y,t)

where y is the space variable and t is time. The joint expectation of u at locations

yl and Y2 and times t, and t 2 is a generalization7 5 '8 2 of Equation (3.29)

E[u(Yl,t) u(i 2 ,t 2 )] = <U(Yl,tl) u(' 2 ,tl)>

.0

= u(Y 1 ,t 1 ) u(y 2 ,t 2) P(U(Y,t 1 ))

x P(u(y 2 ,t 2 )) du(y,,tl) du( 2 ,t 2 ) (3.31)

The brackets <> will henceforth denote the taking of an ensemble average in the

* formal sense. If the functions P(u(y,t)) are independent of spatial position, then

Batchelor calls u(y,t) a spatially homogeneous random variable. The ensemble

average ,uG1 ,t) U( t)> is called a covariance or a correlation function. It is

independent of the origin of y,, but it is dependent on the relative separation of

Y and y2 . .Iternatively, when P(u) and, therefore, the ensemble average, is

independenL of the time, but dependent on time difference, r = t 2 -tl, then u is

temporally homogeneous or temporally stationary.

To carry out the integration in Equation (3.31) in practice, u(yl,t 1 ) and

u(Y2 ,t2 ) would have to be sampled in a large number of experiments and then the

integration performed over the complete ensemble of all possible values. This being

impractical we seek simpler alternative approaches in which the formal operation of

Equation (3.31) is replaced by a time or a space average. That is, we define the

temporal a' eragc
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t tu(yl,tl) u(Y 2 ,t 2 ) , u(y 1 ,t) u(y 2 ,t+T)

ST2 2-

Sim- u2t+c) dt (3.32)T J (ylt) U(Y2,tT-T/2

and the spatial average

-4. - -
Y Y"

u(Y1 ,t 1 ) u(G 2,t 2 ) U( 1 l,t 1 ) U(y 1+r,t2 )

= lim V  u(ypt 1) u( 1 +r,t 2 ) dy (3.33)
V

P
In order to carry out this procedure. When

<UlU2 > - UUt (3.34)

<UIU2  I- 2 (3.35)

the process is said to be ergodic; there are certain formal requirements for P.
ergodicity that are described in References 79 through 82.

It will be assumed in this monograph that Equation (3.34) holds, unless it is

stipulated otierwise. This assumption is typical of the fluid dynamics of turbu-

lence. The relationship of Equation (3.35), however, does not generally hold for

all types of flow. Specifically, the disturbances in developing jets, wakes, and

transitional boundary layers do not satisfy spatial homogeneity. Fully developed

turbulent boundary layers also do not strictly satisfy Equation (3.34), however,

they are generally assumed to do so. This assumption is required in order to

develop theorems for the description of the response of contiguous structures,

Chapters 6 and 7, in terms of boundary layer properties. Even though many flows do
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not formally satisfy Equation (3.35), their correlation volumes are often small

compared to the extent of the developing flow so that making the assumption leads to

accurate predictions.

3.5.3 Frequency and Wave Number Spectra

In this section we will generalize the stochastic representations of Section

2.6.2 into time and thus space dimensions. In the case of the time variable we have

already dealt with the frequency auto- and cross-spectral densities. Since u(yt) is

a stationary random variable, then the Fourier transform of Equation (2.105)

1 + ,(,t) dt
u(y,) = y e

is also a stationary random variable. Using this definition, we have derived the

cross-spectral density of u at yi and in Section 2.6.2 to be

t f ljim [2,u(Y l) u2) (y2 -) -iW

U(ylt) u(y2 ,t+.') T- T dw (3.36)

-00

t
The cross spectral density is defined as the Fourier transform of u(Ylt) u(Y2 ,t+T) ,

i.e., define .

+ + i i tiWT -""

'uu(yl' Y2, w ) = u ,t) u(Y2 't-T) e dw (3.37)

ff

.... .. . ... .

where u _ = u(Yl,t) etc., with an inverse 2"" -i "

U(yl~t) u( 2t+T)  = uu( l' 2, w) e dw (3.38) ''.

therefore, by identity - _
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2rTu (yl,w) u* (2 ,')'
y y2 ,w 6 (w-uw') ur 12 3.9

T-KT

which is independent of T.

*This derivation could have proceeded along simpler lines if we had just taken
75,81

the ensemble average:

<u(y1,t) u(Y2 9t+)

j J <eiw ) ~> <U(y1  ~ uyw)> dw' e dw (3.40)

whe re p

=epiw-'t f '(--) dt =2 r 6(w-w') (3.41)

The equivalence of Equations (3.38) and (3.40) requires the c-ross-spectral density

to be given by

uu(IY9W f e±(W) *Uy)) UY2w) dw' (3.42)

If the cross spectral density is to be independent of time t, then this requires

the equivalence,

*Equations (3.39) and (3.43) are equivalent ways of formally relating the generalized

Fourier transform of a random variable to the cross-spectral density.
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For spatially homogeneous flow fields, the correlation functions for positions

Sand 2 may be considered indeperdeuL cf reference location. Accordingly, just as

in the case of Equation (2.129), (YI , 2 ,w) depends only on the separation vector, 

i.e., 7 ..- ...

(y vW)uu 2- L; %: :',Vi

In the following chapters the multidimensional space-time Fourier transform

will be used. This is defined as

u(k .- k n W)~1. •.nC)-

fi[(k lYl+ "".k nyn )-Wt]f dy ... dyn  dt u(*,t) e(2-,r) J J y,
(2 _CO .

where n varies from 1 to 3 space dimensions. The relationship equivalent to

Equation (3.39) for spatially-homogeneous fields requiring both space and time •

averaging is (for k Ll-*C)

¢ (k ... k ,e) 6(W-W') 6(kl-k{) ... 6(knkn) n-
nun n _ "'

(I. T u(kl knw) u*(k. knW) (3.44)
n " 21

or

Cuu(k l .. kn w) 6(w-w ') 6(k l kj )  ... 6(k n-k n )  
.

<Ul(k .. kn w)  u*(k1...k',-,')> (3.45) --
" .2

rather than Equation (3.43). The function (k. .k ) has already been called the

wave number frequency spectral density of the disturbance u. S
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For spatially and temporally stationary variables

u -- u

The autospectrum ¢(w), the cross-spectrum r(r,w) and the wave number frequency

spectrum +-(,w) are related to correlation functiens. These relationships which

form the cornerstone of hydroacoustics will be used extensively throughcut this

- monograph. The temporal autocorrelation is

<u(Y,t) u(y,t+T)> <u2> R uu() (3.46)

so that the autospectrum function is

uu 11 iT
f_ e__ R (T) dT (3.47)

u2 2> uu

The variable u could represent any combination of physical variables, pressure,

velocity, acceleration, displacement, etc.

The cross-spectral density and the wave number spectrum are related to the

space-time correlation of two variables a and b

1 2.
<a, ..b~ ,t+ )>= -+ b2  -" 12~3

(y+r)>] Rb(r, '.48

-- ~~<a(y, t) b(y+r,t+T)> = [<a2(y) > b > Rabrr)3.8."

If the field is spatially homogeneous the

<a (y+r,t)> = <a (y,t)> (3.49)

and the cross-spectral density is, by Equation (3.37)

"(r,w) abr)
ab 1 i

1/2 2 27f e R dT (3.50)

[<a 2 > <b2 1/ JO

158 •---"'

II

.]. .._ .., 4



For a nonhomogeneous field, Equation (3.49) does not hold and accordingly the

cross correlation is not a function of tne separation only, rather it is, in

general, a function of the y and y + r variables separately. Occasionally, for 9

simplicity, the nonhomogeneity is handled by retaining separate dependence on y and

y + r in the mean square variables and retaining Rb(y,y+r,Tc) as a function only of ...

r and T, i.e., R (r,i).
ab '-

The n-dimensional wave number spectrum is

oo knrn )  . ...

(2a1)n+l . A n w )

1/2× [<a 2()> <b (y+)>] Rab(r,T)

" dr1 ... dr dT (3.51)Nn

where n = 1,2, or 3 for n-dimensional r and where, again, we have dropped the mean-

square values for simplicity. The convention used In this monograph places the

mean flow vector along the (1) axis with the lateral direction along the (3) axis

or in the tangential direction for cylindrical flows, dU/dy= 0 generally. The

cross stream, where usually U1 varies to produce shear (i.e., dUl/dY2#0), is given

either the (2) axis or the radial direction. It is especially in the y2 or r

direction that statistical homogeneity does not hold in a shear flow. Then

Equation (3. 51) becomes

1_ ff i(wt-klrl-k 3r3) 2 2 1/2 0
ab(kl,k3 , ,y 2 ,y 2 ) = 1 e [<a (y)><b (y+r)>]

Rb(rl,r3 ,c;y 2 ,y') x drldr3dT

This convention denotes the correlation function as homogeneous in yI, Y3' and

nonhomogeneous as (y2 ,yl) = (y 2 ,Y2 +r 2 )
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The correlation functions used in this monograph will always have the

normalizations implied by Equations (3.46) or (3.48). Therefore, by definition

im R (r,)= Ra(0, = Ra() (3.52)

r-O0

an~d

Jim R(r) R(O) = 1.0 (3.53)
*1 O -.*0

In general they shall have the proper ty

Kb (0,0) > Ra_ (r,T)ab,

Spectral density functions will be no,.,.alized as above so that

1/2 .
> d" dik (V (k, ) (3.54)

a~ab"_ 00 a ll k ' - '

Pnd

I. 1. .

b(1 ,,) -- d. ¢ (k ,,j)- (3.55) - -
Jbdk4 ab (k'-
all k

.. - ..

Occasionally, throughout the text normalized spectrum functions will be used so that

the integral Equation (3.54) will be unity instead of the product f rout mean

squares. In such cases, the lower case symbol 4 rather than 4 will be used.

0

3.6 FUNDAMENTALS O1 NOISE FROM SUBSONIC TURBULENT JETS

3.6.1 Formal Analyticgl Relationships for Source Convection

In this section we will discuss some of the well-known characteristics of noise

from co].d subsonic turbulent jets. Explapations of those properties in terms of the 5

statistical parameters of the turbulence structure will also be given. Noise from

dtveloping jets, being quadrupole in natu, , is not generally a dominant source at

the very low Mch numbers that are typical of hydroacoustic problems. We will.

CosLdLr this type of noise because of its historicai importance, it being a
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prime-mover for Lighthill's work, and because it provides an excellent example of

the marriage of general hydroacoustic theory and the classical problems of describing

the stochastic properties of turbulent flow. The problems of theoretically de- =

scribing jet noise, even of subsonic jets, go far beyond the simple dimensional

analysis that was offered in Section 2.3.3. The reader will find more extensive
85discussions of jet noise given by Goldstein as well as a recent review of the

subject by Powell.2 1 As a practical circumstance, jet noise can be an hydroacoustic 0

problem when the efflux is turbulent or when it contains density gradients (as with

two-phase fluids). In these cases, the noise may be monopole or dipole rather than

quadrupole.

The treatment of Section 2.3.3 considered only the most rudimentary aspects of .

shear-flow noise, overlooking the real problems of source-convection, developing

flow, and the correlation volume of physical eddies. That analysis also overlooked

the essential spatial matching of the sound field with the disturban:C field and the . . -

effect of source convection on the sound power radiated.* To examin .. effects of S

mean convection of the sources in a medium at rest; begin by considering again

Equation (2.60) in light of the preceding descriptors of random variables. Define

the generalized four-dimansional Fourier transform of the stress tensor T1 j(yt), as

T .(yt) = Ti(k, () e d 3 k d.
ij jjj ijf -I- •

whlere the transformed variable is distinguished fr .-n the real variable by noting its

independent variables. Therefore, we have

32 "' i"
°  

i 5• -a
f(Y' t) 2 d

.(y1 t 2 1 (k -V-t) 3-
2 - (j wr e d k dw( 6

-9 -

*Ali additional modification to the theory that will not be considered here is
the refraction of the emitted sound by the enshrouding shear layer. This convection
of thu sound by tlik, mean flow, distinct from the convection of the sources, affecL" -
the directivity of tho sound at angles that are not perpendiculdr to the jets

aYi Generally, f ,, re.sults obtained in this s-ctLion will he valid ncar bruoid-
" d.: ldiiaLioni at 1,,v: number.
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p . 0

; .and the value of this variable at the retarded time is written as

2 iwr/c
k ' 2( -u) o +" 0L] 2 T (kw) e e dk dw (3.57)

The radiated far field sound pressure is given by substituting Equation (3.57) into

Equation (2.60) to obtain (with pa(Xt) c2(P(Xt)-))

pa (xt) =

1 T C2 2 0 d f w Tij (k,w) e e dkdu, dy (3.58)

0 r -O -00

0 --

sunmation over all combinations of ij is assumed. Integration over y extends over

the turbulence volume. Equation (3.58) expresses the sound pressure in terms of the

spatial transform of the sources and it can be used to identify the manner in which

the sources cause the sound. A similar methodology has been used by Ffowcs
Wiiliams88  89

Williams and by Crighton. Equation (3.58) can be further manipulated when the

;ource location vector y is decomposed into a component yr along the range vector r

and components in the plane normal to r, see Figure 3.16. Therefore,

r=r -
0 r

where r is some reference range. The phases of exponentials ir Equation (3.57) can

then be rearranged to be (ko=w/c )

0 0

k y+ k r (k T- ) v11 0 (-) -"r

whe re

k 2 k2 + k2
jn r 
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Figure 3.16 - Geometry of Convecting Sources in a Jet

Using the ensemble average, the mean-square acoustic pressure is derived using the

methods of Section 2.6.2 and invoking Equation (3.44) with T (y,t) replacing the S_
ij

variable u. The mean-square sound pressure is, therefore,

2 - 1 i .k / i k Z\.. -- ".
<p (x)> = 2 \ r / ",

1 6 -. 2  C 4 r . . .

0

(3.59)

V-i(k -k )y -i(k 'y )
x Vj__ drd 0 rijkL ( r o r e d'"3  dde

where the vluine V is th, entire jet flow over ,4~ch i' (y, t) is nonzero and the
,j ij

summat Ion iL ass umt d over ai I Ijk conibinat i onE. h wave nurthe" spectrum ¢tjk9(kb)

is forallv defined as

: -" S :".'

T 0



-F - __ -_ - - t- -"" '

ijk(, =(2,) e-T.(y,t) 1j (y+rt+T) drdT (3.60)
i k(27r), JJJJI ij ii

it is only approximately independent of and since T is unequal to zero onlyij 

! 

j
inside the region of turbulence, Vj, so the integral only formally extends to + .

Equation (3.59) is in the same form as Equation (2.133) and represents one of those

circumstances where the wave number spectrum must be evaluated in approximate forms.

The integration over y is carried out in the same fashion as in Equation (3.41) and

yields a product of delta functions, i.e.

f -i(kr-ko)yr - n J. (k i(k-k cos)yl 3e e d =  e dy ..

3= (2Tr) 6(k-k cos c)

or

(21T) 6(k k ) ( ) (3.61).''-

2 2 2 2
which is equivalent to IG (k,w)2 in Equation (2.133), where k = k + k and

y r n
k = k/cos is the trace wave number in the direction of the observer. If the

r
wave number spectrwm is replaced by a value averaged over the source region, then

Equations (3.59) and (3.61) give an autospectruin of the sound pressure

1 1 j k Z 4  ,y :.k-
pXW 42 (4 ~J ik~ r o) (3.62)

p 162 c4 r2 r 4  ijkX(r

00

o

where <p(x) > (x,w) dw definei the autospectrum, and the vinculum over the

f~ p

spectrum function symbolizes the volume average. We shall see that the wave number

spectrum lJk,(k OU) is interpreted (e.g,, Equations (3.107) and (3.109)) as a

correlation volume of the turbulence. Summation still extends over all combinations

i, J, k, Z.
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To include the influence of rectilinear mean convection of the sources on the

radiated sound, we note that the Fourier transform introduced in Equlation (3.56) is

relative to a fixed frame of reference. To compensate for the mean motion of the

sources, the fixed coordinate y moving with eddy field,

y c

and the source term in the moving frame is denoted by (y Gt). Therefore,

ij 0

and the generalized Fourier transform is

T 1kW 4 f*~ Ti.(y,t) ei(~t dydt
ij (21T) __f

____-i(ky-w-

it) ~ 'jY-Uct~t) e -t)dydt 0 _

1 ~-i(k yo -fw-d(.ii )]t)

000

The wave number frequency spectrum is then given by

~ij kZk~) ='ijkZ. ~

where %j) jk,w) is the spectrum determined in the frame moving with the eddy. The
spectrum f rdite sud then become (with U C kU k =U k cos G and M =u /Cspctumo aae~son c r r c c o)
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S(,A) 1 XX.(P) v (k k Q) (3.63)
p 6nT 4  ~r (1-1.1 Cos e~ Ik r

c L

where 04 w(141 CCos 8) accounts for a frequency shift due to source convection in

the direction of the observer, and the time-averaged acoustic intensity is

2 5 2 4o167, c r r r

Lx JO 4 4ijk(k=ko Q Y cQj (3.64)

3.6.2 Measured Characteristics of Jet Noise
These formulas show that the radiated sound will be caused by the stress tensor

ait all wave numbers whose component in the radial direction equals k 0 The mean- -

square sound intensity in a frequency band Aw which is proportional to the center

frequency of the band, i.e., Au w will depend on the jet parameters as

8 2
P U.D

I~x~,Au) 5 --- D(,O)(3.65)
c (l-M Cos e) r

where

D(~~D,0) ij;1 x x.X V ~ { 2 4 %ik(koQ) d 0
i~~j Zo

whurD th ter in brckt ha ensmedoe l omiain f adi

ofur the retinhipscanke foun ien asumoer ofl otheripaeos.Tepn of ikanith
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D ~L .6 ..

-5 88factor (1-11 cos e) was derived by Ffowcs Williams, but a similar type dependencec L92had been derived earlier by Lighthill. In the summation for D(2D/UjO) each of the

products of the various velocity disturbances will give somewhat different direc- -

tivities through the different direction cosines, xi/r. We shall touch on some of

these aspects later, but for the present we will assume that the combined directivity

of the composite turbulent structure is omnidirectional, so that D(Q,O) is just in- -.

fluenced by the Doppler shift, i. e., D(w(l-M cos e)D/U J)). Therefore, the primary

angular dependence of the overall far field sound intensity is brought on by
-5(1-M cos e) which shows an augmentation for e< a/2 relative to the intensity at

0 > 7T/2. This behavior of enhanced sound in the direction of eddy convection has

been confirmed by a number of experimenters, e.g., References 93 through 99 using

subsonic jets. At large values of Mach number, the sound near the jet axis, 0 < 7T/4,

is reduced relative to the theory. This behavior is now believed to be due in part
21,96,100. --to refraction.2  ' It is interesting to note that in some of the earlier

s91,93 ..
measurements some high-frequency backward-directed sound was measured and this

was attributed to the existence of preferred quadrupole radiation from the highly

sheared mixing region. The subsequent measurements, Reference 94 and later

references, indicate that this backward radiation was an artifact of experimental

arrangement. Figure 3.17 shows, in confirmation with Equation (3.64) that the

p 2(0) . -
p2(90,) M -. 0.37 i ' :.

037
0.90' .- -

-10 -1 0 lo g [1 - 0 .6 2 11j c o g 0 ] - 3 " " -. . .

150 140 120 100 90 80 60 40 20 10

0

Figure 3.17 - Angular Dependence of Far Field Sound Pressure Level at
Various Jet Mach Numbers

(From Reference 97) _
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angular dependence is a function of Mach number. Furthermore, Equation (3.64)
92yields, for the total radiated acoustic power,

271 TT

I=f S I(x,6) (r sin 6dP) rde

0 0

(I-M cos 0) sin Od6"c5 P f -

oUoD F(RDm c

so that the radiated power is

02 U8 D 2  1+ M 2
o J c2F(%,m) (3.66)

2 (1 Z+M 2

5C

where the function F(%,M) includes the dependence on Reynolds number and Mach

number of the summed and integrated wave number spectrum in Equation (3.64). Figure
3D23.18 shows the total power nondimensionalized on pU D as a function of the exit

Mach number,

U1
M = -

J C

This presen-ation represents the relative increase of acoustic power compared to jet

power as the Mach number increases, and it is a classical result. Furthermore, the .9-.i
data indicate that F(D,M) is a nearly constant value between 0.3 10 - 4 and
1.2 x 10
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Figure 3.18 - Sound Power and Its Spectrum for Jet Noise Using

Laminar-Flow Nozzles - 105 < 106

(From data in Reference 97)

The inset of Figure 3.18 shows the one-third-octave power spectrum nondimen-

sionalized on the overall power as a function of reduced frequency fD/C . The peak

in the far field intensity spectrum at any angle will change in frequency such that

the peak will occur at constant values of (fD/U)(1-M cos e) when 0 > 7/4, however,
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at angles near the jet axis Lush9 6 shows anomolously low values of noise at fre-

quencies large enough that refraction is important. The noise power spectrum,

therefore, has a peak frequency that depends on D/c ; the constancy of the dimension- 0

less frequency of the peak in the power spectrum, first observed by Fitzpatrick and

101
Lee, is now well known. At 9 = 1/2, the dependence of the sound pressure or %

intensity spectrum, Equations (3.63) and (3.65), on Me decreases and the spectrum

becomes a function of fD/U as shown in Figure 3.19.

' ' 1 . I ' U.U I"-iii
NOZZLE EXIT

VELOCITY,
Vi. M.

-43 M/Sec

1 > 123 0,37
9 152 0.46
0 184 055 FROM

-53 0 217 0.65 KARCHMER ET AL.9 7

0 247 0.74
a 279 0.84-
0 310 0.93

NO -6* LUS96RD 2 x105.Mi 0.38
-a.IN CLow

-873

-83 i I I 11111l I I i 111111 I I i i i i . . .

1 110 100

STROUHAL NUMBER, fDfUj =D/Uj (1I2 ir)

Figure 3.19 -Normalized Sound Pressure Level Spectra at Microphone Angle -

of 90 Degrees for 15.2-Centimeter-Diameter Potential Flow Nozzle
(Adapted from Reference 97)

Measurements of the spatial correlation of far field sound pressure were made

by Maestrello.1 0 2 ,103 Around a circle in the azimuthal plane (normal to the jet

axis) the spatial correlation depends on angle 6 (see Figure 3.17 for 6) and for

microphones on opposite sides of the jet (q=7) the correlation coefficient is small

and negative for 6 > i/4. This behavior was interpreted by Maestrello as indicating

radiation from a distribution of sources which are uncorrelated around the axis of

the jet. For smaller angles to the jet axis, 6 < 7/4, the correlations on opposite - ..

sides were of positive values and larger than 0.3, suggesting the existence of effec-

tive sources with considerable axisymmetry.
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One attempt to predict both the speed-dependence and the directional character-

istics (that were neglected above) has been undertaken by Ribner I00 'i04 'I05 in-
106 107

corporating many of the ideas initially used by Proudman, and Jones. The

approach has also found wide spread use in predicting boundary layer pressure, see

Chapter 7. The sound field is determined by integrating the fourth derivative, with

respect to time delay, of the space-time correlation of T_. over the entire source

volume. This operation is completely analogous to the integration performed in

Equation (3.59), giving as in Equation (2.61)

2 ~r r4  -- k

16- ('r) kT r 4 't JJJ~~+-) d t r (3.67)167 2 r4 ff 4 . ..

0 -

In Ribner's analysis, the various terms of the stress tensor are approximated by

assuming that the turbulence is locally isotropic. Then, writing the instantaneous

Reynolds stress

Tij(y,t) = Tij(y,t) - Tij(y,t)

for cold, low velocity jets,

T'.(yt) = u.u. - Q U.U.
ij o1] 0 1 '

Ribner has

I

<T. (y,t) Tyrt' <u Ly't) U.(y ,t u~<Ti(Yt)Tk(Y+r't)> = o"<i t j t) uk( rt+T) u,(y+r,t+,)> . - .";

12 ky 0 1

which is a fourth-order correlation function of the velocities. Since the velocity

consists of a mean plus fluctaating component, the correlation tensor contains a set

of terms involving the mean velocity and second-order correlations; e.g.,
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<T (y, t) T 2 y+rt+) U (Y) U 1 G4) <zu (y,t) u 2G+r,t+i)>

+ <ul(Y,t) u2 (y,t) ulI +r,t+T) u2 (Y+rt+l)> - <uI(y,t) u2 (Y t)><u1 (y+r,t) 0

u2 (y+r, t) >

The first term* Ribner calls the "shear noise," while the second two he calls "self-

noise." The shear noise he finds to be directional in the direction of the jet,

while the self-noise he found to be nearly omnidirectional. Specifically, ignoring

the multiplicative convective amplification (1-M cos 0),

4 2
B(cos 0 + cos 0)<p+ (x,t)> ~A +2

2

0i

where A represents the self-noise for which elemental contributions combine to yield

omnidirectional sound, and the B-term represents the shear noise which results from

the combination of two quadrupoles. Ribner reduces fourth order correlations t the

second order correlations by assuming that the statistical variations of the turbu-

lence are describable as Gaussian probability density functions. Thus, the relative

orders of magnitude of A and B are established as being nearly equal. This approxi-

mation had been previously used by Proudman (see Chapter 2), and it is common in

similar analyses of boundary layer pressure (see Section 7.3.6).
108

Another approach used by Michalke and Fuchs modifies the Lighthill source

term, Equations (2.49) and (2.50) so that it contains terms that involve only the

local temporal variations of fluctuating pres;ure and spatial gradients of the mean

velocity. The relationship is linearized and predicts only what Ribner called the

shear noise. The pressure fluctuations in the jet are then expanded in terms of

circumferential harmonics with stochastic coefficients which could be evaluated

statistically using pressure correlations in the jet. Results so far show that only .. .

low orders of circumferential variation, including axisymmetric, are indicated by the

correlations.1 0 8 ,109  A full application of the correlation measurements to the

theory has not yet been made.

' 'ihe alternative names turbulence-mean shear interaction and turhulen:"
turbulence interaction have also been used. See page 693.
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3.6.3 Some Qualities of Jet Noise Deduced from Flow Structure
3.6.3.1 Properties of the Mean Shear Term. As a basis for discussing some of the

104
more fundamental features of the coupling of turbulence and sound we adopt Ribner's

simplification that the magnitude of shear noise is qualitatively representative of -

the total noise level as described in the last section, and so take the contribution

due to the <Ti( ,t) T~i(y+rt+T)> correlation as showing typical behavior of the

jet noise sources. The source can be written

<T' (yt) T' (y+rt+T > 4poU <ul(Yt) u (y+r t+T)> (3.68)<TII01Yu (y tII 1  ,,...

where U 1 (y) and U1 (y+r) are taken as equal to U1 . Therefore, the wave number - -

spectrum is

-~ = 2 2 1 rt-ikr-wT)1l1l (k,w0)  4p 20 1 14fl e- i (k ' r -  1 (y't) u,(Y+r,t+T)> drdT (3.69a)" -

(2i4)J<Ul

2 2 -(4poU 1 ll(ktw;V) (3.69b) '-

The correlation <uU1  > is a two--point space-time covariance of the axial component ..

of velocity fluctuations. We will define a correlation function as

t

uI(Yt) u (y+r,t+T)

R 11 (r, T) = u(~)u(4t]1/2

= Rll(rl,rr,ra,T) (3.70)
rS

which could depend on the datum y. Below, we relate the correlation function and

its transform to measured properties of jet turbulence.

Extensive measurements of the correlation function R11 (r1 ,i), with the sensors

displaced in the streamwise direction, were made by Fisher and Davies, Bradshaw,
ill 112 113

Ferris. and Johnson, Davies, Fisher and Barratt, and Kolpin. The measure-

ment-, of Bradshaw, Ferris, and Johnson include autospectra of velocity fluctuations,

and Fisher and Davies and Kolpin provide narrowband correlations from which cross

spectral densities can be deduced.
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3.6.3.2 Measured Characteristics of Jet Noise and Taylor Hypothesis. Some of the
5

important properties of jets at R greater than 10 are shown in Figure 3.20.

Within four to six diameters, the jet develops in an annular shear flow that

surrounds the so-called potential core. The core region has a mean velocity that 
.

is independent of radius and is, therefore, relatively disturbance free except for

an unsteadiness that is imposed by a large-scale vortex structure in the annular

mixing zone, as shown by Lau, Fisher, and Fuchs, and by Ko and Davies. The

maximum turbulence intensities in the mixing zone measured by Davies, Fisher, and
112

Barratt are shown in the lower part of Figure 3.20. The radial distribution of -

the turbulence in this region satisfies the similarity rule,

m ,x . ,,,

:-: .... DEVELOPED ".

. POTENTIAL. - U/Ut . .i. .

.,. ...

0.2 0.0 r.=(2./-3JxY

. 0
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-1/2
2 Du I  r- i-f /2 = fl - - (3.71) " '

(Ul ) max

where f(O) 1 1, and the mean velocity in the mixing region Ul(r,yl) behaves accord- 0

1*

ing to I1 1 2 ,1 1 3 ..- """".- . -

4P

Ul(r,y,)  r-

j = 9 2 Yl(3.72)

These similarity functions reflect the fact that the length scale of the shear layer

increases linearly with distance from the nozzle exit. This linear increase continues

into the fully developed region downstream of y1 /D = 4 to 5. In the fully developed

region the inner extremity of the annular shear layer has merged and, although the .0

mean velocity is still maximum on r = 0, it decreases linearly with yI. According
Shpr,115,116

to Forstall and Shapiro, the center line velocity is given by

U C _
L c) (3.73)

U Y.
J

where ."

(Yl) c ..-
(4 to 5) (3.74)

Replacing the two similarity forms, Equations (3.71) and (3.72), in the fully .
76 77

developed region, Hinze and Townsend give, for the mean velocity,

UI( r'Y2) r (3.75)__ _"

U =f2 (y 1+(Yi) c

where (Y) is a constant measure of the effective datum of the jet and for Lhe

turbulent velocity
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-2_/2 " [ [
r 62 y +(y (3.76)

- g 2  (

where g2 is maximum near to or just off the center line of the jet. Forstall and

Shapiro I I " 1 6 give an alternative functional dependence in terms of a variable jet

radius rj(yI)

ul(ryl) /r \ (377)
U = 3 j(y ) 3.. ....

where rj (y) is determined by

U(r.,yl) 1 (7

u = f3 (
1) (3.78)

and it depends on y as

2r.(yY) y
,]-i D ~( 3.7 9 ) [j--

D (i

(Yl), being the length of the potential core given by Equation (3.73). These

geometric factors are all illustrated in Figure 3.20.

As shown by Equaticns (3.59) and (3.68) the mean-square sound pressure will

depend on the space-time covariance of the source tensor, which, by Equations (3.68) O

and (3.69b), can be crudely represented in terms of the two-point space-time

statistics of the velocity fluctuations.

Space-time correlations of the axial velocity fluctuations in the mixing zone

obtained by Fisher and Davies II 0 are shown in Figure 3.21. These correlations,

* obtained as a function of time delay for fixed anemometer probe separations, show

maxima at a combination of r1 and that are shown in the lower part of the figure.

An envelope can be drawn through the correlation values at these points that can be

* described in terms of the original correlation
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Figure 3.21 - Space-Time Correlation of Axial Velocity Fluctuations r
(Downstream Separation). Fixed Probe at y ID = 1.5, y/V = 0.5.

= 1.2 x 105, D = 1 inch.
PD 110

(From Fisher and Davies 0 )

RRll(r -UT,T) (3.80)

to give the maxiwum correlation as

Rm (T) = R1l(rl=U cT)(3.81)

This relationship between r1 and T, therefore, defines a convection velocity

Uc = 0.6 U of the disturbances as they move downstream from the nozzle. R m(T) is •

called a moving axis correlation I 12 because the covariance is interpreted as a

correlation in a frame of reference moving with the average speed of the eddy field.

The deviation of R (-L) from unity is caused by combination of turbulent mixing, in

which eddies stretch and entrain fluid from the outer undisturbed environment, and .

by viscous decay of smaller eddies as they are convected by the mean flow.

The autospec-trum, (,;y) , can be interpreted in terms of the energv spectrum

of various sized convected eddies, Thus, starting with the temporal autocorrelation
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W, -i f e i U2 Rl(r 1 =QT) dT (3.82)

* if we assume that the turbulence is convected without any loss of correlation, i.e.

that R m(Tr) =1, then the correlation coefficient is written in the special form

Rl1 (r,T) R 11 (r1 0Uc T) (3.83)

where R1 1 (r1-UcT) is unity for all r1 satisfying r U ct. This condition of con-

vection is called "Taylors' Hypothesis" of frozen convection. Then we can

write the autospectrum (with r=0) as

I U i(W/U c)(Ut)

1 i(W, e R (Uc) d(U T) (3.84)

If, now, a wave number spectrum is defined as

00

-+ I -iklr I - :i)-.

%ll(klY) =-~-- f e i uIr ~ RII(rI,T=0) drI  (3.85)

(k 2)e R11 (r1 ,) dr

1f -iklr I --".--2i

2 e ul r (3.86)

-00

the approximation given by Equation (3.83) allows us to write

c) 1ii1(w,y 1 l (k l Y) (3.87)

and the wave number is dependent nn frequency as
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k1 = (3.88)
C

The autospctrumw in Figure 3.22 represents an approximate spectrum of disturb-

ances of varying wavelength as can be seen by the equivalence *. 1

fy1  Wyli U C
U 2TtW U

U /y1  U

10

3
0.01

AXIAL ~.
DISTANCE, YI 0

0.001 000 30.4 2 0
a 45.6 3 0

0 76.0 5 a
a 91.2 6

0.0001 J ~l pI&I mi I

0.1 1.0 10 100

*STROUIHAL NUMBER,fy - -

Figure 3.22 -Turbulent Axial Velocity Spectral Density at Lip Axis.
Mean Nozzle Exit Velocity, 122 Meters per Second; Radial Position,

7.6 Centimeters, RD 1.2 x 106

* (From Karchner et al. 98
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where U 0.6 U and X is an effective eddy wavelength so that

ty, 0.6 y0

The dULospectrum discloses then, that most of the mean-square turbulence intensity$

given by the integral

V -Y f J D %(W;y) dw (3.89)

is determined by eddies with effective wavelengths that are less than the axial

distance y 1. Ani integral length scale, or rnacroscale, of the convected eddies,

- defined by an integral of the broadband spatial correlation,

CO

f J R 11 (r.,T=0) dr i (3.90a)

has been related to the autospectrum in the case of the streamwise, r,, direction as

A1 _ (D (k 1)(.0) :
1 im(39b

IT k1-*0 2
U 1

or nearly equivalently

W-~0 C 2
u 

1
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only to the extent that R C T) can be considered as near unity. We shall see below

that this equivalence is not generally valid. The nondimensionalized spectra in

Figure 3.22 show that the integral scale is approximated by

1 71 U " 4 (0.5)]

9 -.i-..

Measurements of A at Reynolds numbers near 105 by Davies, Fisher, and Barratt
I1 2

1 1 7 . _. .. .
and by Laurence also give

1  0.13 yl

for D < v < 6D, independently of radial location from the centerline.

117
A radial integral scale, given by Laurence, is

A r 0.05 yl S

where

SA ; R(O,r ,0,O;y) drr r' P ; r. .

0

Integral scales were measured by Jones1 0 7 in a rectangular jet using frequency-

filtered signals. With the 1,2,3 directions pertaining to the flow, vertical, and

width directions respectively, he found for broadband (unfiltered) velocities

0.014 (y +h) and A1 = 0.04 (yl+h) where h is the height of the exit. For

filtered signals he again found A2(w) 2 A 3(4O, but that all /v I decreased as

YI /U J increased, although the decrease was not as rapid as (Wy1 /U .

S
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3.6.3.3 Methods of Approximating the Wave Number Spectrum. Referring to Equation

(3.62) it is seen that the required quantity is an integral over the volume of the

jet of the wave number spectrum that is evaluated at k = k r= k, where k is in ther o r

direction of the field point. To realize the implications of this particular value

of o, (k,f) in light of the above discussion, we shall write down the complete

expression of the wave number spectrum, Equation (3.60), using the representative

mean-shear term, Equations (3.68) and (3.69b), and employing the alternate

functional definition of correlation variables, Equation (3.80) to give

1Iiii(k 'w ;y) 4p0UI(Y) UI(Y) 4 ffffe:

(27) _

x R (r -U r ;T)drldT
111c 'rsr;~rd

0.

,2y - 1 y) 1 -i(k n +k -r) i(w-kU )T

2 2 n n .

x R (l, r nI) drdiL (3.91)

where r = r ,r and where rI = r -U T. If we approximate the correlation functionn r c s r ad.

' as the product of a spatial correlation moving with the eddy field (Ran(rd ,  n d

a correlation as the eddy field is convected R (T), then

Rll(r 1 ,r,-) = Rl( 1 ,rn) Rm(T) (3.92)

which still satisfies the condition stated by Equation (1.74) and reduces to Equa-

tion (3.83) when R (n:) = 1 and r = 0. This gives a wave number frequency spectrum

that is also separable

4 2 ,2- (k) ,m(-k Uc) (3.93)

0S

where
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$(iR) -" (f r )dr, d2 r (3.94)

--2 (27) JJJ

and Rs (r) =R (r is a spatial correlation function deined as

Rll(r) - R11 (r,-=O)

The function im (t-U c k ) is Just the Fourier transform of R m(T) where the transform

variable is uy-Uc k It shall be called the moving axis spectrum, and it may be

determined from data such as the envelope shown in Figure 3.21. When the eddy field S

is convected in a frozen pattern as with Taylors' hypothesis i.e., when R (1) - 1,
m

then m(,-Uck I ) is nonzero only at w = U k i.e.,
m cl c 1

m(L-Uckl) = 6(w-Uk I) (3.95) 0

where 6w() is the delta function. However, if, as illustrated, R (r) has the shape
m

of an exponential decay,

R (T)e (3.96)
m

then the Fourier transform of R () in Equation (3.91) yields a moviDg axis spectrum .
m

i i(w-U kl)T
a =e R (I) d'

m 2T J0 M

T11 (3.97)
Tr 2 ~2

1 + (W-Uk) 2  .

This function is peaked at frequencies u, U k but at wave numbers which are veryc"
* much less than :/U it is finite-valued; at high frequencies w 6 > 1 the spectrum

cT
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-1-

will depend on time scale as (0 )-. This means that high-frequency, low wave

number fluctuations increase as the eddy decay time in the moving axis coordinate

system decreases.

The additional wave number spectrum appearing in Equation (3.93) is

1 i(knl+in ) 1 q Ikr

i ) (2) 3 e R (il rn (3.98)

If the correlation function is also presumed to be separable as the product of the

separate spatial correlation in each of the axial, radial, and tangential directions v

then (with rl =rl-U T)

R1 I ( r n)= Ri(n 1 ) Rl n )  (3.99)"

or further,

Rs (nln) Rl(n) Rii(rr) Rll(r6 ) (3.100)

Note that when T = 0, RII(n I) reduces to the spatial correlation function Rll(r1 )

introduced above, see Equation (3.85). Various forms of these correlation functions

have been used for various needs. A typical functional form that is used is simply,

* .g.,- -,-

r I

R11 (rr = e

where A is the integral correlation leagth, Equation (3.90a), for separation

distances in the i direction so that th wave number spectrum is

p(k (3.1011
1i 7T 1 (k A. 2(31)

11 k i S

Ill ) (.1184..
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The separable representation, Equation (3.92), does not imply the same

separability of the cross spectrum. The cross-spectral density il(r,ow;y) is

related to the correlation by

I f ui T 2 - "
lr),-;) e (r -T Tr ,y) d-,J1 27 1 1 i92

which is rewritten in a separable form

¢i(r,w;y) f eiw( u Rs l(lUc T  Rm(T) dT

letting T' r - rl/Uc, 0

2
- u lW\ cU
2yf Rl( • Rm + d-, (3.102)

n .

The moving axis correlation is the same as the one above, and the correlation

RII(UcL n ) is a spatial correlation in a frame of reference moving with the eddy " -

field. It too is the same as the one introduced in Equation (3.92), but now the r

variation is expressed as a time delay. Using the separation of variables shown in

Equation (3.100), the cross-spectral density of Equation (3.102) can be written in

the form

iWr/
(7 1c R (r

n n

2 9
"1 )U i UJT'r

e c R (Uc) R '+ -d(U u')

2-. U R1 1 ( c C

I IC.
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-7 - 717 -71."• 
,

which does not have the exact form of Equation (3.99). Note, however, that except

for R (T'+r 1tT ), the integral in this equation is the same as that in Equationm 1 .

(3.85), therefore, to the extent that R (t'+r /Uc) varies slowly with its argument -m 1c
compared to the variation of RII(U T') with U V', the influence of the two corre-

C
lation functions in the integral can be approximated as multiplicative. So, if the

time-scales of the two correlations are very different as can be deduced by comparing
their shapes in Figure 3.21, the cross spectrum can be written in the separable form

iwr /Uc
-) " e M R/U (rn ) n Mq(rW) (3.103)

whe re
L' r -- /U'.

I. C

is the phase of the cross spectrum expressed in termLs of a convection velocity U.

Recalling Equation (3.80), 4,1 (w) has replaced the wave number spectrum D1 (C/Uc U-

The function 1m(rl,u)) shows the decorrelation of the component of frequency w of the S

eddy field as it moves past the fixed reference frame over a distance rI and the

phase factor wrl/U expresses the propagation of the component as a wave. At r= 0,

m (0,w) = 1. MIeasurements of Cll(r,w;y) from which ,m(rl,,,) may be deduced in jets

are sparce, although there are a restricted number of measurements of ll(r,;y)

which are shown in Figure 3.23. The magnitude of the cross spectrum has been

normalized on the autospectrum,

I i n

ll(w,y)

The weasurements have been made by JonesI 07 in a rectangular jet. Those measurements
113 110by Kolpin and by Fisher and Davies in a round jet cover a range of frequencies

and streaniwise separations in the mixing zone, and they show clearly that the cross-

spectral density with rtreamwise separation is a function of the variable wr /U
1 J*

Furthermore, the convection velocities, determined from the filtered velocity

signals over a range of frequencies, vary from 0.45 U to 0.7 Uj for the respective
J 0

frequency range of fD/U from 2.08 to 0.52. The measurements shoun in Figure 3.23
Jare the only ones known, and they hardly give a complete picture of the structure of

the jet turbulence as a function of frequency. What is shown is that the components

lose Lheir i-dcutity when Lor] / U 9, i.e. , for 4.m(rl,2) 0.1, this number cor-

!cs poluI S t1)
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Figure 3.23 -Normalized Cross Spectral Densities of Jet Turbulence at
Low Mach Numbers; 0.45 < U (w)/U < 0.7 A

C T

2.5

when U .. 0.6 %. This result has the alternate interpretation that eddies lose

* their identities after they are convected distances comparable with 2.5 times the

* eddy size.

The wave number spectrum included in Equation J,.69) now can be written with

Equation (3.103) as

I (kwy -W)le R,(r) (r w) d r (3.104)
( 2

3J J n n ml
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which can be written as the product of three spectra

l (k ;y ) =i(w) (kl- 0o (3.105)

where the subscripts match the wave number spectra with the respective correlation

functions. Equations (3.93) and (3.105) show equivalent representations for nearly 0

frozen convection and near kI = w/U . Since 11 can be written in the separable1 41 :1(2k)

form Ill (kl) (k), then

l(kl m(w-k Uc I i ( W ) m kl Wc - "

The wave number spectrum as a function of k has its maximum near k = w/Uc and it

falls to a lower limit that is equivalent to the product of integral scales at low

* wave numbers. If the eddies were convected without change, then 41l(k=0,;y) would

S.be identically zero by virtue of the delta function approximation on 0m(k W/Uc)

Figure 3.24 shows contours of %1 (kw) in the kit w plane for k = 0, the relative

spectrum levels shown here are intended only to show the relationship of P11(k,w) to

* ' the wave number kI = k of acoustic propagation and the importance of the integral --
1 0o

length scales. For approximating Equations (3.63) through (3.65) in terms of

turbulence dynamics, it is necessary to evaluate I (k-k =k ,W;y), where k is the
* 11 r 0 r

trace wave number in the direction of the observer and, fcr subsonic jets k << w/Uc.
0

Regardless of what the orientation ot the observer is relative to the jet, if

k << 2T/Ai. where Ai is any of the turbulence intcegral scales, then the integration

becomes quite simple. In fact, from Equation (3.104)

2S2i \ -.(w

"-k ko< Wo "* 2.____ - 2
U < 'kn<< ,1w;yI Rn(rn)d rc n (27T) 'n n"

x'iwr/e c m(r1 w)dr 1  (3. 106)
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Figure 3.24 - Wave Number-Frequency Contours for Constant Source Spectrum
Levels of Typical Subsonic Jets. The Normalizer "A" is Arbitrary.

ArA0 :

4 (W) A (W) (3.107)

or incorporating the limit at small k of the moving axis spectrum 0

A A
4 1 11(W) 2 kira -0 l- ""' (3.108)

The quantity 8 A rAOAlm(w) is a frequency-dependent correlation volurne* of the

turbulence.

*In the same vein, an area integral of a correlation function R(r) yields a .

correlation area, say M where A. is perpendicular to "1
lm
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Equation (3.106) shows that the value of (l(k,w) at low wave numbers depends

not only on the radial and tangential integral scales of the eddies, but also on

the rate of decorrelation of the eddy field as it moves with the jet exhaust. 6

This means that for subsonic jets, noise can only be produced when the eddies

experience a change. Eddies convected in a frozen pattern at speeds U << C cannot
c 0

radiate sound regardless of how large they are. The most typically considered modes

of change are vortex pairing and spatial growth as the vorticity propagates away from

the nozzle; such modes and their acoustical implications have been examined by
118

Ffowcs Williams and Kempton. See also Section 3.6.3.5.

The Am(,0 in Equation (3.107) is a frequency dependent correlation length in1m.o
the streamwise direction that is determined from the cross-spectral density. This

is determined approximately 'y integrating

-ctrlr/UU
1

A(w)=7T lim Cmk- =iwr /U -. 0 r/c
Am kM0 1 11 e e dr"

where the exponential function is shown in Figure 3.23 with 0.2 < a1 < 0.3. Evalu-

ation gives

CcJ-c
A (w) -=
m a2 + 1 01-

which shows a trend of decreasing integral scales at high frequencies. The wave

number spectrum becomes of the dimensionless form

L"i! Y (.i c~ (--- 22 1 (3.109)

Wll(UY ) 3 U iU \ 1

This equation gives the asymptotic limit to the low wave number spectrum. Jone'-."

measurements of m (wr l/U ) in the potential core of a rectangular jet showed that
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at a given frequency, ai decreases as yl increases, i.e., that the correlation

length at a given frequency increases with yl. His measurements can be approximated

-112

as 0. _,

A O. -1 2 wyl
Yl 2U < ' -- < 20

U J
0.63 

20l

from which, we approximate

,w\-1/2cc" 1. 6( )i

1

107 113
In the orthogonal direction, using the collective results of Jones, Kolpin,
and Fisher and Davis, 1 0 we set

r Yl

and if a > I the variation of spectral density with distance from the jet becomes,

(1wD l (l ) 25(3.110)
(wYI) D3 ._ __..

which ifc L < 1

(D3 2  1.5.":'. (3.111)

The function shows that as the flow develops, the correlation volume of the eddies

increases, but there is some latitude indicated in the rate of increase. Jones"

made use of this frequency-dependent correlation volume in Equation (3.62) to
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correctly predict the shape of the autospectrum of noise measured by Mollo-
94Christensen, Kolpin, and Martuccelli over the frequency range of approximately

0.4 < w D/U < 13.
J

3.6.3.4 The General Frequency Dependence of the Noise. The method of estimating

the characteristics of the noise from these statistical qualities of the turbulence

will now be illustrated for a simple case. Simple laws of similitude of jet noise

that are based on a hypothesis that the sources of noise are due to local motions

of the eddies in the jet have been given by Powell.119 The analysis can be easily

reproduced from the above relationships by invoking certain of the measured

characteristics of the jet flow. Equations (3.63) and (3.69b), and a modification

of Equation (3.109) which implies simply that* A (w) - Yl, gives the dependence of
m

the autospectrum of the sound on fluid parameters as

1--- 2 4o3j Yl wI Uy/dl" l
(,w) 1A 22yIcy 1  (3.112)p42 oJ1 ] dA dyr vol : .:

where dA is the elemental cross-sectional area of the jet and where the integral

length scales Ar, Ae, A(M) are each assumed to be proportional to yl' (i.e., replace

the 2.5 power in Equation (3.110) by 3). Now, from Figure 3.22 most of the turbulent -.-

energy is confined to the dimensionless frequency range

< 2 -(3.113)

The jet mechanics fall into two classifications depending on yl being either less

than or greater than 4D, as shown in Figure 3.20. Therefore, in integrating over yl"

these separate regions must be considered. Also at a given frequency w, the region .'-.

Ayl over which the turbulence energy density is large, is defined by Equation

(3.113), and this region is located at

*This analysis, however, is insensitive to the dependence of A (w) on y.

selected because of the simple dimensional similitude that is established among w,

Y1 0 Uj, and the intensity of the turbulence.
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U0

Yl ~ - (3.114) "i '

03

Consider, too, the sound pressure level measured in a frequency band Aw which is

proportional to w so that the mean-square pressure p1 is proportional tr, wp(r,w).p

From Equation (3.114) the contribution from the mixing region (Ylo<4D) will be L9

generally high frequency while that from the fully developed region (yo4D) will

control the low frequency sound. Therefore, " " '

1. For yl < 4D, the following situation arises.

The shear flow occupies an annular region of area, .

A - Dr D

the intensity goes as,

2 2
u U.

and toe dimensionless spectrum as

then the radiated sound pressure behaves as

',wyl 03p. 11 2oj 4Ylo 3 y Ayp (~l.) 4 2 °  11 U'-/ Y ~ ~l"" ....

c r / 0 0
0

4 D 2 o I 2j/

c 4 r 2 w U -

P2U! wD
p2(r,LU) 1 2  - > (3.115a)

p- r
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WY1

since =l 0~ constant

U2. For y1 > 4D, the following situation arises.

The jet spreads with its characteristic velocity being Uc. Now

rk U
c 1i

2  2

-29

U
yl Wy

soth the interlbcaon

-~~Y oJ43 W

2 2
2p oU J 42 y (y)Y

o J 4 2 32
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which, upon regrouping, becomes

2 8 2 i ii
2- Po U jD JUD 2  wD<I

p (rw) C4r2 7j/ 2 (3.11.5b)

since

2
o wDjoj
0 Ujw / D constant

Equations (3.115) are the two classical similarity formulae, and they are shown in .

Figure 3.19 to roughly correspond to the extreme frequency ranges of the measured

sound pressure levels. The analysis suggested 21'11 9 that the low and high frequency

pressures are strongly dependent on the turbulence in the developed jet and mixing- .

layer regions, respectively, and that the midranp frequencies are determined by the

flow at the end of the potential core region. Tne Equations (3.115) also show the

leU 8 dependence of the noise that had emerged earlier in this section
O Uj
(Equation (3.65)) from the requirement of simple similarity of the sources being2 4 3

dependent on wD/U and poUjD . Other similar simple arguments concerning the
120

effective source-location had been given by Dyer. In ignoring refraction across

the moving-quiescent fluid interface, the above analysis applies only to broadside

radiation, 0 = 900.

Although we have set the frame work for a more elaborate synthesis of the noise

in terms of the statistics of the Reynolds stresses, we have stopped short of that

analysis because of the labor required to accomplish it. Reference to the work of
1009104 85

RibnerI ' (summarized by Goldstein) and the more recent work, e.g., of Moon S121

and Zelanzy by the interested reader will give the details of such analyses.

The similarity arguments given above have shown the importance of the mixing

region in determining the intensity spectrum levels at high frequencies, and,

therefore, the dominance of the mixing region dynamics of the overall prwqr. Recent 9

measurements of sound using a direcLional microphone in the fa field b, Grosche,

Jone, ad Wihol 12 2  
_____Jones, and Wilhold 2 indicated that the effective source distribution lies near the

end of the mixing region. The problem in interpreting such intensity measurements

with directional receivers is that one first assumes that a simple localized
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0

convected source model truely describes the physical process then he deduces the

distribution of average source strength. The noise is actually an integrated

resultant of the effects of a distribution of sources, and there may be many possible 0
123

distributions giving rise to a given far field intensity. However, it has been

found useful to deduce the distribution of apparent sources and additional
124-126

schemes have been developed to do so.I 127,128
A different approach by Maestrello 1

' for deducing sound source locations

utilizes the correlations of pressure gradients near, but outside, the jet. The

sound pressure, at a distant point in space, is uniquely given by an integral, over

a surface surrounding the jet, of the normal gradient of the pressure on that sur-

face multiplied by the Neumann-Green function for that surface. Since the ambient .0

fluid is isolated from the jet by this surface, and since the ambient fluid is

source-free, the correlation between far field and (directional) near field pressure

gradients signifies a cause-effect relationship between an effective source and
127

resulting noise. Maestrello reports that the maximum source density results .9

from a region at yl 9D, which is downstream of the mixing zone.

3.6.3.5 The Role of Axisvmmetric Disturbances in Jet Noise. A major shortcoming

exists in full reliance of turbulence measurements such as shown in Figures 3.21 and

3.23 to evaluate Equation (3.64) particularly for subsonic jets. That is, behavior

of the wave number spectrum for k ~ k << w/U cannot be elucidated from the meas-0 c

urements of turbulence. More contemporary research has therefore taken a different

tack, that is, to interconnect the various events which take place in the develop- 6

ment of subsonic jet structure and noise. The visualization of axisymmetric eddies
48 47

in jets by Crow and Champagne and Browand and Laufer allows the clear qualita-

tive identification of the responsibility of these eddies in the development of

disturbances. Furthermore, these eddies can be ultimately traced to the modes of

axisymetric instability, as can be deduced from the early studies of shear
20, 22,23layers previously discus;sed in Section 3.2 (Figures 3.3 and 3.9). The

existence of instability waves at high Reynolds number, although deduced by Crow -- "-

and Champagne, has been analytically confirmed by Crighton and Caster 12 9 using

stability theory. Furthermore, a connection between the existence of forced shear
130

layer instability and radiated sound was identified in the experiments of Moore

131
and Bechert and Pfizenmaier although it had been earlier suggested by Mollo-

Christensen. 9 5  In Moore's experiment, Lhe circular jet shear layer was driven by a
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loud speaker inside the plenum chamber of the nozzle. Pressure and velocity waves

propagating along the centerline from the nozzle were seen to amplify when the

frequencies of those waves were confined to a restricted range that coincided with

the range of unstable axisymmetric mode frequencies of the undisturbed jet. These

waves were determined by visualization to modulate the vortex formation and pairing

in the mixing region. With high-level excitation of the jet, the magnitude of

induced disturbances at the driving frequencies did not increase in proportion to

the excitation level, but rather the broadband centerline pressure and velocity

levels were increased somewhat by the excitation. The broadband far field sound

pressure was also increased when driving the jet with a root mean square pressure of

only 0.08 percent of the dynamic pressure of the centerline (1/2 p U ). The results
were interpreted to show that in the formation of ordered vorticity from the

spatially growing shear layer vibration, undisturbed fluid entrainment by the large

eddies lead to increased turbulence that apparently increases the magnitude of the

P u u, acoustic sources. As shown in Equation (3.108), the wave motion of the S '

o i1 2 2 4
shear layer itself cannot radiate sound unless the value of 2 /Dt (p u U) is largeenough iuj

enough in the wave number range of Ikl=k ; i.e., unless this second time derivative
0

is correlated over regions which are comparable to 2nk . It remains to be seen
0piig46,4,3,3

whether, under conditions of vortex pairing, , the time and space scales S__

in subsonic jets match the acoustic wave number. That these motions may be plausibly
134-136"" ' '''considered as radiators in supersonic jets is well-founded since their wave

speeds U exceed the speed of sound, but this is a class of flow which is well-
C

beyond the scope of hydroacoustics.

3.7 NOISE FROM UNSTEADY MASS INJECTION

This section will deal with certain general characteristics of noise that

result from a jet efflux that is either turbulent or bubbly. The latter case has 0

to do with unsteady two-phase motions (liquid and gas) although the complete subject
4 6

will be examined in Chapter 4. Unsteadiness of exiting flow brings about a U or U

speed dependence depending on the mechanism and this dependence contrasts sharply

with the classical U8 dependence that is known for the developing free-jet. - .
8

Furthermore, in the case of two-ph...se turbulent jets, one would also expect aU

speed dependence, but amplified by a factor which is the fourth power of the ratio

of the speed of sound in the acoustic medium to the speed of sound in the two-phase

jet.
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3.7.1 Sound from Efflux Inhomogeneities

When an inhomogeneous fluid is exhausted into a homogeneous medium, as

illustrated in Figure 3.25, sound can be created as a result of volume velocity O

fluctuations induced at the orifice and turbulence in the ensuing two-phase jet.

The topic of the unsteady orifice flow was given attention by Ffowcs Williams and
Gordon137 and Ffowcs Williams1 3 8 who examined the noise from low speed turbulence

exhaust. Ffowcs Williams1 38 deduced a U4 speed dependence for this noise, but the

result is now superseded by a later paper (Ffowcs Williams and Howe) which treats

the matter in more detail. Apparently, in the earlier paper, the compressibility of

the fluid in the nozzle was overlooked.

AOO
/ \:

J C -
/D

II

I UNSTEADYI
EFFLUX.u~ P

-- '- -- CONTROL VOLUME

Figure 3.25 - Geometry of the Problem of Unsteqdy Efflux into
an Unbounded Medium, 1) <<
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That result applies to the case of the unsteady pumping of an incompressible

fluid from an enclosed plenum into a free space. In this case the pipe length from

the pump to the exit must be shorter than an acoustic wavelength. There is then a

time varying rate of volume injection q, so that the far field sound pressure from

the (unbuffled nozzle) is (Equation (2.27))

0[q] t-r/C .

p(r,t) =
47rr

Now, [q w uA
Fv n

where W v = pulsation frequency of the pump

u = amplitude of the veloci.ty fluctuation at the nozzle

A = nozzle area
n

The pulsation frequency w will be proportional to the shaft speed R; the velocity
h s r . 0

fluctuation will also increase in proportion to £QD (where D is pump diameter) with

the proportionality dependent on the pump type. Accordingly, for a given pump the

mean-square sound pressure should increase as

4
2 2 Q 2D2p Po2 An D

r

which is the fourth power of shaft speed. .

We shall now consider cases in which compressibility enters the solution. The

noise produced due to T in the jet will be discussed in the next subsection. In
ij

the first case, consider the noise produced by a density inhomogeneity in the efflux.

This will be modeled as a slug, shown generally in Figure 3.25 and in detail in 0

Figure 3.26, which passes through a nozzle into the outer fluid. The length of the

fluid slug, the length of the nozzle, and the diameter of the discharge nozzle will

be considered small compared to an acoustic wavelength. This problem was treated
139 " '-"

in general fashion by Ffowcs Williams and Howe, but here we will offer a few _ 9

physical arguments (retrospectively) in order to illustrate the fundamentals.

19.
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A

B*

00

Figure 3.26 .Slug Passing through a Nozzle

Thue average flow through the nozzle is essentially one-dimensional and

wL/C < 1. The noise comes from two sources, The first occurs as each of the slug

interfaces A and E are ejected; a pressure surge occurs in the nozzle that is equal

to the change in dynamic pressure (due to the different densities). This pressure

surge induces a piston-like particle motion across the orifice. The second is due

to a volume change iii the slug as it passes through the pressure field of th con-

traction. The sound fvom the first source is derived from the one-dimensional

momeyntum Equation (2.2) integrated across each interface:

2
__1 + 0

so thc integral across interface A is

20

f-...dx. 

. . .. • -.

A " - A. . .l..... .

P dx .U/ ,

B 2o, B T
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That result applies to the case of the unsteady pumping of an incompressible

fluid from an enclosed plenum into a free space. In this case the pipe length from

the pump to the exit must be shorter than an acoustic wavelength. There is then a

time varying rate of volume injection q, so that the far field sound pressure from

the (unbaffled nozzle) is (Equation (2.27))

p(rt) = 4iTr

Now, = wuA
H v n

where w = pulsation frequency of the pump

u = amplitude of the velocity fluctuation at the nozzle

A = nozzle area

The pulsation frequency w will be proportional to the shaft speed Q2; the velocity 6 ]v;

fluctuation will also increase in proportion to £iD (where D is pump diameter) with

the proportionality dependent on the pump type. Accordingly, for a given pump the

mean-square sound pressure should increase as

2 2 Q 2 2
p p -A D0 r o2" n

which is the fourth power of shaft speed. J.

We shall now consider cases in which compressibility enters the solution. The

noise produced due to T in the jet will be discussed in the next subsection. In
ij

the first case, consider the noise produced by a density inhomogeneity in the efflux.

This will be modeled as a slug, shown generally in Figure 3.25 and in detail in 0

Figure 3.26, which passes through a nozzle into the outer fluid. The length of the

fluid slug, the length of the nozzle, and the diameter of the discharge nozzle will

be considered small compared to an acoustic wavelength. This problem was treated - "'-
139

in general fashion by Ffowcs Williams and Howe, but here we will offer a few

physical arguments (retrospectively) in order to illustrate the fundamentals.
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Vs o0  ~ - --- -x P -B (3. 119)

rad t 4TrL p U [t(
m s /

where the brackets denote evaluation at the retarded time. This radiation is

monopole-like owing to its direct dependence on the pulsation of the volume Vs .

The two components P and Pr , however, depend on speeds of sound in such
rad rad

m d
a way that the dipole component overwhelms the monopole component whenever .

2
u >> 1

or, when

-2

>u (3.120)

C% C
(ci cJ

This is gcncrally the case unless speed of sound in the slug is very low and the

discharge velocity is very large.

One such instance could occur if the slug is a bubbly slurry in an otherwise : -.

homogeneous jet liquid. In this case (see Chapter 4) the speed of sound in the slug

could be quite small relative to C.-

Note that the two contributions to the radiation have different dependences on

speed. Letting

-~= -. • .( U)

where the change in pressure coefficient is nondimensional, we find

-A P P 3
a 0 tsJi (U~ 311

--rad 8rL p L \ J (L.1C1)

while
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V P 4u
s o 4 2 (3.122)ma 8r 2 p i) : i.

m 87rrL Ps VC/ JC

6 .
Therefore, the dipole sound power increases as U while the monopole sound power

8
increases as U , reflecting the inequality of Equation (3.120) that the monopole

source is essentially a high-speed source.

Referring again to radiation caused by a bubbly slurry, and considering now the

dipole component only, we write the density of the slug in terms of the jet liquid

density pj, the gas density pg, and the volume fraction of gas 8. The density is
g

Ps 3 + (1-8) p3

Therefore, in Equation (3.108)

Ps-Pj - (P 9-P).
Pj P

if pg << pj. The radiated sound pressure can now be written

-Ao o (3.123)
radd 8 - \- 1,T PJCJ

The sound pressure will increase linearly with the volume fraction and as velocity

cubed. Lengthening the nozzle (increabing L) reduces the noise. For a given

volumetric flow rate (AoU) the sound pressure increases as the orifice area is
A-2decreased as A •
0

Proceeding as above we can also examine the turbulent efflux of a single-phase

compressible fluid. The average velocity-induced pressure fluctuation across the

orifice, PluoU, drives the fluid in the free field. This causes an acoustic particle -

velocity in the pipe orifice given by Equation (3.117), -

PuU
J 0 U

p jiC j o Cj "-""i"' .
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so that the radiated sound pressure in the free space is

A

o o U U

47r Cj A o..

where we have replaced 9/t by U/A 1 , AI being the integral scale of the turbulence
in the axial direction. Since u - U we can write

0

Prad 4TrrA p C (3. .24) .

6
which shows the sound power increasing as U

139
Other problems of this sort have been examined by Ffowcs Williams and Howe

who treated the effluxes consisting of occasional slugs of fluid with density varying

from the main fluid, Whitfield and Howe14 0 who considered noises from volumetric

pulsations of bubbles passing from the nozzle into an ambient pressure field (see
141

also Chapter 4), and Plett and Summerfeld who considered the density and velocity

inhomogeneities analogous to the above.

3.7.2 Inhoinogeneltles In the Free Turbulent Field
Another problem related to two-phase jets has been treated by Crighton and

142 89
Ffowcs Williams and by Crighton. Basically, the analysis considers a bubbly

turbulent region of gas concentration 6 which is surrounded by the ambient fluid with
S

properties po, C . In the absence of any net mass injection or forces on the fluid,
00 beoe142

the appropriate form of the stress tensor becomes

T (1-3) u U + (p-C 2) 6 (3.125)
ij o0 p1P J j+i

Instead of Equation (2.50) where p is the dilatational pressure fluctuation in the

turbulent two-phase medium. Equation (2.59) is written as
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41T ax 3XdVfy)

P'-Xt 1 2  'T

i x .. 

".J 
Jo r

4 __ f xi-x dV) (3."126)
4-, 2 2 J

r at

which becomes
8 0

PaX~ )  1 1 22ff>. i

(xt) - - [p-pC 2 ] dV(y) (3.127)4aC 2  r t 2  0. ..

0

Adiabatic pressure fluctuations in the two-phase region are related to density
2fluctuations in that region by 6p = C 6p so that the time-varying part of the inte-
in 2  2

grand then Equation (3.127) becomes 6p - Co (6P/C). When the external fluid is

water and the bubbly region contains gas, C < C then becomes
M t

C2  -.-- ..

P(X,t 0 -a1: dV(Y) (3.128)
4rCC 2 at 2  W ..

0 i

Now if disturbances in the region are characterized by velocity u, then the pressure
2 2 

•%

is given by p - Pu2  p U  and a/Dt u/k, where is the macroscale of the dis-

turbance, Therefore, with the elemental volume of the disturbance 6V -
3 , Equation

(3.127) gives

0 4
p6xt) u (3.129)

which dominates the usual quadrupole radiation,

P(x,t) .
0(C r 

.'-'.L

00
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by the factor C2 /C2 > 1. Also, the field has an omnidirectional radiation rather
0 m

than being of a typical quadrupole nature, as seen in comparing Equations (3.126)
S and (3.127).

Finally, it should be noted that the speed of sound in a mixture is given by

C=Rbwb
m (32)lI2

where wb is the resonance frequency of the bubbles of radius Rb (see Equation (4.20)).

The enhancement of radiated noise intensity brought about by the factor
( O /C) 4 Cihto89

(C,/C) as pointed out by Crighton will be as much as 50 dB over that of single-

phase jets for concentrations 6 on the order of 1 percent. This and the previous

analysis of unsteady mass flux suggest important hydroacoustical sources for which

experimental confirmation is totally lacking.
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3.8 APPENDIX A - MEASUREMENT OF CROSS SPECTRAL DENSITIES
WITH FILTERED SIGNALS

In Section 3.5.3 we examined the theoretical properties of the cross spectral . ..

density as a Fourier transform of the space-time correlation. Now we examine the

operational requirements for obtaining this function in experiments. Extensive dis-
79 8cussions of this subject are given by Lee and Bendat and Piersol.80

Consider two sensors giving electric signals in response to velocity, pressure, "-

or acceleration fluctuations. The physical and electronic arrangements are shown in

Figure 3.A27, for the case of disturbances convected past two probes as would be the

vIt) v2 (t) , .

'0Figure 3.A27a - Physical Arrangement

v 1 (t)

7I-/ v1 It, Af) v2(t + r', LO

v2(t)T

Figure 3.A27b -Electronic Arrangement

IH(f)I
'Af

- 4Z
f 0i

FREQUENCY TIME
DOMAIN DOMA IN

Figure 3.A27c -Idealized Filter Function

Figure 3.A27 -Diagram of Physical Arrangement and Electronic Components
and Functions which are Used in Measurements of

Cross Spectral Densities

2 '"8
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case in a turbulence measurement. The electrical signals are passed through matched

electronic filters, which pass energy only within the frequency range fl + Af/2.

For simplicity, the filter function H(f) is assumed to be rectangular in shape so

that the temporal response of the filter is given to the right of Figure 3.A27c.

One filtered signal is delayed a time T after it is filtered.

The steady-state voltage leaving the filter is given as

t •

V(tp,.f) -J V(t) h(t-t) dt1  (.A128)

i.e., the output of the filter at t depends on the information entering the filter -

for all time preceeding t. Rearranging Equation (3.A128),

v(t,Af) -J h(t) v(t +t) dt2

0

or we can write

v(t,Af) - g(t2) h(t2) v(t2+t) dt2  (3.A129)

f-01

where g(t 2 ) - 0 for t < 0, Now, introducing the generalized Fourier transforms of
22

h(t) and v(t) wu can write

fJ -.wlt

i1 -iwa"t 2 """

g(t 2 ) h(t 2 ) n -J H(w") e d"

00

-w'(t 2 +t)

v(t 2 +t) -e dJ'V.-..-.
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so that (by Equation (2.123))

- (oj"+') t2  -iwot

v(t,Af) J dt2  dw" dw' e V(w') H(w")

_CO -0

Sdw" w d 6(w"+w') e- 'w't V(w') H(w")

ra iWtj e H(w) V() d()) (3.A130)

The frequency f is related to w by w 2rf. 
.

Now, the delayed filtered voltage can be written

v(t+-,Af) - J a w '(t+ ) H(w') V(w') dw' (3.A131) .

and the time-averaged product of the voltages becomes

____ __ __ TI
T/2

v1 (t,Af) v2(r+tAf) - -J Vl(tAf) v2 (t+,fM) dt

-T/2

~0

dw do' I*(w) H(c.') V*(w) V(w') e' . .

2 Je 
1w,
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In limit as T * we invoke Equation (2.122) so that

v(tAf) v (t+T,Af) = 1~w 2 lim 1- V(W V(W dw O.12

Recalling, now, Equation (3.42), we can rewrite this result in the form of the

cross spectral density of the voltages, i.e., we now have

C- 2

vl(t,f) v2 (t+T,Af) e j ira ((--) 2(w) dw (3.A133)
00

where 4'v (w) has both amplitude and phase.

To comnplete the analysis we show the relationship between the analytical filter

function 4(w), that is defined over < < - and the physical function th(f),

that is defined over 0 < f < Returning to Equation (3.A129), we note that

(, ) (t e e 2 d.

.. i.. ."

whee () hs ot amliud an hse .d.

VlV2  2 2-

00

a i( d) (t h 2  e dt 2in:t:(::hete oie tafm i

an-ic h(t 2 11 ehv h w-ied t 2 ..s....-..i:

22 2
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) H jt2(w +J(- h(t )e dt
2 t2

and

h(t) J [H(w)+HC-w)) e- dw

wNote that H(-w) H*(w), i.e., is the complex conjugate of H(w). Now, we define the

one-sided filter function

HM(f h= cos 2rft 2 dt

f t2)2 2

0

S( ew 2  wt2  .

J2 2

* which is the one-half of the complete transform of h(t); and so

*~) 2 [H(Ca--2if)+H(-u.r--27Tf)]

* is a real function, having no imaginary part, and, therefore,

11,(f) 12 =If? (Hi(w-=2if))12

for 0 < f < C

212



IH(ur2Twf) 2 c.A134)

Using Equation (3.A133) we can determine the autospectriun of the voltage as 0

(tA)V(t' A =) f 2 () (3.A135)

If we assume that the width of the filter, Aw =2TrAf, is narrow compared to the

order of variation of 0 vv (w), then Equation (3.A135) gives (since 1NW)=O(-W))-

2 2 2
V CtAf) (P (w) [IH(w)l + IHC-w)I I Au

H 2 41 (u)-2Trf) H1(f) 2 (2TnAf)
vv

Therefore, the autospectral density is found by

2 .~

4~~~~ (2f)=un v(t+Af)
vv f-O 41T Af (.16

where we have let jl{(f) 12 =1 inside the pass band of the filter. The physical

spectrum, say G (f) can be written as

22v (t,Af) =G (f) IH(f) 1 Af fo 0<f
vvfo 0<f<

so that measured spectrum is related to the autospectral density by

G v(f) =4-1 1)v (uw-2 Tr f (3.A137)

The cross spectral density of v Wt and v Wt can be obtained from Equation1 2
(3.A133) as
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00

V1 (t,Af) v2 (t+T,Af) = e 0 + (-wo) e

xIH(w)1 2 Aw

Letting

(W) = (w) j eit(w)

with "

cx(w) - c(w) (3.AI38a)

and

IC~lV2( )l = +VlV2(- )i ( .A138b) "i. . .""

then

vl(t,if) v2 (t+T,Af) = 1 (wo=2,fo) l cos(2f T+CA) (3.A139)

= C(T,Af)

is the narrowband cross correlation in terms of the cross ;;pctral density. The

various components of the cross spectral density can be found from this function as

C (l=---) = + Iyv (wo=2Tfo) sin ' (3.A140a) ."22 " f +

and

> 14
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C(Ti0) IVIV (WO.27Tfo)I cos a (3.A140b)

from which the amplitude and phase may be determined.

Modern laboratory instrumentation allows a direct measure of the cross spectral

density in which a Fourier transform is obtained over a limited interval in which

h(t) is replaced by a window in which the signal is s.mpled. The transform,

Equation (3.A130), is then obtained directly and the spectrum functions are obtained

from V (w) and V2 (o).

Two symmetry properties for the cross spectral density and the filter response

function were cited above, Equations (3.A134), (3.A138a), and (3.A138b). These

properties arise from the behavior of the cross correlation, as illustrated in

Figure 3.A28. Letting the cross correlation of the signals be RI2 (), then the

cross spectral density is

oo -~ -

co

2n-~ e Rl 2 (T) d.

-0

If K1 2 is symmetric about 1 - 0, i.e.,

12 .3.22221
R12(t) = R].2(-T),.-..."

then

- . .- .

21

12 (W) 7 R12 (T) COS WT dim

which i s a real function. However, if the correlation function is symmetric about a"':'

time delay T for example, ":

R(-[) ,"R(i- ) (3.A141) '--i-

then, letting 11 T I ..- :::..

215 :

9



TIME DOMAIN FREQUENCY DOMAIN3CORRELATION FUNCTION SPECTRUM FUNCTION

R (T)

SYMMETRYrkil
7- -

NON-SYMMETRY

T Vww

j Figure 3.A28 -Illustrations of Correlations and Their Spectral9
Transformat ions

-_ eie }c R(r' OS' d'9

00

A temporally symmetric signal, then, has a real spectrum function and conversely a

nonsymmretric (about T=O) signal correlation has a complex spectrum function. There
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are many general cases in which the symmetry condition may not hold, in which case

the phase versus frequency line will be curved, and the amplitude will not neces-

sarily be symmetric about ± w.

We have seen in Section 3.6 (as we shall see further) that space-time cor-

relations of turbulence generally appear as in Figure 3.A28b. Therefore, a time

delay T = r/U (see the top of rigure 3.A27) oc.curs. The phase of the resulting
C

cross spectral density is, then, of the form wr/U
c

Extension of the definitions introduced in section 1.4.2 is now appropriate.
Just as the pressure spectral density G(f) is defined by equation 1.101 so a power

spectral density ir(f) may be defined as

i~I to..

f (f) df (3.A142)

0

for Ti(f) defined as a one-sided function (fO) or as

* 1(w) dw (3.A143)

when defined as a two-sided function. The one-third octave band power spectrum

I used in Figure 3.18 is defined as

2
I(f) = (f) IH(f)I df

0 •

= 1T(f) Af ""

= i(f) [0.233] f (3.A144)
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Finally a two-sided intensity spectral density is defined as

I= 1(w) dw - (3.A144)

and similarly as a one-sided spectral density.
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CHAPTER 4
TWO-PHASE FLOW NOISE

4.1 INTRODUCTION
4.1.1 General Concepts

This chapter will be concerned with the acoustics of bubbly mixtures, cavitation

noise, and noise associated with the formation and splitting of bubbles. It will,

therefore, be concerned with the wide range of monopole noise sources often occurring 0

in hydroacoustic applications as well as with the problems of noise propagation in

fluid media in which there may be considerable concentrations of suspended gas

bubbles. Another class of two-phase flow-noise that will not be addressed and which

occurs in solid-gas suspensions (e.g., dusty gas) is dipole-like and due to the

interactions between the particles and the gas. This noise production is inefficient

compared to that in liquid-gas mixtures but still potentially greater than the noise

of free jets of single phase. A general theory of noise from unbounded multiple-

phase fluid media, in which there are no bubblk or particulate formations or in-

jection, has been given by Crighton and Ffowcs-Williams, as previously described in

Section 3.7. In cases of free bubbly mixtures not adjacent to a solid body, noise is

considerably augmented over single-phase shear flow noise when the bubbles split or

coalesce, or when cavitation occurs.

A common feature of all the phenomena discussed in this chapter is that motions

and subsequent sound production of a bubble (or a population of bubbles) are produced

when the bubbles are subjected to a pressure field. The motions of the suspended

bubbles which are initially spherical in shape are essentially volume pulsations, ,

accounting for the monopole nature of the noise. Essentially, fluctuations in

pressure on the liquid side of the bubble wall about an initial equilibrium value

account for the motions. It shall be showni (Section 4.2.1) that suitably small

D pressure fluctuations initiate volumetric fluctuations which resemble a linear --

single-degree-of-freedom oscillator. It is this linear motion which controls

classical behavior of sound propagation in bubbly media (Section 4.2.2). At larger

amplitudes of pressure fluctuation which persist for a sufficiently long time,

exceeding a natural period of oscillation, nonlinear behavior of the bubble dominates - ._

the motion and the bubbles may grow and collapse explosively (Section 4.2.3), thus

producing cavitation.

*A complete listing of references is given on page 431.
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Diffusion of gas either into or out of the bubble also may account for bubble

growth or disappearance, but the extent of growth by this means will depend on the

concentration of dissolved gas in the liquid, the type and amount of gas in the -----
bubble and the time scale of the pressure fluctuations. The volume accelerations -

that are associated with this motion are so small that no appreciable noise is

produced by them. The significance of diffusion for our purposes, therefore, is

that bubbles are permitted to grow to a large enough size that under subsequent --

undulations of environmental pressure, nonlinear explosive behavior may occur.

A study of the explosive behavior of bubbles, or cavitation, its onset, and

the noise produced, will occupy the core of this chapter (Sections 4.3 and 4.4). In

a crude sense, cavitation will occur when the pressure in the liquid surrounding a ....

nucleus becomes equal to (or less than) the vapor pressure of the liquid for an

appropriate length of time. A cavitation site, or nucleus, is really a small gas

or vapor-filled bubble or interstice in a solid particle that is convected with the

moving liquid into and through a low pressure zone. Cavitation occurs as the

smaller bubble grows to many times its initial size. When the pressure surrounding .

the cavitation bubble subsequently increases, the conditions will favor the collapse

of the large bubble implosively. This event causes most of the noise that is pro-

duced in the cavitation process. Therefore, there are four important subjrcts which

must be understood in order to explain the onset and behavior of hydrodynamiz cavi-

tation: conditions favoring explusive growth (Sections 4.2.3 and 4.2.4), the

parameters which control the maximum sizes of cavitation 'oubbles and their uubi.e-

quent collapse (Section 4.2.5), a portrayal of bubble dynamics in terms of hydro-

dynamic variables (Section 4.3), and a relationship between the stages of bubble

motion and the spectrum of cavitation noise (Section 4.4).

One may think of cavitation as the production of a "hole" in the liquid which

collapses once the conditions favoring its creation are released. The energy

released during collapse is considerable,* and most of the energy is stored in

whatever compressible gas is in the bubble and in the elastic deformations of the

. adjacent liquid and any contiguous solid surfaces; only a small fraction, on the

order of 1 percent or 0.1 percent, is converted into sound. The cavitation is,

therefore, not only capable of producing noise, but also it causes damage to

*As a numerical illustration of this point, a bubblc, 1 cm in radius fille..
with water vapor and collapsing in an ambient pressure of 1 atm will generate an

average of approximately 460 watts over the 1 ms time interval of its collapse.
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hydraulic structures; this damage has been termed "erosion." It is, in fact, this

latter problem of cavitation erosion that has dominated the literature on applied

cavitation research with comparatively little attention given to cavitation noise. 0

However, in recent years, attention has also been given to the acoustics of cavi-

tation as applied, for example, to the detection of potentially-damaging cavitation

in pumps and reactor components as well as to the problem of improving habitability ,,.

in crewEpaces over propellers in merchant ships. Cavitation can also occur near .

high-powered acoustic sources, with a consequent reduction in the radiation

efficiency cf the source as well as possible damage to the active surface of the .... ' "

transducer.

In the case of cavitation which arises near acoustic sources, called "acoustic"

or "ultrasonic" cavitation, when the local rarefaction pressure becomes less than a

critical pressure, the incipient cavitation will consist of small bubbles that grow

in the liquid, gradually becoming visible without microscopic aid. This critical

pressure, as we will see in Section 4.2, is often comparable to, although not

necessarily equal to, the liquid vapor pressure and it will depend on the nature of

the impurities which may exist in the liquid. It is now generally recognized that

in order for cavitation to occur, these impurities, or nuclei must exist. They

consist of small suspended bubbles in some combination with particul.ate matter which T7

has not been fully wetted by the water. These latter impurities contain entrapped

gas and are often called "hydrophobic" particles. When the I iquid has a large

concentration of dissolved gas thaL is in equilibrium with suspended bubbles, the

gas will slowly diffuse into the bubbles from the liquid j.'hass under the influence

of an undulating pressure field, This cavitation in called "gaseous cavitation.",

Because incipient ultrasonic cavitation involves the response of a nucleaLiun

site to a prescribed and deterministic pressure field, the prediction of its

occurrence comes down to assessing the population of nuclhl or, alternatively, the

tensile strength of a given sample of liquid. Consequently, a large body of

literature in the area of ultrasonic cavitation deals with the asuasoment of liquid " "

tensile strengths and other aspects uf nucleation. Pure water, without suspended or

dissolved gas or suspenden particulate matter, will not cavitate until the

rarefaction or tensile pressure is large; the maximum tvnltile nLrungLh obtivrvud fur

pure water ii on the order of -280 atm. T'hiiu presut . Jlu far below th at whicil " "

achievable with hydrodynamic pressure fluctuaLioziu.
. = ., ' , .
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Since cavitation is an undesirable hydroacoustic phenomenon, a major portion .. -. ..

of published work has dealt with the prediction of the onset of its occurrence or

its "inception." The conditions which favor incipient hydrodynamic cavitation are

more difficult to define because of the complexities which exist in both the unsteady

liquid motions as well as in the distribution of cavitation nuclei. In the laminar

flow around bodies at low values of Reynolds number, the incipient cavitation in

liquid, which has a large number of suspended bubble nuclei, has a rather straight- -0

forward and classical behavior (see Section 4.3). When the hydrodynamics becomes

turbulent, so that random hydrodynamically-induced rarefaction pressures may occur,

then the inception can become more controlled by the viscous flow properties than by

the population of nucleation sites. In these cases it is difficult both to scale-up

prototype model performance as well as to repeat cavitation inception measurements

on the same model in different laboratory facilities. Viscous effects in the

boundary or shear flow may depend on such scale effects as free-stream turbulence,

surface smoothness, and Reynolds number, etc. It is, therefore, frequently difficult S

to achieve exact dynamical similitude in all details of cavitation model testing in

so far as the evaluation of incipient conditions is concerned. The acoustical

problem is similarly difficult to quantify, because the motions, both of individual

bubbles and of the aggregate, depend on the conditiona which favor inception.

Therefore, the problem of noise generation cannot be considered separately from the

hydromechanics of inception.

In this chapter we shall be concerned, therefore, with the dynamical properties

of single bubbles in liquids (Section 4.2), as well as with the propagation of sound P

in fluids with suspended bubble populations. From the dynamlcal behavior of single

bubbles, a set of rules will emerge which may then be used to develop a format in

which conditions for inception may be quantified In terms of hydrodynamic variables

(Suction 4,3). The dynamics of the single bubble will also be used to formulate an

idealized frequency spectrum of acoustic energy, and this will be compared to

measured noinc from Jet.;, hydrofoilo, and propellers (Section 4.4). Finally, the

* uise from bubble splitting will be discussed (Section 4.5). Related texts which

cover, in depth, the subjects of cavitation inception, dynamics, and damage include .9
2 4

the review article by Flynn and the monographs by KnppI, Daily, and Hammitt,
5 0, 7"" .'-

h~o nF, Beyer, and l'ern ik.

• . o °
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4.1.2 The Cavitation Index and Cavitation Similitude
The general elementary cavitation problem is illustrated in Figure 4.1, which

shows a hydrofoil shape and its surface pressure distribution, P . The surfaces S
pressure is related to the tangential velocity in the flow near the surface, U by

S

Bernoulli's equation for steady flow

REGION OF ... , .. i .
-~~CAVITATION "- .".;.

SUCTInN SIDE

PRESSURE SIDE

a." -- SUCTION" ,.".. •0
0..U --- PRESSURE -P00

'U

CAVITATION

Figure 4.1 - A Cavitating Hydrofoil, its Surface Pressure

P+ Owo s 2 (4.1)

so that a pressure coefficient C may be defined".'"--

..

15 = C --"1 (4.2) ', .
12 p "

UU

where Pwo and U, are the upstream ambient pressure and velocity, respectively. The__ ...
increased velocity on the curved part of the hydrofoil causes the surface pressure " -

to be less than the ambient pressure. Cavitation will occur when the pressure in

23
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L 
.

the liquid, which will be lowest near the surface, is rarefied down to some critical

pressure, for example to the vapor pressure P Thus, whe the minimum pressure on.-
V

the hydrofoil is less than P' cavitation will occur
v0

(P) < P
S -Vmin 

or

P > (Cp) 2 + P  (4.3)
v in n 0

An incipient condition will occur when the equality exists because this

condition will mark the cavitation threshold. Therefore, the cavitation index is

introduced as

K =  
(4 .4 )

1  2

to express the relationship between pressure and velocity that determines similarity.

According to our inequality, Equation (4.3), cavitation will occur when

P ..- 
P 

.D 
...

V< -C
1 U2- pmin-1 2

or, using our definition of the cavitation index, it will occur whenew.r 0

K < -C
Pmin

* *The critical pressure will be equal to P when the free-stream contains cavi-
3 v

tation nuclei of 10 cm radius or larger, and the flow over the hydrofoil is
laminar.
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The threshold or incipient condition will exist when

Ki  -C (4.5)
Pmin

In more complicated geometries, e.g., a pump or a propeller, the parameters of

the undisturbed flow into the cavitating surface may not be known or they may not be

of engineering interest. In these cases steady flow exists but there may be a .

velocity-dependent pressure difference, the reference pressure, Pref and P for the

surface; i.e.,

ref P

Furthermore, rather than the resultant velocity (resultant tip velocity in the case

of the propeller) a reference velocity U is often used so that a parameter
ref

P -P
K' = ref v (4.6)

1 2
2 o re f :. -- "- -

is appropriate. This parameter is related to the previously defined index by

2 .

K' K ~ 1

ref 2 PuUref

As long as dynamical similitude exists between one scale size and the next, so that
fixed proportionalities between U and Ur f and between A P and 1/2 poU 2 arefixe prporionlites btwen UandU ad btwee APand1/2p Uaremain-

CO ref o
tained, then K' is a dimensionless cavitation number which will describe relative

cavitation performance. As previously discussed, when K' is less than some thresh-

old value, e.g., K!, then cavitation will occur in the system. in this latter usage,

K' is a parameter which is a measure of the relative cavitation performance of one

machine to the next. Nomographs are given in Appendix 4.C for computing cavitation

indices for propellers.

2

,235 "."°

. -... . c. t . . . - . . -. - . - .- • . - . - , ' - .• - . - . et . . -~ -. .2 -• -.' . -. ,' .~ i%. X-. -.. - . . -. . -, . . - . . .. "



Complications occur when it is desired to satisfy simultaneously viscous and

cavitation similitude. In this instance it is ideally necessary to maintain equal

Reynolds and cavitation numbers, i.e.,

(RL (4.7)

and

K 1 2i = (4.8)

th vloiy.f h.ts (PoU ,)M "(l'--2  
_ _:1 2

If the ratio of full-size to model size is S > 1, then Equation (4.7) requires that

the velocity of the model Lest must be in proportion to the full-scale as .

UM M

S S

if both phenomena are examined in water at nearly equal temperatures then M = .

The pressure required in the model test is, therefore,

v s

If the scale factor is S = 10, then UM = 10 U and (P-Pv) 100 (P-P)s. This

N S, vI v s

high pressure may be well outside the operating range of the facility. A common 0

practice is to forego viscous similarity and let UM  U so that the model test is ]
conducted at a low Reynolds number,

This procedure allows the hydrostatic pressures in both scales to be equal and,

therefore, within the limits of facilities.
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An additional complication arises in propeller testing when it is desired to
8-10

operate the propulsor in the wake of a surface ship. In this case one may wish

to simulate the change in hydrostatic head exerted on the propeller blades as they

rotate. This requires that the ratio

U2

0

P gH •
0

be held constant, where H is the depth of submergence and U is proportional to the

propeller tip speed (nD). This scaling, known as Froude scaling, is represented

by the constant number (called the Froude number)

F r U (4.9)r 1U~/2 .....

(Hg)

so that it is required to have

UM _1

U 1/2
S S

as well as the condition of Equation (4.8). This gives, for the hydrostatic

pressure,

(P-Pv)

(P-Pv) S
v s

0

but now th, Reynolds number is even further reduced

R, RM ._ 312..

Unfortunately, the dynamics of the boundary layers (and other aspects of

viscous fiow) on the body in its noncavitating state are, as we shall see in
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Section 4.3, intimately connected with the inception and type of cavitation.

Therefore, the differences in scale size and Reynolds number bring to bear certain
"scale effects" which relate to deviations in exact viscous flow simulation and

which are only now being understood. Some of the early discrepancies in model * -

testing have been reviewed in this regard by Holl and Wislicenus1 I and Holl12 un-

fortunately at the time of those reviews few good explanations could be offered for

the discrepancies.

4.2 BASIC EQUATIONS OF BUBBLE DYNAMICS

In this section we consider the conditions that are necessary for the mainte-

nance of small-amplitude bubble vibrations, quasi-static bubble equilibrium,

necessary conditions for nonlinear bubble motions leading to cavitation, and the

effects of bubble gas and liquid compressibility in the collapse of cavities.

4.2.1 Linear Bubble Motions
The dynamics of bubbles in a liquid responding to an imposed pressure have been

considered with varying degrees of complexity. The first and simplest analysis is
13 14 15 16

that of Rayleigh, later elaborated by Plesset and by Neppiras and Noltingk,

in which the liquid surrounding a spherical bubble is incompressible. In Raylcigh's

analysis, the medium inside the bubble is liquid vapor so that the internal pres-
14 15,16

sure is constant. Plesset and Neppiras and Noltingk allowed the internal

pressure to be also determined by insoluble gas as well as by surface tension. .*- .-'...* --
17 18 19

Later Houghton introduced viscosity, Blue calculated and Howkins measured
20

resonance frequencies of a bubble attached to a wall, Shima examined effects of

liquid-phase compressibility finding them small for periodic oscillations in water,
21

and Strasberg examined the resonance of nonspherical bubbles. Figure 4.2 shows

the relevant geometry. The pressure difference across a segment of the bubble wall,

is balanced by the surface tension forces. Using the notation of Figure 4.2b, this

instantaneous force balance is

(P i-P(Rb,t)) R2 R1 L4A9 = [SRI AG + [SR 2LG] '-

where S is the surface tension for which the units are force per unit length and
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Figure 4.2a - Spherical Bubble in an Figure 4.2b - Thin Film Segment .9

Unbounded Liquid

Figure 4.2 - Force Diagrams for a Spherical Bubble

where R and R are the (possibly different) radii of curvature in the orthogonal 0
*1 2

directions. For the spherical bubble, R1  R 2 = R so that the condition necessary

for equilibrium is (R is the instantaneous radius and R is the equilibrium, or
0

rest, radius of the bubble)

P. - P(R,t) -2S (4.10)1. R. -" ."

In the general case, the internal pressure in the bubble is the sum of partial 5
pressures of the vapor pressure P and the total equilibrium partial pressure of

V

dissolved gas P in the liquid. During the bubble motion, this gas is compressed .-

g
or expanded so that the partial pressure varits with the bubble radius. Typically,

the ideal gas law is assumed in order to simplify the thermodynamic properties of ,

the enclosed gas and so to provide a simple Lquation of state. The dependence of

pressure on volume is then given by the simple relationship
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3y

P lP2(R
p = pg \R/

where the variables subscripted "o" apply to the iritial state. For adiabatic

motions (no heat transfer from the gas to the liquid), y is the ratio of the specific

heat at constant pressure to that at constant volume (y-l.4), for isothermal con-

traction = 1. Plesset and Hsieh 22 have subsequently analyzed periodic forced 9

linear oscillations of bubbles finding that the motions are isothermal for

oscillation frequencies which are less than the resonance frequency and adiabatic

for oscillation frequencies which are above resonance.

The equilibrium pressure at the bubble wall when the radius is R is then given by.

P(R,t) P + P (2..S- (4,11) •
v go R .

Spherically-symmetric motions in the liquid are governed by Equation (2.2),

Du ru r P

o at o r ri

For the incompressible motion we let the radial velocity be the gradient of a

potential, -

u = V "-' " "

r r

so that

r +-u + r H
and integrating along a stream tube from r = R to a distant point r, for r N R

-

- S



2 2
[(r)-(R))] 1 i2 2 () 2 = "::.i"

+ ([Vr (r)] - [ (R) o [P(R)-P(r,t)]
3t2 r r P

For incompressible motions, Chapter 2 gives the spherically-symmetric potential

(r -- - RR 2-
( r

so that an equation for the bubble wall velocity is

3 2 P(R) - P(rt) (4.12)

RR + (.) =
2

where r is now selected so that r >> R. Equations (4.11) and (4.12) may be combined A

because the pressure balance of Equation (4.11) across the wall may be taken to apply

for any value of R. The pressure P(r) may be considered as a time-varying hydro-

dynamic driving pressure.

Equation (4.12) is the basic equation for incompressible liquid motion adjacent

to a bubble and it is accurate to within an order of R/C , where C is the speed of

sound in the liquid. When the local hydrodynamic pressure P(r) decreases, the

bubble wall accelerates outward. For small oscillations, the term quadratic in R

is small, but for a critically small value of P(r,t) this term, which is always .

positive, controls the bubble growth and will dominate the linear acceleration term.

Several useful alternate forms of Equation (4.12) may be derived which cast

the oscillations of bubble volume in terms of an applied perturbation pressure that

is superimposed on a static equilibrium pressure. The response of the bubble

volume can be found by substitution of

*2 V
RR _

4 -9

where V is the volume velocity of the bubble, into Equation (4.12) which gives the

alternative relationship
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2

V 2 -P(R) -P(r,t) (4.13)
4TR 2 4 4irR /

The in antaneous volume will oscillate about its equilibrium value V under the
0

influence of the. driving pressure P(r,t) whici' oscillates about a static value that

determines the equilibriumn state of the ' "ble. Thus, let this static pressure be

P so that

P(r,t) =P + p(r,t) (4.14)

00

Replacing the pressure on the liquid side of the bubble wall by Equation (4.11) and

noting that the equilibrium pressure of gas in the bubble of equilibrium radius R
0

is, by Equation (4.10),

2s
P P (R)+--P

0 0 R v
go 0

Introducing the local static ambient pressure,

o v 2 (4.15)

we f ind

\'fR 2 411R 0~ ; B K
- ) L= v 1 P(r,t)

-- p(r,t) (4.16)
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which is an alternative form to both Equations (4.12) and (4.14). For small

oscillations, we use the first term of a Taylor's series

p - (V-V) (4.17)

go - V 0  Pg 
" 0

and assume that the bubbles are large enough that the changes in surface-tension

contribution can be ignored. Equation (4.12) reduces to the linearized form

derived by Strasberg2 3

YP

R V + T (V-V) -p(r,t) (4.18)
0 0

To determine the resonance frequency assume free simple harmonic motion at a

frequency w such that the volume fluctuations are given by
0

-iWo t
V " V e

0

The frequency of free motion satisfies

- o ( + ( 0 (4.19)

Using Equation (4.15), the equilibrium gas pressure can be replaced by the components

involving the equilibrium static pressure and the surface tension so that the

resonance frequency is

1/2
w =~ [Li (PO+2S/R-P)]l (4.20)
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L

At atmospheric pressure, large-enough bubbles, and y 1.4, Equation (4.20) yields

f 0R 0 330 cm/sec (4.21)

24This result was first derived by Minnaert; it can also be found in the subsequent

analyses by Neppiras and Noltink. 1 5 ,1 6  Resonance frequencies of the fundamental

breathing modes of nonspherical bubbles also closely follow Equation (4.20), as
21shown by Strasberg. Figure 4.3 is a graph of Equation (4.22).

In Equation (4.18) the term multiplying the volumetric acceleration represents

~-added mass of the contiguous liquid so that the first term is the inertially-

contr~lled motion, The second terin represents the compressibility of gas inside

_.&e bubble which domiinates the motion for nressure oscillations that have a frequency

much less than the resonance frequency. &,t resonance, the bubble motions are con-.

trolled by dissipation which may be included by introducing a loss factor into

'-SLi-

Equation (4.18) so that the linear oscillations are given by

+rl' =+w v -p (r,L) (4.22)

Poo

25
where v V aV This equation has been derived by Devin, and used by

23 26
Strasberg and more recently by Whitfield and Howe. The damping of bubbles at

high frequencies (10 kz or greater) has been given substantial attention, anl x-
2

tensive review of that work has been given by Flynn. In the hydroacoustic range,
25Devin has found that thermal and radiation damping control the damping over . .

appropriate frequency ranges. Figure 4.4 shows some measured loss factors together

with the individual damping contributions. The radiation a ed thermal losses

control the total damping as summarized next.

The thermal loss factor is given by the approximate formula (valid for

2S/RP <1)

°- S '

2o (f" K 2j
iv* N~oV+ oV " -p (r, t)(4.23) ,i".•:
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The radiation loss factor can be found by expanding Equations (2.24) and (2.26)

to find the pressure on the bubble surface for small k R (for small amplitude

oscillations R is imperceptibly different from R ) O

i W0oV - i t ' ""
R (-ikR) e (4.25)P(o't) = 4R 01ik 0 "';

0

The first term is the familiar inertial pressure; the second term is dissipative and

it represents an acoustic resistance to the bubble wall motion by the liquid. Now

the pressure given by Equation (4.12) may be compared with Equation (4.22) to dis-

close a radiation loss factor which is

nrad = koR 0

0 0o (4.26) - -

Equation (4.20) can be written ir. alternate fornis*

1/2/3yP°  1 2: ..:..... .

)rad - (4.27)

°\0oc/ I
showing that the radiation loss factor is independent of frequency. ':

The total loss factor is found from the sum of the contributions,

r rad th

.-' c' - .

• Using the ideal gas law for adiabatic volume changes P ,ie.P ( )*-
m2 g g 9O_(constant), which leads to dP /dq = c =yPg /r',"

g g g o g" " "
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The frequency spectrum of linear bubble motions can be determined from Equation

(4.22), by Fourier transformation as

0

pv(w) 2 2

4 R (W0 W -iroWW 0 -p(r,w) (4.29)
0

where V(w) is the Fourier transform of the volume pulsation. The spectral density

of volume fluctuation can be found from methods of Section 3.5.3 as

W 0(w) W 2w + n 2u 2w
pp 2 o 0(22)

POo

where T is the lifetime of the bubble oscillation which is on the order ( T)- and
b 0

P () is the spectral density of pressure fluctuations that drive the bubble.
pp

S-M

4.2.2 Sound Propagation in Bubbly Liquids

The theory of linear bubble motions has been used to describe the steady state

propagation an~d absorption of sound waves in bubbly mixtures. The bubbles increase

both the compressibility and the absorption of the two-phase fluid. We shall assume -

that the sizes of the bubbles are much smaller than an acoustic wavelength and that

the bubbles are homogeneously dispersed throughout the liquid phase. The concen-

tration of gas, in terms of the volume of gas per volume of liquid, shall be

designated as so that the density of the mixture is given by 0

Pm = Pg + Po(l- ) (4.30)
m g 0

where p is the density of the gas phase and P0 is the density of the liquid phase. -

Because, for air and water mixtures, p /P 800 (at standard temperature and

pressure), the density of the mixture is nearly identically P0 .

The speed of sound in the mixture at an angular frequency w is related to a

complex wave number k through a complex wave speed Cm m '.-=.- q
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m Cm (4.31)

- (k) + i(km)
r

The propagation characteristics are given by
m -. .

i(k r-wt)p p P e  m' " " "

(4.32)

i [(k)r-wt] -(k)r (4.32)p p e  r i[ -i

where r is a distance referred to some origin inside the mixture and k gives rise

mu .

to attenuation of the sound pressure. in order to determine the wave speed in the

mixture, we calculate a resultant compressibility of the liquid-gas mixture. To

this end note that the total volume reduction 6V to a region of the mixture* result-

ing from a pressure disturbance 6p is the sum of the individual compressions of the .-

liquid and gas phases, 6V and 6V respectively,
Z9'

6V= 6V£ + 6V (4.33)
g

In turn, 6V is the total gas compression, which for the i t h component bubble can be
g

written down by using Eqittion (4.29),

(6P)

P
0(6Vg = 2g i + iTJ WW -W - .

..- . --~

0 00

where u) is the resonance frequency of the bubble of radius R. so that the fractional0
" volume change is an integral over the entire distribution of bubble radii,

*The size of this mixture needs only to include a uniform distribution of .
bubbles.
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6V
9 1 6P 47TRn(R) dR (4.34)

* The integrand contains the distribution of radii in the form of the number of the

bubbles of radius R per unit volume of liquid in an incremental range of radii.

The total volumetric concentration of gas suspended (not dissolved) in~ the liquid

is just

• . . - .(-)

f R' R dR (4.35)

0

.w -. ,

6V ~6 6 .. : .

d Pj 4Rn()dU,..

v 0m (4.36)

m m

2
where ie c is the "compressibility," and C is the associaLed speed of sound in

M m m
the mixture.i A combination of Equations (4.33) through (4.36) gives

k m (0-- (R n (R ) R4 d R./ 2

m d0

o W

as the complex acoustic wave number in the mixture.

27
This relationship has been derived by Carstensen and Foldy (who also derived-

reflection and transmission coefficients for bubble screens), by Meyer and
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28 2Skudrzyk, and more recently by Hsieh and Plesset2  who showed that C is an
M

isothermal sound speed for values of of practical interest. Experimental con-

28firmation of Equation (4.37) has been provided by Meyer and Skudrzyk, and by Fox,
30

Curley, and Larson using measurements of acoustic transmission through bubble
Silbrma31•

screens, acid by Silberman using acoustic transmissions down a wave tube. The

measurements are difficult to interpret in terms of the theory because of un- - -.

certainties in the screen thickness, bubble size distribution, and bubble damping as

the early measurements of Carstensen and Foldy will attest. Figure 4.5, from the

IIT , I, I , , , , J , , --

3000 % % (A) PHASE SPEED - BRI
35 - I (B ABSORPTION.2500 - I, l 0 "-

30

-2000 ! E 25 --

20 -

E 1r
U 1A-

SPEED IN PURE WATER 15

10 T.
50- 5 -fa.

a 
a fA I~l II I I I-I

60 120 180 240 300 360 00 60 120 180 240 300 360
F(kHz) f(kHz)

Figure 4.5a - Phase Speed Figure 4.5b - Absorption

Figure 4.5 - Phase Speed and Absorption in aBubbly Liquid Containing Radii .
0.06 to 0.24 Millimeter Diameter (R 0.12 mm, a /R=1/3)

R
(Points are results of measurements; lines computed from Equation (4.40)
using measured distribution (-) and idealized distribution (---) with

i -4. " _ "
R=0.12 millimeters, n=0.5, and 3=2x10 cubic centimeter per cubic

30centimeter. From Fox et al. 3
) For the definitions of f and f

0 a
see the discussion following Equation (4.43). c = w/(km)

m m r
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30measurement program of Fox, Curley, and Larson, shows phase velocity and

attenuation measurements in a bubble cloud-field that was narrowly distributed

between radii of 0.06 and 0.24 mm with an average of 0.12 nm. The transmission loss

(TL) over a distance r is determined from the ratio of pressures at distances x and

x + r using Equation (4.32), i.e.,

TL = 20 log p(x+r) I
p(x) I

= 8.69 (k ).r (4.38)

The lines of Figure 4.5 represent alternative theoretical estimates derived

from Equation (4.37) for a narrow distribution of bubble sizes and for a large

distribution of bubble radii. For a narrow radius distribution, such that the range

of radii AR satisfies AR/R < r1, Equation (4.37) becomes

2o "2(' O\ _",____ __ _.

ok2 k 2 )-+ _ \w (4.39) 0
Pm \Cg~~~g -1-irl. ? .i[[i

using the equivalence between tiR and yP /p given by Equation (4.20) in the case of .
0 0 0

negligible effects of surface tension. For such a distribution, all bubbles are

resonant at frequency w6 and so all participate equally in the dynamics of the

med ium.

An alternate relationship may be derived when the bubble radii extend over a S

broad range .LR. There is, at any frequency of excitation, a broad population of

vibrating bubbles of which only some motions are resonant but others are stiffness

or mass-controlled. If we let the bubble sizes be distributed about an average

radius R with an associated resonance frequency u o , we can denote the bubble

distribution as a function of the differential radius

n(R) = n(r-R)
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In Equation (4.37) the integration over R includes the variable resonance frequency

that is a function of radius through

ID

1/2
wo R =- .: ' ? -
0 \ P0  / . _-

00

For convenience, therefore, we normalize the radius on the fixed frequency w and the

factor C so that we may write (with x=0wR/C and x=wR/Cw/w )
0

n (R ) = n CR .R W

- .
= n -x- -x) -

o
. . .[

C"

Equation (4.37) becomes, accordingly

0 4o k2-23 o x3 n(x-x) dx
_ 1 + _ c 4 R( (4.40)1+ 0 o - (1 )-ix

The integrand contains the n(x-x) which we assume to be strongly peaked around x-x

with a bandwidth equal to twice the standard deviation of bubble sizes aR/R, and the

bubble admittance which is strongly peaked around x=l with a bandwidth equal to ].

As long as x is sufficiently removed from unity, i.e., as long as the peak of n(x-x)

is sufficiently removed from the peak in the admittance, there are a negligible

number of bubbles that are resonant at the excitation frequency. Equation (4.40)

takes the form of Equation (4.39), but with the resonance frequency and loss factor

replaced by average values, i.e.,

P 2 1- 22
m= i [1 + T-1

0
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This equation is valid for, e.g., io/w -ii > 2.R/PR where o is the standard

deviation of bubble radii about the average R. This equation also holds for all

. frequencies when the bubble redii are narrowly distributed, i.e., when 3R/R < ri.

When the bubble radii are widely distributed so that the range of available

sizcs is larger than ri "R, yet still concentrated about a mean, it is still possible

to "decouple" the function n(R) from the admittance function when motion is near
0

resonance. We do thic in the context of a crude assumption that the radii are
2

normally distributed* about a radius R with a variance 0 R' i.e.,

(2,*)ii- exp R ,a > 0 (4.42) 8

(R) 1/ job-
(2-rQ 0 R ZC R)

where N is the total number of bubbles. The real part of the admittance function,

involving 1 - ( ). passes £hrough zero a% w = ,, but it also has peaks slightly
0 112

above and below These peaks occur at w w. (l+T1/2x2 I ) with magnitudes on the

order of +[2 /3nI respectively. Below = the real admittance rapidly

approaches unity, while above resonance it approaches zero. Therefore, as long

as l << 0RiR the real part of the integral in Equation (4.40) is approximated simply

by an integral over 0 < x < I of n(x-x). The contributions from the oppositely-

1/2
signed peaks at (l+r,/2(2 contribute only

-4 dux-

9 dxx=x

which is negligible. The imaginary part of the integral is strongly peaked at

=w and only those bubbles that are resonant at the driving frequency contribute

to the dissipation. The integral then becomes, close to resonance, (w w)

0S

! A more legitimate assumption would have been a Rayleigh distribution for which

0.52 R. See also Section 4.2.4.3, paragraph b. Equation (4.42) approximates

the distribution generated in Reference 30 with 0 R - 0.3 R.
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0
k~~~. 2 1- +r V . -_

9i 9

1/ .2.

+ i 2 ( o q exp J/2~OR )2 (4.43)

f 2  1/2 P 2
f 'o -1 < /i (2 ri < ,3 /R, and R/(2c >> 1. The second term in

R P R
Equation (4.43), involving (W 0 arises from an approximation to the error

function, erf .x.

Equations (4.41) and (4.43) have many general feature'; in common. As , passes

through-g frog below, the real admittance first adds, then subtracts from the

liquid adnittance. There is a frequency in each case, cu=~a at which the real part

of the admittance of the bubbles cancels the compressibility of the water so that

ku is identically imaginary. Both at this frequency and at resonance, the average

admittance of the bubbles is such that the sound is greatly absorbed, i.e., the

transmission loss is high. he behavior of the mixtures at these and other fre-

quencies is summarized in Table 4.1 for both narrow and broad distributions of

bubble radii and without any reference to a particular bubble distribution. Below

the critical frequencies w and w all mixtures behave similarly and the transmis-

j sion loss is reduced. The medium is controlled by the total stiffness of the sus-

pended gas, while at very high frequencies the bubbles are dynamically stiff and

oscillate as small rigid spheres in response to the sound. Since their radii are

much less than an acoustic wavelength, the propagatio , approaches that of the liquid

medium. At the resonance frequency, absorption is large, the propagation velocity is

relatively low and in bubble distributions the standard deviation of radius re-
32

places the damping. At the frequency, L e (caled santi-resonance" by Junger n the
a

gwave speed increases. For narrowly-distributed radii, the speed of sound increases

as damping decreases, uL the increase would be somewhat reduced as the distribution

is made broader. The relationships in Table 4,1 closely agree with measured

propagation characterist ics. Figure 4.5 illustrates measurements and calculations
30

Taain by Fox, Curley, and Larson. Calculated wave parameters used a value for the
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loss factor of 0.5, which is now considered excessive in light of the more recent

measurements shown in Figure 4.4. Fquation (4.43) cannot be used to calculate the

propagation at w /w because, at this frequency, the approximations leading to 0

Equation (4.43) are not valid. Note also that near w and w the analog of the loss
r a

factor in the distributed medium replaces (1/a) by (T/2) (R/ ) (d /dR), from which

comes the expression for c at w = w in the second column of Table 4.1.

Transmission losses in bubbly media have been used to deterniine bubble popu- S

lations (Section 4.2.4.3). In those cases either of two expressions may be used.

For a narrow range of bubble sizes, such that oR/R < n the transmission loss depends

on the value of the bubble damping

4W 0

TL 0_08.69 00(4.44)
r 2 2

rgg 
.

with n 0.1. For a broad bubble distribution, the transmission only depends on

concentration gradient dp3/dR rather than the loss factor explicitly so that

1/2TL 8.9(30)i/2 df ' c 2 ' 2[--

-- = (.6 0 (.5
r = 4 dR -2 (4.45)

gS

for c R - -. both th ave speeds and the transmission losses are shown for
RIR

selected bubble media in Figure 4.6; they serve as examples of the limits given in

Table 4.1.

The acoustics of bubbly mixtures is important in modifying ,, und propagation

near the ocean surface, especia ly for und,. .... ter ac(-.,qc ic testing and experi-

mentat. ion. In water tunnels without resor, ., for example, -fter continued

operation with a cavitatLing body, the free gas content can increase appreciably.

At lower fruquen,:iUs than the bubble resonance, relatively Umall volumetric

concentrations of gas can appreciably reduce thlm, s'urnd speed In the fluid. i1Cm

confiequcncc of thits reductlor. will be Increased Macth numbers of moving bouics tHlat

are imnerbed in ti I tWU-phas(; fluid. It is quite possible that surfaC' mlot iolh t .L

(arc subsoni- In pure water could become iupersonlc so tlt tie wavv-Lham rig (11,] I L .- '."

of the fluid wJ1 biie altered relat!ve to the clmracteriHtic [,igtih and velocity of

,51
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the test body. Shock waves could also be formed which would make it necessary to

bring into analysis thermodyniamic properties of the two-phase fliuid.

Some more extensiive treatments of two-phane media along these lines haive bven

given by Plesset 33 in connection with the stability and thermodynamics of single

spherical bubbles, some further general acoustic characteristics have been examined

by Crighton and Ffowcs'-Williams, and propagation of shock waves in much liquid.
34 35 36

has been considered by van Wijngaarden, Whitam, and Benjamin. Extensive
analytical treatmento of the continuum mechanics of bubbly fluids have been given by

37- 9 40,41Zwick, Isay and Roestal (who consider the uffects of the compreasibility
42on tile liftina character ist ics of hydrofoilm), and Wllis (who studied wave

motion4 in bubbly mir.tures). -

4.2.3 Theoretical Cavitation Thresholds:. Nonlinear Oscillationh of
Spherical Bubbles

4.2.3.1 The Onbet of Nonlinear Oscillations. When an harmonic perturbation pressure
is of such a mitgnitude tiwt the velocity-squarud term in tile bubble equation

(Equations (4.12) and (4,15)) la impurtoanL, thu bubble motions cona to be siuus -

and take on a more complicated time history. Figure 4.7 illustrates this behavior

10 Aff
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0.6 DRVN1PEIM
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for a variety of amplitudes of driving pressure and a variety of resonance fre-

quancies of the bubbles. The figure illustrates the theoretical behavior that the

linear or nonlinear motionta of a bubble depend both on the amplitude of the pressure

oscillation and on its frequency relative to the linear resonance frequency of the

bubble. For rather large pressure oscillations, e.g., four times the ambient

equilibrium pressure P, simple harmonic motion of the bubble will not exist. If

the frequency of oscillation is below the resonance frequency, the bubble will grow

and then rapidly collapse, this behavior is characteristic of cavitation. For

larger frequencies the motion will consist of a superposition of two harmonics, one

at the resonance frequency and the other at the driving frequency. For small

pressure amplitudes the motion is nearly simple harmonic, as shown. The amplitude ....

of the pressure fluctuations responsible for the cavitation is such that the

pres ure applied to the bubble actually becomes negative so that a tension is placed

on the bubble causing the large tate of expansion necessary for cavitation. Ther.

is, in fact, a critical value of P (e.g., Pcr that will be determined later) for

which cavitation is to be expected, The implication made by the heavy and dashed

lines in the lowur portion of Figure 4.7 is that the excitation pressure must be

applied for a tim2 long enough to permit the necessary bubble growth and that this

time must be neasured in terms of the characteristic period of resonant ocillaLlII. .

M, frequencies which are smull enough relative to the resonance frequency, an

add.qua4t crireL'ion for determining the critical pressure can be determined by

considering the ffatic equilibrium of the bubble.

4.2.3.2 The Critical Pressure for Vaporous r:avitatlon. The critical pressure furlae44 :

cavitaLion, raned -l a thoory of satLic equilibrium was first determined by Blake,

uand rcentLly evtunded by Akul,'uiv.'5 Tit i condition can bIe writtLen in terms of Lhe

diflerunce ill static pressure at the bubble wtAll POO and the field prevsurv P(r),
0

nee Figure 4.2. T,',n, usig lQ,;ustion (6.10) and (4,11),

1(R) 1 (r) V K (r) + 1 ( -

v " -vu  .

Ii

O



Note that because static conditions (w<<o) are being examined, the volume velocity

(V) and volume acceleration (V are neglected. The static equilibrium will exist

at a critical radius when, for a further increase in radius, 
the pressure difference 0!

will decrease. This condition for equilibrium is (see also van der Walle) 4
6

d (AP) R=R-dR jR=R=0 
A.

or

c c R3 ¥ P = 2 S ( 4 .4 7

Rc e 
.

where R is the critical bubble radius. To relate this condition to a corresponding

critical pressure, we combine Equations (4.10) and (4.47) to find the partial

prubsure of gas in the bubble when it reaches its critical radius

j 2S 2S -

(r) + 2S 2 (4.48a)
P c c R c 3yR C

soththe critical value of the hydrodynamic pressure at r > R is

(r) - 2 4S (4.48b)

Substituting Equation (4.48) into Equation (4.46) to eliminate R;yields the critical

pre iurc required for the caviLtaron of a bubble with radius R in an initial

L1jt1IbLiit. prt~turu vf P()
o~ 

j..-

(4.49)

I- ), 
.(r) + 2S

2 1 3y ./
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Equation (4.49) shows that for cavitation to occur, i.e., for instability to exist,

the critical pressure outside thA bubble must become less than the vapot pressure.

The relationship also shows that as R decreases, this critical pressure must be

more negative. In other words, the tensile strength of the liquid increases as the

size of suspended bubbles decreases. The limiting tensile strengh so far ob-
2 45

served ' is P = -280 atm. Furthermore when cavitation occurs, as in the example
c

shown by the dashed line in the lower part of Figure 4.7, any gas in the original

bubble will be expanded into a volume many times larger than in the original

bubble. In such cases, because the partial pressure of gas is then greatly ex-

ceeded by the vapor pressure of liquid, the cavitation is called vaporous. Equation

(4.49) is shown in Figure 4.8 (taken from Strasberg) 4 7 for the case of isothermal

expansions (y=l) at an initial pressure of P (r) = I atm; the expression becomes*
0

P U 2 Ro0 0 SURFACE TENSION PRESSURE, K = 1.0
4S

0,2 1.0 10.0 20.0
1-SI I ..- I--f = "r

uJ - . ." .

GASEOUS _
C, DIFFUSION f =0.5--- "" "

.. EQUATION.-.-.-- U-
S 0 0 0 =. .cc J VAPOROUS 0 L6:

C., ~,.. CAVITATION WU.

/ EQUATION (4.50)
EQUATION (4.98) u

MJ ,. . - -.- . .-
a. /<
-J

< I ...- ,-,.

= -2 I -2

2 x 10- 5  10 -  10- 3  0 2

R., BUBBLE RADIUS (cm)
(FROM REF 47)

Figure 4.8 - Critical Pressure at P 1. Atmosphere and Critical Pressure
0

Coefficient at K - 1 for Vaporous Cavitation, Solid Lirte (-).
Critical Pressure for Gaseous Diffusion at P = 1 Atmosphere,

1' = 1 Atmosphere, Broken Line (---).
sat

*A dimensionless representaton of Eqation (4.50) is also shown; this repre-

sentation will be discussed in Section 4.3.1.2. .

6?.
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-33
For~~ buberdio 0 madsalr hecvtto hehodwl ea n
creaingl neatv prsurs Altoug Equation)- (4.50)shwafomldpnec

of P C(r) on P 0(r). the dependence is effectively negligible because of the

dominance by the surface tension.

*The thresholds of nonlinear motions and cavitation for periodic excitation
43

pressures were evaluated numerically by Solomon and Plesset through a reworking of

Equations (4.12) and (4.16) using the normalization

S.R

R
-R

0

They found, using Equation (4.15) that

p p
R+ .2= 0 -R3 y XR- 3 y+ 2 R-3 y-R-1 )

RR 2~.: 2-

0 0 0 0 0 0

P P(R,t)

0R 2 p 0 R

Following Equation (4.14) and letting

p p(R,t) =P + p sin (uWt+rT)
0 0

the equations of motion become

RR ~ 4.-3y(R 1I + 2SL (R 3 .. ~ 1  
= I0 sin (wt+;I) (4.5].)

pR rR 0 0
0 0 0 0

2b 3

e- e- 4'- * 9 ~ .. * *! * * * . *



Radius-time curves, similar to those in Figure 4.7, were calculated for W/w 0,011,
r

0.04, and 0.069. The first-order transient behavior of the bubbles was also deduced

in a linearized sense by letting

R(t) - 1 + E(t)

so that Equation (4.51) can be linearized by neglecting ()2 relative to t, to give

an approximate formula for the forced oscillation subject to the conditions C(0) = 0

and E(0) 0; i.e. ,

o0 o P1 Wc -2 0l~R p -(r2_ sin wl t-sin wt (4.52)

o P( (- 2 ) 0

0 0

where Jw/W o > T 1 o is the loss factor of the bubble, and
0 0

P -P
=0 V

1 2
OR
0 0

The forced oscillations will persist after the initial resonant disturbance decays.

The curve in Figure 4.7 for L = 2w is misleading in this regard because bubble
0

damping had not been included in either Neppiras and Noltingk's or Solomon and

Plesset's analyses. If bubble damping had been included, the resonant motion would

have persisted over roughly 1/7i natural periods. As the amplitude of the excitation

pressure increases so that the critical pressure is reached, thE: damped transient

motion is replaced by the unstable transient of cavitation.

In this region of large-amplitude motion such that the r term dominates the i'

term, the bubble radius linearly increases with time, as shown by the dashed line

in Figure 4.7 for t less than 0.1 lsec. In this case, Equation (4.51) (and Equation

(4.12) as well) suggests that,

/12 /P-(P-p 112

R ~t~ (P-P ) for wt T i (4.53)

3 P .. '.
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i.e., the bubble radius will be proportional to the square root of the difference

between the vapor and external pressure when the latter is smaller. The limit wt < 7T

determines the length of time that the pressure fluctuation is negative, i.e., that

the pressure difference P - P - p sin (wt+7r) is positive. The maximum radius will
V 0 01

then be determined by the time t = 7w so that

RIN 2.6 -l (Pv-(Po-Po) /2 (4.54)
0

Equation (4.54) demonstrates that the maximum bubble radius is independent of the

initial radius, a result first determined analytically by Neppiras and Noltingk.
1 6  S

Linear dependence of the bubble radius with time has been observed for motions in
hydrodynamic cavitation, see, e.g., Arndt and Ippen.48

Figure 4.9 summarizes the results of calculations using the complete bubble -

r 16
Equation (4.51) made by Neppiras and Noltingk (designated N&N) and by Solomon and 0

Plesset43 (designated S&P) in a form that is consistent with the above analyses. The

solid lines represent the steady-state first-order linear bubble amplitude given by

Equation (4.29), rewritten as

1/
(R -Ro) w ____3P ___

1/2 oj (4.55)1, U;. 
- A

Po L° 
....

and the contrasting transient nonlinear cavitation amplitude which is (see Equation

(4.54)) S

w(R-R)1/2~2.6 (4.56)

( p o ) 

•

00
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A PC 2.15, A > 1 NUMERICAL COMPUTATION
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CALC: NOLTINGK AND NEPPIRAS 119W0115.16 /

SOLOMON AND PLESSET (1967)4 C -3/ 2S)
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0, 

.94
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MTONSCBELRATERN

Y THAN ADIABATIC MOTIONS
0.001 1 fl d i-

0.001 0.01 0.1 1.0 10

Figure 4.9 -Amnplification Factor for Sinusoidally Excited Bubbles Shown
as a Function of Frequency, w/w., for Different Pressure Amplitudes,

A P0 1I no

*The calculated points, connected by dashed lines, are normalized on the ambient Po;

*fur fractional values of po/P,0 e.g., at PC = 1 atm, the muinimum pressure is greater

than the vapor pressure of water at any instant in the pressure cycle. For pressure

*amplitudes such that P - P + p > 0 the limiting value of Equation (4.56) roughly
V 0 0

a appli es . On the other hland, for small ratiorn of p 0 Po so that P v- F + 4 p 0 c

the admittance Equation (4.55) closely agrees with the more exact numerical calcu-

lations. For p /P =1 it is seen that the threshold between linear and nontlinear

* motions depends on frequency, with the CUtoff for. linear oscillation being

*w -- 0. 01 Li. For oscillation.5 above the resonaiicc frequL-Icy, only one point has
0

2016



been calculated, and though the motion appears not to be cavitation-like (Figure

4.7), the computed amplitude exceeds that which would be estimated using the linear

theory by about a factor of three. Cavitation thresholds in oscillating pressure

fields will be independent of frequency and given by Equations (4.49) and (4.50) as

49
long as the frequency of oscillation is much less than the bubble resonance. At

high frequencies, w > wo the inertial terms of Equations (4.12) and (4.16) become

dominant, then the threshold pressure is given by the r, -irement that the pressure

around the bubble must be less than the vapor pressure. However, as shown by

Equation (4.54), as the frequency increases the pressure difference that is necessary

to generate a bubble of a given size will also increase.*
5 0

4.2.3.3 The Importance of Diffusion. Diffusion can be important in both ultra-

sonicaily and hydrodynamically induced cavitation. When the growth of a bubble is

determined by the diffusion of dissolved gas into the bubble from the surrounding

liquid, then the cavitation is called "gaseous cavitation" and is not explosive as

in the case of the vaporous cavitation discussed in the preceeding section. The time-

scales oi bubble growth by diffusion exceed by orders of magnitude the time scales

for vaporous cavitation. Diffusion can play a part in vaporous cavitation; a bubble

nucleus which is too small to grow explosively may slowly grow because of diffusion

of gas into the bubble until the radius increases to the critical radius given by

Equation (4.48b) for the ambient pressure in question. Once having grown to the

critical radius, it will explosively cavitate. Also, quite often some types of

hydrodynamic cavitation, for example, sheets which are bound to the surface, leave a

cloud of microbubbles that disappear downstream slowly because of the amount of gas

captured in the collapsed bubbles. In this cavitation the maintenance of a steady

sheet cavity provides a continuous liquid-gas interface across which vapor may

continuously pass and downstream of which (the end of the cavity) the gas-vapor-

filled bubbles may be continuously ejected.

Theoretical studies of diffusion in cavitation have dealt with four phenomena:

a bubble in a quiescent liquid which is either supersaturated (so the bubble will

grow) or undersaturated (so the bubble will dissolve), 46,51 a bubble Lhqt is fixed .41

(as bonded to a surface) while being scrubbed by a moving liquid in which case it

*An analysis by Guth has indicated that large-amplitude nonlinear growth does

not. occur for negative relative pressures, A ) 1 when u > 1.6 L0 .

20 0%- 42- -. 4 4.



52,53
grows by "convective diffusion," a bubble In an otherwise quiescent liquid that

is excited with an oscillating pressure (as for example generated by an acoustic

transponder) in which case it grows by a process called "rectified dif-

fusion,"' 4 ' 4 7 ; 54 6 0 and finally a bubble that expands in a liquid as by vaporous
61

cavitation during which a small quantity of gas is diffused into the bubble.
These processes all rely on the fazt that gas will come out of solution whenever

the partial pressure of gas in the bubble, P is less than the equilibrium pressure

of dissolved gas in the solution, i.e., whenever

P < P
g sat

and by Henry's law the partial pressure of the gas in equilibrium with the dis-

solved gas concentration is

P

where H is Henry's law constant (at 25 C, 1 = 5.4 x 10 mu.n 1g/mole fraction for air

and water) and - is the mole fraction of dissolved gas.* A condition for static ---

equilibrium in which the bubble neither grows nor dissolves is

2S ° .

P -P fP at (4.57)
e v sat R

where fP replaces the partial pressure of gas in the bubble, Pg and f is the
sat _

percent of the saturation concentration c/rs or C/C, at the bubble wall repre-

sented by Pg, i.e., P /P = /s = f. A liquid-gas solution may locally become

either under- or oversaturated when the anmbient pressurL is either increased or

decreased relative to the equilibrium (saturation) pressure.

Theory and computation by Epstein and Plesset 5 1 and van der Walle, for the

diffusion of gas Into a small bubble in a quiescent liquid that is supersaturated

with air at atmospheric pressure, show that the process is slow. For exarpll,, a
,-3

bubble of 10 cm in water which is 25 percent supersaturated (f=1.25) takes 406

*When the pressure of air above water is one atm, = 1.5 ,!) mole/mole.

This equilibrium, or saturation concentration on a volume hasi. is C = 0.019 cn > / cr .

-2 °8
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* seconds to grow to 10 times its initial radius. Conversely, in water that is only

50 percent of saturation (f=0..5), a bubble of the same size should take 5 seconds

to dissolve. The equation for the dissolving radius of a buable in an undersaturated

* (fcl) or oversaturated (f~l) solution is

R [72DC Uf-1)
R + R )l2  t (4.58)

V where c =equilibrium mass concentration of gas dissolved in the
liquid at saturation (mass of dissolvad gas per unit
volume of liquid)

D=diffusion coefficient (2x10- cm 2/sec)
S --- ..

f=fraction ofl saturation, and

=density of gas in the bubble

For th uestttdsolution, f > 1 and the bubble will grow. Conversely,a

practical effect ol diffusion is that bubbles in suspension in an undersaturated

liquid (f~l) will naturally dissolve. The implication of this theortical ob-

servation is that cavitation nuclei, can only be present in settled liquid if they

are sonehow stabilized. Speculations on the subject of nucleus stabilization are

I discussed in Section 4.2.4.2.

* In the Epstein-Plesset theory, only the first term on the left hand side of the

general dimensionless diffusion equation

4- { v'--,c} =-

is r cta ine d In this eqluation Lhe Uand g radient operators have been non-

dimcnsionalized on the time scale P /D ,where R is the initial radius of the
0 S 0

bubble, and of the space :ai R . Thu velocity v' is nondimensionalized o,,- a

00

,-ich the bubble nucleus convucts with this liquid. Whten liquiA passes by a bubble

uilr'-Iativo VLdoc.i ty U, thei conv.ective efLsare ImportaiiLt. When the

47.!



AI

dimensionless number UR /D , called the Peclet number, is substantially larger than

unity, then convective diffusion is important. Approximate solutions of the

diffusion equation with C/t' ignored in preference to the convection term have
52 53" -

been provided by Parkin and Kermeen and by van Wijngaarden. The radius-time

relationship for convective diffusion growth of a bubble in liquid of gas concen-

tration c given by van Wijngaarden may be approximated by the formula

R 3/2 UR D C (f-l)

(RD 1 2 D (4.59)

g R C'5' 2- go

The ratio of times required for a bubble growth to the ratio R/R by means of con-O

vUcLyvte diffusion, versus the time required to grow to the same size ratio by

quiescunt diffusion is given by Equations (4.58) and (4.59). This ratio is given by

t R 1/2 +1/2tconvectio R =l7(0 D s
tno convection 

0 0

it decreases with an increase in velocity, and it increases as the radius increases.
-4For bubble radii R on the order of 10 cm in water and R = 1OR with U = 10 m/sec,

O 0

this ratio of times is only 0.0076. By Equation (4.58) 36 seconds are required for
-3

a bubble to grow from 10 - 4 cm to 10 - cm; by convective diffusion this time would be

reduced to only 0.27 sec. This reduction in time is sufficient to make convective

diffusion important in hy.drodynamic problems.

Bubbles will also come out of solution under the influence of an applied

pressure oscillatLion (as applied by an underwater transducer) when the liquid phase

contains dissolved air in either saturated or undersaturated concentrations by a
54 55process of rectified diffusion. lsieh and Plesset and Eller and Flynn and

59
riv r have provided LibeureLical analyseb of this process. The Limes that are

rcquited for significant bubble growth are much longer (minutes) than those required

by coWvective diffusion so that this mechanism of growth is less important in

h-droartoustics than in ultrasonics. In undersaturated solut ions, where bubbles have

a natural tendvncv to dissolve when undisturbed, the amplitude of pressure

20
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fluctuation must exceed some threshold value which depends on the dissolved gas

content and the frequency. Threshold pressure fluctuation amplitudes that are

required for the onset of rectified diffusion have been measured by Strasberg, 4 7 ,5 6 ,5 7

witn calculations given by Strasberg based on the diffusion theory of Hisieh and

Plesset which give excellent agreement with measurement. Earlier calculations by
44 58Bake and by Pode are based on a more approximate theory than Hsieh and

Plesset's and underestimate the diffusion threshold pressure by a factor of 10.
2 6

Reviews of the subject have been given by Flynn and by Beyer. Rates of bubble

growth calculated from the theory of static diffusion seem to underestimate observed Vs

rateb. Here exact theory which includes self-induced convective effects (called
59,60

acousLic streaming) seems to account for the observed greater rates. 596

In general, as the size of the bubble radius decreases below 1o cm, the

tucn6ilu strength in the liquid at room temperature increases, so that vaporous cavi-

tation can occur only at very low pressures, unicss the liquid has a large population

oI stabilized hydrophobic solids. In settled water which may have a large content

of dissolved gas, but still a population of bubble nuclei which are smaller than

lI !i Gillbcs, microb ubblcs can he made larger iy diffusion. Such growth occurs

for a timp until bubble radii are large enough that vaporous cavitation can occur.

Pl_ sequence et events was suggested by Strasberg as an explanation of Lhe parL

viiich could b played by diffusion in the cavitation process. The bubble of radius

K, may be subjcted to a local pressure which is greater than the critical pressure
P that is required for vaporous cavitation. The bubble will then grow from R. to

- r 1

K (Iquattion (4.48b)) in a time which is dependent upon tile degree of local saturn-

t i''. (,I was in, t he Miquid and the type of diffusion (static, convective, rectified)

t!ht takes place. As the hubbies enter the rarified region of a lifting surface the

J,,Ia, decrc of saturaLion may be relatively high and the time required for moderate

' .t ih 1". d il f-: i on ra. i-c sicur ter than the hy'drodv amic time scal es of the f ow.

Vi. i si,!i growtL, the larp.er bubbles may be readied for vaporous cavitation as they

ar c ct.,iwLted furtLer into rarefactio(n zones that are below the critical pressure.

'1 :i , bcivior in mr- lik iv on larg' bodies t ian small.

t./s cani ail so ice dii fused into uhI cs uidCrgoing vaporou: aviation in l iquids

VikI, i d; co v CL iisslv d g-as. Relationsis ps for esti,-at-ing the may-s of gas dif-

I i.-cd it o rl. ]li .i;! Iv L '- lp din cavit ices in '.linrous-tyvpe ca'.'tat ien have Lot;)
.'d v ,o c.-l vskii. l , ss intro,.,td ilt the bubble uxpacrdingv for a

tinc t under a rarefaction P 1' is

27
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16 -12 P-( 1/2 D1 2 C t5" 2 + 1.9, DCt 2

15 P g 1D/O s g

where C is the concentration of dissolved gas in the liquid (mass/volume) and D is -g s ..- l

the diffusion coefficient Using E'quation (4.53), the first and dominant term

reverts to

8 112 t1/2 D1/2 C 2
"" :i

m - (5 z)1  t1 ~ D~ CRm 5 ) g m ,".

- .m

where t is the length of time that the bubble resides in the rarefaction region.

To find the partial pressure of the gas in the expanded bubble, the ideal gas law

givc5 '*

RT g
rm e

g M.W. 4 3

where ' i- the aholute temperature and M.W. is the molecular weight of the gas.

The partial preissure of the gas diffused into the bubble during its expansion is

then

P 1/2= 6 (tD) 12_
C f (4.60)

P 1/2 R
STD (57r) /2 RM s

where C is the equilibrium volume concentration of dissolved gas at the standard

prucsure P
S "Dl-.

4.2.4 Effects of Gas Content and Nuclei Distribution

4.2.4.1 Cavitation Thresholds in Real Fluids, Influence of Gas Content. A useful,

yet. somewhat artificial, distinction to be made regarding the experimental evalu-

ation of cavitation thresholds is between measurements made ultrasonically in still

waLer and hvdroacoustically in moving water. Physically, of course, there should be

272
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no real distinction, for the dynamical equations for the hubbles are com-non to both

measurement types. The distinction lies in the circumatances which determine the

mode of bubble excitation and, therefore, the mode of measurement. Ultrasonic

2
measurements in still water (reviewed in some detail by Flynn- and Knapp, Daily, and

Hammitt) generally are conducted with liquids in which only the smallest bubbles
62

will remain after standing. These bubbles, being small, will permit the water to

have a rather high tensile strength. In contrast, during hydroacoustic measurenents,

62 61tests are conducted in moving water passing over a body, a venturi tube, or an

optical viewing region. In these facilities there mav be a _reatzr concentration of

available nucleation sites due to c..ntinual agitation and possible replenishment

from the water Luwly. Furthermore, hydrodynamic thresholds are very much dependcnt

on the hydrodynamic specifics of the noncavitating flow as will lbe discussed in

Section 4.3.

An example of one of the early measurements of cavitation thresholds in a
63

moving liquid was made by Crump with natural sea and fresh water, the results of

which ore shown in Figure 4.10. The thresholds were determined by lowering the

pressure in the throat of a venturi and observing visually the initial occurrernce Df

cavitation on the wall as water was drawn from either a water tunnel or the sea.

When the total gas content (expressed as a fraction of the value at saturation) in-

creases, the critical pressure increases to approximately the vapor pressure as

shown by the bands in the figure. For comparison, horizontal lines denote expected

critical pressures to be expected from the vaporous cavitation of bubbles with 

selected radii. The curved dotted line and the point from Strasberg apply to

rectified diffusion and they are included to contrast the results for vaporous

cavitation. A general increase in the threshold P - P is shown as the gas content'c v

(free plus dissolved) was increased; furthermore, the threshold pressures for

cavitation in sea water were observed to be somewhat larger than those observed in

the laboratory at the corresponding gas content. In the laboratory, however, the

water could have been degassed somewhat while the seawater could not be similarly

processed thus admitting the possibility of sume larger bubbles being present to

4 provide sites of gaseous cavitation. It is now appreciated that certain particulate

matter as well as small, bubbles can serve as nucleation sites for cavitation.

2-3
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Figure 4.10 - Measured Thresholds for Vaporous and Gaseous Cavitation

as a Function of Total Gas Content

The most 4idcly used device for measuring total tas content is the van Slyke

blood gas apparatu,;. This instrument measures the total volume of gas extracted

from a volume of liquid. The gas content is then reported as the volume of gas

di '.,]ived (as well as suspended as undissolved microbubbles) in the sample.

S4
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4.2.4.2 Stabilized Cavitation Nuclei. Modern theories of nucleation have been
2 4 7

reviewed extensively by Flynn, Knapp, Daily, and Hammitt, and Pernik, therefore,

a comprOhenS ive reviow of tho-se thjeories will not be given.

ini add'tion to nucleation sites provided by suspended microbubbles, other
64 - '-

nucleus-types are hypothesized to exist. One type, suggested by Fox and Herzfeld,.

consists of a microbubble whose interface is stabilized by an organic skin. This

type was su-spected to remain in the liquid for some time after settling, thus

accounting for the stabilization of cavitation thresholds with time following the

preparation of a water sample. The idea, however, was later criticized by
65

1Lcrzfeld who speculated that these nuclei should dissolve when the static pressure

is increased beyond some limit thus crushing the skin. The measurements by

Strasberg indicated, however, a continued increase in tensile strength with in-

creased pressur.zation. Recently, renewed interest in the existence of stabilization

by surface films has been shoa by van der Meulen.66

rhe second type of nucleation site consists of solid particles or of pores in

the surfaces of bodies whicn are not completely wetted (called hydrophobic particles)

and, thcrcfore, contain amounts of trapped air. The importance of these nuclei was
67,68

postulated originally by Harvey and th2y have been given closer attention by

Stracbcrg 5 6 and more recentlvy by Apfel69 and Yilmaz, liamitt, and Keller. 7 0 The

suggested importance of particulate matter followed the experimental observation

that tne critical pressures of degassed water never reached the values comparable

wit!h the expected tensile strength of water. In the case of Galloway's (ultrasonic)
71

experirr:ent, for example, the expected reduction of cavitation threshold with a

decrease in gas content occurred only until the liquid was 5 percent saturated. For

further degassing, the threshold pressure did not become more negative. Furthermore,

there was observed a dependence of an ultrasonic threshold on static pressure
47 67history by Strasuerg as earlier by Harvey et al. The threshold became more

negative as the scatic pressure was increased and then reduced to its original

vajue. Finally, the addition of wetting agents has been observed to increase the

ultrasonic cayitatioil thrushuld markedly. Ai, xtensive review article on the
72

subject of surface films and wetting has been prepared by Bernd. This behavior,

i.c., a ru!ar ive independence of cavitation threshold on aging at rest and a modest

dependence on history of the static pres.sare, is not as clearly documented in the

hydrodynamics literature.
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Theoretically, the solid particles may act as nuclei because of trapped gas in

the pores which is not accessible for solution, but remains available as a cavi-

69
tation site. Apfel has e;amincd interfacial stability of such trapped gas using

the idealized models illustrated in Figure 4.11. In case (a) the wetting angle a is

Pa

Ck <

WATER a
DEGASSED

STAGE

Pc
TrrT2Z3

INCIPIENT
STAGE /

a c

R'

Figure 4.lla - Large Crevice Figure 4.11b - Small Crevice

Figure 4.11 - Nucleation from Gas Trapped in a Crevice, Showing

lnterfacial Geometries in Crevices Larger and

Smaller Than a Critical Value

such that the interface is deep enough in the well so that when placed under tension

p the arc remains inside. In this case the radius of curvature of the bubble

segment is not dependent on the size of the well, but rather on the surface chemistry

of the liquid-solid-gas system. Alternatively, in case (b), the well is small

enough so that the size of the bubble in tension is controlled by the radius of the

opening a , before the bubble breaks away. The condition for equilibrium derived by

Apfel is of the forn -

2S
P = P + P - 2

C 0 s V

-70
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where R' is the radius of curvature of the convex bubble. The factor Y < 1 (not

the adiabatic constant) accounts for the fact that when the cavitating pressure is

pulsating, the gas pressure in the bubble cannot reach the equilibrium pressure if

diffusion of gas into the bubble lags the bubble growth. For static equilibrium

)o = 1. The distinction between large and small crevices lies in the position of

the interface. A critical size of Lile crevice that distinguisheb demarking between

"large" and "small" wells is one in which the equilibrium position in the degassed

state is at the corner with a wetting angle a . In illustration (a), as the size ofa

the bubble increases, moving the interface outward, r remains constant until the
a

corner is reached. With further increase in the size of the bubble, the interface

remains engaged with tile corner, as in (b), but the contact angle - becomes less

than because the opening of the crevice will not permit further rise of thea

interface level. In the large crevice, R' is a function of both the geometry of

the crevice and the surface tension, while in the case of small crevices R' is

proportional to the radius of the crevice a. The condition for equilibrium then
becomes "

P =-AP + (A+V) P5 + P, (large crevice) (4.61)

w'here A depend on the angles "r' a' and the included angle of the openin.4 2,, and

2S ,'
F =-P o +y 0Ps + P v  

-R (small crevice) (4.62)

where R' is proTp'rtional to a, to perhaps one-f ifth of the actual radius of the

nucleus. The distinction between the crevice sizes leads to rather different

* dependence of Lhe critical pressure on the gas content (P). The threshold of large
70crevices is controlled b); A (which can be as large as four or five) and it depends

upon surface tension only indirectly whereas for small crevices P kill be dominated

by the surface tension pressure. Keeping in mind the possibility 9 '7 0 that

10 -- a - i/5 < nucleus radius, the surface tension term could involve microscale -

radii so that the tension of water containing suspended particles could he rather

I a rg u.

* -'- - . 1 -/'-I - - ?
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4.2.4.3 Measurements of Nucleus Distributions. The preceeding discussions have

shown the importance of establishing the sizes of available cavitation nuclei in

determining cavitation thresholds above and beyond the necessity of quantifying gas

content. In recent years various direct and indirect methods have been developed

to determine what range of nucleus radii exists in water from various sources.
731 Morgan has reviewed the various methods of assessing air contents and nuclei

distributions with regard to instrumentation and tolerances. Before examining the

specific methods we will consider the representations used in reporting nucleus

d istribut ions.

The total population of nuclei is regarded as a random variable which is

distributed over a range of radii. As in Section 4.2.2 let n(R) be the number of

nuclei per unit volume of liquid per unit radius so that the total number N of

nuclei (bubbles, particles, etc.) is

N=f n(R) dR (4.63)

0

Wt further define Lhl nuibeut of particles in the size range 5'R with an average

radius R as

N(R,-LR) n(R) AR (4.64)

47 74175 76,77Gae
This variable has been rep.rtcd by Strasberg, Medwin, 7

' Peterson, 7  Gates

and Acosta, 7 8 Keller,7 9 and Arndt and Keller. 80 It has been indirectly deduced
71

from cavitation threshold pressures by Messino, Sette, and Wanderligh, and by81
Ill'n, Levkovskii, and Chalov. The probability of finding a nucleus of radius R

in the size range ,IR is then

PN(R,,%R) n (R) tR (4.65)4 N

82,83The probability has been reported by Schiebe.
76Figure 4.12 modified from Gates and Acosta, summarizes the observed values

of n(R) from a number of sources. Generally there is a quantitative increase in
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in addition to using the di.tribution function n(R) in soMe Cavitation noise

modeling (see Section 4.3), it has been used also in analytical descriptions of the
85-87

dwlict ub :llhe clouds under tLhe influence of ultrasonic agitation.

1h&Vt: are fuudaihiitally' three meals of evaluating tihe number distribution of

nuclei.

4.2,4.3. 1 Iveit E ont. ing. One means of assessing nucleus concentrations is to .

determnine cavita'io:n tlhr sholds directly by applying gradually reduced pressures to

a sa!ple vi water and noting the number of cavitation events that occur. As the - -

tent-section pressure is reduced, the initial event is caused by the largest

no uces , K.~ or e.ample, cav i tatd bv a threshold pressure P . As P is reduced -

t't
hilWW PtOw nuuber of cavitation events will be increased as nuclei smaller than

IN P1 h oc dstab ilized. in this way one can quantify the number of events N(p)

%,hii!! occur at .1 prcs.ure p icss t]han P . The method first was used by Messino,

S'ktL, and Wandrlig 7 1 using an ultrasonic source in quiescent distilled water.
uhl nU,.u ., th method was adopted by 11l'n, Levkovskii, and Chalov, 81and

Lru1)p (Figure A.10), however, they used a venturi to generate the low pressure, the

water hein. tap wa: 'r supplied from a settling tank. Using the relationship between

tl critical radius and critical ,rocza"r. (Eluation (4.48b) .ith T-1), tMy then
-7 -4

deduced tWe radius distribution, between 10 and 10 m, that accounted for the

observed variation of N(P). A]though the method directly determines pressure

tl,resholds for cavitation sites, it only indirectly relates the pressure information

to nucleus sile distribution. It gives no information about the physical nature of .

the cavitation sites, w.hether they are free bubbles or hydrophobic particulate
88

ma ttr. Brockett has also used event counting to set a criterion for incipient

hv_-drodynami c cavitation.

4.2.4.3.2 Acoustic Absorption of Resonant Gas Bubbles. This method uses the theory

of linear bubble motions, Section 4.2.2, to relate the absorption of acoustic tone

-r;t:. to huhbc population. A fairly cLU:Iprehevusive review of this technique has
84 47

Ihc* g given !)v (avrilov. 11h first use of the method was 1y Strasherg who related

th absorption of noise (in the frequency range 15- to 550-kHz) in a reverberant

c liamber to the volumetric concentrat ion of hubbles using the second of the ab-

.,,orption equat iJo i Table 4.1. lie ruperted volumetric concentrations (ST') on the
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order of 10 with the bubble range 0.6 x 10- 3 cm to 2.4 x 10- 3 cm. Equation (4.20)

was used to determine the resonance frequencies of the bubble radii. Absorption
techniques were later used by the St. Anthony Falls group8283 in their water-

tunnel facility. They used the imaginary part of the full Equation (4.37) to relate

absorption in a narrow frequency band (with frequencies in the range 10 to 60 kHz)

to the bubble population. The method amounts to the use of the first of the ab-
-5 -4

tsorption relations in Table 4.1. Bubble diameters from 10 5m to 10-4 m were

detected in this manner in volumetric concentrations greater than 3 x 10 The

numerical results were then reduced to form a probability distribution function

1r(r,*r) which gave the fraction of bubbles of radius r in a size range Ar. The

distribution roughly followed a Rayleigh distribution with a mean radius of about .

2 . T0 i . Their program also included measurements of hydrodynamic cavitation in

which the cavitation appeared as a sequence of identifiable bubbles traveling through

theL: minimum pressure point of the nose of a body of revolution. Moderately good .:

agrci.nunt was found bettween the observed rate of cavitation events, and the rate

tdaL was predicted from the measured bubble distributions and Equation (4.50) for
83

tiL' critical pressure. Schiebe and Killen conclude, however, that their method
-8

was too insensitive to detect commonly-occurring bubble distributions ( <3xl0 ) in

water-tunnel facil ities, furthermore, they report difficulty in resolving bubble',iz. , Recetly ho ever Mewin 7 4 , 7 5  :'

• Recently, however, Medwin, with improved apparatus, used the measured

Zacoustic absorption Equation (4.44) at sea to determine the seasonal variations and

depth dependence bubble distributions in coastal waters. Essentially he used

absorption formulas in Table 4.1 with r = 0.1; the method gives concentrations as ,
-11

low as 10 and bubble radii as small as 20 t.m.

Thl' use of acoustic a)sorption (it is also possible to measure the reduction of
5-,L'nd sJ L~d in bubbly mixtures) to doduce nucleus populations is direct because it

d(.1in& the radii of the available bubbles and gas filled intersciccs. Regarding

tLhe latter it probably does not give reliable measurements of the sizes of hydro-

lpl,,hic part icilaite nuclei since the resonance frequencies of those bubbles may not

uttccssarilv follow the exact form of Equation (4.20). The method has the distinct

;idvanta;v of rUqi i ring, )nlv a modest instrumentation complexity. .
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4.2.4.3.3 Optical Measurements. This technique has recently become popular and

acceptable as the laser optics technology has been developed. The methods use both

holograhv, which permits a discrimination between solid particulate matter and

bubbles, aid light scattering (which does not permit such discrimination). OptIcal

76,77 78holography las been used by Peterson and by Gates and Acosta, while light
70 79 .o

scattering ha:- been used by Yilmaz, Hammitt, and Keller, Keller, and Arndt and

Kellcr. This technique gives an accurate distribution cf foreign matter in liquids

from which cavitation thresholds could be deduced. However, Peterson 7 6 has published

the only simultaneous observations of nuclei and cavitation inception, but corre-

spondences between observed light scatterers and cavitation have yet to be made.

Indeed there appears to be a contrasting view which discounts particulate matter

as being of only occasional importance in favor of suspended microbubbles as primary

hydrodviiamic nucleation sites.

4.2.5 The Collapse of Cavitation Bubbles

4.2.5.1 Sjherical Bubbles. The time histories of bubble radii shown in Figure 4.7

show that when nonlinear bubble growth occurs (dashed line), a second of stage

motion, the collapse, occurs when the rarefaction is replaced by compression. This

latter stage is of short duration. Because the wall acceleration is large during

collapse, it is reasonable to conclude (and it is indeed so) that the collapsing

motion will contribute heavily to sound production. Therefore, we shall examine

this aspect of the dynamics closely to establish what the important controlling

variables are at various frequency ranges in the cavitation-noise spectrum. We shall

see that at the termination of the collapse phase, the motion will be influenced by

the presence of any gas in the bubble and the properties of that gas. This gas be-

comes important when the radius of the bubble becomes very small because the

compressed gas fills the bubble. Also, the compressibility of the liquid (or two

phase fluid) surrounding the bubble will become important if the wall velocity of

the bubble wall becomes comparable to the speed of sound in that fluid.
89

The dynamics of collapse was first examined by Besant in 1859, but the first

theoretical treatment of the problem, upon which much modern thinking is funda-

mentally based, is due to Rayleigh. 1 3 The press,. inside the bubble was considered

to be constant, therefore, Rayleigh's problem would apply to the physical circum-

stances of vapor-filled bubbles only. The pressure difference in Equation (4.12),

28 3
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p.-

neglecting the surface tension pressure, is P - P(r) where now P(r) is supposed to
v

be much larger than the vapor pressure so that the bubble will collapse. Rewriting

the left-hand side of Equation (4.12), we find, equivalently

P -P(r)
- - (R3 ) =R (4.66)A dt P .''

which may be rearranged to

d (R 3
f2) = -P(r)] (t (4.67)ht /

under the assumption that P - P(r) is invariant over the time scale of collapse.
v

Further, assume the initial condition

= 0 and R = R at t = 0 U

to find

(R)2 2 A[ 1- L (4.68)
=3 Po .0 R

where AP = P - P(r), is the wall velocity of the bubble. Note that as the bubble

radius becomes small, in Equation (4.68) the magnitude of R will become infinite.

The velocity, however, becomes limited by the compression of any small amount ot

gas trapped in the collapsing cavity, the presence of which was ignored in this .

simple analysis.

Even though the wall velocity becomes infinite in the Rayleigh model of

constant pressure difference, the tine it takes f,-.r the bubble to collapse can be

determined. The reciprocal of Equation (4.68) gives the radius-time relationship
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0 1/2 R 3/2 dR (4.69)t 3 31/2
R (%_R .

which is integrated over the interval 0 < R < P,, giving the time for complete col-

lapse as

1/2 "

T= 0.915 RH (r)_P (4.70)

In spite of its simplicity, Rayleigh's equation gives an excellent repre-

suntation of the gross characteristics of single bubble cavitation dynamics.

Plesset 1 4 has measured the cavitation characteristics at the nose of a body of

revolution in a high-speed water tunnel. Using high-speed motion pictures (more

than 20 thousand frames per second) he was able to trace the trajectory of a cavi-

tation bubble as it passed through the region of minimum pressure on the body.

Figure 4.14 shows representative bubble histories together with the matching localt
hydrodynamic pressure. The solid lines represent tie bubble history computed from

the simple Equation (4.66). To do this, P(r) is considered to be the local hydro-

dynamic pressure in the reference frame of the bubble. Thus, if Ph(s) is the local

pressure on the body where s denotes distance from the leading edge stagnation

point, and the bubble was convected at a speed U c then

P(rt) = Ph(Ut)

A similar investigation had been conducted earlier by Knapp and Hollander,90

who measured five rebounds of the bubble following the initial collapse, as

illusLrated in Figure 4.15. Alternate rebounds are shown above and below the datum.

The multiple rebounds are suspected to be strongly influenced by the stored energy 4
in the bubble as a result of the compression of gas in the collapse phases. The

collapse radius versus time was well approximated by the Rayleigh bubble equation

which can be seen in the figure.

'85

. . . .. .. ..... . .



0.14 14

0.12 12

0.10 10

0.08 -

14 0
D 0.06 6 4

.Cola

0.04 0 4~BUBBLE 58
0.02 I2

/POINTS

0V =70ftsec 0
K =K0.30

0 4 8 12 16 20 24 28 32
NUMBER OF FRAMES

1 FRAME =5 x 10-5 sec

Fig .14a =K. 0.30, U_ 70 Feet per Second

U0.12 11 a , III Ij v vI 1,.. illI ;,;uG 4 6

0.0 EXPERIMENTAL

0.08 ~ V=0 f/s c

0.04--

10 fRAM=66x10s
Figure 'N~f e.4 3V =7 etprScn

Fiur 41 -Hesre ad hortia BhbeHitoie orth 3dcae
Pre0s0re 3itiuin naHafr

0



CO LLAPSE

GROWTH REBOUNDS

RM 0.160- 0.016 1

c 0.120 - 0.008 1

S 0.040 -0.004-

ca -j

co- 0.040 - u.004 
%

0.000 0 .008
0 00

0.4 -0 0.000.0-.02 003 004 .0 .0

4 90

volume hisor5 Obsrmd Knppandu H-sonr. fo)aiainBbbeo . aie

287



Rayleigh determined that associated with the large values of R in the final

collapse, the induced pressures in the adjacent liquid at a distance from the center

of the bubble of about 1.59R could match the compressibility of the liquid itself.

Furthermore, he considered the possible limiting effects of the entrained gas using

a calculation of the compression work on the gas; by considering, i.e., that the

change in potential energy from the initiation of collapse to radius R is converted

into the total kinetic energy of the entrained water plus the work done in com-

pressing the gas in the bubble. Accordingly, he found that a limiting radius did

exist for which the velocity of the bubble wall could be retarded to R 0.

Subsequent refinements of the tleory have accounted for the compressibility of

the liquid9 1- 10 2 to various degrees of approximation; these efforts have been

surveyed elsewhere. ' The most complete calculations of bubble collapse and

rebound for cases involving gas-filled and empty bubbles in compressible and in-
99-100

compressible liquids are probably those of Hickling, samples of which are shown

in Figures 4.16 and 4.17. The effect of compressibility isi to reduce the wall

10 1! T l I I I
I  

1 '1 1 I I'" I'' "

to2  p. - 1 ATMOS

:. ,EMPTY CAVITY %RB1.4

0 10 - INCOMPRESS!BLE ""'2 KIRKWOOD-BETHE

10
-

L 10- 4  Poo 1 - 2  100-3i-
-iW 1002

1 o10

10-o4  10-3 10-2 10' 1

R
k- BUBBLE RADIUS

Figure 4.16 - The Bubble Wall Mach Number as a Function of
the Bubble Radius for Decreasing Gas Content

(The gas content is determined by its initial pres- --

sure P in dtmspheres. The index y has the value 1.4 and

thu- ambient pressure P= P(r) is one atmosphere. From

Hlickling and Plesset. 9 )
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Mach number, but all empty bubbles, i.e., those for which the internal pressure is

constant, have unlimited R at zero radius. The introduction of gas, even in small

quantities, limits the collapse and the thermodynamic characteristic of the gas and

influences the final limiting radius more than does the hydrostatic pressure. In

Figure 4.17 is shown, in sequence, the radial variation of pressures at various

instants shortly before and after collapse, The positive values denote times after

the minimum radius occurs. In the collapse phase, maximum pressures occur at a

distance r - R from the bubble wall, in the rebound phase, a compression wave

develops and propagates outward with i/r attenuation.

The effect of gas in bubbles collapsing in an incompressible liquid was first

determined by Neppiras and Noltingk1 5 whose result can be derived by modifying

Equation (4.66) to include adiabatic gas behavior of the type in Equation (4.46)

d- 3*2 d /. 23 \d (R ) -[P -P(r)] d R3--[v dt\3 .

dvdp V

g0oV dt ..

where the radius function on the right has been replaced by the bubble volume to

simplify notation. Now since

dV d V
- Y +

d-t dt --'Y+

and introducing the initial conditions as before, we find for the wall velocity

C 3

00 R 3 ( -l_-1
R -(P(r)- 'o v

i- (4.71)
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103
Equation (4.71) has also been derived by Guth, and used in this form by

104
Khoroshev to calculate the limiting minimum radius Rm/RM, which is determined by

the condition R = 0. In the limit as Rm/IR also approaches zero, Equation (4.71)

reduces to the asymptotic result for the mlinimum radius in an incompressible liquid,

_M ~ i go "
m [ 1 g 0 (4.72)

RM y-1 P(r)

Finally, in the contrasting limit of isothermal gas compression, y =1 , the

equivalent form ot Equation (4.71) is identical to that of Rayleigh .

( 3)2  P() RP -[ - -i P(r)-P In R4.73)\ (473

The minimum radius corresponding to R = 0 is, for small Rm/RM.

R
exp -(P(r)-Pv)/3P (4.74)

RHl go].

Figure 4.18 summarizes the variation of the minimum radius with the gas

pressure P , using these equations as well as the general trends given by Hickling'sgo "'

analysis. Pairs of curves (1 and 2) and (3 and 4) from Figure 4.18 illustrate the

difference between the assumption of incompressible and compressible fluids for

either the adiabatic or the isothermal gas compressions. The asymptotic dependence

shown by curve 4, given by Equation (4.74), is not physically realizable since by
2

because, from Equation (4.73), (R) is singular in limit as R approaches zero.

This singularity is removed by allowing less heat transfer (y#l) in which case

Equation (4.71) applies. It is to be nuted that at large values of hydrostatic

pressuire, fluid compressibility influences collapse only slightly more than at 1

atm. Although the minimum bubble radius is dramatically influenced , the presence

of ga., Khoroshev I O4 ha shown Icas than .0 percent increas2 in the collapse time
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R-. P.

as long as R 0 and P P and SIR This is the differential equa-

tion of a parabola with a minimum at R = R at t T . Thus, near '
m C C

mg 1C g (4.75)

." 
, 

,

Equation (4.75) is expected to hold only in the immediate vicinity of the collapse.

Figure 4.19 shows Equation (4.75) compared to points calculated by Hickling and

0.10 0.14 " .
COMPLETE 0

RAYLEIGH Z.
0.09 THEORY 0.10-

0.08 REBOUND o0.0
PARlABOLAS c

EQUATION (4.75) LL 0.04-
0.07 0q49 0.02- 7

\ 0-
0.06 02

X~ 0.04
2 0.05 0f 0.4 0.2 0 0.2 0.4 0.6

0.0 Ill TIME OF COLLAPSE (ms)0.04 -0 •-
NUMERICAL RESULTS95  OVERALL COMPARISON OF BUBBLE SIZE

0.03 o 9 0 WITH RAYLEIGH PREDICTION -.
P0 = 10-3 0 BUBBLE MEASURED FROM PHOTOGRAPHS.
P.0) -RAYLEIGH THEORETICAL CURVE FROM0.02 0 --- EQUAL MAXIMUM DIAMETER AND -

"-o PRESSURE DIFFERENCE.
0.01 • Pr 10-  RAYLEIGH THEORETICAL POINTS FOR

MAXIMUM DIAMETER AND TIME.
0 I I I I I i I I

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10

7C
99

Figure 4.19 - Detoils of Bubble Collapse Computed by Hickling and Plesset-_

Compared with Ap-roximate Collapse 9  W. Rebound Parabolas
for Two Gas Prssures
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Plesset.9 9 Also shown in Rayleigh's result obtained by Knapp and Hollander 9 0 by

integrating Equation (4.69), numerically. Now, the radius in this region is

related to a time constant (QI) =0 ,

R-R 2 -

which determines a rebound parabola at the final stage of collapse, and which will

be seen to determine the very high-frequency noise. This time constant is

1/2

( *) =1 cR H  (4.77)

0

In Figure 4.19 it is apparent that Rayleigh's equation gives a reasonably accurate

result for the radius for times that are less than T O-
cR0

A radius-time relationship can be derived for empty (P =0) bubbles for times

0 .2
somewhat earlier than t = y but still for which RM/R >> 1, yet (R)2 >> RR, using

Equation (4.68) which reduces to

3

(A)2 2 R- - \ - (4.78)

30R

This equation is integrated from some R and t to R 0 at t i to givec

R 2/5 0.4
-- a (T-t) (4.79)

where

L
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a 5 2P r

31/2

= [2 (0.915)] (4.80)

0.4

*1.3 (1)(4.81)

irel at Ku . ii p ci -sel yapa r t es tile comp letec Ray leigh solution near collapse

011 L, the ne gleCttd aICCeleratiton terMS. Thie inset of Figulre 4.19 shows the meas-

I'r-L- l'U1'e CAl ase hV Knapp10 and Knapp and Hollander 90with both the numericalix'-

'Il 1 1a1 d Ck! r ad i Lis an d F I Ia t io n (4 .81) .En fortunatel v, t he details of col lapse are

1'1it Vdast' Lx aherv-d b-cause Of the short time scales involved and because of the

1]~al value of 7- t for which Fqiiation (4.75) can hold. T hc r adi.'al1 VCOCiL~y imisL

uecease 2 ro-o nearlv sonic (Fig ure -4.16l) to zero at the final stage of collapse.

hre!ore, these results yield only rough approximations with which estimations of

* this efect. of eas on the sound will be estimated in Section 4.4.

Although the large velocities of the bubble wall relative tO the acoustic sound

- velocity occurr ing at the final Stage of collapse had been recognized by Rayleigh,

* it was not Until the early 1950's that numerical calculations of the compressibility

effects were undertaken.

Wheon the bubble wall velocity approaches the speed of sound in the liquid,

* shoc'K waves are formed which modify the time history of the pressure wave formed in

the liquid near the bubble. To get an idea of when this occurs, relative to the

C'Xpocred time for com~pletc collapse, we resort again to the incompressible liquid
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To find the acceleration of the bubble wall, at any time for a gas-filled

bubble in an incompressible liquid substitute Equations (4.11) and (4.71) into -A.--

Equation (4.12) to give

-P(r) + P ( (R) 3(-1
V +- (4.82)

R4  (P (r)I V) R

The maximum velocity occurs when R = 0 at which time the radius is

RM  . P(r)-P 1/(-l

(Ro =""g

where the term P /P(r) has been neglected compared to unity. Thus, Equation (4.82)

shows that the limiting radius at which R is maximum is zero for P 0 and forgo .

isotnermal compression, 1 1. Now, to determine what the maximum wall velocity is,

we just substitute Equation (4.83) into Equation (4.71)

1/2121/(Y-1) 1 2"-

v P '-)
"a- ,,L4. 84)-' -

Lquation (4.84), illustrated in Figure 4.20 for two values of hydrostatic

pre-ssure, poorly predicts wall velocity for Lhe small gas pressures which should

exist in vaporous cavitation. As the gas pressure is reduced to zero, the in-

comprcs.;ible theory predicts an infinite radial velocity and there is a square-root

dependence on the static pressure which is only given in the complete theory at

moderately large ,as pressures. Nonetheless, continuing to use the simple theory,

the maximum wall velocity occurs at the radius given by Equation (4.84) for which

the corresponding time iaterval prior to collapse,
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P 102

Figure 4.20 Maximum Bubble-Wall M4ach Number as a Function of Initial
Inside Gas Pressure and H-vdrostatic. Pressure;

Adiabatic Collapse

(C . T - t =
CR=0 R

is given from Equation (4.81),

R=O ~ ~R 0.2F (.5

hxv the ratio
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° -

R- 1.7 y[/ 6 (y-l)] (Y1)2 > 1 (4.86)( 5T) = - .0:_

2 for y 4/3 to 1.4

0 for y I

simply because R 0 occurs before R = 0, i.e., the time of maximum wall velocity

occurs just before or at the time of minimum radius. Note that the ratio of these

times is not dependent upon the gas pressure, rather only on the ratio of specific

heats y. Referring again to Figure 4.20, we Eee, however, that Hickling and

Plesset's analyses for the gas-filled bubble in a compressible liquid suggest that

the incompressible theory is not valid for gas pressures that are less than one-

hundredth of the static ambieut pressure. Furthermore, for rarified bubbles, the

maximum radial velocity in a compressible liquid is apparently independent of the

hydrostatic pressure, but still becomes virtually unbounded as the bubble becomes

92 94,95emptied of compressible gas, as Gilmore's92 and Mellon's theories (shown in

Figure 4.16) will also attest. Therefore, for this time interval, for which R - c
0

on bubbles with little compressible gas, the compressibility of the liquid must

dominate the collapse dynamics.

The pressure pulse that is formed in the liquid in this time segment has been
106

determined by Fitzpatrick and Strasberg using results of calculations by

Mellon. 95 Discussion of these points will be taken up in Section 4.4.1.2.

A rough estimate of the time interval before collapse for which the liquid-

compressibility should influence the wall velocity can be made by using the results
107

of the preceeding section. Following Fitzpatrick we postulate that liquid

compressibility should become important when R/c is finite, for example, greater
0

than 0.1. For empty bubbles, using Equations (4.78) and (4.81), this criterion can

be shown to correspond to a bubble radius

1/3 -2/3

J[2 Pj~3 r) 0 c 0  (4.87)

4 [P(r))12.
)12
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which agrees with Fitzpatrick's 1 0 3 result. The corresponding time before collapse is

s Ij-5/ 3

09 ( rJ (4.88)

0 ii
40 P~r\~5/6

\Pc/

0 0 -%

where .1=R/c .This time interval is a factor of three earlier than that derived
010

by Fitzpatrick 17partly because of the tendency of Equation (4.81) to underestimate
107

the bubble radius. Fitzpatrick used a different analytical function for R(t)

than that used here. The radii which are indicated by Equation (4.87) for

P(r) = 106 dynescm42 and 1 dynes/cm2 are 0.15 R, and 0.31

Figure 4.18, emphasizes the effect of compressibility, showing that the deviation of -

the compressible and incompressible theories for the minimum bubble radii occurs for

minimum sizes that are less than (0.1)RM, and Figure 4.20 shows that the maximum

wall velocity is considerably below that predicted by the incompressible theory when

R '0.1c.

We shall see in Section 4.4 that the peak value of an acoustic pulse will be 9
proportional to the peak value of V. At the times close to complete collapse the
volume accelerition is controlled by the wall velocity, i.e., V ud2 R (k)

Accordingly, for p /(r) < 10 2 as shown in Figure 4.20, the peak value of the-

sound pul1 will be controlled by the compressibility of the liquid. Thus, as we

shall see, the formation of weak shock waves are expectd to occur in the vicinity

of the collapsing bubble. These waves will be controlled, first, by liquid

compressibility and, second by static pressure. The maximum velocity of the bubble

wall will be reached at t = t h -(6peka and this time will mark a cessation of shock

foporation. Later, but immediately before collapse at t > T - (6) ol the bubble
c R0

moLion will be cimited by the enclosed gas pressure and it will be a time of

relatively large values of wall deceleration.
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4.2.5.2 Other Influences on Bubble Collapse.

4.2.5.2.1 Liquid Viscosity. Recent theoretical analysis by Kuznetsov and

108 109 110
Shchekin, Levkovskii, and by Avenesov and Kuznetsov have shown liquid

viscosity to have a relatively unimportant influence on bubble collapse. Only when

the bulk viscosity of the liquid becomes many thousands of times larger than that
110

of water does the rebound of small collapsing bubbles become influenced. For

values of a Reynolds number

1/2

__ <3 I -
b 2v6- -2- e) -

wh~ere

2S

e RIP(r)

109

Levkovskii deduces that

R.- -W . Pb as R -0e, b

-9I

in an incompressible liquid. For larger values of R than the critical, the
b

cla:sical results of the last subsection apply.

4.2.5.2.2 Nonspherical Bubbles. Measurements of collapsing spark-induced bubbles

In a virtually unbounded liquid show a maintenance of sphericity, e.g., see
i11 112,113

Harrison, and Lauterborn. 1
' However, bubbles collapsing in an hydrodynamic

l114,115 116-118
pjressure grad itt, e.g. , in a veiuri on a hydrofoil, on or near a

solid -,all 112,119,120 or within a radius of another bubble, I 1 2 ,11 3 ,12 1 ,1 2 2 show a

marked departure from spherical symmetry. Spark bubbles collapsing near boundaries

can for, i a small jet toward the boundary (widely considered as responsible for cavi-

tation damage), while bubbles collapsing in the streamwise gradient of a hydrofoil

°00

.3.)-(°.
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116-118
assume the shape of a prolate spheroid whose axis is perpendicular to the

116-118 .-
direction of the pressure gradient. These bubbles can collapse asymmetrically1 -6 1 1

or be disintegrated by the liquid flow separating over them.11 7 ,1 1 8  In a venturi, .

bubbles have been observed to take the shape of an oblate spheroid with minor axis
109

in the direction of the gradient. In the final stage of collapse, these bubbles

can forta toroidal shapes. Rebounding bubbles may also appear as clouds of micro-

bubbles rather than single bubbles, e.g., References 116-118. 4p 123
Theoretical. analyses by Plesset and Mitchell have shown that expanding

cavities will remain essentially spherical as long as the initial deformation is

small compared to the initial radius. Collapsing cavities are less stable, the in-
1/4

stability growing as R whether or not surface tension is included in the
124

analyses. Later analyses by Shima and Nakajima, for nonhemispherical bubbles

attached to a wall, showed that collapse tJmes are closely approximated by

Rayleigh's formula using a mean bubble radius. This similarity had been demonstrated
33 124

earlier, however, by Plesset. The analysis of Shima and Nakajima showed that

when the attached bubble is initially a prolate hemispheroid (with major axis

perpendicular to the wall) it deforms into an oblate hemispheroid and subsequently
f ors ajetimpigin onthe125forms a jet impinging on the wall. The numerical analysis by Shima for

initially-spherical bubbles collapsing near a solid surface, showed that when the

bubble center is initially within three radii from the surface, the center of the

bubble moves toward the surface in such a way that the bubble wall nearest the
126

surface moves only slightly. The analysis of Levkovskii has shown that when the

distance from the surface to the bubble center is only one initial radius, i.e.,

the bubble nearly touches the wall, the collapse time differs from Equation (4.70)

by no more than 20 percent. This result is important from the aspect of noise pro-

duction, because it suggests that the frequency content of noise (f--l/t ) for a
c

given bubble volume will not be too sensitive to the geometry of the collapsing

bubble. We shall see in Section 4.4.1.1 that for frequencies that are less than

I/Ic? the cavitation noise spectrum depends on the overall growth of the bubbles.

At higher frequencies the noise is controlled by the details of collapse. There-

fore, this noise may be influenced by departures of the collapsing arid rebounding

bubbles from spherical symmetry, and by the formation of bubble clouds in the

collapse and rebound phases.
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4.3 HYDRODYNAMIC CAVITATION INCEPTION

The inception of cavitation is important from the point of view of acoustics

because once cavitation begins, the noise level increases rapidly as the cavitation

develops. Therefore, it is important to predict with fair precision the occurrence

of cavitation as pressure decreases or as velocity increases. The level of cavi-

tation noise shall be shown in the next section to depend upon the value of the

cavitation inception index.

4.3.1 General Equilibrium Theory

4.3.1.1 Outline of Scale Effects. The use of Equation (4.5) to predict cavitation

inception, and the direct application of the classical theory of bubble dynamics to

predict hydrodynamically induced bubble motions has only been successful in certain

types of flows. Often real flows deviate from the ideal because of viscous and

boundary influences as well as the population of free-stream versus surface nuclei.

Two conditions favoring the classical cavitation inception occurring when

K = (-C together with the growth and collapse of spherical bubbles, as in
p min

Sections 4.2.3 and 4.2.5, are: nonseparated boundary layer flow over the body, and

an abundance of free-stream bubble nuclei (occurring generally at moderate-to-large

gas conLents). Such conditions have existed in the traveling-bubble observations of

Plesset,1 4 Figure 4.14, and others by Knapp and Hollander9 0 (see Figure 4.15),

Parkin,11 6 and Blake et al. I 1 7 ,118 Departures of cavitating flows from this ideal
11,116

behavior have been termed "scale" effects.

An example of measured indices for the inception of cavitation on an effectively

two-dimensional hydrofoil, that does not apparently display scale effects, is found

127
in the work of Daily, shown in Figure 4.21. The observed values of Ki are shown

to be only slightly less than the (-C ) determined in a wind tunnel, with the
p min

discrepancy less at small angles of attack than at large angles. Large scale effects

were apparent for the indices measured on 12 percent Joukowski hydrofoils by Parkintl6

and shown in Figure 4.22. The indices increase markedly with an increase in

Reynolds number and a decrease in size. In all cases the index increases from

substantially less than (-C to approximately that value. In both cases the
Sp min

nucleus population was densely composed of small spherical bubbles.
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Behavior of cavitation on hydrofoils is now generally thought to be related to

some combination of viscous scale effects (through influences of both laminar

separation and surface roughness) and local differences in nucleus distribution

(which influence the location of possible initial cavitation). Laminar boundary

layer separation, which occurred at all values of R in Figure 4.22, is often
c

associaLed with a reduction in Ki, while surface roughness increases Ki. Local

nucleus concentration, which also influences inception, may depend on nucleus size

relative to a flow length scale (see Figures 4.51 and 4.52) as well as on the nature

of turbulent mixing in the flow. Although the interrelationships of these scale

effects are not well understood, only recently has attention been given to sy-Lemati-

cally recording the condition of noncavitating flow on the body, the background

turbulence in Lhe facility, the water quality, and the surface condition and material.

Scale effects, which lead to various types of surface cavitation, have been

observed on the same body in different facilities, as shown in Figure 4.23. These
128

classical photographs were published first by Lindgren and Johnnson and show the

result. of a "round robin" series of experiments that was sponsored by the Inter-

national Towing Tank Conference. It is now believed (see Section 4.3.2.7) that these

differences in cavitation-type are due to a combination of differencPs In facllity

turbulence (which influences laminar boundary layers) and bubble nuclei. The

appearances of cavitation fall into three classes: traveling bubble which is favored

by large concentrations of bubble nuclei and high turbulence levels in the facility;

sheet cavitation which is favored by low turbulence levels and moderate to low

concentrations of gas nuclei; and bound bubble cavitation which is favored by low

Lurbulence levels and moderate to low concentrations of gas nuclei bound but poorly

wetted or hydrophobic surfaces (large concentration of surface nuclei). The location

of these bubbles is stabilized by an equilibrium between suface tension and the
48

local steady pressure gradient, Even though there exists a large body of literature

published prior to 1965, it is difficult to use many of those experimental findings

in current compilations of measured cavitation inception, because one or more of the

experimental conditions that are now regarded as important may not have been reported

in the previous work.

"Thrcee-d imensional hydrofoils and propeller blades have tip vortex cavitation,

ina ddition to these various forms of surface cavitation. This cavitation is caused
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4.3.1.2 Hydrodynamical Excitation of Bubble Nuclei. Compared to ultrasonic

cavitation, hydrodynamic cavitation h-as Lhe additi.onal complication 0t. the

pressures surrounding the cavitation nuclei are a function of the flow Reynols

*number and of the details of the flow. Thcrefore, it Is, in general, necessary to

have a priori understanding of these details prior to a reliable predictioni of in-

ception. Although some type of relation. hip bctweei incepticn. and viscous flow has

been recognized for many years, a full comprehension of it is only new being

* realized.

hathematically, the relationship between the turbulent field and the dynamics

of thfe bubble nuclei entrained by it is set by the equations of bubble dynanaics

I (Equations (4.11) and (4.12)) simultaneously with the momentum Equa3Un (2.44).

Bucause our interest in this section lies with incipient cavitation, the fluid

1ech1anliCS that excite the bubbles may be considered, as single phase -md virtually

* incompressible (unless, of course, the concent:r.tioll of free gas is ratherlag.

we proceed now to give a general idea of the -.wgnitudc'; of theso' preissure tluctu-

at ionls ill vatious types of flow. Super imposei~d on thi~ mean floW are Lurbulcint

* velocities so that the velocity and pressure :nm the o~rionenturnl and, uontinuity

equationti may be replaced by

and the pressure driving the(. bubble, replacing .1(r) in Lquation (4. .2). s

p' (Y' t) P (Y) + p',' (. i4.90)

'11h1 fluctuating variables u(y,t) and p(y,t) have zeri- mnEen b cause thei' are

pcrturbatlons abo~ut the time-averaged local, mean velocit' 1'(y, and local sratic

1)rssuc,1'(y) . The fluctuating velocity and pres;sure psc the statiitfi al.

4 properties olilned In SC-ct ion 3.5. The various qualities of pressure fluctuations

0o1 t.ilt: Wall hvnteath the turbulcnt boundary layer arc e!xamined it, Chapter- 7. For use

iieil e ltX 'ic:?.lu, we will surumarize the known magnitudes of hires3:ure ilu'-.tuations

inl bovie shear flows.
4
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P.

129
*Batchelor, essentially following the procedures of Section 7.3, has theo-

retically determined that the root-mean-sqaare pressure in an isotropic turbulent.

field is given Ly

712 (491
p C. 58 P. U (.1

0

* where u =u. is the turbulence intensity. M~easurem'ents of p' havebe aei
1Iv 1en30d I

turbulent jet, the most recent being those of Armstrong which showed

(492
p - 1.S P 1 4.2

ueeu 1 is '.he vvlocity fluctuation in th m.1-ing zone of the shear layer, which is
A 131.

Sval'l:. thit is comparable to that found by others. Because t~ie mnaximum.

u 0-26 U ArrmStrong ls result give:s

y1/2

0.08L (4.93)
I L 2

.. asurc-nentL:- of p(.Jin tu rtuiant boundary layers are riot avail-able, hut on the

%:all (suE C1;aptc:.: 7) r,-v root -wean-s;quare pressures are bounded by

p(2to 4) r (4.94)

wh. is the wall shear coef f *Leierit. That these pressures are of the same order

d 'I!U~ut. s those obst-rved ini the jeL, can be seen by noting that typically near

-n~oo t' oc rouigh walls u have range (see Chapter 7) fro-m two to three times

~ ,4~2 Tlei-efore, at. t~iu! wall the root-neanprsuei
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73

-21/22,'
p (0.5 to 4) ° u

1232
Recent calculations by Meechan and Tavis have shown that pressures in the

boundary layer may be 40 percent greater than those at the wall making the co-

efficient on T as large as 5.6.

The relationships of Equations (4.91), (4.92), and (4.94) apply to the root-

mean-square pressure, however, locally the pressure may be made smaller than this

value and a bubble nucleus entrained by a low-pressure region in the flow is ex-

pected to reside in it for times that are at least as long as the life-time of the

eddy. Thus, in a general way, the local pressure may be written as a coefficient

which includes the local mean P (y), and fluctuating pressure, and the free-stream

reference velocity U., i.e.,

ps(7) +p( -,t) =p,
(v) +- = C (y) + (1-Cp) C (yt) (4.96)

1 2 p p p
2 "o U

c4
where C (y,t) is a local time-varying pressure coefficient defined in terms of local

p
velocity U as

S L'.

C (Yt) = 1 2-- Ipo U 2

2 os

This pressure coefficient will have a probability of occurrence with positive or

negative values about a zero mean. Negative values will cause earlier cavitation

because of the resulting lower pressures.

The pressure excitation, P(v) + p(y,t) in Equation (4.12) for the bubble motion

can now be replaced by Equation (4.96), and the bubble radius can be nondi-

mensionalized on a length scale of the body L, to give a normalized equation of

4 motion for a bubble in a hydrodynamic pressure field; using Equation (4.96)

R)" [R)']2 - S 90_ ___

KS C 1 + (I-C ) (t) (4.97)

L L L FU2 R~
40
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The representation (R/L)' denotes a derivative with respect to the reduced time

variable

L U,,

L

The bubble Inot ion must be viewed in the Lagrangian frame, i.e., moving with the

Iluid, so that thc coordinate v must be replaced by the time varying variable Ut

and the timv dependence of the pressure is determined both by the translation of
bubbles through the low static pressure zone and the superimposed random pressure

noving with the bubbles. Equation (4.97) is therefore analogous to the Equation

(4.16) with the quantity 4

U, CU L, l t) I C(-tC (U.tt

replacing the excitation pressure. The combination of terms on the right-hand side

of the equation datermines a critical radius and pressure which are analogous to

those of ultrasonics. A critical pressure coefficient for static divergence of an

empty nucleus (P =0) is, from Equation (4.50), therefore,
0

[K+(C)] crit ; (Ro U 27 1/2 [K+ R (4.98) 

0

where R is the radius of the bubble nucleus upstream of the body where P= P. and
0'5

U U . The critical radius at the pressure coefficient C is given bys p.

8S = -K - (Cp) (4.99)

3R 0 U2

o0 0C

Equation (4.98) has the same graphical representation as shown in Figure 4.8, how-

ever, K, C , and c R U 2/4S replace the dimenzional variables used earlier. Al-
p 0

though the above relationships apply to bubble nuclei, one may furtlier envision

alternative relationships which pertain to trapped gas in crevices of hydrophobic

and surface nuclei which are analogous to those developed by Harvey (or Apfel, see*Q
Equation (4.62)).
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Equation (4.98) may be used to state a general static equilibrium theorem that

has been used extensively in cavitation research over the years. Static equilibrium

requires that I = R = 0, therefore, Equations (4.98) and (4.99) give the inception

inde.x for the flow as being equal to the minimum value of the sum of pressure

coefficientr,, i.e.,

---(Cp) 2p)4S 90

4oR5i + I - (l-C) C (4.100)-P 2 pt rain '''-

pa RUM -P1

'his simple relationship superimposes the collective effects of surface tension and

dissulveu gas that. determine bubble response as well as deviations from the ideal

potential flow which are represented by instantaneously nonzero values of C (t).

p

4.3.1.3 The Influence of Dissolved Air on Cavitation Inception. Just as in

ultrasonically-induced cavitation, the presence of dissolved gas in hydrodynamic

facilities can diffuse out of solution causing gaseous cavitation if the local

pressure Is low enough to cause local supersaturation. The process could also in-

,.l,,-Ic tLe .-. tified diffusion if an undulating pressure field remains in progress

133 134
al ,.ultable length of time. oll has considered the gaseous cavitation

fromi thi; point of view. The equilibrium Equation (4.57), applies directly to this

case, which Holi rewrote as

P =F 2SP r - - + -ii''.
e v R

where 1= equilibrium pressure

l h~enry' , ~law constant

dissolved air content

';1h P ~f P in Equation (4.57)go sat

fht: stat ic equilibriui: condition for the onset of gaseous diffusion may be written -

in diiii.nsionlc :s form as,"
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4 S OH" "

< (-C) U2R + (4.101)
prmin U2 1.Po 0 o o -2 Pou "'

These equations express the fact that when the local hydrodynamic pressure P(y)

falls below P the bubble will begin to expand and the partial pressure of gas in

the bubble will be less than the equilibrium pressure of the dissolved gas in the

ambient liquid and the bubble will continue to grow. This is because the liquid is

locally supersaturated. The process will be slow, unless it is accelerated by

convective diffusion, Section 4.2.3.3, with f in the equations determined by the

local rarefaction pressure P(y), the (larger) upstream ambient pressure P ,, and the -

upstream concentration f such that the local concentration is

f P

P(y)

For large enough bubbles that the surface tension pressure may be neglected,

the limiting cavitation index for gaseous cavitation will occur when

ccH

K. = -(C) min + (4.102)

1Iol1133 has compared this equation to measured desinence indices on small hydrofoils

with the result* shown in Figure 4.24. The upper curve applies to stable spots of

cavitation which remained as small attached, clear bubbles on the surface, while the

lower curve appeared as a less stable steady state of cavitation along the span of

the hydrofoil. The spots were apparently located at small nonuniformities in the

surface, and that they were due to gaseous cavitation is confirmed by the agreement

of Equation (4.102) with measured indices. The spots were also apparent on the NACA

section, only at angles of attack above a critical value beyond which leading-edge

laminar separation would be expected. The implication of these experiments is

*Desinent cavitation indices Kd are obtained by increasing ambient pressure and
noting the censation of cavitation, while incipient cavitation indices K are noted

by reducing pressure and noting the onset of cavitation. For Ki < K, see Reference
135, the difference diminishes as Reynolds number increases.
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Figure 4.24 - Two Types of Cavitation on a 5-Tnch NACA 16012 Hydrofoil
133

(From Holl1)

three-fold: iL confirms the validity of Equation (4.102) for gaseous cavitation, it

demonstrates the possible importance of viscous flow (especially flow separation

which provides necessary time for diffusion to occur) as influenced by angle of

attack, and it demonstrates the importance of surface condition in determining

certain types of inception.

4.3.1.4 Bubble Growth in Turbulent Flow. As shown by Equation (4.96) unsteadiness

superimposed on the mean flow causes a locally fluctuating pressure coefficient.

This effect is illustrated in Figure 4,25 which shows the static pressure on or

immediately above the surface and a superimposed fluctuating pressure field. The

vapor pressure is shown, to be less than the minimum static pressure so that without

turbulence vaporous cavitation would not occur, but because of the fluctuating pres-

sures microbubbles entrained by the boundary layer on the hydrofoil will cavitate.

As illustrated, the pressure is represented as spatially varying over the surface,
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"p g * pREGION OF PROBABLE
P tag BUBBLE CAVITATION

A MEAN PRESSURE
DISTRI BUTIONP-P=

INSTANTANEOUS TOTAL
PRESSURE DISTRIBUTION

AT TIME ti

t 2 >t 1

P ="cPit•

t3 > t2 >1 I

P _ _Prt__

Figure 4.25 Total (Mean Plus Fluctuating) Pressure on the Surface of a Hydrofoil.
In the Situation Shown, Minimum Static Pressure, P is Greater than

m in'
Pcrit so that (-Cp )m n < K i . Instantaneous Pressures are Shown

for Three Successive Times for which the Local Instantaneous

Pressure First Drops Below then Increases Above Pcrit"

however, to a bubble convected by the mean flow, this pressure may be regarded as

imposed on the bubble as it passes over the surface. Let us suppose that a nucleus

happens to be attached to a fluid element at an instant at which the pressure drops

beneath P for example, at location A. This region of low pressure is convected"crit' •..-.

downstream through the varying static pressure region, so that the bubble will grow _

until roughly at position B, when the static pressure will be great enough that the

undcrpressure caused by the eddy will no longer be sufficient to maintain local
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rarefaction and the bubble will collapse. Alternatively, because the eddy lifetime

is finite as it is convected and buffeted by the surrounding flow, the local pressure

will rise as the eddy decays and, accordingly, the bubble will collapse. In parallel

with the ca~e of ultrasonically induced cavitation it can be said that there must be

a certain amplification factor and time scale appropriate to the bubbles and that is

analogous to Figure 4.9. This function for the radius of the cavitating bubble,

*,.N RM may be of the form

()lI C I,)(4.103)

where w is the resonance frequency of the nucleus R ,and w is the frequency of the
0 0

fluctuating pressure qC (t) in a frame of reference moving with the eddy. The
p 7

specific theories of unsteady local convection in turbulent shear flows have been

developed in Chapter 3 with more extensive development in Chapter 7, but for now

let us say simply that the unsteady convection causes a buffetting of the bubble by

the neighboring flow giving rise to the fluctuating part of Equation (4.96). The

predominant frequency of such a buffetting will be roughly

-1/2
u2 A c u2  (4.104)W- A- A

-- 1/2
41 2

where A is a macroscale of the turbulent flow, and u is the root-mean-square of "

the fluctuating convection velocity which is on the same order of magnitude as the

turbulence intensity. Almost always

* -1/2--i2 4

U
w c <<(Aw )

0 0
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therefore, for a large-enough pressure fluctuation, cavitation is certain to occur

with a growth time which is on the order of

T1T---1/2
2-

Combination with the foregoing Equation (4.103) and the recollection that (Equa-

tions 4.91-4.95) q.1C - o u suggests that the size of turbulence-induced cavita-
p 0

tion bubbles will be limited by the turbulence scale, i.e., using Equation 4.53

R A

Another related point of view, that is suggested by observations of incipient
48

cavitation in turbulent boundary layers by Arndt and Ippen (Section 4.3.2.6), is

that bubbles cavitate in the cores of eddies convected in the boundary layer. The

life time of such eddies i is on the order of 6/U,,, where 6 is the boundary laver
e

thickness so that by Equation 4.53

1C (W) \I
~ T ( (4.105)

In the case of the bubble nuclei, the incipient index, based on the condition

of static stability for the threshold of vaporous cavitation, will be

K + C - (1-Cp) Ic (t;I < [K+C (4.106)
p p p p crit (4.106)

where [K+C ] is given by Equation (4.98); see Figure 4.8. Note that for large
p crit

enough bubbles for which K >> 2S/qo°R and for negligible dissolved gas, Equations
0 4

(4. 106) and (4.100) are equivalent because K+C p icrt = 0.

in Section 4.3.2, the use of Equation (4.106) will be illustrated for various

types of turbulent flows. The effect of the turbulence will be to increase the

3.



incipient index above the value that would be predicted simply on the basis of

potential flow theory. Equation (4.106) implies that dynamical similarity between

two geometrically similar, yet differently sized, test bodies must be established in

terms of the turbulent flow before cavitation similarity can be established. In the

context of the above, this means that IC I/C must be similar as well as C, A
p pp

normalized on some geometric scale of the body, and available cavitation nuclei with

sizes greater than the critical radius for growth.

4.3.2 Examples of Cavitation Inception of Turbulent Flows

In this section we will summarize the characteristics of some practical turbu-

lent and vortical flows for which the cavitation inception index will differ

markedly from the classical equivalence between K. and (-C n Equation (4.5). A
I p min

rationale will be presented for each flow-type that will give a specification of an

effective valuc: of C (t), for example, C for use in either Equation (4.100) (or

P Peff

(4.101)) or (4.106). Therefore, a general stability criterion for vaporous cavi-

tation inception will be

i= [-C-(1-C )[C (t)e]m n + [K+C ,crit (4.107)

where [K+Cp Icrit , shown in Figure 4.8, is zero for large enough values of nucleus
radius. For gaseous cavitation, the equilibrium condition is of the general form

K (-C )+ (1-C )[C (01 14 (4.108)
p p p eff 1 2 2

2 0o c i

In the above equation { min indicates that inception will occur on the body at any

point at which t:he total pressure coefficient is minimum, not necessarily at which

- (-C) occurs.
p min

4.3.2.1 Vortex Cavitation. The pressure in the core of a vortex of strength " is

,. less than the ambient pressure, therefore, a flow that has some vorticity may

provide earlier cavitation than nonvortical flows. The simplest way to represent a

I
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vortex is to postulate a "solid" rotating core of radius r and angular frequency Q,

as illustrated in Figure 4.26. This is the so-called Rankine vortex. The circu-

lation and £' are related through

f= U_ rdO r > r

0

CC

-N.r

2

(T -U.

P.• -P.-,

.. ( rc  -- cU; ..

I 2-

I1"

r .2

' r r . .

Figure 4.26 - Schematic of the Velocity and Pressure Field
of a Rankine Vortex
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Equation (4.71) gives the radial pressure gradient in terms of 1T,

2
1 aP Ue
p 9r r

where P - P. as r - . The integration gives the pressure coefficient at the center

of the vortex as .

P- P(r) /2
(-C 2 (4.109)

1 (-p min k 2Tir Uo

where the normalizing velocity U represents the mean velocity of potential field

that is superimposed on the vortex. The inception index appropriate to this class of

flow is from Equation (4.101)

i 2 + (4.110)
K- 2 2 U + 1 2

The probability of gaseous cavitation occurring in this type of flow is comparatively

large because of the persistence of the vortex downstream and the large volume of

liquid entrained in its pressure field. Dissolved gas will diffuse out of solution

and gradually fill the vortex.

136
McCormick has systematically examined the cavitation of a tip vortex for the

case of low enough dissolved gas content that the second term of Equation (4.110)

was negligible. Using cantilever hydrofoils, the observed inception indices,

Figure 4.27, were found to increase with angle of attack; the increase of load with

angle of attack caused an associated increase in F. The core radius r was postu-

lated as 6/2, where 6 is the thickness of the boundary layer on the hydrofoil; 6 in-

crease.' with load (lift) and decreases with Reynolds number. For a given lift137--

coefficient, McCormick's result has been interpreted, e.g., Noordzij and
1310138'"..J

Arndt, as showing a scaling relationship

RO.4

K a Ra (4.111)
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Figure 4.27 - Critical Cavitation Index versus Angle of Attack for Elliptic

and Delta Wings for Tip Vortex Cavitation

136
(From McCormick

thc power on R partly resulting from the dependence of the boundary layer thickness
-1/5

on R, i.e., 6 R- I  In Figure 4.27 the smaller values of K i for the delta wing -

compared to those for the elliptical section are due to the smaller tip loading on

the delta wing. Correspondingly, the more highly loaded rectangular wing tips used

by McCormick had higher values of K than did the elliptical wings at the same angle
137

oi attack. Noordzij ha& recently applied McCormick's results to propeller6 4

approximating the dependence on angle of attack - and R as

K. R (4.112)

319

, V. A • . .. . . 1



139,14

Subsequent work by Billet13 9'14 0 has applied Equation (4.110) to the prediction .'-

of cavitation inception of a vortex trailing from the hub of a rotor. The139 -

measurements, show an increase of K with additional vorticity induced by up-
i

stream turning vanes as well as the influcnce of gas content as indicated by

Equation (4.108).

4.3.2.2 Periodic Vortex Streets. The vortex street shed from the trailing edges of

lifting surfaces and bluff buies (see also Chapters 5 and 9) have been observed to

cavitate, e.g., References 116 and 141; but the only systematic study of the phenom-
o.o142

enon is that of Young and Holl. The experiments of Young and Holl, however, were

mostly of well-developed cavitation such that K/Ki < 0.3. Incipient cavitation

indices were observed to be between 3 for a wedge angle of 15 deg and 6 with a wedge
116

angle of 6 deg. In the observation made by Parkin, the vortex street was ob-

served to cavitate at indices K < 0.8, and Reynolds number based on chord of about

106, although a specific vwlue of inception was not reported. The order of magnitude _

of Ki to Lhat expec~cd in various instance: P-y be etlimated from data on wake

circulations summarized in Chapter 9. For example, a 0.5 caliber section* with a

squared-off blunt trailing edge sheds a street of vortices whose individual peak

strengths scale as

peak o.6
2riU rCo C

(for a vortex core radius equal to about one-fourth the base height). Using

Equation (4.110), this suggests K 0.7 + (-C) v , where (C ) is the static

pressure at the vortex formation zone. The C is probably of the same order as the
Pv

boase pressure coefficient -. -1.5, making K 2. The larger indices observed by

Young and loll for large wedge angles were perhaps caused by combiaied influences of

stronger vortices in the wake plus a low static base pressure which would cause a

greater relative rarefaction zone at the point of vortex formation. Therefore, we

approximate

K (-c ) b + 2).~~Ki f
- 2r Ur /f

*A flat plate with circular leading edge.
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131,138
4.3.2.3 Sharp-Edged Disk. Arndt 1 ' has shown

K. 0.44 + 0.0036 R(4.113)
D

where RD is the Reynolds number based on the diameter of the disk D. This formula.-j
D%

was derived using Equation (4.107), appropriately adjusted to account for a vortex

structure superimposed on the mean flow:

2
Ki -(C min+ 2

The minimum pressure coefficient occurs at the "leeward" side of the disk. According
143 131,144 J

to Kermeen, McGraw, and Parkin -(C ) . 0.44. Arndt assumed laminar flow
p min

on the "windward" side of the disk to determine a rate of steady shedding of circu-

lation, df/dt, from the edge. The shed vorticity was assumed to roll into toroidal
vortices in the wake, at a frequency f D/U_ - 10. The amplitude of the circulation

.n each vortex is then given by
6

r =d'1

The vortex radius r Arndt related to the thickness of the laminar boundary layer on -
0

the face of the disk. Arndt's semiempirical Equation (4.113) agreed closely with
143 5

experimental data of Kermeen, McGraw, and Parkin. For RD > 2x10 , Ki - 2.

145 
L-

4.3.2.4 Orifice Plates. Numachi, Yamabe, and Oba have conducted a comprehensive
series of measurements which were directed at establishing the effect of cavitation

on orifice coefficients. Results have shown K 2.5 based on the pressure at the

downstream (corner) tap and the average velocity through the orifice. The orifice C
4

diameter to pipe diameter ratio was between 0.224 and 0.633 with RD - 4 - 25 x 10

In the case of flow-nozzles and sharp orifice plates with flange taps, Bell (dis-
145

cussor to Numachi et al. 1 ) reported K. 1 1 to 1.6.
1
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4.3.2.5 Free Jets. Cavitation in turbulent jets occurs in the free shear layer,

which, as discussed in Chapter 3, has turbulence intensities on the order of 0.16 U
4

at distances yi < SD. Measurements of Rouse, quoted by Knapp et al., show

K. - 0.55 to 0.70.1

Using Equation (4.99) the expected cavitation inception index would be on the

order of

J

K i  ( -C (t)}

under a hypothesis that p 90 0. The minimum value of the unsteady pressure co-

efficient that is required to induce cavitation would be some multiple, for example,

m, of the root-mean-square value. Thus, from Equation (7.70) we may write

-2

U.

K. 3m-
2Uj

uJ

- 0.08m

Assuming that the turbulent pressures have a Gaussian distribution about the mean,

there will be a small probability (actually 0.0013) that there are pressure
1/2

fluctuations less than -3p and for m = 3

K, 0.31

This value is approximately 1/2 the measured value just cited, but it is nearly
146

equal to the value that is inferred from noise measurements of Jorgensen. This

suggests that pressure fluctuations are as much or more than three times the root-

mean-square value and occurring infrequently.

Recently Arndt 1 3 1 has found an empirical relationship between K. and theI

Reynolds stress, u 1U?, in the shear layer. Hypothesing the proportionality
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J2 - -

1 sn 1 2

for free shear flows, he found that measured indices collapse on the curve

K 16 1.

2

u I I

S16--,

Li

for jets 4 and wakes 1 4 (in which the free-stream velocity U.0 replaces the jet efflux

velocity U jas shown in Figure 4.28.

1.0 I
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a BEST FIT CURVE

0.03 I I I
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138
Figure 4.28 - Compilation of Incipient Cavitation Indices for a Variety of

Turbulent Shear Flows. Indices are a Function of an Effective
Shear Coefficient:*1 2

Cf = w / 2 PoUOO -BoundaryLayers

-u u
1 2 Jets, Wakes, C o
2
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4.3.2.6 Cavitation in a Turbulent Boundary Layer. Incipient bubble cavitation was
147

observed in the boundary layers of flat surfaces by Daily and Johnson and later

by Arndt and Ippen4 8 ,14 8 on rough walls. On smooth walls Daily and Johnson observed

that bubble nuclei were distributed throughout the boundary layer, with most at

about yi a- 0.6, where 6 is the boundary layer thickness. The location of

incipient cavitation, however, appeared to be distributed about y/6 = 0.25, with

none occurring at the wall where the rms turbulence intensity is largest. This led .1

to the hypothesis that the inception was related to the presence of large vortical

eddies into the cores of which bubbles become trapped. A similar observation was

mad later in rough wall boundary layers in the same, or similar, facility by Arndt
and ~ 4 8 , 148 / 06buthlags4

and Ippen4 8 1 4 who also observed incipient cavitation at y16 - 0.6, but the largest

dcnsity of nuclei was near the wall y << 6. In both sets of experiments the total

gas content in the water was high; supersaturated in the case of Daily and Johnson
1 4 7

(so Lhat both vaporous and gaseous cavitation were observed depending on the initial

bubble size) and 80 percent saturated in the case of Arndt and Ippen. 48,148 Arndtl 31

ha; subsequently fcund the cavitation inception can be displayed as in Figure 4.28

which summarizes the results within the context of the definition of Equation (4.100)

or (4.107). If the boundary layer is turbulent at the minimum pressure point, and

there is a-i ample concentration of free bubble nuclei, then

Pmin) -

whure the C (t) is the local deviation of pressure from the static value at the wallp
C )caused by the turbulence. As in Equation (4.94), this fluctuating co-

Pin in]

(efficient has a maximum value,

C ) C 5.6 Cf

L eff Prms

• whre

Cf -- Ww
-- I

f 1 2

J 24



which is a genera]. proportionality to Cf Therefore, adopting

C t) C -cc0 Cfj '.
[p eff Prms Cf

the inception condition determined by Arndt for smooth and rough-wall boundary

layers becomes, therefore,

K -C + 16 Cf (4.114)
Pmin

indicating that [C (t)] 2 to 3 [CpIm. Figure 4.28 shows that bubble cavi-
p ef f p rms'

tation in shear layers appears to behave in a nearly universal way where either Cf

or -L 2/U expresses the effective strengths of the pressure fluctuations. Note-

that for Gaussian pressure statistics there is a probability of 0.0013 that

pressures occur less than 3 prms

Other observations made by Arndt and Ippen were the cavitation bubble histories

two of which are shown in Figure 4.29. The linear increase of radius with time

suggests that during this portion of the life time, the bubble behaves in the

appropriate form of Equation (4.97),

(2 1/ C ( ) I/ 
_

where -C (t) is nearly constant for a length of time t The value of t , shown in
P g g

Figure 4 .29 corresponds roughly to a dimensionless time, using parameters of the

flow, of

t 6
1

It is shou-n later in Section 7.2 (Figure 7.12) that the time t it takes for an eddye

to decay to l/e of its initial value (as measured by velocity fluctuations normal
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Figure 4.29 - Typical Bubble Growth Observation in a Turbulent
48

Boundary Layer, k = Roughness Height,
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to the wall) is approximately Te6/Uo- 1. Thus, the hypothesis leading to

Equation (4.105) that incipient cavita-ion in shLar-flow turbulence is 3ue to

bubble nuclei swept into strong vortices convected with the mean flow appears to be

somewhat supported.

An alternative earlier relationship for cavitation incepLion scaling in
149

boundary layers has been given by Oshlima, which is based on the hypothesis Lhbt

the maximum size to which a bubble grows is proportional to the displacement

thickness (see Section 7.2) of the boundary layer. Thus L in Equation (4.97) be-

comes, instead, a boundary-layer thickness. This yields a condition of similitude

of static equilibrium that requires

p-KC 4S o 2m

p RU2 + I U2 R R constant
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The exponent on Reynolds number is determined by the properties of the boundary

layer displacement thickness, 6*, which behaves as

* -m
L L

For turbulent boundary layers m 0.2, therefore, Oshima's rule reduces to

0.4%
[-K-C 4 - constant (4.116)

p

in cases of small gas concentration and small surface tension pressures, Oshima's
147

hypothesis is based on the observation of Daily and Johnson that nucleating

bubbles near the wall grow to a size about equal to a boundary layer displacement

thickness. However, contradictory evidence now seems prevalent in the literature.

In other cases14 ,11 6 it is known that Equation (4.53) applies (with the pressures

being determined from the static pressure distribution) for bubbles growing near the

point of minimum pressure where the growth time is determined by convection velocity

of bubble and the chordwlse length of the rarefied zone. Also, we have already

cited Arndt's later observations of bubble growth in turbulent boundary layers which

suggest that the maximum bubble size is not proportional to the displacement thick-

ness. Figure 4.29 shows, for example, that the larger bubble radius was observed on

the less rough wall with the smaller value of 6*. Although this evidence is not

conclusive, it does indicate that Oshima's relationship may not be universally

applicable. Finally, agreement between Equation (4.116) and the measurement of
143

Kermeen et al. was shown to be reasonably good by Oshima. However, it is now be-

lieved thaL those measurements were influenced by laminar separation rather than

turbulent flow, Nevertheless for that flow type, the thickness of the separation

zone controls the bubble size and that thickness also decreases as R-m . Therefore,

an analyLical model analogous to Equation (4.115) ma. well apply to those cases in-

volving separation.

4.3.2.7 Separating Laminar Boundary Layers. The preceeding examples of incipient

cavitation have all dealt with the types that are frequently described as "traveling
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bubble" cavitation. We now address sheet cavitation that occurs on surfaces be-

neath boundary layers which are laminar or that are transitional between laminar

and turbulent. The boundary layers of this type occur at thin leading edges of

lifting surfaces and generally occur at low-to-moderate Reynolds number. They are
150

sensitive to Reynolds number, wettability and roughness of the surface of the
66,151-154 78,155body, free-stream turbulence, 7

' vibration of the surface, and possibly

acoustic noise in the environment. On the other hand, fully turbulent boundary

layers occurring at generally larger Reynolds number for the same body shape are not

nearly so sensitive to these stimuli. Historically, it has often been observed, in

scale-model testing, that discrepancies exist between measurements of cavitation

inception and the appearance of cavitation on the same model in various facilities

and between geometrically similar bodies of different size, (recall Figure 4.23).

However, a recognition of any relationship between the condition of noncavitating

viscous flow and cavitation inception did not really come about until relatively

recently. This is in spite of one of the most well known of the early observations
143

by Kermeen et al., that the dynamics of incipient cavities was influenced by the

noncavitating fluid dynamics. The incipien cavitation observed, was then reckoned to

have been caused in a laminar-to-turbulent transition zone, and the maximum bubble

size was believed to have been determined by the displacement thickness of the
boundary layer. More recently, observations have been made of the separated flow on

the same shape of body as well as of the corresponding incipient cavitation by Arakeri
156 ~78,155 6,5,5

and Acosta,1 5 6 Gates, and van der '1e The situation that occurs

beneath a limited region of separated flow ("short-bubble") at a leading edge is as

schematically illustrated in Figure 4.30, drawn with the aid of van der Meulen's

photographs. Downstream of the point of minimum pressure, Figure 4.30a, the laminar

flow separates if the flow Reynolds number is less than the critical value for which

the boundary layer becomes turbulent upstream of (-C ) The separation bubble
p min

that would occur is illustrated as a dividing streamline intersecting the body at

's." The free shear layer is laminar for a distance Ls, but becomes unsteady due to

hydrodynamic instabilities (see Chapter 3). In this region of transition, the flow

is irregular and the fluctuating surface pressures in the region have been observed

to be as much as three times more intense than those that would be measured down-

stream in the fully developed boundary layer. 1 5 7 ,1 58 Also, the incipient bubble
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Figure 4.30a -Separated Flow Pattern, Noncavitating Flow '

BUBBLES MOVE UPSTREAM

S

Figure 4.30b - Incipient Cavitation, K = K. = 0.6

FRONT MOVES FORWARD
AS K DECREASES

Figure 4.30c -Advancing Cavitation, K =0.59

CLEAR SURFACE, L H c  FOAMY, DG

rll Figure 4.30d - Advancilng Cavitation, K = 0.56:

" ~ ~Figure 4.30 --Progression of Cavitation from Incipient Bubbles to Sheet .7777 17 65,143,152,156

observed near the wall not in the stream, which suggests that the
14l fluctuating pressures are locally most intense at the wall rather than in the

than in the stream. (Recall that this is in contrast to the observations made by

* turbulent boundary layers where the incipient bubbles appear away from the wall.)
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Once the bubbles form in the transitional zone, they grow to a critical size, of
159

approximately the height of the shear layer then they migrate slowly upstream

against the flow, Figure 4.30b. Some become entrained by the free shear layer and

are subsequently expelled into the free-stream. With further reduction of K from the

incipient value, the smaller bubbles coalesce as they move upstream forming a

distinct leading edge of a larger cavity with a clear-surface leading edge and a

"foamy" irregular trailing edge, Figures 4.30c and 4.30d. This cavity extends

laterally along, or around, the body like a strip, e.g., Figure 4.23, numbers 5 and

* 9. The cavitation develops further as the cavitation index is reduced so that the

* leading "edge" of the cavity moves as far forward as point S, while the trailing

"edge" continues to progress downstream. This type of cavitation was also observed

on an oscillating hydrofoil by Shen and Peterson;1 58 the oscillations in angle of

attack bringing about a temporal variation in the extent of the disordered region of

the cavitation zone.

I- The hydrodynamic conditions favoring cavitation inception downstream rather than

at the minimum pressure point will inclu!e beth low static pressure and low dynamic

pressure so that

C +1C (t)i < -c
. min - in in

where C is the static pressure coefficient downstream of separation and near the
Pt

point of breakdown of the laminar shear layer. For a more extensive separation

zone, the recirculating flow of separation occupies a major fraction of the body

length (or chord), the outer streamlines adjust to the presence of the separation

zone and the minimum pressure coefficient becomes larger than that occurring in
4

fully attached (or potential) flow. An example of this can be seen in the next
160 161

chapter, in Figure 5.11. In this case, as shown by Alexander and Casey, the

cavitation is delayed, i.e.,

4 1 C~ K. -(C)

-pmin) non- Pmin) sep
sep
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Returning to the case of "short-bubble" separation, Equation (4.106) gives the

incipient index as, approximately,

IP(t) eff
K -C + [-Cpm (4.117)

Pt q p min4.17

for large-enough bubble nuclei.

A quantitative correspondence between [p(t)]eff in Equation (4.117) and the

large amplitude hydrodynamic pressures in the reattachment zone has, so far, not

been obtained in spite of a systematic series of wind and water-tunnel measurements

by Huang and Santelli. 1 6 2 Their work led to a near equality between K. and C in
-1/2 Pt
21

spite of a relatively large value of p /q in their experiment. It is quite

possible that the delicate sensitivity of laminar flow to the many environmental in-

fluences listed at the beginning of this section prevented the existence of strict

flow similarity in the wind- ard water-tunnol experiments used. Gates and Acosta

have examined these types of flcw sensitivities in a systematic way. 7 8 ' 1 5 5

4.3.2.8 Isolated Roughness Elements. Isolated elements which protrude into the

boundary layer cause local flow separation and attendant low pressures. These q

protrusions serve as cavitation sites especially if they occur at locations near the

point of minimum pressure on the body, the locally-low pressures they induce may be

regarded as perturbations on the potential flow static pressure distribution. The
163 164 165

effect has been extensively evaluated by Holl, Bohn, and Arndt et al. 165

The local perturbation pressure will depend upon the local velocity Incident on

the protrusion which is a function of the height of the protrusion kg, relative to

the local height of the boundary layer 6. The velocity U will also depend on the

local free-stream velocity just outside the boundary layer Us, that also determines

the local static pressure. The absolute low pressure, which occurs on the leeward

side of the protrusion, will then be of the form

p U c (4.118)

2 0 - 31
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where U is the mean velocity at the outer edge of the boundary layer and c is a
S p

function of both the local Reynolds number U6/v and the ratio k /6. These factors
g

account for the fact that the perturbation pressure will depend upon the relationship

between velocity profile in the boundary layer and the size of the roughness.
164

Bohn, however, has also included the shape factor of the boundary layer as an

additional parameter, but with little improvement in the resulting correlati.?, . The

local pressure coefficient is, from Equation (4.118),

1 2 1

U 2 0 U U

It 2 o ~ 0o

Introducing the definition of the static pressure coefficient, we find

= C - (i-C) c 1(U k)
I- U2 p p p 6
2

which is equivalent to our

=c-(1-Cp) [Cut)]
p E eff

Therefore, the condition for vaporous cavitation inception will be from Equation

(4.48)

K. = -C + (1-C) [C(t) (4.119)
1 P L) effr

min

where U = U (1-C) and where [K+C ] is taken as zero for sii,-plicity. Equation
S p p crit

(4.119) for isolated elements, contrasts with Equation (4.113) for distributed

roughness.

Values for c shown in Figure 4.31 were empirically determined. It is seenP

that the points fall into classes which depend upon the shape of the body. *2
3 32
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F LOW DATA
SYMNIOl. IRREGULARITY DIMENSIONS SOURCE c

hS
/ TRIANGLES TWO HOLL. 1960 0,361 0.196 0.152 9

k - 0.175i

0 CIRCULAR ARCS TWO HOLL. 1960 0.344 0267 0.041 1 9--L 0 5

,'- h = 05d
A HEMISPHERES THREE BENSON 0.439 0.298 0.0108

1966 Ah d

CONES THREE BENSON 0.632 0.451 0.00329 A h hd

CYLINDERS THREE BENSON 0,737 0.550 0.00117 h- h d
1966 d

U SLOTS TWO BOHN 1972 0.041 0.510 0.000i14

I I I
FROM NACA 16-012

HYDROFOIL
1.0 -TESTS

(HOLL L04

CL L
u 0.10 k j0,

FROM NACA 16-012
HYDROFOIL TESTS

(BOHN)

O.Ol I . I
1.0 10 100 1000 10,000

Figure 4.31 - Limited Cavitation Number for Isolated Irregularities
1 6 5

CcTr-arison of Figures 4.28 and 4.31 will show that the incipient index will be more

gLeally increased for isolated three-dimensional protrusions than for continuous

roughwesses of either a random or geometric pattern.
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4.4 HYDRODYNAMIC CAVITATION NOISE
4.4.1 Theoretical Spectrum of Single-Bubble Cavitation Noise

4.4.1.1 General Dependence on Stages of Bubble History. In dealing with cavitation --
noise, we are really concerned with noise resulting from the time variation of voids

in the liquid. Since there are volume changes, the noise resulting is monopole

governed by Equation (2.20) which is rewritten here for the sound pressure far from

the bubble r >-' R, where R is the radius of the bubble,*

OoV(t- r )'

pa (rt) = 4 (4.120)

Figure 4.15 illustrates the volume history of a hydrodynamically induced cavitation

bubble and it can be deduced from this that the volume acceleration will be largest

at times when the radial velocity changes direction, i.e., at the times of the

minimum radius. Figure 4.32 illustrates this dependence, using the volume history

90of the type observed by Knapp and Hollander. The :naximum sound pressure is
attained in a time interval of less than T /2 that is centered on the instant of

c
collapse. The peak sound prttssure would be expected to depend on the time scale [_

c
which, by Equation (4.70), depends upon the relative hydrostatic pressure P(r) - P

and the -maximum bubble radius. Equation (4.120) can then be made dimensionless on

( r t $ 2 3v ' = =

Pa () R,, - R
P(r) R., -- 2 ";.

(c)

or

Ppa Rm Nr

Pa~~~ ~ -'R' P-Prt 'C°)/) =V( tR 3 P  i2I (4.121) "i "--"

*Equation (4.120) could also be written directly from Equation (4.1") by letting
r replace R - r, then P(R) - P(r,t) represents the acoustic fluctuating pressure
far from the bubble wall.
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Figure 4.32 - Sound Pressure and Volume of a Single Cavitating Bubble

with Two Rebounds. Also Shown are Characteristic Times a
Appropriate for Equations (4.70), (4.77), and (4.85).

where the notation f" indicates differentiation with respect to the reduced time

1/2

It is assumed that Pv << P(r). In the following, P(r) = P is taken as a constant - 1
o 0

local static pressure where the bubble collapses.

In the frequency domain, the Fourier transform (Equation (2.27)) of the

acoustic pressure is given by

6

33D

4



~a (r~~) e ik (r-a)(412

* where (Equation (2.105),

e~) ei,,t dv (t)
f CO dt

2 0
L e ~ v(t) dt (4.123)

-00'

The auto spectrunt of the- sound pressure is quadratically related to p (,,() by
a

Equation (3.39), andU-

(r,,) S (r,Lo) (4.124)pa p

*where ;is Lhe duration1 of the pulse shot,-n in Figure 4.32.

* 1o11ow~ing Equation (14.120) these spectrum functionis can be rewritten in a pair of

dimensionless formis that xAll be used interchangeablv. Lettinq

1/2

Tc R1(P0 (4. 125)

* the alternative nondimensional spectrum functions are

P S (r ,uT) (4.126)

and

02
(r~w r

pa ~ :~)14.127)
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Fitzpatrick and Strasberg were the first to determine the frequency spectrum

of the radiated sound from a cavitating bubble. Using an illustrative pressure-time

history very much like that shown in Figure 4.32, but with peak pressure pulses taken

equally for all three collapses, they were able to perform the necessary Fourier

transforms. The resulting sound spectrum is shown in Figure 4.33. We will, in the

following discussion, identify certain portions of the bubble history which con-

tribute to corresponding frequency ranges.

To perform the calculation, some elements of the time history of the bubble

volume nay be segmented into a sequence of time intervals of duration Ln, i.e.,

Nn

v(t) n (t) u(t,.i (4.128)

n=O

0 -1-'.'-----------.-'-I----r-- ' - -r

I -,, FITZPATRICK AND STRASBERG
S, " \I -THREE COLLAPSE PULSES OF/ \ I i ! EQUAL MAGNITUDE

I --lO_ /10 I -1.. ---

-20 , -

~~2O~ EQUATION (4.133)

1 -30 - EQUATION (4.132) 0%.,

2 EQUATION (4.1381 K -j--- /
f -40

-50 L _ I

4 nfl 1.0 10 100 1000

C

'i care 4.33 - 1duai1 Spectrun Ftc' :L10:1 for tie SoundIi Pre-s-re (;nerated My

a n.e .nvitat ion Pibble %,itl, a Vol-n, ei .1iitorv such as Siuwi

in Figure ".32
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where the unit function u(t,ATn) is unity only within the interval It-t I < AT and
nln n

zero otherwise. The function v (t) is a power-law expression used to approximaten

the bubble motion in th2 irLerval At . Appendix A illustrates this calculation.n'

Basically, if v (t) is of the form

v (t) = a (t-t n)m t > t (4.129)

=0 t < t
n

SI'lium, as ionag as wAt I, as derived in the appendix,

a F (m+l) T W
V (w) - n fnmn) , > 1 (4.130)

2r(iW)m l' 2

We will now consider the specific frequency ranges in Figure 4.31 that are

commensurate with the various events in the bubble history high]ighte. it, 'igures

4,15, 4.19 and 4.32 and derived in Section 4.2.5.

1. Low frequencies: wc c I., w-m <ic A

In this case, Equation (4.123) gives only

2 6
V(w) - - V(t) dt2vi

0

2
-w) T.2- '7(t)

Therefore,

4 2-2
W T2 V

S (r,w) 2 A, (4.131)3 2
32 T r

whItr v - V(L) dt 1.3V .j and V is the volume of the bubble before coilapse.

I)

.c Lcur 1.3 it, Indicated by tha V(t) 'ihown in Figure 4.32.
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2. Frequency of maximum intensity, w(6T 0  c < WT

In this case, the details of collapse are unimportant and the initial bubble

life can be approximated by

tT?
~c\

V(t) V CosI

for -i < t -i < T.
c c

Thus,

V(W

V\WJ 2 22

2I

so that,

222
S (r,wu) r 4 cos ,

4 7L -I
) "-'

4 18 (WTc 2 (4.132) "4

There is also a contribution from rebounds, which add to V(w), of the form

r

cos 2 -iw[21 (n-l n1
V r r.2.

n1 n 2(wt -
IT n-

r 2

where u are collapse times of successive rebounds. Because of the phase facLor in
r

n
the rebound contribution, there can be certain interferences at some frequencies in

the vicinity of the maximum spectrum level at rW - ;. Figure 4.33 shows an ex-

ample of the influence of three equal rebounds on the spectrum, as calculated by

Fitzpatrick and Strasberg.l06

I

339"•

I



9 4,

3. Moderate frequencies: w, > )i=0 > >1

This frequency range is limited by the segment of the collapse phase which is

controlled by the constant bubble wall velocity as considered in Section 4.2.5. In

this range we combine the approximate function Equation (4.130) with Equation (4.81),

multiplied by 1.25 so that it would agree numerically with Rayleigh's result, to

yield

2V
!v(w0) I m c(to) ( 1/5

C

and, in the form of Equation (4.127)

2S (r,Q,) r
2 -2/5

4 9

4. fligh frequencies controlled by noncondensihle gas:

U..c L 'i, '6 c R 0 >  u:, Ti >> I
c cR

In this case, Equations (4.75) and (4.130) yield

3 2

1Vn ,, \ c . amc 720

n 16-.1 c ( (6T-)-" 2w_ 7

c

and

2  64

P I

for i,(±; ) 1
=O
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This time constant is given by Equation (4.77). Equation (4.134) shows a rapid

decrease of the spectrum level with frequency and represents the existence of an

upper frequency limit on the spectrum. This band-limiting is an indicator that an

upper frequency limit ensures that the spectrum represents an acoustic pulse of

. finite energy. A rough numerical estimate of (6Tc )__ for a partial pressure of gas
cR-

in the bubble at maximum radius of P /P(r) 10 using the values of Rm/R, from

rigure 4.18 (1l.4), is

c z 6 x 10 3 3

This means that when *+.i 6000, the sound spectrum will be band-limited.c

4.4.1.2 Influence of Compressibility of the LLiuid. Equation (4.120) for the sound I

pressure is valid cnly as long as the linear acoustic approximation applies (see

Chapter 2). This requires that the acoustic particle velocity u is less than the

speed of sound in the liquid. However, as Figure 4.20 shows, the maximum wall

velocity will be conparable to the sonic velocity for relatively modest partial A
pressures of gas in the cavity. In the linear acoustic theory of Chapter 2, the

acoustic pressure function r -a was propagated at speed C . Following upon the
a 0

discussion in Section 4.2.5, recall that when the particle velocities become nearly

sonic, the acoustic pressure is propagated at speed C + u . As the collapse I
o r

progresses and the wall velocity increases, the resultant velocity C + u accord-
0 r

ingly increases. This means that higher-velocity later waves propagate faster than

the earlier ones. As the waves propagate, the wave front steepens with the result

* illustrated in Figure 4.34. The tiruc derivative of the acoustic potential q is A
shown for an empty bubble as a function of retarded time for three field points as

well as at the wall of the bubble. If thc wall vclocity were entirely subsonic, the

would be identical to p /1" and pressure pulses at each field point would coincide

with the pulse at r = R. As the wave develops, the motions induced at the final

instant of collapse overtake those radiated just earlier resulting in a truncated

saw-tooth pulse. Tlhe dotted lines illustrate how the original pulse would have been

curled back on itself, if that were physically possible, because of the advanced

I

I_



035

[ % 11/3

0.4 - 2RM 2 r =

PO06  102'"No
UN 0.3

, N 4

0.1

0.0
-15 -10 -5 0

Co (t-t) -r

Figure 4.34 - Pressure and Shocks Radiated by a Vapor Cavity
Collapsing in a Compressible Liquid

95 -"
(Values according to Mellen, curves from Fitzpatrick and

Strasberg 6 )

arrival times of the faster pulse peak. The reduction in the pulse height continues

as the pulse propagates, To construct this diagram Fitzpatrick and Strasberg1 0 6

95
used calculations by Mellen in which the particle paths were determined as a

function of time and distance from the bubble.

The effect that this truncation of the pulse has on the noise spectrum can be

deduced from the transform of a ramp function of amplitude p and temporal width

(dt). Thus
S

(ir)

PO iwt dt
P(w) = T j e (6t s)

-P (6t) iw(t )
a 0 2 Le (iw('ts)-i

I 27i(w6t )
S
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The corresponding spectrum function at high frequencies will behave as

2
p0

S(r,t) 0 W( s) > 1 (4.135)
(t)2 ss)

According to Figure 4.34, 6T depends upon the distance from the bubble; atS

large distances it appears that

(6t) c

S 101/3 -

which corresponds, approximately, to

(6t)s 5/6

Ic [O~o2 (4.136)

Recall an alternative result had been discussed previously in Section 4.2, Equation

'ball-park" value. Adopting the value in Equation (4.136), the spectral form given

by Equation (4.135) is expected to occur at frequencies .

2
In rigure 4.33 several lines are drawn which correspond to oco 2t

for pure water and to other values of speeds of sound corresponding to bubbly

4 mixtures of the indicated volumetric concentrations B. Equations (4.31) and (4.39)4

(lable 4.1) were used to calculate the speed of sound. It can be seen that moderate

concentrations of free bubbles can influence dramatically the high frequency spectrum

343
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L.82,83 -7
levels. In water-tunnel facilities 2 ' volumetric concentrations of S < 10 may

be expected in undersaturated water. As far as the cavitation noise spectrum is

concerned, the liquid is essentially pure water.

Experimental evidence of the existence of shock waves has been reviewed by both
106 120

Fitzpatrick and Strasberg and by Ellis. Generally the shocks had been

observed and associated with spherical collapses of spark-induced bubbles, however,

Ellis has also observed shock formation from nonsymnmetrical bubbles collapsing on a

surface, and from groups of bubbles. Such observations have not been made in

-2hydrodynamically-induced cavitation, however. Evidence of the -W behavior in the

acoustic spectrum has been deduced by Harrison il who observed on an oscilloscope

wave traces of the time history of pressure pulses from hydrodynamically-induced

cavitation in a venturi. Wave forms with the shape

p(t) = pe

were observed and these have the temporal correlation

p(t)p(t+-) = Pe (4.137)

which gives the autospectral density

2 C

¢ 27) 2 (4.138)
pa 2.i l+(.wa)

where = :t is given by Equation (4.136).
S

4.4.2 Simple Rules of Similitude

The spectral character of real cavitation noise is only cridely approximated by

the theoretical spectrum of single-bubble noise. One of the earliest measurements
166

to show this is that of Mellen, whose result is reproduced in Figure 4.35. The

cavitation was generated with a cylindrical rod rotated transversely to its axis;
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Figure 4.35 - Sound Spectrum of Cavitation Noise Generated by a
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4300 Revolutions per Minute
166

(From Mellen 1 )

cavitation was generated at the tips of the rod. The important characteristics of

the ideal noise model are borne out; maximum level at moderate frequencies with
.4

nearly the f on the low-frequency side. The multiple peaks are probably due to

-2
reflections. At hi',h frequencies the spectrum falls off roughly as f-. An attempt

has been made to reduce the measured 1 Hz band levels to the form of the spectrum

function. The band level is converted to spectrum level by

p2(f,iAf) - 21' (r, :) kui-.-
Pa-.

2 S (r,.) ,
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and Aw = 27TLf. The bubble life-time T is unknown, but assumed to be equal t. 3T
C

The maximum bubble radius was observed to roughly 0.05 cm. Comparison of the

dimensionless spectral density with the ideal function in Figure 4.33 will show

that the measurement is only roughly represented by the ideal function. Perhaps

the discrepancy is partly due to the extensive distribution of bubble sizes that

probably exist instead of a single bubble as assumed for the ideal noise spectrum.

Also, the real bubbles collapse in an environment that is subject to a variation in

the local static pressure field of the tips of the rod.

The important fact to be recognized from the shape of the spectrum measured by

Mellen is that although the acoustic energy spectrum is broadband, as predicted by . .

the theory, the exact shape is only roughly approximated by the ideal spectrum.

This discrepancy is not quantifiably understood, but it is probably partly due to

the many hydrodynamic influences that can bear on bubble formation and collapse.

It is nonetheless useful to examine physical noise spectra within the format of the

nondimensionalization, because such a format will give a rationale for scaling

noise measured on models up to prototype. It will also give a means of estimating

changes in noise to be associated with design changes from one gene,.-Ily-similar flow

system to another.
167 _

The most simple format for scaling is that recently proposed by Strasberg 167

168
(although also used by Khoroshev1 ) which is predicated on the assumption that the

size of the cavitation region scales linearly with the dimension of the body L, at

the same ratio of the cavitation index to the cavitation inception index. Then a

characteristic time scale, analogous to the collapse time of a cavitation bubble, is

1/2 " 1
T = L(~.2) (4.139)

PI

1
where P is a convenienti.y described ambient static pressure. The size scale of the

cavitation zone is a function of K/K. and probably of Reynolds number, i.e.,.]

Lc =Lf K L (4.140)
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Returning attention to the equation for the linear acoustic sound field, we can write

the sound pressure, Equation (4.120), in terms of scaled variables:

c-1
a\L'TI =~ . ' U(4.141)

In the frequency domain this representation has a corresponding spectral density of

the general form similar to Equation (4.127):

1/2 -1 1/2

P 2-

p L ( wLr P i, L  (4.142)

The sound pressure level measured in a frequency band 6to, p (w,Aw) will then be

2(L2 11 1/2~
p 2 (w, A) P (L i (L ) 1/2L ' K, K.,R (4. 143)

where (wL(Oo/P ) I /2 K/Ki,RL) is a dimensionless function that is dependent on the

type of cavitation and it implies similarity based on equal values of K/K. as well

as equal values of K and K..

The scaling implied by Equations (4.141), (4.142), and (4.143) does not provide

for differences in cavitation inception indices, indeed it assumes that they are

the same in both model and full scale. It is understood, however, that the types of

cavitation must be the same in both scales. It also does not account for different -

liquid compressibilities in the two scales, compressibility differences may in-

fluence the high frequency part of the spectrum, and the peak is the sound pressure

pulse. These relationships were successfully used by Strasberg to scale the noise

167
from tip vortex cavitation of propellers (see Figures 4.47 and 4.48).

169,170
An alternative approach which has a relatively large acceptance and

which has been effectively used to scale propeller noise, replaces Equations

(4.139) and (4.140) by

347 " J

i.



1/21 K / 2  /"o 1 2 ', -
T LK ( (4.144)

-- "A
and

Lc =L f(K,RL) (4.3.45)

This leads to the scaling relationship for the pressure level in narrowbands

-
2  2r1/2 /1/2

2 CO(.L 1/2 0Pa (W,AW) = (K)( 2  ( ) L( _LK K, (4.146)a.~ (K 1/-1O(J

121
Equation (4.145) was first used by Levkovskii to apply to the case of equal

hydrostatic pressures P., in model and full-scale. If, in addition, the model

measurements are made at the same index as exist in full-scale, then Equation (4.146)

reduces to Equation (4.143). The point is, however, that it is implicitly under-

stood that the cavitation inception index K will be the same for both scales.
i

Equations (4.143) and (4.146), although functionally similar in the coefficients of
,differ in fundamentals as expressed in the different functional dependence of .

in each case. The difference between Equation (4.143) and Equation (4.146) is in

the distinction between -_(K/Ki)-similarity in the former case and K.-similarity in

the latter case. .

A means of introducing both the cavitation inception index and the cavitation S

index aad, therefore, possibly adjusting for dissimilarity in K., borrows from the

theory of single bubble dynamics. The characteristic size of the cavitating region

will depend upon a length scale of the body and the difference between the local A

static pressure in the cavitating region and the vapor pressure. Analogous to

P-quation (4.53), the cavitation length scale will be

1/2 - -
L L (Ki-K) 1

.!
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%',

the time scale will increase with the size of the bubbles and the static pressure, jso that

1/2 -'

(K _K) 1 P)

-

PW

The mean-square pressure in a frequency band will behave as

1• /'2p2 ,£) =p2 L [(. (K)1/2 %

i ( /2 ] (Ki-K) (4.147)

1/2 r K. 1-1

1/2

This is essentially the representation used by Blake et al. 1 1 '' 1 8 and it has been ii.

seen to effectively describe noise radiated by cavitating hydrofoils. If cavitation : '

similarity exists then a /

(K)ode1  (K)fuI 2
a n d -"

(Ki1modelf (K)full

117,118

in which ease Equation (4.147) will reduce to Equation (4.143). The spectrum

2/po/o1/2u 6T ucin4QIK-) 1 i/{p ) ,R) will be a function of the geometry of the
1 0"1body, the Reynolds number, and the reduced frequency as indicated. It could, "

itherefore, be possible for to be additionally dependent on K since K depends on

and

i i
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A very different approach to cavitation noise scaling was suggested by ]JeBruyn
9

arnd TenWolde. They hypothesized that similarity is maintained by a fixed pro-

portionality between the total acoustic unergy radiated and the potential energy

contained in the bubble-liquid system when the bubbles have their maximum radii.

*Accordingly, they hyporhesize that the acoustic power is proportional to the time

rate of change of thie potential energy P.E.

aa (P.E.)

This converts to

2 2
par (4-7) 14

~0 0

where T is a time constant of the bubbly system so that they hypothesize

2 2
p r -L

3 =constant (4.148)

Pc PN

The time constant was taken as the rotation rate of a propeller, but in the same way

it could just as well be taken as a length scale of the cavitatiig body L divided by

a velocity scale (Pj./ 12 Fur'ther, they assume that

RL

so that,

2 2
p 2 c
a 0
2 11 P0constant (4.149)
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The form of Equation (4.149) brings in the requirement, additional to K =

constant, that the Mach number and compressibility are the same in both scales in

order that complete similarity is maintained. Although the analysis circumvents

explicit consideration of the details of collapse, this added similarity will

nccessarilv ensure that the shock wave formation in the final stage will be similar -1

ais long as the partial pressure of noncondensable gas is also similar. As we have

?en, the maximum wall velocity is controlled by liquid compressibility as well as

by the bubble gas pressure. Even more fundamentally, the statement of an equal ratio

of acoustic to potential energy also implies an equal ratio of far-field to near

field particle velocity. The near 'ield motion controls the potential energy-

kinetic energy balance which, in turn, governs overall collapse. The acoustic

energy, a by-product, really, of the near field motion, depends upon the speed of

sound in the liquid and, therefore, the compressibility. To maintain complete

similarity in the energy balance will require equal compressibilities in the manner

of

too (zOzf)Of --

A variation of the similarity hypothesis expressed by Equations (4.148) and

(4.149) depends also on the assumption that the sound is shock-wave controlled.

Levkovskii1 69 and Baiter 170 reasoned that because shock-related noise has the form of

Equation (4.138), then the sound pressure level at frequencies very much less than

(ts)lI must behave as

1 2

G"(;<< ( t p l F p(t) dt
pp sa

2

' S
i~er2 -!C,1qLiat con (4 .147) , with Trep1.ico d b'; ,3t S implies that

t5

... (, . (.t )- ) 2
r
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anid 1. .tting

LhV SpCCLral density function is written in the form

2 3

Pu L ~ (4.150)
r

aind thu f rvqucncy ut.ill e b asi

uL cons tant

K 171
1iquatiuii (4.150) has bi:.n used for scaling propeller cavitation noise by Bark,'7

X..v k anid Va ioiundvit, anid Bj urheduri and Astrom; thei r I mplecrnnat ion of cidS

relatiunohip will be discusised in SecLion 4.... In using Equation (4.150),

cUImijlutL siinlarlt'1 I;i maintainewd by maintaining4

2 L_
2_
\r/

wlikh Jm rvuigizd uh hquat In (4. 149), if AAi u and ulfurS the rvqu~rcm'iot of

nN11 I I Ly ini I Jrr id wurprunni hilit y an dis:cuwmed above.
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As indicated by the calculations in Section 4.4.1.1, this behavior will only

be important at relatively large frequencies. J
When model testing is done in water at the same value of Pas in full-scale,

* Equation (4.150) gives the same scale factor as the preceeding equations.

4.4.3 Examples of Ilydrodynamically-Induced Cavitation Noise
We now examine two shear flows and the cavitation noise produced by each within

* the framework of the relationships of bubble dynamics. Measured noise spectra, made

dimensionless on parameters that are deduced from these relationships, show a

similarity to the theoretical bubble noise spectrum. This similarity providesJ

evidence that certain general expressions for cavitation noise may exist and it

provide-, a framework for developing general laws of similarity for other flow types.

4.4.3.1 Cavitaing FeeJets. Sound pressuire levels from cavitating Jets were made
146 5-* by Jorgensen at Reynolds numbers in the vicinity of 6 x 10 which is well within

the turbulen~t regime (see Chapter 3, Figure 3.10). The total air content of the

water was within 10 percent of the value for saturation so that a possibility .f the

influence of noncondensablf, gases exists, but it will not be addressed here.

Figure 4.36 shows some of the measured sound pressures in one-half octave bands aL a

0 .00 f .0 0 p0.060

-~~ DNII 0 0oO

0 I I O~0 0 001.
a 00c0 0000, OIJ

4 3/400

1031 1 1oo - 10 021 1t

.14'
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range r/D 5.7. The prominent noise frequency nondimensionalized on the effl.1-im

velocity and diameter decreases as K decreases, but the maximum sound pressure level

remains nearly equal to 10- 3 times the dynamic pressure for all cases.

An alternative form of nondimensionalization can be used which is based on the

notions of bubble dynamics in turbulent flow. The maximum bubble size will be on"

the order of

t 21(K ) (4.151) ;i:: ,
pI

where we have applied Equations (4.53) and (4.115). The time scale ,- is the moving

axis correlation time scale for an eddy to decay to i/e of its strength, equivalent

to M /Uc in Section 3.6.3.3, see Figure 3.21, which is

S1.4(412

t J

The time constant for collapse of these bubbles is the same as given by the theo-

retical coll;kpse time from bubble dynamics, from Equation (4.70),

0.9R

c 1/2

12

1.20 (4.153)

o ,
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2 2

S (wi) p (4.154)c 2o Aw 4

,, PO(P R,,.,

where y 3 is takon as the approximate bubble life time, relative to Ic, and

WI = 2ff. The proportional bandwidth is

Aw -0.4 w

Ii

Therefore, Equation (4.154) gives the dimensionless level:

2
2,

2 qj
(0.8 W1 ) S(r,wT ) = 0.9y )

c C (KiK)K

2 2
= 0.9y P P  (4.155)

P (Ki-K)

and

( ')1/2

wi 2vf (1.26)c U K
C::

1/2"

- 21fD (, 1-k)i - (4.156) -

21
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Figure 4.37 - Jorgensen's Spectra of Noise from Cavitating JeLs Made
Dimensionless on Estimated Bubble Sizes and the Constants; 0.4 w,

is the Dimensionless Filter Bandwidth; y, 3; 0

RD 6 X 10,

Da
rescmblence to the ide±al spectrum (multiplied by wl ) of Figure 4.33 at low fre-

quen'Aes, but show a more pronounced roll-off at high frequencies. This roll-off 1 .

occurs at a frequency that is much too low to be caused by effects of the corn-

pressibiliLy of Lhe liquid.

The nondimensionalizalion defined by Equations (4.155) and (4.156) does not ,I.

_uil%,:ly rt.du,.c Lhe noise 5pectra; th rc appears to be a residual dc-pendence on

K/K I of both th, levwl and the frcquncy of the maximum vau.uc of the opectrum that

H iutL exp]alied wilti thv abovc theory. This reuldual appearu as the lowest value

of K/F1 and pt-i ibly Iti a rusulL of the large ubbleti alteriiig the turbulence

btructu . In th' ji't.
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4.4.3.2 Cavitating Hydrofoils. Noise from cavitating hydrofoils has been measured
175,176 177 112,113

in water tunnels by Barker,' Erdmann et al., by Blake et al., and by

Thompson and Billet.1 73 ''7 9  In the measurements of Blake et al., and of Erdman

et al., an attempt was made to correct the sound pressure measurements made in the

water tunnel for the effects of reverberation, in order to report absolute values of

equivalent free-field sound pressures. The other measure-rents gave sound levels

relative to an arbitrary reference and the magnitudes were influenced by facility -

reverberation and in some cases perhaps absorption from free bubbles in the facility.

The acoustic level depends upon the type of cavitation that occurs on the -

hydrofoil. Barker's results disclosed that a form of surface cavitation produced .

more noise than cavitation in a trailing vortex beginning at the tip of the hydro- .

foil. It was concluded by Barker that the vortex noise was mainly due to gaseous

cavitation while surface cavitation noise was due to vaporous cavitation. The

vortex cavity had the visual appearance of a glassy rope which extended well down-

stream of the diffuser section of the tunnel. This experimental characteristic may -

180be important, for, as Morozov has shown theoretically, the noise from a cavitating

line vortex is emitted from the ends of the vortex where incomplete cancellation of

the pressures caused by vibrations of the cavity-water interface will not be

cancelled. Therefore, although the vortex cavitation noise may be less than that ,

from surfacc caviLation, it is possible that the noisiest part of the vortex cavity

was outside the test section.

Noise from specific forms of surface cavitation has been reported by

117, 118
Dlake et al. Using a hydrofoil that was designed for the generation of an

extensive region of ±u. ztatic pressure, it was possible to develop either traveling

bubble or a form of sheet cavitation depending on whether the noncavitating

boundary layer on the hydrofoil was turbulent (causing traveling bubbles) or

scparated-laminar. Figure 4.38 illustrates both the pressure dist ributions and the .

tLp.i of c:vlLation that were produced on side one of the hydrofoil which is the

suction side. The traveling bubble cavitation appeare:d as a continuum of non.-

sphericfl bubbles, Home of which became disintegrated bY the turbulent flow around

t i. 'Ihi statjc lrvssurt, dtIsir ibatlion downistrcam of the point of minimum pressiure -

%;a d i,,lvur-ic! so that .altlhtioug tl h Lurbulunt 1ioundary layer was attached it was thick.

"1i. ,ect c;Iv[La , i OLl iart wa i; generiacd bucau.h, of laminar s!pa ratLon had all of the

-q
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characteristics that were described in Section 4.3.2.7, although the downstream be-

havior of the sheet was undoubtedly influenced by the prominent pressure gradient on

the dowrnstream part of the foil.

Within the distribution of the traveling bubbles was a sub-group whose behavior

was very sLiilar to that illustrated in Figure 4.14. The bubbles grew to a maximum

size and then collapsed as spheroids; other bubbles disintegrated. Figure 4.39 shows
measured sound pressures from the traveling-bubble cavitation for a variety of

indices above and below K,. Also shown is a representative spectrum for the sheet

cavitation that was obtained for a corresponding value of K It can be seen in this

case that the sheet cavitation is less noisy than traveling bubble cavitation, but it J
is not yet known how generally this result would apply to other hydrofoil flows.

120 11 , i I , I ,1,'7 j
c •

ZL 100

90

.

1 10 100

f ( Hz)

-ire 4.39 "Spectral Desities a" - Yard of Traveling-Bubble Cavitation

Noise for Various Cavitation Indices

(LeveIs arp for a Lripped boundary layer at U, = 18 feet per second, '*.

4 degrues, U 1.15 with 5 percent air contenL at atmo.-

hiecrlc pre.isurc* o ( iLth trip): 0, 0.80; *, 0.90; , _
1.00; 0, 1.1u; o, 1.20; - , 1.30,
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The noise spectra for the traveling-bubble noise were nondimensionalized

according to Equation (4.154), using Equations (4.53) and (4.115) for the maximum

size of the bubbles. Strictly speaking, however, this nondimensionalization may be

interpreted as a modeling of the actual bubble dynamics only for those spheroidal

bubbles that do not disintegrate by splitting. Therefore, we write

Ua (KiK)1 /2
1/2T 1 (4.157)

where T is the residence time of the bubble in the rarefaction zone. Letting the

chordwise length of this zone be Z (a 0.2c for the experiment of Blake et al.), andr

the average translation velocity of the bubble be

-. 11p

U =Uo (-C)/
P

where C -0.8 is the average pressure coefficient in that zone, it is found that
p

1/2
fc (Ki-K)"

R /2 (4.158)

p
P4

so that the dimensionless spectrum function ts

2
-. ps(,, ,,; U -/C 2r

S(r,wT ) = (') Cxr
C 21 2c~~ 2o . ' [K(KiK JI'5:

(4.159)

3(, .)

2 (c- 1
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w- 27f TC C

£. [ K.-K 1/2
Uo c K - -p)(4.3].60)

where c is the chord of the hydrofoil. The term in brackets (-1811) in Equation

(4.159) is a numerical constant for a given pressure distribution as long as k is
r

relatively invariant with changes in K. Bubble sizes that are predicted from

Equations (4.157) and (4.158) agree closely with those observed on a Joukowski
hyrfilb 1ri,1 6  117,118hydrofoil by Parkin, on the subject hydrofoil by Blake et al., as well as

14
on the body of revolution used by Plesset.

Figure 4.4.0 shows the dimensionless spectrum levels according to Equations

(4.159) and (4.160) compared with the ideal spectrum of Figure 4.33. The measured

1oI l wIII I I I llI I I I I

IJo K

0- / \ 18 ft/sec (5.5 rn/s) 0.8
18 ft/sec (5.5 ms) 0.9

/ U 18 ft/sec (5.5 m/s) 1.0
-- 0 22 ft/sec (6.7 mfs) 0.44

o 1 LARGE BUBBLES

/FITZPATRICK AND C&
STRASBERG 106 * @0 "

0 OA 0u4@
.&f AND FIG. 4.33 __ A

S-20- "0

I*)~ AAL
aIN 0 i  0

C 09

- 0I 1 I I I 1 I* I I I I I I I I
0.2 0.4 0.6 1.0 2 4 6 10 20 40 60 100

c. 2r,

Figure 4.40 - Dimensionless Spectral Densities for Various Conditions

of Traveling Bubble CavJtation

(!ormalizaLion is based on variabjus associated wiLh single-
118

bubble cavitation noise. )
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spectrum levels extend over a frequency range above that which is dominated by the

growth of the large bubbles. For dimensionless frequencies in the range 3 < uwr < 60
-2 c

the spectrum levels decrease as w , which is in close correspondence with the be-
-2.4

havior, w , shown for dimensionless spectrum of jet cavitation noise in Figure

4.37. It is apparent, therefore, that for wT c 60, the spectrum levels of noise
c

from traveling bubbles on the hydrofoil and from traveling bubbles in the shear flow

of the jet are roughly similar when expressed in terms of estimated bubble radii

using characteristic length and time scales for the respective flows. The general-

ity of this result to bubble cavitation in other types of flows remains to be proven.

Indeed, as we shall see below, noise levels from sheet cavitation similarly non-

dimensionalized are less than those for bubble cavitation.

At frequencies that are greater than wT = 60, the spectrum in Figure 4.40 has
C ,118

a secondary peak which is of uncertain origin. It is suspected, however, that

the motions of microbubbles which result from the disintegration of the larger

bubbles cause this noise.

Noise from the sheet cavitation associated with laminar separation, nondi-

mensionalized using the same set of parameters as used for Figure 4.40, i.c.,

Equations (4.159) and (4.160), is shown in Figure 4.41. In this case, because

U 0 • A 0
U, Ift/sec) 22 16 22 18 18

K 1.91 077 0-72 0-74 0-74

K, 1-12 1.11 1-12 1-15 1-15

-20

MIR 0 a ,0 -

0 0.
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spheroidal large traveling bubbles were not produced, the nondimensionalized

spectra cannot be interpreted as modeling any particular bubble dynamics, but rather

as a form of approximate similitude. (The bracketed term in Equation (4.159) was

again taken as equal to 1811 just to make the numerical comparison.) These di-

mensionless spectra provide a basis for comparing the noise from the two types of

cavitation at equivalent pressures and similar values of (K.-K) and they show the

greater noise levels for the traveling bubble cavitation in a relative sense

compared to this type of sheet cavitation at similar stages of development.

Both representations, Equations (4.155) an (4.159), are functionally

equivalent, as can be determined by rearranging the terms in either equation to re-

place pressure and velocity. For two dynamically similar cavitation flows,

Equations (4.155) or (4.159) reduce to the simple form of Equation (4.143), since

(K)1 = (K)2 and (Ki)1 = (Ki)2 when similarity exists between cases 1 and 2.

Equations (4.155) and (4.159) are also the same as Equation (4.145) which was Li
derived without recourse to explicit reference to dynamics of single bubbles,

modeled as convected through a low pressure region.

Noise from sheet cavitation on side two of the hydrofoil shown in Figure 4.38

was 10 dB quieter than that generated by the sheet cavitation on side one in Figure

4.41. An example of the shect cavitation or, side two is shu1i i Lin e iniset of

Figure 4.42 which shows the sound pressure spectra for a similar parameter range as

presented in Figure 4.39.

The dimensionless forms used in Figures 4.37, 4.40, and 4.41 provide a format

-ro-. for analyzing other data, as well as perhaps a means of crude]y estimating p
noise from other similar systems. Unfortunately, there is to date little

additional acoustical information on which to develop dimensionless noise sipectra

for othet flow typers. Most experinenters, being interested mainly in general

trends (speed dependence, etc.), do not (or are not able to) carryout the necessary

acoustical calibrations with which to deduce absolute values.

So far our discussion of hydrofoil cavitation noise has addressed ol'!v direct

monopole radiation from cavitation bubbles. Additional radiation from resonant

motion of the hydrofoil responding to surface pressures will also be produced. This
*1

noise will he dipole like and will depend upon the relative impedances of the water

arvL the hydrofoi]. For surfaces which a:c st. if anid 11gtly damped yet have low

36 3
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mass per unit area, the hydrofoil will doubtlessly act as a sounding board and

radiate additional energy. on the other hand, more massive surfaces and surfaces

with higher damping may act only as reflectors of sound energy so that the sound

:..-

power radiated w.-ill not be enhanced by any re-radiation from the surface. No

systematic work orn the subject has been done. In one investigation, Barker 1 7 5 '1 76

has; observed certain spe-ctral peaks in the noise radiated from his hydrofoil speci-

:ens; the frequencies of thL peaks changed when both ends of the hydrofoil were

fixed cormpared to when the hydrofoil ,7as a cantilever. Barker deduced that the

spectral character was due to a modal radiation from the hydrofoil excited into ..

flexure by the cavitation. Contradictory evidence, on the other hand, has been

show-n b,, Blake et al.1 1 7 ,11 8  In their experiment, fio.-excited acceleration of the

h-ydrofoil was monitored, and then the sound level to be expected from this vibration

alone was later deduced by mechanically shaking the hydrofoil in the absence of

cavitaLion. The vibration-induced dipole sound pov,'er %,,as then found to be less than

one-tenth of the total througlhout most of the 1 kHz to 100 kliz frequency range of

interest, reaciing a fraction of one-half :he total power at 40 k~i; to 80 kHz. At

t. :e fr.- :-'--: the radiaLion officiercv (see Ci.apte.r 6) of the hydrofoil is
, ughly ty So th-ac differences in szructural radiation will be effected bv

diff-ir.a-s ~ iii iI1luLdatic. biie average Lnicr-ness of botn Barker's and Blake's

bv,,drofoi. the same, however, Barker' s h,,'drofcil was aluminuF, (specific
zr. iLy' and Bla,.e's was brass (specific gravity 8). The high-frequency sound

,r from vibration will be in rough proportion to (for nearly stru:turallv--si.ilar
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important requirements for the use of noise-control in cavitating propellers can be
172

found in positioning thrusters of oceanographic vessels, and in the achievement

P. of greater crew comfort on merchant vessels1 72 ,17 3- 18 1 and reduction of radiated •
171,182

noise interference to fish finding sonars on fishing vessels.1
' The types of

cavitation occurring on propeller blades are basically the same as those occurring

on hydrofoils, but with the obvious complication that more than one type of cavi-

tation may appear simultaneously as shown in Figure 4.43. Figure 4.43a shows a

propeller with the trailing vortices from the blade tips heavily cavitating. Sheet

cavitation on the leading edge of the pressure face of the propeller blades is also

apparent aud extends toward the hub of the propeller.

Noise from cavitation on propellers is further complicated by the fact that the

inflow to the propeller, being modified by the boundary layer of the hull, is not

symmetric about the axis of the propeller. This nonuniformity induces local changes

in the angle of attack of the propeller blade sections as they rotate. Considering

* the blade as a progression of elemental hydrofoils along the radius of the propeller 0

from the hub to the tip, it is expected that the quality and extent of cavitation

will depend upon the nature of the chordwise load distribution and the type of

boundary-layer at each elemental blade section. Whatever characteristics of the

cavitation may exist in steady, uniform flow into the propeller, nonuniformity in

the inflow will impose a time varying change in the overall bubble volume as the

local sectional loading and boundary layer development become periodically altered

by the attendant oscillating angle of attack. The frequency distribution of

radiated sound power will be accordingly modified to contain concentrations of noise .

about the frequencies of angle-of-attack variations.

4.4.4.2 Noise at Blade Passage Frequency and its Harmonics. An example of this

type of behavior is provided by Lovik and Vassenden 1 7 2 for the near-field pressures 0

measured on the hull sectJon of an oceanographic research ship just above the

. propeller. Figure 4.44 shows an illustration of the model test configuration to

simulate actual flow into the propeller as well as the pressure level at a ship

speed of 12.2 knots for two alternate propeller designs. The diameter of each

" model r ropeller was 225 mm, with a scale factor of 10. The measurements of noise

*:. from the models were scaled to full-scale using Equation (4.150), which ignores

- differences between (Ki) and (K i ) and, furthermore, is subject to the caveats
im i ship
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128

Figure 4.43 -Examples of Types of Cavitation Occurring on Marine Propellers'2

(Photographs courtesy of Netherlands Ship Model Basin)

TEAK-

K-Figure 4.43a -Buibble-Spot Cavitation

SHEETVORTE

Figure 4.43b -Bubble-Sheet Cavitation A
F~igure A.4 3c - ortux-Cloud-Streak Cavitation0
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Figure 4.44a -Typical 'Model Arrangement in Cavitation Tunnel
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Figure 4.44b - Spectrum Level S~dled(, to Full Size, 17 2

Upper and Lower Curves Pertain to
Two Propeller Designs

Figure 4.44 -Cavitatiun Noise Test ing at the Ship Research
Institute of Norway (From Ref. 172)
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mentioned in Section 4.4.2 because it ignores requirements of similarity in com-

pressibility. For comparisons of sound pressure measured in fixed bandwidths Af
m

and Afs, Equation (4.150) is rewritten

10 log(f 1 ilog(Af

s m

+ i0 log (4.161)

(PMD )

assuming

(1( (K).Ki m Ki F ""

at a ship frequency of

P" 1/2

f f m (*P")(4.162)

The premise of a constant ratio between acoustic and potential energies for valid

application of Equation (4.150) cannot be maintained since the model and full-scale
172

measurements of Lovik and Vassenden were made at values of P that differed by a
2factor of two. However, the difference in scaled noise levels by assuming p a P . ]-

rather than p2 P 3/2 amounts to approximately only 1.5 dB. To emphasize the effect

of nonuniformity in the inflow, the frequency was normalized on the product of the

number of blades B and the shaft rotation rate n . The peak5 at f/n B = 1 and 2
S S

for the greater magnitude spectrum occur at the blade passage frequency and its

harmonic. The peaks at f/n S B = 20 in the scaled model noise were due to vortex5I

sheddi.-, sounds fro.n the wake-simulation screens near the hull model. In the rede-

sign of the propcller, the overall noise leveIs were markedly reAuccd ard 'he peak
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at the harmonics of the blade passage frequency were eliminated. Noise at blade

passage frequency can be generated because of the periodic changes in local angle of

attack as Lhe blades pass through spatial nonuniformities in the inflow. The ..

consequent changes in blade pressure coefficients alter the cavitation.

Such variations in traveling bubble cavitation at the blade passage frequency

have been theoretically analyzed by considering harmonic variations in the maximum

sizes of traveling bubbles by Pudovkin.1 8 3  These effects have been observed on both e
bubble and sheet cavitation as deduced from experiments in which the angle of attack

variations have beer. simulated by imparting a pitching motion to hydrofoils. Some

of the more recent experiments with oscillating angles of attack are those of Bark
182and van Berlekom 8 using a cantilever hydrofoil in pitching motion about its mid-

chord. They observed pressure pulses that are radiateu as the instantaneous angle

of attack favors a reduction in the extent of the cavity. Tip vortex cavitation,

sheet cavitation, and bubble cavitation were developed on different hydrofoils. The

most noisy type was bubble cavitation, with the sheet cavitation to 10 dB quieter,

while the least noisy was the vortex type, being 20 to 30 dB quieter. A similar
158experiment of Shen and Peterson disclosed large volumes of bubble clouds shed

from the trailing edges of collapsing sheets. Experimental and theoretical attention

has been given to the forces induced on the hull by periodic changes in the volumes .e -

of sheet cavities.

A review of theoretical and experimental treatments of the time histories of
cavity volumes of sheet cavities and the associated induced pressures and hull forces •

is somewhat outside the scope of the present discussion. Reference material may be Js-

Noorzij;184found in the recent theoretical paper by Noordzij; extensive experimental ob-

servations of time-varying hull pressures and associated cavitation patterns can be
185 186

found in the papers by Huse and van der Kooij and Jorik. General reviews of the

subject have been compiled for the ITTC 18 7 and more recently by Breslin et al. 2 17  0

It is possible, using Equation (4.120), to estimate far-field sound pressures from

a known or calculated time history of the cavity volume changes at the blade passage

frequency. This calculation is a prerequisite to calculate either radiated sound

or hull pressures. Unfortunately, however, it is not possible to make similar cal-

culations which apply to frequencies > f , in Figure 4.43, because this noise dealsm

with details of microbubble collapse that are not amenable to calculation.
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4.4.4.3 Review of Attempts at Scaling Cavitation Noise. Noise occurring from the

disintegration of cavities a,,.d other small-scale bubble motions that account for the

acoustic energy in the range i > f in Figure 4.44 can only be determined empirically S

on scaled models. This noise occurs at frequencies that are significantly greater

than the fundamental blade passage frequency nNb. Just as in the case of hydrofoil --

cavitation noise, bubbl.p-type cavitation is probably more of a noise problem than the

sheet or vortex type when both are present in an advanceu stage of development. A
188

systematic investigation of this type, as reported by Noordzij et al., was con-

ducted in supersaturated water (a/a >1) seeded with microbubble nuclei upstream of
S

the propeller. Each of three propellers was designed to produce predominantly one

type of cavitation in the wake of a transom-stern surface vessel: tip vortex, 5

bubble, and sheet cavitation. Figure 4.45 shows representative spectra measured in

n 2.6 n 2.9

40

.M 30 A

20 %%.A~..* \C

II

10 C, • . ...

B C"

0 I I I I . I l I . I'.

1 2 4 6 16 1 2 4 6 16
X10 3  3

f (Hz) •S

A B C A B C

Figure 4.45 - Sound Spectra (I hertz Band) for the Propellers A, B, .

and C at n 2.6 Second 1 (Left) and n 2.9 Second 1 (Right);

CC/% 4.4 Seeded by Electrolysis. 1RP Sound Level

Reference is Arbitrary
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the far field directly below the ship model over the range of high frequencies

70 < f/n "i < 1300. The advanced stage of bubble cavitation apparently generates at
s

least 10 dB greater sound pressure than either of the advanced forms of sheet or tip

vortex cavitation that were generated. However, it must be realized that this

comparison is subjective since no indication of the inception indc', was given for

each type of cavitation.

Attempts at scaling model noise to full-scale using the hypothesis of

equivalent energy ratios, e.g., Equations (4.148) through (4.150) have both over-
2looked a possible dissimilarity that (Ki) # (Ki) as well as (P /oc) "

2 . 172 c
(P/ PoC0) An example of such usage by Lovik and Vassenden has already been

given. This mode of scaling has also been used by Bl'orheden and Astrom 17 3 to predict

the noise radiated by a twin-screw ferry, Figure 4.46.

170 .

UJ 160 -

- -

Z 150 -

> 130 - . -- "

-

Z 11o0 -.

0 -

10

0

80 1 1 1

63 125 250 500 1 2 4 8 16 32

F (Hz, kHz)

o A SOUND PRESSURE LEVEL AS MEASURED IN MODEL SCALE
* £ FULL-SCALE SOUND PRESSURE LEVEL ESTIMATED WITH

THE AID OF LEVKOVSKII METHOD
0 MEASURED FULL-SCALE SOUND PRESSURE LEVEL

Figure 4.46 - Estimated Full-Scale Sound Pressure Level Compared with

Measured Sound Pressure Level for a Twin-Screw Ferry
1 71
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Strasberg, 17has recognized that the inception indices of tip vortex cavitation

on model and full-scale are not identical, but rather depend on Reynolds number as

Equations (4.111) and (4.112). Therefore, he assumed the relation, Equation (4.143)
to apply at equal values of (K/K) in order to scale the model noise to full-scale.

Figure 4.47 shows overall sound pressure lvs,

p 2 J 4(w) dw

r~i from. full-scale and scaled-model measurements according to Equation (4.146)

10 log p2 =l0 log p2 + 20 log[( 3s]
S( m

+ 20 log +2 o

120- 0 I1m 0 1 o
* @0

0

FROM STRASSERG
0 TOWING BASIN

S100- U WATER TUNNEL
3 0 PROTOTYPE SUBMARINE

UU
K I.

Figure 4.47 - Dependence of Overall Sound Pressure Level on Speed from
Gavicating Tip Vortices on World War 11 Submarine Propeller.

Comparison is made withi Various Theoretical Fu.nctions
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2 2

for p and p in the correspond~ing ranges, ff (., (~~)/2-n,
S m21

IAf)D AfD

and

(K m (K

This noise possesses the characteristic frequency dependence of cavitation noise, as

shown in Figure 4.48.

60

1o 0 .

- 304

Lo 0,

L>

0

z

0 -30

Figure 4.48 -Spectra of Noise; From World War 11 Submarine Propeller with

Tip Vortex Cavitation; All Sp~eeds. at 55 Feet Depth16
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4 .4.4.4 Similitude and Speed Dependence for the Cavitation Noise. The similitude

arguments ot the Section 4.4.2 will now be generalized to case of propeller noise.

* Two of those relationships, i.e., Equiations (4.143) and (4.150), have already been

shown', i.e., Figures 4.44, 4.46, and 4.47, to effectively scale sound from propel-

*lers. Now a more comprehensive method for both scaling and accountinig for the speed

dependence of the sound will be given.

The increase of the overall sound pressure level with the rotation speed of a

propeller is shown in Figure 4.47 to be pronouinced once cavit ation betgins, but the

increase becomes more gradual as the cavitation becomes developed. This abrupt

coisct of sound as the speed incre-iseS from the speed at inception is qual itat iVelv'

expected from Equations (4.147) or (4 .15.) which gives the dependence of theson

levol onl K and K.i as (K.-K). This- behavior is illuistrated in Figure 4.49 (line 1)

iong0 wcith measured sound levels of Lesunovskii and Kholkha and other. mnore elaborate,

thieories that will be discussed below. As noted on the abcissa of Figure 4.49 the

160 1 1 1 1 1 11 11

MEASUREMENT:
LESUNOVSKII AND KHOKHA3

= ROUND TIPS, K. 1.04

150 -::::SHARP TIPS, Ki 1.72

S140 -TERE

0.

1300

1100 
2

0.6 0.8 1.0 1.2 1.4 1.6 i.8 2.0

K U.

Figure 4.49 -Overall Sound Pressure Level from Cavitatinyg Rotating
Blade (with Joukowski Section) a,, a F'unction of

(;a\itation Index
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dependence of sound on speed and the cavitation index are related; U1 is the
112

velocity at tile condition of inception, Thus U/U i = (K /K) at a given static

pressure where U may be either the advance, tip, or angular rotation speed of the .

propeller.
190

The sound pressure levels measured by Lesunovskii and Khokha were generated

by an unpitched cavitating rotating blade (with a 27 percent thick Joukowskv sec-

tion) in stationary water. It can be seen that the simple dependence of K. - K1

does not account for the observed speed dependence very well, but it does qualita-

tively predict an initial rapid increase with speed that is followed by a more

moderate increase with speed when K is sulstantially less than K.. The dependence

on speed shown in Figure 4.49 is quite similar to that shown in Figure 4.47.

The experimental results of Lesunovskii and Khokha deserve some additional

comment. Two rotating vanes differing only in tip detail were used. With sharp
1/2

tips the noise spectral densities in a range of indices, 1.26 < (Ki/K) < 1.49,

showed peaks approximately one-third of an octave wide occurring in the frequency

- range 1.0 < f <'.0 kflz depending upon K/K. The frequency of the maximum of the

peak decreased as K decreased. This behavior did not occur for the vanes with

rounded tips. Otherwise for both rounded and sharpened tips the spectrum of noise -_

. from advanced cavitation had the classical frequency dependence. The variation of S___

environmental static pressures in the experiments was partly responsible for the

observed spread in the overall sound levels.

Lines (2), (3), and (4) are the result of more comprehensive analyses that
2

will be discussed in Section 4.4.5. The factor (1- viK/ appearing for lines (2)

and (3) accounts for the growth of the area of the blade covered by cavitation as

K decreases From K.. This dependence was derived originally by Ross and McCormick.189

As the rotation speed of the propeller increases, the fraction of the span of the

blade over which cavitation can occur will increase because the local cavitation - --

index will be reduced below K. for radii closer to the hub at .aier rotation

speeds. Furthermore, at a given blade section, the fractio,, of the chord over which

the local pressure coefficient is less than K. -C , as illustrated previously
Pmin.

in Figures 4.1 and 4.21, will also increase as the rotation speed increases. Thus,

the total volume of cavitation, or the total number of cavitation events occurring

in a unit time, will continue to increase with speed after inception causing a

continued increase in noise after K K. even though (K -K) = constant K..

3 1
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The factor (K /1K) / 2 represents the increase of cavitation events in proportion

to speed since the rate of encounter of cavitation events by the propeller blade

increases with velocity. Other dependences derived in Suction 4.4.5 give little

additional refinement to the agreement with measurements. It is to be noted that

line (2) in Figure 4.49 is similar to a relationship of Ross 5 except for a multi-
.. 189

plicative factor K /K which arises from an earlier postulation that the sound ...

intensity is not proportional to PC., but rather to cU /2.

A comprehensive similarity rule for propeller cavitation noise that expresses

both the dependence on size and ambient pressure and the dependence on operating

condition (K and K i) can be developed as an extension of the similtude arguments

of Section 4.4.2. Under the assumption that each blade of a B bladed propeller

raciates sound independently we can vrite for the sound pressure

0 2 22 (D pC r 0 ' (WTc R) g%(W, -i-.

where f ,K/K replaces K and K, - K in Equations (4.146) and (4.147) and it may -o

be any of the lines (2), (3), and (4) in Figure 4.49. This function, as discussed

above, accounts for both the growth of the cavitation zone with decreasing K and

the increase of cavitation events with velocity. The function ¢(OTR) is the

normalized frequency spectrum function that is specific to the particular type of

propeller. The dimensionless frequency is given by w- = 2TfD (,0/P) / 2 (K.i-K)1 / 2

In these relationships, P_ is the static pressure on the shaft axis. The assumption

of statistical independence of noise contributions from the blades applies only for

frequencies that are substantially greater than the blade passage frequency.

Finally, the behavior of the overall sound pressure is given by the coefficients

*[,1 of ¢f,',) iX since the integral of (Q,R) over is a constant over the speed range

for geometrically and dynamically similar propellers.

* p
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This similarity rule reduces to any of thcse of the previous section when

dealing with geometrically similar model and full scale propellers at the same

values of P and K given that the cavitation inception index K is the same in

both scales.

The dependence of the noise level on speed for different types of cavitation

on stationary hydrofoils deserves some further comment in the sense that departure

from the simple (K -K) can depend on the type of cavitation. In Figure 4.50, the "

one-third octave band levels, from the work of Blake et al., are nondimen-

sionalized on the static pressure. The dimensionless frequency is held fixed for

all values of K i/K; - ...

fC (K 1K) /2 26

(P )1/2 (= 26-

0

corresponding to

fT = 2.9 6
0

see also Figures 4.43 and 4.44. These band levels were selected because they are

included in the frequency range dominated by the collapse of large bubbles. Travel-

ing bubble noise apparently increased roughly as the simple (Ki-K) and more rapidly

with speed than the sheet cavitation. The speed dependence of traveling bubble

noise slackens as the speed continues to further increase. In Figure 4.51, taken

from the work of Erdmann et al.,177 a similarly rapid increase in overall noise

level with s-eed occurs. However, in their ixperiment the following factors Con.-

tributed to the prevention of a continued increase in overall noise level as the

cavitation progressed. For cavitation indices less than a limiting value K+, the " .

cavitation was well developed, and unsteady becoming a fully developed separated

cavity at K < 0.4 K . At indices corresponding to more advanced cavitation K < K+,

an accumulation o; free gas bubbles caused attenuation of the noise in the test
177

section. The work of Erdmann et al., was conducted on a Clark--y, 3.1.5 percent
191,192"".

section whose characteristics have been extensively evaluated by Numachi,
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Since the dependences on speed of cavitation sound from hydrofoils shows some case-

to-case variation one must be prepared to expect similar variations for propellers

of different geometries. The behavior with K i/K shown in Figure 4.59 must there-

fore be regarded as illustrative rather than as a well-behaved rule.

4.4.5 Stochastic Models of Bubble Cavitation Noise

A number of statistical theories for cavitation noise have been given, however,

ultimately all have the shortcoming that they fail to possess both the observed

speed and scale dependence that has been observed or that might be expected on the

basis of simple dimensional analysis, as will be made apparent below. All of these

theories are based on the collapse of spherical bubbles and ignore the fact that I

" actual propeller cavitation is more complex, having the features illustrated in

• Figure 4.43.

4.4.5.1 General Descriptions. Noise emanating from cavitation in turbulent boundary

layers may be considered as a superposition of temporal pulses. Such behavior has,

*. in fact, led to the use of event-counting as an aid to systematically quantifying the

inception of cavitation on various bodies. This behavior has

also promoted the development of a number of analytical models of traveling bubble -

. noise as a train of random pulses for which the probability of occurrence has been

* associated with either the random distribution (assumed Poisson) of bubble
8nuclei 3,196-199 or the assumed-Gaussian statistics of the turbulence

itself. 1 4 1'20 0'2 01 The earliest treatment of the subject is that of Il'ichev,14 1

the frequency of cavity formation, in terms of the characteristic length and velocity

." scales of the flow, and the Gaussian probability that the local pressure in the flow

* will fall below the necessary critical pressure for nonlinear bubble growth P; see
c

Section 4.2.3.

The probability that a bubble nucleus will cavitate is determined jointly by

the product of the probability that the hydrodynamic pressure will be less than the

*i critical pressure and the (assumed independent) probability that there will be

bubble nuclei present with radii large enough. These two factors may be written,

Frobability of a cavitation occurrence =

Prob {p<P c Rb>R} = (4.163)

(cont.) 0
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JT Pcr
PN(RF) P dR.bdp (4.163)

R -00
cr

where PN(Rb) is the probability density function applicable to the nucleus distribu-

tion, and P(p,pr) is the probability distribution of p less than some value p
S

This pvobability is also equal to the fraction of number of events which favor cavi-

tation to the total number of events, i e., (see Section 4.2.4.3)

T PN(Rb) dRb =1 "

0

and -

CO

f P(p) dp = 1

- _0

The probability density P(p) is assumed to be distributed about a static pressure P
S

In the problem considered b Il'ichev, the number of nuclei available at p - P
C

was considered both plentiful and homogeneous so that the probability of cavitation

reduced to the probability of finding p < Pr as illustrated in Figure 4.25. If the

probability density function of pressure is assumed to be Gaussian, then

i) 21/P Ps) 5 - --
-1P(p) -- 1/) exp (p-P- .-

2p

where p is the variance of the pressures (it is also the mean-square fluctuating

pressure at a point) and P is the local mean static pressure. We may consider the
s
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probability density to be a function of Reynolds number through variability of p
202, 203According to Rice the frequency of occurrence, F, that p < P and, therefore,

C

of cavitation in a fluid of high nucleus density, is given by*

1/2
o 112

$~~ww~d~ r(P-_P) 1
F -exp S (4.164)

d 2p2 "
2 "o 4)(w) dw 2

-

where the mean-square pressure fluctuation is

o

p 2=f (w)d w

The term in brackets is the frequency of occurrence of pressure pulses at a fixed

point near the body

.1/2
.. °2

2 iTf~ = L'' 1
2 fp

and the exponential function is the fraction of the pressure pulses for which p < P .cr

4.4.5.2 Models Based on Gaussian Statistics of Turbulence. The nucleus population

lation is still assumed to be dense enough so that only the pressure statistics will

influence the cavitation rate. Note, however, that each "event" may involve many

cavitating bubbles. The frequency of pressure pulses must be determined a fixed

reference frame, i.e., in one not moving with the flow, so that (dp/dt) must be

*See also the discussion of cavitation inception in free jets, Section 4.3.2.5.
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deduced from the time constant of a fixed-axis correlation (Chapter 3) or the auto-

spectrum. (Recall that the bubble lifetime is determined by the time constant of
0the moving-axis correlation.) In the case of bubbles formed in the wake of a bluff

body, the formation rate f will be proportional to the ratio
p

U
f CC (4.166) 0fp d ""

where U. is the mean incidence velocity and d is the cross-stream dimension of the

body. In incompressible flow, f is just the characteristic frequency of the

formation of vortices in the wake.

In homogeneous turbulent shear layers, f is determined by the time microscale
p

of turbulent pressure X t (see Section 7.2.5 of Chapter 7). This scale will be

proportional in a rough approximation to the free-stream speed U. and the thickness -

of the boundary layer 6 so that

where S is an appropriate Strouhal number of the flow.

Turning now to the exponential part of Equation (4.164), we recall that the

critical pressure P and the vapor pressure P are nearly indistinguishable for large
c V

enough bubble nuclei, so that adding and subtracting the free-stream pressure P.,

Equation (4.164), can be written

S exp - 2 -- (4.168) 0
L [2 2 J

where

U
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is a Strouhal number of the flow and

2 262(1 2
is a Reynolds number-dependent factor relating the mean-square pressure and the

square of the free-stream dynamic pressure. Equation (4.168) expresses the occur-

rences per unit time that the local pressure coefficient will be small enough for

cavitation to occur. When K m -C , then F = (U/L) S and cavitation will occur
p

every time a vortex is shed. Now, as we discussed in Section 4.3.1.2, the condition

for continuous cavitation K = K i may not always correspond to Ki = (-Cp)min, but

rather to some effective pressure coefficient, (-Cp ) eff for example, as given by

Equation (4.96); therefore, in Equation (4.168) we can easily replace C by some
p

effective value, e.g., (C ) No generally acceptable procedure has been developed
p eff'

for this although ll'ichev replaces C by an equation that amounts to Equation
p

'4.96). The number of bubbles cavitating per unit time will then be given by

i Se
dN: .. ."dN _ FN (4.169)
dt o

where N is the number of available cavitation nuclei. Equation (4.168) was fo, .d by
0

141
Il'ichev to closely approximate the rate of cavitation events in periodic vortex

streets behind a circular cylinder with a taken as 1.16 ard S as 0.2. In that

example the pressure coefficient at the point of vortex ILrmation was taken to be -2

(see also Chapter 5, Figure 5.11) as this is the pressure coefficient at the point

of separation on the cylinder.

The significance of Equation (4.168) in terms of reported inception indices for

turbulent boundary layers will now be examined. As shown in Section 4.3.2.6 for in-

ception of traveling bubble cavitation in a turbulent boundary layer on a body, Ki

Js normally approximated by (-C p) min plus a correction term to account for the

effects of turbulence. As the cavitation number is reduced to K., Equation (4.168)

shows that the event rate will increase. From Chapter 7 (Figure 7.33) at the wall,
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= 3 to 4 Cf, where Cf is the local wall shear coefficient, but within the
127boundary layer Meecham and Tavis have indicated on theoretical grounds that

0
a 1.2 to 1.4aw, so that we can assume o, - 4.5C f. Furthermore, the appropriate

Strouhal number for the pressure fluctuations may be taken as S = f6/Uo 1. At the

observed inception point, K Ki (-C ) + 16C (see Figure 4.26), the frequency
p min f

of cavitation events is, accordingly, .

_ 2 x 10-3

Unfortunately, there exist no reported statistics on such event rates, but taking

some typical values of U = 50 ft/sec and 6 = 1/20 fc, the above suggests one cavi-

oo

tation event in every 1.8 seconds. This event interval would certainly be an

acceptable one on which to base an observation of incipient cavitation and it

suggests that Ii'ichev's model should give a generally adequate portrayal of single

bubble caW' -ion events.

4.4.5.3 Models Based on Bubble Statistics. To extend the method, the statistical

bubble distribution is coupled with the pressure statistics. The number of cavi-

tation events is influenced by the flux of bubbles carried into a zone of cross-

sectional area Z3(6) where Z 3 is the lateral dimension of a rarefaction zone and

6 is the height above the body in which the static pressure is less than the criti-

cal pressure required for cavitation of all bubbles of radius greater than R ; see
0

Figure 4.52. There is also an upper bound radius, R*, of available cavitation nuclei
204

in (6) According to Johnson and Hsieh a screening occurs so that smaller

bubble trajectories migrate closer to the body than the larger ones. Therefore,

some larger bubbles will not cavitate because their trajectories will not occur

within the region K < -C, as illustrated in Figure 4,52. Following the notation of .-.

Section 4.2.4.3, the number of cavitating nuclei per unit volume will be

R* fR* _

6N={ n(R) dR= N P (R) dR

R R
0 0
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VALUE OF LOCAL Z, DISTANCE ABOVE * -
CAVITATION SURFACE

INDEX

VALUE OF ___ ____CP

CP AT

SURFACE~~

REGION ABOVE So IN

STATIC PRESSURE IN FLUID I C WHICH P K PI
AT POINTS Z ABOVE

POSITION So ON BODY

I DISTANCEII
Cp ON I ALONG BODY

SURFACEI

Figure 4.52 -Illustration of the Critical Height, 6c Above Wall Above which
Local Stream Static Pressure Exceeds the Vapor Pressure of Water or the

Critical Pressure for Cavitation Nr?

where n(R) is the bubble radius distribution per unit volume (Figures 4.12 and 4.13)

and N is the total number of bubbles per unit volume. In consideration with

Equation (4.1,69), the number of bubbles cavitating per unit time will be

N F 6N (4.170)

where 6N is the number of available nuclei; 6N will be determined later.

AD
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10 "- "

-CP MIN 0.587
R " h =3.0 in. .-.-

h1 1.8

h = 0.6.' -

a Oh = 0.4.

0Q h=0.2
a 10 2  -h = 0.1 "

h = h 0 .0 5 . .

'hii

1 -1 .  --C, -
10 " EQ (4.50) WHEN P =-I

10,.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
VAPOR CAVITATION NUMBER, K

Figure 4.53 - An Example of Upper and Lower Critical Sizes of Gas Nuclei
204

as a Function of Vapor Cavitation Number and the Body Size; 4

U 25 Feet per Second. Cavitation will Occur for all

Bubbles Whose Radii Fall Between R and R*;
0

the Upper Limit is Set by Bubble Screening

It is assumed that the static pressure is below the critical pressure so that

the statistical nature of bubble cavitation is incorporated wholly in the bubble

statistics rather than in the pressure fluctuations. The bubble density is assumed

to be small.
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The frequency of cavitation events is determined by the number density of the

bubbles and the rate of flux of those bubbles into the rarefaction zone, i.e.,

dN
d 6N Z3( 6 c U"

= (6 ) U n(R) dR (4.171)
3 c

R
0

this frequency also represents the number of cavitating bubbles per unit time. "

To illustrate the dependence of R* on body size and speed, Johnson and Hsieh

calculated the trajectories of bubbles of various sizes about a two-dimensional half

body of ultimate thickness h whose shape was defined by .•

x -y cot Ty

Figure 4.53 shows both R and R* for the body, with the critical pressure evaluated '
0 -

at the point of minimum pressure, the range of radii of unstable bubbles lies

between

R crit R R*

Dependence of R* on speed is rather weak, but R* increases linearly with body
-2

dimension. As expected, R decreases with increasing U., see Equation (4.98),
crit

but is independent of body dimension. Therefore, according to Equation (4.171), the

number of cavitation nuclei should depend both on speed and body dimension.

The magnitude of 6 in Equation (4.171) will depend upon the radius of curvature """"
c

and shape of the body. For an elliptic cylinder transverse to the flow,

199
Levkovskii has shown ()

6 Zn Y " -"__ zn(>) (K=(-C) )

a 1.3 + 0.27 K i p min
I .~__ o
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where a is the semimajor axis that is assumed to be parallel to the flow. For a

circular cylinder of radius a, is given by
c0

K (a ) 2+ (K)] , Ki

or

c= -1

These relationships indicate that, in general, 6c is a function of K and K

C i
1/2 I

cc af K(K) I
]'-K l

so the frequency ot cavitation can be written in the general form

K0
R* R dR n(R) dR f K 1 K (4.172)

R .rit

For cavitation (and other bubble noise) that is determined by the bubble statistics

in this model, the event-rate will increase with the square of the body size scale

(with slight additional increase through R*) and linearly with speed. This behavior

contrasts with that determined only by the statistics of the liquid-phase turbulence,

Equations (4.168) and (4.169) ignore a possible growth of N with body size and show

that the event rate will be inversely proportional to the body size at a given value

of K./K. Both analyses show that the event rate will increase linearly with speed.

4.4,.5.4 Predictions of Sound Pressure Levels. The above models of event rates have

been used to generate functional predictions of cavitation noise. It will be shown

below that all existing models of this type have certain inconsistencies with meas-

ured sound. To determine the sound power from a train of cavitation pulses, assume
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that the bubbles all behave independently, then the mean-square sound pressure will

thus depend upon the contributions from individual bubbles

ai

where the summation is over the contributions of N bubbles. The composite spectral

density (r,w), Equation (4.124), for the bubbly mass is related to the average of
c

the individual densities S(r,w) by

~c~r~ dt S (r,w) (4.173)

where dN/dt is given alternatively by Equation (4.169), (4.170), or (4.172). In all

those cases the rate increases with U .Combination of Equations (4.154) and (4.158)

gives

V4 /K 2 -
S(r,w) p PO2 1 2(C S (r,Wrr (4.174)

rP p c

where S p(r,w-L ) a dimensionless spectrum function like that shown in Figure 4.33. -

p the chordwise extent of the rarefact ion zone

r

C =the average pressure coefficient in that zone
p

To find the mean-square pressure in a proportional frequency band, _,(w-1) we combine

Equations (4.174), (4.173), (4.171), (4.158), (4.154), and (4.70) to give (as in the

cases of Equations (4.155) and (4.159))

2 f w r d-p (wA)=2 ~ c'

L ~)2 1/2 
]

nQ ~~n) P2Q) ( ~)/ 2 S (., )[2A(w7 415
r p 

1/2

a -K for given K. and wl
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where n is the integral of n(R) in Equation (4.171) and where S(wt) is the
0 C

dimensionless spectrum for single-bubble noise; see Figure 4.33. Equation (4.175)

is similar to Equation (4.159), however, the nucleus encounter rate has now been 0

included giving rise to an added dependence on velocity. The velocity dependence ..-

indicated by Equation (4.175) is shown in Figure 4.50 to be representative of noise

from traveling bubble cavitation. lhen the statistics of the single-phase pressure

fluctuations are important, an equation analogous to Equation (4.175), using

Equation (4.170), will replace L 6 Zrn with an expression of the form (neglecting
3 crco

the exponential in Equation (4.168)

L 6 Zn -
r

3 c ro 

where 6 is a boundary layer thickness (Equation (4.167)). Both approaches, however,

*Q give basically the same speed dependence.

A dependence of bubble cavitation noise on the nucleus concentration itself
80

has been demonstrated by Arndt and Keller for cavitation in the wake of a sharp-

edged disk. Measurements of noise in con rolled oceans of nuclei ha-e demonstrated

a linear increase in noise level as the number of events increased when K decreased

below K for a given nucleus distribution. At a fixed value of K, the dependence of

noise on the number of nuclei n was unclear due to conflicting changes in level at

low and high frequencies. At frequencies greater than 5 kliz, the noise decreased

with the increase in bubble nuclei; a behavior which could be due to high partial

pressures of gas in collapsing bubbles or to absorption. An explanation beyond this

waS not givell O!' Pro ,ork should be done in the future.

Equation (4.175) suggests that p2 ( ,,,) will increase as length scale L and as

L /r , a dependence that is not supported by the scaled measurements of Figures 4.44

and 4.46, in spite of the fact that the associated dependence on speed can be

supported. Those same experimental results suggest that the number of bubble nuclei

L 3 cn 0 0

2 2
is independent of length scale because the noise increases simply as I. /r 2 .--

170
Baiter has also noted this discrepancy between the measured noise and the expected

scale factor.

392

.................-.-.. .---. ...**,.' *..*****....-....-. -. - .



A possible dependence of noise on K in addition to that indicated in Equation

(4.175) is included in the value of no, although it, too, leads to an expression that -

has not been supported by experiment. As indicated in Figure 4.12, the distribution

function n(R) behaves roughly as

n(R) R

therefore, the integral in Equation (4.171), yielding no, is of the form

1 2 5  /12.51

n- 
• 

I 
..

I

'o f\o

where, from Equation (4.99)

R 4S(K 2/
o P K -K.

and from Figure 4.53 (using f(K -K) to express the indicated dependence on K)

R* L f(K -K)

~~~~> R -. . .
S 0

Therefore, for advanced cavitation, when K < K1 , this first term gives

5/30 K

Although this expression gives an appropriate speed dependence, the additional de-

pendence on pressure P. is neither borne out by measurement nor has the associated

dependence on surface tension been investigated and, it indeed seems unlikely to be

39
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supportable. Therefore, it seems that a fully consistent analytical model for bubble

cavitation has not yet been developed. Such -a model must indicate an increased noise
2 2level with nucleus content and retain the dependence on L /r as well as on p2 as O

.* indicated by experiment. Clearly, a systematic investigation of the dependence of

nuclei on noise of different types of cavitation is also needed.

5,189A somewhat similar approach has been used by Ross ' to account for the speed

dependence of noise from rotating vanes. Referring to Equation (4.175) and Figure

4.54 we see that the noise is dependent upon the rarefaction dimension r which, inr

\ U,

k%~ki{XRTU I ... .
R Ut

-kr
k > ki .k

4. DISTRIBUTION

Figure 4.54 -Idealization of Pressure Distribution on a Rotating Vane for
the Estimation of the Speed-Dependence of Cavitation Noise

turn, is dependent upon the cavitation number K relative to K Ross made the

additional step of accounting for the increase in Z as K decreases. Also, because

the velocity of the vane section increases linearly with distance from the cen~ter of

rotation R, cavitation will exist only on the outer portion of the vane defined by

RT ( k'\ 1

R kT)

where k is the cavitation index relative co the tip speed of the vane:
K: T

P_-P
k

'f (R Q)2

where R.P 2TIR.1 n is the rotational tip velocity of the blade.
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Furthermore, to illustrate the importance of the dependence of R on K, Ross assumed
r

the triangular pressure distribution illustrated in Figure 4.54 for which

kS
fr k

Therefore, the dependence of Z on radius is

r2

r. k R12

r R> :
Z- 1 K i ' R , >  R> RT (4.176)

where, now, we have replaced

2 p-P

K= k~j.

AiPU S 2  Ai..- 
1i

UA is the advance speed of the vane.* Ross assumed that the dependence of noise on ,.

rZ was only related to an increase in the area of cavitation as K decreased; the

area being given by

1/2

(K/K )/

F 1/21

(KK) 

,_

*Actually, here it is assumed that R >> U so that the resultant velocity of
T A

the vane tip is dominated by its rotational velocity. Otherwise it would be more

2 2 1/2
appropriate to write [(Q2 RT) +U A] in place of S2RT.
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Furthermore, the number of nuclei was assumed to increase linearly with speed as

U_ _ U A = 1 / 2

-(U) K
T i A i i

Therefore, instead of the Equation (4.147) or (4.175), we may have for the mean-

square sound pressure at scaled frequencies for dynamically-similar vanes (Awmw)

"2 (K)1/2
CR F, 1/21 /

p (w,Aaw) (P 2-) (K-K)
rU-

1 ( (KiK) 1/2\ (4.177)
- S )1/2 4K7-K)

where B is the number of vanes. This relationship for K./K is similar to one de-
51

rived by Ross except for the added factor of (K.-K) and a factor K /K. The former
1i

factor arises from our earlier postulate involving the bubble dynamics, hut it has

only a weak influence on the numerical values. The latter factor K /K arises as -
2

described on page 379. It amounts to replacing p by 1/2 PoU in the relationship

preceding Equation (4.148). Figure 4.49 shows that the variation of sound pressure1/2 "-""with (K 1/K) , interpreted as an equivalent speed-dependence, agrees well with

measured propeller noise. A major distinguishing feature between Equations (4.175)

and (4.177) is only in the assumption that dN/dt is independent of body dimension

in the latter case and dependent on it in the former.

A greater level of complexity is brought on by substituting Equation (4.176)

into Equation (4.175) and integrating over 23 = RT (l-(K/-Ki)2 ) The dependence -

on Z is now cubic, leading to a dependence on K./K. of the form
321 1

() K32 fK GK)/2() d R)

TT (K T/K i )

1 2)3/2 3 K. .
(1-K (K-I) (1+3K) - 3K(K _1) + - (K5-1) (4.178)2  5 :7=
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1 -1
where n o has been assumed proportional to [(K )I/2] and where

0 T

1/2

Figure 4.49, line 4, shows that little benefit is to be derived by using either of

the forms of Equation (4.177) or (4.178) in preference to Ross' result, but any of

these speed dependences will give a better representation to the measurement than

the simple (K-K).

4.5 SOUNDS FROM OTHER BUBBLE MOTIONS
4.5.1 Sound Pulses from Formation and Splitting

While the bulk of two-phase flow-noise research has dealt with cavitation noise, •

there has been some attention given to other types of bubble noise. Perhaps the

most comprehensive analysis of the noise of splitting and formation of bubbles has

21,23been made by Strasberg. For example, the formation of a bubble at a nozzle is

illustrated in Figure 4.55; noise is prcduced at the instant the bubble pinches •

off from the nozzle. The ensuing sound is a decaying sine function such as the im-

pulse response of a linear harmonic oscillator. Such motion of bubbles is typical

when they are formed initially or when they are split. The sound field is given by

Equation (4.120), or its analog in frequency space, with the volume fluctuation

given by whichever of Equations (4.22) or (4.29) is appropriate. The noise spectrum

will, therefore, be centered at a frequency near the average resonance frequency of -.;

the bubbles. It remains, therefore, to determine the correct function to describe

the time behavior of the excess pressure. Little has been done in this regard al- '

21 fl 32
though Strasberg ' and Junger and Cole have each given a theory which applies

to a different physical conception of the forces acting on the bubble when it is

formed.

Strasberg considers the formation of a bubble at a nozzle that forms very slowly

so that the pressure differential across the bubble wall remains essentially constant

as the bubble grows. When the bubble detaches it undergoes a linear free-decaying
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oscillation in its volume mode. This oscillation has initial conditions on both the
perturbation volume v = V - V and the volume velocity v. These two quantities

0

will depend on how the bubble is grown at the nozzle. Before the detachment, as O

shown in Figure 4.55, as the bubble grows slowly at the nozzle and the ambient

Figure 4.55 -Oscillogram of the Sound Pulse from a Single Gas Bubble in -ater,
with Four Superimposed Photographs of the Bubble Itself. The Time

Each Photograph was taken Corresponds to the Point on the
Oscillogram Below the Bubble. si

21
(From Strasberg 2 )

pressure P(rt) is constantly equal to P . The liquid pressure at the bubble wall
0 

-

P(R,t) is determined by the (constant) pressure inside the bubble P, from Equation

(4.10), which is greater than P by a time-dependent excess pressure p+ (R,t) inside

that is maintained by the gas supply. Thus,

p =p +2S l
Pg + - + p+(R,t) P + p+ (R,t) .. .

9 0 R

where 2S/R may be neglected for large enough bubbles. Under the influence of this

constant pressure, the volume velocity just before the bubble separates is approxi-

mately as given by Equation (4.13)

1/2

0 3- 4TR2  (4.179)

00
where the (o2term is presumed to dominate the V term. The initial volume pertur-.;''i'

bation v is given by the ideal gas law for iothermal motions"
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dP __dV

therefore,

p vv V. (4.180)

where V is the rest volume of the bubble. For linear bubble motions subject to the
0

initial conditions v(t-0) = v and v(t0O) but p+(r,0) =p~ (r, t) =0, the
00++

transform of Equation (4.22) has the solution .

)22 22 1/2 '

V (W) 2 2 (4.181) w -

2 Ti (W 2_W2 )+flw) W]0 0

where

-v
tan 4 =

Wv
0

with the one-sided time transforms

1 iWt

0

and

1 iW 2~t
eit) dt - -i WV - wV(W) 92i 0 0

0
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If bubbles are formed at a rate n, then the sound pressure spectrum can be found

from the transform of Equation (4.120) with Equations (4.125) and (4,173), with a

lifetieT (nW0 ) Therefore, the sound spectral density is

2 4 2 22

n(rw) o0 [(4.182)
Pra 21, 2 2 2r ) 216T r 2 2 2 2 2 0

( o) +rl Wo W

and the total mean-square sound pressure is controlled by frequencies w w so

2 2 V)2 22

-'2 (r) 1 00 0 0 o o (4.183)
Prad r 2 162 r2 rTj "

The quantities v and v are given, respectively, by Equations (4.179) and (4.180).
0 0

The excess pressure 14 for a slowly-growing bubble is that which just overcomes the

surface-tension at the interface between the nozzle (of radius R and the bubble

wall, Lhus,

2S
p+ ,(4.184)

Typically p+/P0 < 1, therefore, the v0 > 0 v0 and Equation (4.183) becomes, using

Equations (4,20) and (4.27)

P a r (4.185)Prad~ r  -- T2 Q  -P i-

which is equivalent to the relationship derived by Strasberg. In this instance the

size of the bubble is determined by the relationship between the force acting to

remove the bubble from the nozzle and the tensile force acting to hold it on the

nozzle, Ultimately this force relationship will determine both the size of the

bubble and its resonance frequency.
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[i Strasberg treats the problem of bubble splitting or coalescence in the same

manner, however, the excess pressure is determined by the change in equilibrium

surface tension pressures required to maintain the smaller bubbles relative to the

larger bubble. If a large bubble splits into two equal values then Strasberg notes

that approximately

-21/3 1) 2S (4.186)P+ R - : :

where R is the radius of the large bubble. This pressure is the same whether the

bubbles split or coalesce.

The sound pressures emitted when bubbles for-med are theoretically greater

than sound pressures emitted when bubbles split. As an example, Strasberg 2 notes

that the root-mean-square sound pressure from bubbles of 0.3 cm radius emitted from

a nozzle of 0.1 cm radius at a rate (n(t)) of 10 sec in an ocean of atmospheric

* pressure will have a frequency of 1000 Hz and a magnitude of 132 dB re JIPa, with

n 0.014. On the other hand, if each of the 0.3-cm radius bubbles split, then the

root-mean-square sound pressure at one meter distance will be 75 dB re lIPa centered

on a frequency of 1260 11z.
32 -

In the example considered by Junger and Cole, bubbles are formed from a

disintegrating gas jet emerging into a liquid. The jet velocity at the orifice is

so large that single bubbles do not form. This case might be realized uhen the

Weber number
p0

~)U
We ALE-' (4.187)
g S.

R
n

is greater than one. Alternatively, Strasberg's example applies when We "< 1. In

the case of the disintegrating gas jet, the cylindrical jet forms a series of

spherical bubbles of radius Rb; aE hleen in Section 4.5.4, Rb is greaLer than the

* nozzle radius (R-5 -I . The added mass of the array of spheres Mb is greater than
b. N). b
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that of the cylinder of gas that forms them, M. It is assumed that the kinetic
J*

energy of the liquid is preserved during the disintegration. Therefore, the

translation velocity Ub of the bubbles is less than the velocity of the jet Uj;

actually Ub /U3 = (Rj/Rb) 3 /2 because Ub/UJ - (Mj/M) I
. This reduction in velocity

carries with it an increase in the Bernoulli pressure in the gas phase. This in-

creased pressure which is impressed on the newly-formed bubbles is - -.

P Uj (4.188) -

2 2if RJ/b < 1 so that Ub  U This pressure change is assumed to last for a time

duration which is equal to 1/4 of the natural period of oscillation of the n = 2-l". "
oscillation mode of the bubble w2 ; see Equation (4.218). In this view of the bubble

excitation, the initial conditions on volume velocity and volumetric perturbation

(v and v ) are assumed to vanish and the only source of excitation is from this
0 0. .

change in total head.

Since the duration 2rr(4w2 ) is much longer than the period of oscillation .

2T(Wo ) of the new bubbles, the details of the pressure time history are not
0

crucial to the problem. Junger and Cole assume that the pressure has a variation of

P(Rt) - p+ (i cos w2 t) 0 < t <2w -

"iT

p+ t >--
+ ~2w 2

The Fourier time transform of this function is

)+ i(u w2 )1/2 sin (w+W2 ) T i( - )T/2P ( R , w ) = p + 6 ( t ) + --- [ e + " ""Q.
+o 2- W o ... W. 2

sin (w-w 2 ) -

- I.. . [2 -
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in which case, for Equation (4.29) with w - 0 >>w 2 , this reduces to

s~ in

P+sin i(wT/2)
P (R w) e

where T iT/2w 2 . In the above fashion the autospectrum of the sound pressure can be
2'

written for a rate n of bubble formation

2 2 2

r- (rw) - for w > w (4.189)rad r' 2 2 2 2 2 2 -2 -

r [(w 0-L) +w w w 0.

and the mean square sound pressure is

p c r) (Prad = Q (4.190)
rd 4Tr 2 -'0

where Q is the volumetric flow rate of gas. In the above, since w /2w 2 > 1, the --

2
effective value of sin wT/2 was taker, as 1/2.

Equations (4.185) and (4.190) differ in the dependence on the excess pressure

stemming in each case from the assumptions on the initial conditions. Junger and

Cole ignore effects of surface tension, instead of putting all the source of I

excitation into the inertial forces associated with the total head of the. fluid -:-

motion. Accordingly, Equation (4.190) implies a strong dependence of sound pressure

on volumetric flow rate, while Equation (4.185) does not. Note that in Equation

(4.190) p+ is proportional to Q 2, while in Equation (4.183) it is not. ' .

The above analyses have not accounted for any effects of liquid motion, how-

ever, they do suggest some general behavior and that some distinctions between high .

and low Weber-number flows need to be made when interpreting the results. At the

low Weber number of Strasberg's problem, the interfacial stresses are governed by

surface tension while at high gas Weber numbers the interfacial stresses that drive

the bubbles are governed by the inertia of the gas. In both cases, however, the

dependence of sound level on speed and volumetric flow rate should be roughly as

given by Equation (4.135), i.e.,
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2 0

rad QU°  (4.191)

i.e., independent of any small enough liquid velocity that either p U 25/R
2 o n

or U<< U
g

At high enough Weber numbers and with the liquid velocity greater than the gas

velocity, then interfacial stresses will be inertial (analogous to the disinte-

grating jet). When the bubbles enter a region of turbulent motion, Whitfield and

Howe have suggested that the turbulent excitation on the bubble of radius R in a

local pressure gradient p/Dxi, will cause the bubble to stretch in the direction of

xi . Ultimately, when the bubble splits, the excess pressure will be proportional to

Pa .

Equation (4.181) suggests that
i" _ _-

2 42 2r 412a 2 ,P--.
-2-r ,2°c F.P ax (4.192)"'"'"

0 r0

as long as the resonance period is much shorter than the time scale of the hydro-
4

dynamic pressure. This expression gives a U., velocity dependence.

Finally, as discussed in Section 3.7, sound emitted from turbulent bubbly jets,

without bubble splitting or formation, will behave as .

2 Uo  (4.193)Pa

4.5.2 Bubbles Excited by a Pressure Field: Speed Dependence
When a bubble is convected past a body or through a nozzle, in steady flow U.,

it experiences a transient pressure field. If the spatial dependence of the pressure

is given by Equation (4.80), then the fluctuating pressure on the bubble is .0
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1 2 . ,,
p(Rbt) r 2 U, C (U t) (4.194)

Also, if the length of this low-pressure zone is £, the time scale of the pressure

pulse exciting the bubble will be £ /U which will generally be less than the
r c

resonance period of the bubble. The convection velocity of the bubble will generally

be within 80 percent of Ul-C ) Because the pressure field induces a transient

forced motion at a frequency less than the resonance frequency, Equations (4.18) or

(4.36) together with Equation (4.120) give the sound pressure as

2
1 Dp(Rb't)

P(r,t) = 4r Dt2

g g t

where

D
Dt t c Ox 1

and p(r,t) is given in Equation (4.184).

Equation (4.195) has been used by both Strasberg 2 3 amd Chalov 205 to calculate

sounds radiated by bubbles passing by circular and elliptic cylinders, respectively.
261

Whitfield and Howe and Crighton and Ffowcs-Williams have also derived a relation-
26

ship similar to Equation (4.195); the relationship of Whitfield and Howe differs

from Equation (4.195) in the replacement of the gas compressibility with a composite

of compressibilities of the surrounding fluid and of the bubble gas, i.e., the,.

write

20
a r t) °  - D2p(Rb,t)

Pa(r,t) gg2 2 h (4.196)a 4 rt "2 '.2i~

0~ .... D

However, if we deal with mixtures of moderate concentration of gas so that Po P
2 2

and c = C,, then c >> c (see Figure 4.5) and the ambient fluid compressibilityo ~ ~~ m g ,...'

can be ignored.
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To put this noise in the perspective of splitting and bubble formation, we
23refer again to a calculation of Strasberg. The sound pressure level from a stream

of 10 bubbles/sec of radius 1/3 cm convected at a speed of U - U = 10 m/sec will ,

be 116 dB re ipPa at a frequency band of I Hz. The resonance frequency of the

* bubble is 1000 Hz.

The dependence of this noise on liquid velocity Is Ueven though the acoustic

source is a monopole. This dependence is suggested by Equation (4.195)

pr) V 0  1 u2[1!0U21.L p

g g

so that

2 P
P2(r) (V2 )2(U4( C)(.17

which is the same speed-dependence derived by Crighton and Ffowcs Williams; see

Chapter 3. This speed dependence is to be contrasted with that which may exist if

bubbles split under hydrodynamic turbulent excitation.

If, on the other hand, the hydrodynamic time scale and the bubble resonance

period do coincide, but the bubbles still do not split and the gas concentration is

very dilute, then Equation (4.22) gives the mean-square sound pressure in a narrow-

band at at frequency somewhat greater than the bubble-resonance frequency; a result

like Equation (4.192) is obtained:

20

2 "' "
(h) ) (4.198) .,,..,.

(P U
2 2

0~
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4giving a U. dependence, where t (w) is the frequency spectrum of the pre,;sure sensed
p

by the bubble; this spectrum is dimensionless in the form shown in brackets. This

result would have to be modified if there is a large enough concentration of neigh- .

boring bubbles so that there would be significant acoustic transmission loss.

2 8Thus, for bubbles which are excited below their resonances, pa increasEs as U, ;Iii
while when the excitation time scale is short enough that the bubbles are excited at

-2 U 4". -- .-
their resonance frequencies, then increases as U.0

4.5.3 Measurements of Bubble Noise

While analytical investigation of the noise from noncavitating bubble motions ,

has received little attention, measurements of the bubble noise are more scarce. No

comprehensive experimental work has been done on noncavitating bubble noise pro-

duction. It is, therefore, not possible to state unequivocably which of the noise

mechanisms outlined in Section 4.5.2 are dominant in practical situations.

Measurements were made by Gavigan et al. 20 6 of noise from an exhaust of nitrogen

bubbles emitted through a multiholed strainer plate set in the tail of a test body of .

revolution. Figure 4.56 shows an example of their results. The test body was in-

stalled in a water tunnel, so that the gas was emitted on the axis of the turbulent

wake of the body. The spectral densities of noise in the frequency range 6.3 <

f/1000 < 40 kHz were found to decrease roughly as f- (i.e., one-third octave band

levels nearly independent of frequency) which contradicts the premise that noise is

due to decaying resonant motion. The levels increased with volumetric flow rate as .

2 0.5 08
Pa Q to Q

0

No information was given on the dependence of the noise on speed, however, the noise .

* level was independent of the radius of holes in the strainer plate. This last

observation is not surprising since at high values of gas Weber number the bubble ". -.

*- size is only weakly dependent on orifice size, see Section 4.5.4.1.
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Figure 4.56 - Sound-Pressure Levels in One-Third-Octave Frequency Bands ""

Q = 41.7 Cubic Centimeters per Second, rs = 0.025 Centimeters

(Solid Line); Q = 41.7 Cubic Centimeters per Second,
r = 0.063 Centimeters (Dot-Dash); Background

Noise, No Gas Flow (Small Dash)

Another investigation, also not comprehensive in the range of variables ex- .

207
amined, is that of Blake. Air was emitted from a small hole at the midchord and

midspan of a symmetrical hydrofoil at 0 deg angle of attack. The section roughly

resembled a NACA 653-018, but modified with an elliptic trailing edge. Air passed

from a supply tank through a channel in the hydrofoil to the circular exit orifice.

Figure 4.57 shows photographs of four characteristic bubble patterns that were ob-

served. These photographs indicate three types of interactions between the air ef-

flux and the water cross flow that lead to: a regular formation of bubbles (Regime I),

a smooth conical air tube enshrouded with laminar flow (Regime IV) which lies either

above IVA or on IVB the surface of the hydrofoil, a bubbly jet in the turbulent

boundary layer (Regime III) and a transitional range (Regime II), which is dependent

on the orificc diameter and in which either a bubble stream that results from a jet

break-up or an air cone is formed. The regimes did not otherwise depend on the

orifice size used; 0.01 in. and 1/32 in. with choked flow existing in the 0.01 in.

3
orifice at Q = 8.3 cm /sec.

Examples of the frequency spectra of sound radiated in the three important

formation regimes are shown in Figure 4.58. The notable characteristic of the

noise spectra is a general broadening of the noise peak as U increases at nearly

constant supply flow rate. Possibly this is related to the increased quantity of

small bubbles with increasing water velocity. Four additional features of the noise

spectral density are to be noted:
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Figure 4.57 - Regimes of Bubble Formation for an Air Jet Issuing into a
Cross-Flow of Water 20  (Qo=Q at STP) ,O

1. The one-third-octave levels decrease as ~f for frequencies greater than •.i I

th rqec mof maximum intensity. 0.5° %

2. In the region f > f the spectrum level increases as 
_Q .

m
• 3. In the region of f > fm, the level was independent of orifice radius for

a given Q and U when the radius was decreased from 1/32 in. to 1/100 In. This

independence is suggestive that surface tension effects at the opening, as implied

by Equation 4.184, do not control the bubble dynamics.

4. in the region f > fm, the level increases as Uand U to U , depending on

the flov regime. Figure 4.59 shows the dependence of noise on both Q and U_. The

4
dependence as t:_ suggusts influence of splitting as per Equation (4.192).
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90 SPECTRAL DENSITIES FOR AIR EMISSION NOISE •
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Figure 4.58 - Sound Spectral Densities at 1 Yard for Various Bubble Regimes

for which Q0 = 3.3 Cubic Centimeters per Second, Arrows Denote

Frequencies of Bubble Resonance for the Bubble Radii Noted

in the Text and Given by Equation (4.216)207

The ambiguity in the behavior of the sound pressure with orifice radius U and .

Q compared to the theoretical variations given by Equations (4.197), (4.193), _,

especially (4.192), and (4.191) suggest that the sound is possibly controlled by a

combination of detachment of bubbles from the orifice and bubble splitting by

tvrbulent flow.
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Figure 4.59 -Relative Variations of Air Emission Noise in the 10 Kilohertz

One-Third-Octax e Band with Q0 0

4.5.4 Hydromechanics of Bubble Formation
* Less comprehensive work has been conducted to establish general relationships

for predicting bubble sizes in various types of flow fields than has been conducted

in cavitation, in spite of the large number of researches devoted to the formation

of drops and bubbles. MIost investigations are empirical with numerical results

reduced in terms of certain dimensionless quantities which represent the balances of
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forces acting on the interface. Theoretical work has been largely confined to the

determination of conditions of interfacial stability between two fluid phases. Brief

reviews of the literature dealing with bubble formation can be found in the monograph ".'

by Wallis4 2 and in a paper by Sevik and Park. 2 0 8

Bubbles are created under the influence of interfacial surface tension forces,

buoyant forces, and inertial forces provided by the motions of either the gas or the

liquid phases (or both). In stationary liquids 42,44 the predominant forces acting .

on bubbles formed at a nozzle or orifice are buoyancy and surface tension at low

flow rates of gas. Table 4.2 summarizes the important results of this and the

preceding section.

TABLE 4.2

SIZES AND SOUNDS OF BUBBLES FORMED IN MOVING LIQUIDS

Probable Speed , - .-

Parameter Range Flow Condition Bubble Size Dependence of Noise

0 < We < 1.2 Rayleigh instability in 2.0 < 3.0 p QU U 0 (Eq. (4.192)).

parallel flow; free jets 
.

1 0[] and wall jets; Figure -b I/l""'U d 1/2 330
" 4.61 330 )" '

Small bubbles, 30 percent of max Rb(m) \P't,
bubbles may be < 0.4 Rb.
Figure 4.62

We 1.2
U. Bbbles generated frRm a 2.0 b 3.75 2

0 < .- < I fromhah p . (Eq. (4.190))
U1 jet which forms at an J

9 orifice--not yet ob- Figure 4.60 No measurements
ice served on wall jets

F 2 / 3
r'' Rb FWe 1/

R 2 213

U.e 1.2 Bubbles periodical y "-"-'-""

sheared ro m orifice not Rb _
U yet observed iti prac-- U' Unknoum1 tical flows--perhaps R"

u U

g upper range of Regime'
III, Figure 4.57 1

230
We We < p p Q ( U .( . 183))

S r Bubbles periodically 1/5
formed at orifice under R Section 4.5.3

0 < < << influence of liquid b 8 I-
- inertia regime, Figure f 330 ( 1i'.

4.57 r.ax Rb ?ar" '"

1.2 :: 2 Qn:.
Turbulent liquid Splitting of bubbles by 2 [1.2] R nU 0.5 n < 1

continuous phase with M" " ""J"
t cr turb length scale, . (Eq. (4.219)) Section 4.5.3
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4.5.4.1 Bubble Formation in Stagnant Liquids. Sevik* identifies three regimes of

bubble formation in stagnant liquids: a quasistatic regime in which bubbles form at

a nozzle and break off under the influence of buoyancy; a periodic regime in which S

bubbles stream, as a string of pearls (see Figure 4.57, Regime I), under the in-

fluence of both inside gas pressure causing acceleration of the bubble wall, and

surface tension; and jet breakdown at large volumetric flow rates in which the gas

emission from the orifice is a cylindrical jet on the interface of which growing .

waves appear.

4.5.4.1.1 Quasistatic Bubble Formation. The bubble of radius Rb is connected to

the gas supply through a nozzle of radius R (<<Rb). The buoyancy force is given by

F - 7. R g (4.199)

while the tension force holding the bubble to the nozzle is

F -2rRnS (4.200)
T n

The bubble breaks off when F > F so the bubble radius is given by
B T

SRn  1/3 -

Rb 1.1 P)

Rearranging, we find

Rb- 1.1,iWe.] 1/3(4.201)
ng

where the Weber number

*Internal DTNSRDC Technical Note, November 1973, "The Formation of Bubbles at

an Orifice." This subsection is extracted from the technical note.
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2 1/

We 9 (4.202)

is the ratio of gas inertial forces to surface tension forces, and the Froude number

0= R (4.203)

is the ratio of inertial forces to buoyant forces. .

4.5.4.1.2 Periodic Bubble Formation. As the flow rare of gas increases, the volume " -
of bubbles breaking away increases. When the volumetric flow rate of gas is less '

than 2 0 9 Q - 30 SRn (cm
3/sec), the volume of bubble used in Equation (4.199) is

modified by

V (V) +T Q
quasi- A re

static

1/3
where TA has been deduced from measurements as 0.052 (R ) sec (where Rn has
dimensions of cm).

At slightly larger gas flow rates, surface tension forces are dominated by the

inertial liquid forces associated with added mass of the more-rapidly-growing bubble
206

so that the bubble is "held" in place by the liquid. In this case it is found

that .

peidc B(F )25(4.204)0
where

414
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1/2 - " ' '

= ~ 1/2(4.205)

is a "gas" Froude number and

1.1 < B < 1.5

Rearranging Equation (4.204) we find

1/5 _.
R 0. 9 (4.206)

Note that

( ) quasi- periodic
static

The bubbles are formed with regularity as illustrated in Regime I of Figure 4.57;

the arrow in Figure 4.60 denotes the frequency of noise produced by this formation.

A mechanism for the bubble formation illustrated in Figure 4.57 has been

suggested by Silberman210 and differs from that above because of the liquid cross A-...

flow. When the liquid velocity is large enough relative to the gas exit velocity,

bubbles will be sheared off as the gas exits the orifice. Then the force balance

that exists is between the surface tension and the drag force, so that the bubble

radius is approximated by .

~Rb1 2 R 3 (e (4.207)

S CDoU U P

where CD is the drag coefficient of flow around the bubble. Other force balances for

bubbles in moving liquids have been examined 
by van der Walle.

4 6
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4.5.4.1.3 Bubble Formation at Large Volumetric Flow Rates. Kutadeladze and
211

Styrikovich have found that the flow pattern of periodic bubble formation gives

rise to the formation of a cylindrical jet when the average velocity of the jet U 0..
&

satisfies the condition

u (p )l > 1.25S0
0 g n___

which Sevik points out is equivalent to the jet regime existing when

A.

We
> 1.31 (4.208)

()2/3
(Fr

see Equations (4.202) and (4.203). Figure 4.60 shows the two regimes of bubble

SYM ORIFICE DIA. AUTMOR
0 0.1045 in, CALOERBANI(

* 0.0906 in. VAN KREVE LEN AND
HO FTIJZERf

10 v .189 in. DAVIDSON AND *sil * hh1

o 0.500 in. WALTER
o 0.7F0 In. WALTER
a 1 J)00 in. WALTER

19 071 -BUBBLE FORMATION BY
0.260 In. PRESENT STUDY JET DISINTEGRATION

___2 1/3
- 101 PERIODIC BUBBLE FOMAIOn1,0 F,32.0 -

AT ORIFICE F 2/3

10
0

a I I Id111 I I Iaii I 111111 1 1 1111

10*2 10.1 100 t 101 102 103
1.31

Weg 
5*

2

F3

Figure 4.60 -Variation of Bubble Radius with Nozzle Size for an Air Jet
Disintegrating in a Coaxial Water Jet for which U > Ukt the Jets

were Verticalg
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formation for which either periodic bubbles or a gas jet is formed. At We /(Fr)
g

1.31 there is a break in the radius dependence. At larger values of this parameter

the cylindrical jet undergoes axisymmetric vibration which results in the formation 0

of large bubbles after a wavelength or so downstream of the nozzle exit. The larger

bubbles then break up in 3 to 4 water-jet diameters; this location corresponds to

the extremity of the potential core. -

4.5.4.2 Bubble Formation in Laminar Parallel Moving Liquids. In this case, three

regimes of bubble formation have been identified; these depend upon the existence or

nonexistence of orderly wave structure on the interface of the cylindrical jet

(occurring at magnitudes of liquid-phase and gas-phase velocity that are similar),

When the velocities of the separate phases are greatly dissimilar, the bubble

formation depends upon which phase has the larger velocity.

The condition of interfacial stability between the liquid and gas phases on

212
either side of cylindrical and planar interfaces has been worked out by Rayleigh

and the method has been applied to the stability of a cylindrical gas jet in water by

Sevik.* For a cylinder of radius R., illustrated with the photograph in Figure 4.57,

the radius is given by the. relationship

R ik(x-ct) (4.209) '. "R__= 1 + E e (4.209) . .

R.

Figur 4.61 Corint Sytmfrth nlssofItraia"tblt

417

.~

igure 461 - Coordinate System for the Analysis of Interfacial stability -..-

•*Internal DTNSRDC Technical Note, November 1.973, "The Formation of Bubbles at an -. •.•

Orifice." This subsection is extracted from the technical note.
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where e << 1 is the amplitude of the traveling-wave undulation. The hydrodynamic

pressures inside or outside the cylinder, whose wall is moving at speed c, are given

by Bernoulli's equation; e.g., inside the cylinder 0

P i o iU9- ""-

+x 2+ = 0 + U (4.210)

where u. Vg is a velocity fluctuation in the cylinder as a result of the undu-

lation of the walls, and P and U are quantities in the exit plane. To illustrate,
0 g

for Small disturbances and long wavelengths (kR.<l), the equation of continuity gives S

(Ug+ug) -c (U -c) (1-2eik(x
-ct))

88 •

so

Ug 2(Ugc) eik(xct) (4.211)

Equation (4.211) shows that as the walls contract (Ceik(Xct)<0), the velocity

perturbation is positive causing a local increase in velocity. By Equation (4.210),

this increase in speed causes a decrease in internal pressure P which favors a . .

further reduction in cross section of the cylinder. As the waves progress in

amplitude, the contraction of the cylinder will pinch off. The details of the

process are actually more complicated since the time-derivative term, provides a

phase lag and, furthermore, Equation (4.210) has a counterpart for the external
0

flow that behaves in an analogous manner. At the interface, the fluid pressure pt

for the liquid side and P for the gas side, are connected by the analog of •
g

Equation (4.10),

I + (4.212)
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where the radius of curvature along the axial direction is aR/ax 2 for long wave

lengths. At the exit plane of the jet 74

P -P
9,o 1

S R. (4.213)
J 9

Combination of Equation (4.210) and its analog in the external flow, Equations

(4.200) and (4.213) yields a dispersion relationship for the wave speed. The wave

speed, which turns out to be mathematically complex, is a function of wave number

kr., and a Weber number based on the relative gas and fluid velocities,

2

We = e - - - (4.214) S
g

For values of c that are positive-imaginary, the waves grow exponentially. A unique

relationship between the wave number of the neutrally-utable waves (kr.) and We can -

be derived. When We < 1.2, then kR. is less than unity; specifically, the wave -_

number for neutrally stable waves lies between 0.47 < kR < 0.6 when We < 0.2. The

volume of gas entrained in a wavelength 2Tik -  is, therefore, approximately

21TR. 2 .....

V = _ .R. 13.65 R. (4.215a)
b kR

= -- -g

This gives

Rb 2 R. (4.215b)b
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with smaller bubbles being formed at larger values of We accordingly as kRj in-

creases with We increasing as shown in Figure 4.62. Equation (4.215b) has been

verified by Taylor
2 13 and van Krevelen and Hoftijzer. 

2 14 .

This mechanism of jet break-up possibly applies to the bubble formation as

illustrated in Regimes III and V of Figure 4.57. In these regimes, especially at

low to moderate water velocities, the air jet is bent along the hydrofoil 
before it

desintegrates. When U, is of the same order of magnitude as Ug, We must be less 0

than 1; accordingly Equation (4.215b) should apply. In an arrangement similar to

210
that shown in Figure 4.57, Silberman has quantified the magnitudes of the largest

bubbles formed in the break-up of similarly-formed single and multiple jets. The

->
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results confirmed that the bubble radius behaved independently of orifice or nozzle

size and depended upon flow parameters as

1/2
1~ .2 (4. 216) ::-i-:_!"

This result may be derived using Equation (4.215b) together with the assumption that

U U so that

g 2.i O_.. .

ap Q i fR U

Equation (4.216) holds only aoproximately because the formation of larger bubbles is

accompanied by the formation and splitting of a larger number of satellite bubbles.

Silberman found that the volumes of bubbles in the bubble cloud was logarithmically .

distributed. At large values of Q/U, favoring the formation of large bubbles,

70 percent of the bubbles had radii smaller than 0.8 times the value given by

Equation (4.216). At small values of Q/U. (approaching Regime III in Figure 4.57)
O- Z

the distribution widened so that 30 percent of the bubbles had radii smaller than

0.4 times the radius given by Equation (4.216). This broadening of bubble distri-

bution suggests that the frequency spectrum of noise radiated by these bubble clouds

will also be broadeued as Q/U Z is increased. Furthermore, the noise spectrum should

be peaked near a freqc.ency given by a combination of Equations (4.20) and (4.216).

In Figure 4.58, these frequencies are indicated with arrows.

Regular bubble formation is not observed for vertical gas jets We > 1.2, and

for U > U,; i.e., large gas velocities. The flow patterns do, however, roughly

resemble those for which there is a transitional range of values of We /F shown

in Figure 4.60 and for which the dominant bubble sizes range from

< < 375

On either free or wall jets for which We > 1.2, but U, Ul i.e., large liquid
, g'

velocities, the interface is drawn by the drag of the moving liquid. Turbulence in

421
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the surrounding liquid should cause a rippling and contribute to the disintegration

of the Jet. Nothing is known about this flow regime.

4.5.4.3 Bubble Formation in Turbulent Flow. When bubbles move into a turbulent

liquid, the velocity fluctuations surrounding the bubble cause deformations from -"

the spherical shape. For large-enough deformations, the bubbles split into two or -.

more bubbles. Conditions for the formation of n bubbles have been established in 0
208

terms of the intensity of turbulence by Sevik and Park, following the work of
215Hinze. Bubbles will be split when a turbulence Weber number,

2 ,6
P 0u

We M (4.217)
t S

R b~

where pou is a measure of the turbulent stress acting on the bubble, reaches a "

critical value, e.g., (Wet) . For liquid globules splitting in the turbulent flow

between coaxially rotating cylinders, (Wet) ~ 0.5, while for air bubbles splitting
t C

in the mixing region of a water jet, (We t)c - 1.3.

When a bubble vibrates in the second order mode its deformatior, resembles a .
t h-. . -

dumb-bell shape. In the extreme it splits into two bubbies. Accordingly, the n .'""-

order mode of vibration results in n smaller bubbles.
th b216 to

The n resonance frequency of a spherical bubble has been shown by Lamb
b e .

2" 2

(W) 2 (2 f )2. .
n

= n(n+l)(n-l)(n+2) S (4.218)
{ (n+l)o g+np£ } R.. ..

(n+l)(n-l)(n+2) S
3

pZ 0
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when p << , (in general, p applies to the split phase and p to the continuous
9g

phase). The frequency of excitation by the turbulence acting on the bubble as it

is convected by the liquid is given by Equation (4.103). This frequency arises 0

from the relative motion of the bubble and the mean motion of the liquid. When

f fn' the bubble will be excited and may split into n bubbles. Splitting into two

bubbles requires the lowest order vibration;

-1/2 s 1/2
u A 2 (12 1

therefore,

(Wetcr = 2 (4.219)

Setting A - 2Rb, because there is a spectrum of eddy sizes, Sevik and Park find

(Wet~r 1.2 (4.220)
t

which agrees with the experimental value cited above. Analogously, they find for

two liquid phases (Pj-pg) that (Wet)c 0.5 in agreement with Hinze's observation.

The result can be interpreted to indicate that splitting of bubbles into n

segments will occur as a result of a pressure perturbation whenever the turbulence

0- Weber number reaches some critical value whose magnitude will almost certainly 0

depend upon the details of the flow. Also, the result should have some application

to the formation of microbubbles in cavitation zones as was discussed in connection

with Figures 4.39 to 4.42. For the value of the integral scale A, that does not

change with liquid velocity, Equation (4.192) indicates that the acoustic intensity .0
4of this form of bubble splitting should behave as U
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4.6 APPENDIX A - DERIVATION OF APPROXIMATE SPECTRAL FUNCTIONS
In Section 4.2.5, various time intervals were highlighted to emphasize different

aspects of the bubble collapse. These times will have corresponding frequency inter- ' 0

vals which determine the spectral form of S (r,w). To isolate each of these events

in the life of a bubble, the instantaneous volume will be approximated by a sum of

N functions which combine to approximate the original V(t)

N

v(t) = V(t) u(t,ATn) (4.A221)

n= 0

where v (t) has the functional form
n

v (t) = a (t-tn)m t > t (4.A222)

-0 t < t

as illustrated in Figure 4.A63. The unit function u(t,AT is defined so that •
n

U t T 1 t < t < t + AT-.--.'.-.-

n n n n

= C for t outside the interval

Figure 4.A63 illustrates the use of functions which generally describe the maximum

volume, collapse, and rebound phases of the bubble that were highlighted in

Figures 4.15 and 4.19.

The Fourier transform of the n contribution to Equation (4.A221) gives

1 i iWtV (W) V(t) u(t,Ai) e dt . .n 2i J
0

f V (Q) u ( -() d2 (4.A223)

0oo . . . . . .
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V W

Vn(t)

Vn42 (t)

tntn+ 1  tn+2

Figure 4 .A63 -Use of the Series Approximations of Equation (4.97)

I wher e

k-) - f e, v (t) dt

0

and

( A,

S =e eit

n 2- f
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S
The Fourier transform V (W) of V (t) is formally convergent for arbitrary nonintegern n
values of m only in a limit for which w = w + i6; 6 must be positive, but it can be

taken arbitrarily small, i.e., 6 - 0+. Thus,

a n (m+l)
m > 1 (4.A225)n() 271(iw)m+l .

where f(m+l) is the gamma function. It has the following approximate values needed

for numerical evaluations

r(1+3(0.4)) r(2.2) 1 1 for Equation (4.81) '

F(1+3(2)) r(7) 6 = 720 for Equation (4.75)

Therefore, for any interval Equations (4.A223) through (4.A225), give s

iwt a a (m+l) AT sin AT ('-[)(w) 1 n __n n(i 2 • d (4.A226), '"--'+
n Je 2(iQ)m + l  2 AT 2 -A)

_o= n 2

In the limit as wAT > 1 we make the approximation given by Equation (2.112) that
n

Equation (4.A226) may be formally evaluated in the approximate form .7-

-a F(m+l) AT W

IV (W)l n+for n 1n__ > 1 (4.A227) "
n 2T(im+ 2

Note that although

V(w) = V()

as indicated in Section 4.4.1.1 each stage V (t) is responsible for a frequency
n

range (wi) < w < (w U) for which we approximate the nth frequency interval

V(W)= V n(W) (W < < (WU)n .
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4.7 APPENDIX B - PHYSICAL PROPERTIES OF AIR AND WATER
Useful physical properties of air and water, on which all the dimensionless

groups in this chapter are based, are given below. Properties for air are given

at standard temperature and pressure; 20*C and I atm pressure. Properties for water

are given at 20oC. -

Air Water

Density (g/cm ) 0.0012 1.0

Speed of Sound (m/sec) 330 1500

Kinematic Viscosity (m 2/sec) 14.9 x 10-  10- 6

Air-Water Mixture Equilibrium Constants:

Surface Tension S - 73 dynes/cm
Henry's Law Constant H = 7.07 x 1010 mole fraction air in water•

6 2 6(1 atm=4.7 psi=10 dynes/cm , therefore, H=1.04x].0 psi/mole fraction; 1 mole air=

2 9g, 1 mole water=i8g)

Water Vapor Pressure P = 24 x 10
3 dynes/cm

2
V5 2

Diffusivity (Mass) D = 2.0 × 10 cm /sec
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4.8 APPENDIX C - NOMOGRAPHS FOR COMPUTING PROPELLER PARAMETERS
Although parameters for describing the powering performance of propellers will

be discussed in Chapter 10 it is useful to introduce the relationship between rota- 0

tional velocity and forward velocity here. This is done for the purpose of predicting

cavitation indices; as shown in Figures 4.47 and 4.49, the sound pressure level in

proportional bandq may be expressed in the form

(f,Af) A +20 log Pa, -20 log (1+ ILS r K

where A is a factor dependent upon the type of cavitation, where K is the cavitation
6

index, and where the function f(K/K1 ) is dependent upon the type of cavitation. Most

significantly, it appears that f(K/K ) varies from line 1 in Figure 4.49, for bubble

cavitation on hydrofoils, to any of lines 2 through 4 for cavitation on propellers

and other rotating systems. The length parameter L may be the chorl of a lifting

surface or a propeller diameter, Therefore, for purposes of scaling or for purposes

of estimating conditions for cavitation inception, Figure 4.C64 is useful.

The cavitation index may be based on the advance velocity of a propeller V a

or on the tip velocity of a propeller Ut, i.e.,

P -PK v
1 2

2 o a

or, as in Section 4.4.5.4,

p p
K V

Po=1  -i 'S

t 1 2Po Ut ": .

As described in Section 1.4.4 U and V are related by the advance coefficient, for
t a

either definition K or Kt, as long as J = constant, the ratio of the cavitation index

to its value at inception is also related to a velocity ratio. Thus,
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Figure 4C.64 -Nomograph for Computing Figure 4C.65 -Nomograph [or Transforming
Cavitation Indices Cavitation Index Based on Tip Velocity

to Index Based on Advance Speed.
E.g. J 1.0, K =10, o =1.01,

and o (J/ ,) K
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1/2 1/) 2
Va Ut (K\ (Kt)

K, K

(Va)i u i  ..o ,...~K
t

in all the figures of Section 4.4.4. When the two definitions of cavitation index

are related by

(g)2
Kt K

they become equal when J = ,i.

Figure 4.C64 shows the relationship between V J, and P - P - g (H+32.1).
a v 

The pressure at the shaft axis of the propeller is taken as the atmospheric pressure

at the water surface plus hydrostatic pressure at the depth II (in feet). This

nomograph can be used for propellers of a given J defined consistantly with the

velocitv entered on the right and it can be used for bodies in simple translation by

letting J = ,. Figure 1.13 is a nomograph for a computation of propeller tip velocity

once given either the ship velocity (in which case the shaft speed-forward speed

(revolutions per minute per knot) ratio must be known) or the advance velocity, in -.0 .

which case the consistently-defined J must be known.
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CHAPTER 5
GENERATION OF AEOLIAN TONES BY RIGID CYLINDERS

5.1 INTRODUMTON: GENERAL DESCRIPTION OF VORTEX FLOW,
LIFEr FLUCTUATION, AND SOUND
Possibly one of the most investigated topics of subsonic flow-induced noise

genetation is that which is concerned with the flow over cylinders. Historically,
1* 2

Strouhal and Lhortly later Rayleigh examined the frequencies of tones which --

emanated when ai flowed past stretched wires. Strouhal noted that the pitch of the

whirring sounds, _. .ch were generated by air passage transversely to the cylinder

axis, were pioportional to the velocity U. divided by the cylinder dLameter d. In

his experiments a wire was stretched in a frame and the frame was rotated about an
2,3

axis perpendicular to its length. Rayleigh's experiments 'were conduced with a

wire stretched across a chimney. He found that The frequency of the tone fs would

diminish as the kinematic viscosity of the air ,) decreased by heating. This result

and that of Strouhal lead t~o the postulation that a dimensionless frequency

depended on Reynolds number, dU,,y, as

fsd d~ w)(5.1)
SVJ

where F(IU,,/v) is an increzasing function of its argumient. Rayleigh postulated that

the generation of the tone wau in some way related to a vortex instability and that

the cylinder need not vibrate for the tone to be generated. Rayleig' bserved that

thle passage of air caused vibration of the cylinder in a direction p licular to

rhe wind direction.

A formral relatiornhip between tile frequency of sound radiation aind L 'ie process
4

of viorLt'x shedding wati not made until 1908 when Benard associated tlie pitch of the

'ILLLi ith1 Lit formatlon of tile vortex street. lie observed photographically the

fur'r-atlon Of LunCentruted rcionsi of vorticity In the wake of a circular cylin~der.

Iiie vertex tipainLg wah izen to I-e regular. Subb'iqUCALly, von Karnian and Rubach

In 1912 (i-iee alh 1 ,iilmb6) detvrrrlnell the CunldJ t ion for Lhe sauble ex istence of

1V;r"al It! rows tit vorlic,!m of altvrnute higli. Thi-y found thazt tIhc diFntance betwvcii

I ow;' andm t hie d I1i t11io v btet w'!uh voi I L J ce I nr a i -w mu s t. he iii Olt~ ra i o 0.,28] in urdcr

L*miA~ 1uy I Iht iq of re-fvrerac 2ti ill ,I vui oilae~KO
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for the vortex street to undergo stable translation. This simple analytical treat-

ment of von Karman is, even today, fundamental to much of the theoretical analysis -

of vortex induced forces. There is still no fully satisfactory analytical model of

the vortex street that contains the refinements necessary to comprehensively de-

scribe the generation, translation, and final decay of the vortex streets behind

bluff bodies. The analytical model of von Karman has permitted the calculation of

the translation velocity of the vortex street as well as steady drag induced on the
5-7shedding cylinder by the vortices.

In the subsequent years following von Karman's classical analysis, investi-

gations of vortex shedding were geuerally experimental and devoted largely to -

establishing the frequencies of vortex generation and drag coefficients over

various ranges of Reynolds number.

Investigations which quantified the sound levels generated by the aeolian tone
8

in terms of flow variables began with that of Stowell and Deming in 1936. They r

developed empirical correlations between the sound radiated and the length

diameter, and rotation speed of the rods. They also determined the dire. ity of

the sound as being radiated normal to the direction of flow. Later investigations

firther determined empirically the dependence of the radiated sound on the size of

the cylinder and the speed of flow over the cylinder. .

Systematic analytical treatments of the noise problem awaited the attention of

Phillips9 and (apparently nearly simultaneously) Etkin, Korbacher, and Keefe. I0

The analysis given by Phillips demonstrated that the sound intensity depended upon

the axial length scale of the force fluctuations which are generated by the vortex

shedding. This was the first formal treatment of the stochastic nature of the

shedding process. Phillips' result showed clearly ho' the physical variables,

which control the intensity of the aeollan 'one could bu derived within the frar,.

work of the theory of aerodynam .se.

In this chapi r we will examine the noise from flow over the surfaces of

acoustically compact, rigid bodies from vortex-surface interactions. The flow-

induced noise from circular cylinders which generate periodic wakes will be examined

in depth. Formulations will be dfe-rived which est imate oficillatory lift cuefftctenLts

lon the wake-or1iit; bodies :In termns of the strength and ,coiiictrlesi of the! shd

v, rtex streetut. Measured parometers, including sheddng fre'qJ'nly , lift

4=

'oI



coefficients, and axial correlation-length scales, will be reviewed. Influences on

these parameters of upstream turbulence and cylinder vibration will be considered

from an experimental basis. The acoustic problem will be formulated as a straight- S

forward application of the result of Section 2.4.3 and extended to emphasize the

importance of the flow variables in controlling the intensity of sound. Measured

noise levels will then be examined in connection with the theoretical formulations

for both translating and rotating cylindrical bodies. Other forms of vortex-body

interaction due to eddies incident on leading edges and to turbulent flow off the

trail.Lng edges of airfoils will be examined in Chapter 9. Fluid-body interactions

leading to vortex-induced lift enhancement will also be examined in Chapter 9, al-

though some aerodynamic aspects of this important phenomenon will be considered in '

Section 5.4 of this chapter.

5.2 MECHANICS OF VORTEX FORMATION BEHIND

CIRCULAR CYLINDERS

5.2.1 General Description of Wake Structure
and Vortex Generation
In the case of viscous flow over circular cylinders, a sequence of flow domains

exist which are defined in terms of R where Rd is the Reynolds number based on the

diameter of the cylinder d and the inflow velocity U . Figure 5.1 shows a series
11

of photographs which were taken by Homann. These pictures of oil films show

representative vortex streets whose patterns are sketched in Figure 5.2. For

Rd = 32 the flow is stable; the oil film is a single streak downstream of a pair of

bound vortires. We note that although the flow is laminar, Stokes flow (ideal vis-

cous flow) ceases to exist at Rd above unity. Even when the cylinder is vibrated, as

12d
if by plucking, as Kovasznay points out, the flow pattern remains stable. At and

above Reynolds numbers of 40, Kovasznay reports that sinusoidal eisturbances begin

to propagate and grow downstream of the cylinder. At R d.65 these disturbanices

change in character forming vortices at some distance behind. Increases in R caused
the vortices to br- formed tloser to the cylinder; the street of regularly-spaced

vo . ices exists with lainiuir cures over the range of Ruynoldh numbers fi,, ( to

approximately 400. At higher Reynolds i,ihers, the regular vortex stre..t persists;
1 3however, Roshko has shown thaL the cors of thea vurticeti btc.riie turbulent, The -'

.. . .. .' * ".....'. .i. .
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process of laminar to turbulent flow transition in the shear layers and vortex cores

14
has been examined in detail by Bloor who has shown that some turbulent motion can

actually be observed at Reynolds numbers just above 200. The range of Reynolds

numbers over which vortices with turbulent cores are shed periodically extends to

5
approximately 2 x 10 . At the upper extreme of this range, irregularity eventually

culminates in the complete disintegration of the vortex street. For Reynolds

numbers greater than 5 x 105 or 106 the wake is no longer fully periodic. The

separation points on the cylinder occur further downstream, as shown in Figure 5.2,

because the boundary layers on the surface of the cylinder are actually turbulent.

in spite of the general irregularity of the shed wake, however, there are weakly

periodic disturbances which persist at slightly higher dimensionless frequencies

than those observed at lower Reynolds numbers. Also, due to the occurrence of

attached boundary-layer flow over a greater portion of the periphery of the cy-

linder, the drag coefficient is reduced.

5.2.2 Wave-Mechanical Analysis of Vortex
Production
The fluid dynamics of the vortex shedding is complex and without a complete

and rigorous mathematical description. An example of an experimental and theo- , . .

retical examination of vortex generation at low values of R is that of Sato and

15
Kuriki who have calculated the characteristic wave speeds and frequencies of the

disturbances which are generated at low Reynolds numbers in the wake of a flat

plate. The development of laminar wake disturbances behind plates and cylinders O .

at low Reynolds numbers is quite similar and occurs in the manner described in

Chapter 3 for the propagation of disturbances in shear layers. The study of Sato

and Kuriki supports this statement. Their experimental work was conducted on a

wake generated by laminar flow downstream of a very thin flat plate. The vortex O

. structure, which they photographed using a visualization technique, resembled that

" shown in Figure 5.2 for 55 < Rd < 65. An analysis of the type performed by Sato and

. Kuriki consists of a solution of the eigen-functions of the homogeneous Orr-

- Sommerfeld equation, Equation (3.4a), for a prescribed velocity profile. The

7 analysis applies directly in the case of cylinder wakes to vortex structures which

result from the motion of the wake as a whole as depicted especially in the

(5
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R d< 65 range. The results are probably only qualitatively applicable for

100 < R < 400, and not applicable outside this range.
d

There are a number of numerical computation schemes for solving Equation 0

(3.4a) that are available in the literature, among them are those of Landahl and
16 17 18 7

Kaplan, Landahl, and Wazzan et al. For the analysis of wakes in this chapter

the mean velocity profile is conveniently expressed in the same form used by Sato

and Kuriki,
15

U- U(y2) [(P2(5.
U = exp - (5.2)U m U[ \ /j 0

where b is a length scale defined as

U + U U
U(b) 2 (5.3)

Velocity profiles of the flow at various distances behind cylinders, measured
12by Kovasznay, are shown in Figures 5.3 and 5.4 for Rd = 56. The root-mean-square

fluctuating velocities show local maxima; the cross-stream distance between these

maxima contracts slightly near x/d = 5 and the disturbances attain an absolute

maximum at x/d = 7 as shown in Figure 5.5. These results show that a spatial

growth of disturbances occurs. Comparison with the measurements of Ballou, 19 which

were obtained at higher Reynolds number, shows that this process is much amplified

at higher Reynolds number. Equation (5.3) fits Kovasznay's measured velocity pro-

file at x/d = 5 with U m 0.3 U0 , P = 0.69, and b - 0.8d. Substitution of

Equation (5.2) into Equation (3.4a) ,-sing Rb = 0.8 Rd permits a numerical solution

for the eigen values of Equation (5.1) by the methods of Landahl; References

16 and 17. This results in the computed curve of neutral stability of small

disturbances that is shown in Figure 5.6. The cross-hatched portion of the figure

shows wave numbers, wb/c of unstable, or growing disturbances for which ci is

positive. In the unstable range, at Rd greater than 100 particularly, the linear

flow model is only qualitatively correct and on the boundary ci = 0 so that the

disturbauces are neutrally stable. 'he wave number of wwd/U 0.9 (';b/c =1.2)
o r -
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Figure 5.5 - Downstream Growth and Decay of Local Maxima of Root-Mean-Square

Fluctuating Velocity in the Wakes of Rigid Circular Cylinders

observed by Kovasznay at R = 56 (Ub/\,;=45) is a value which is close to the least-

stable wave number calculated using Equation (3.4a) as shown by the point in •

Figure 5.6. The calculated value of c is 0.65 U for ;.b/U = 0.75. For R
grr o o d

greater than 10, all shear layers with mean-velocity-profiles of the form given by

Equation (5.4) with U = 0.3 U are theoretically unstable, although Kovasznay
m o

found instabilities :ot to occur for Rd less than 40. 0

At Reynolds numbers greater than 2 x 10 the range of theoretically unstable

frequencies, or wave numbers is independent of Reynolds number. Although a broad

range ot wave iumbers is unstable, a discrete frequency of vortex formation occurs. '"

The linearized theory does not predict the occurrence of this discrete frequency,

although it does give a frequency of the most unstable disturbance. As an example,

Figure 5.7 shows calculated wave speeds and amplification factors of the form used
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Figure 5.6 -Stability Diagram of a Typical Mean Velocity Profile in the
Two-Dimensional Wake of a Blunt Body;

U /U 0.31 P 0. 69
m a

in Equation (5.3) and these compare favorably with those which were measured by

Sato and Kuriki in a laminar wake for which U iU = 0.3. The calculation shows,_
in 0

that the most unstable disturbance occurs at a frequency, or wave number, near .

1Awb/U 0.6. Agreement with the measured amplification rates of Sato and Kuriki is
0

rather good. Sato's and Kuriki's amplification rates were measured over a Reynolds-

number range from U b/v = 500 to 1000 which is equivalent to the range examined by

*Kovasznay. They were, however, measured in the wake of a flat plate rather than

-behind a cylinder.

The observed growth rates behind cylinders that are shown in Figure 5.5 for

R = 56 are greater by a factor of six than the calculated rates in Figure 5.7. A
d

plausible explanation for this discrepancy is that waves in the shear layer are sen-

sitive to extraneous disturbances as well as to increases in Revnolds number. The

0dramatic influence of Reynolds humber on the generation of the vortex street ian

0-
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•Landah-Kaplan Computation Scheme

be further seen in the photographs of Figure 5.1 for R = 55, 65, and 73. It is now

d
known that extraneous disturbances of various types can influence vortex formation

3
at R above 103; these will be discussed next and in various sections later in this

chapter.

5.2.3 Secondary Disturbances in the Vortex
• "Formation Zone

The observed growth of disturbances shown in Figure 5.5 indicate that Reynolds

number is an important variable in determining the growth rates in shear layers. .

It has recently been showm that this dependence on Reynolds number is strongly

related to the transition to turbulence of the flow in the near wake of the cyl.-

*. inder (or at very high Reynolds numbers on the cylinder itself). This transition

phenomenon J.s superimposed on the development of the primary vortex structure and -9

has been shown to modiry it. This leads to a flow behavior more complex than dis-

cussed above and which has not yet been fully analyzed either experimentally or
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13 14 20theoretically. Roshko, Bloor, and Dale and Holler have provided relatively

detailed experimental descriptions of this phenomenon. Earlier, Schiller and Linke2 1

had disclosed the importance of near-wake turbulence in determining the behavior ol

drag coefficients of cylinders with Reynolds number.

At Reynolds numbers less than 3 x 10 the laminar boundary layer on the cylinder

separates at an angle of approximately 80 degrees from the forward stagnation point.

The free shear-layer that is formed in the near wake is unstable with secondary

spatially and temporally growing wave-like disturbances which depend on the fluid

velocity, the thickness of the shear layer, and the kinematic viscosity of the

fluid. The breakdown of these transition waves to turbulence occurs closer to the

cylinder than the formation of the primary vortex pattern at Reynolds numbers •

grea ter than 1. 3 x 10 3; it occurs within the cores of the vortices 131 after the ir
3.formation at Re~nolds numbers greater than 150 to 300 and less than 1.3 x 10. The

frequencies of the transition waves f for R > 1.3 x 10 have been sho n byLt d

Bloor, 14 Dale and Holler, 2 0 and Roshko22 to be a large multiple of the fundamental

frequency of vortex shedding f, such that

-1 1/2
ft f (,4)

-2 -2where A has an experimental value of approximately 2 10 to 3 x 10 -
. This be-

havior of the transition wave frequency ft suggests that f ./U", is nearly a
L to e

constant, where e is the laminar boundary-layer thickness at the point where the

flow separates from the cylinder. The breakdo'.m of tlbcse d isturbances, and the

limit of laminar flow, occurs closer to the cvlinder as Reynold- s number increases1/ 0

above 1.3 > 10 ( as showm by the experimental resultF: of Bloor lZ and Schiller and

Linke in Fiuure 5.8. As noted abovc, at Reynolds numbers less than 1.1 3. 10

the transition waves are not obscrved efore the formation of vortices. Undoubtedly,

these secondary waves contribute to an everall reduction in the formation dictance

cf the primary vortex street.
Al o 1,wior I n Figure 5.8 are Lhe distancus behind the cvlinder where vorticc.

are formed. Thc available raione of Cxperimental data are suffj iient te iv c -
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fairly complete Reynolds num,,ber behavior of the formation length. The length of

thc-n formiation region can be deffined in various alturnd tive ways. The region

extends downmstream of' the? shedding cylinder to a point where the width of thle wake
,3 14

is a minimam, as discussed by Schaefer and Eskinazi. According to) Eloor, the

foratio rgion extends downstream ol the lainrar iti within vhich the secondarv

disturbances have become irregular. The end of the formation region is marked! by a

clearly distinguishable reduction in the amplitude of these secondary disturbances.

Ba"lu ictrrted the formation length, altecrnative) v, aS e-Xtenldlil tO Li,(-

* location of the maxiiun -values of fluctuating velocit': at f 5;in the ':;iake :]s- shown

in Fijgure -5. 5. Mcasuremeunts have beE-: obtLained on ;a rainge of cyl inders aiid aithouvil
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dependence of 2. on the diameter of the cylinder. It is notable that an analogous
f

dependence on diameter of the limit on the extent of laminar flow was not observed

by Bloor, although the connection between this limit and the formation length is 6

fairly apparent. Both distances decrease with an increase in Reynolds number.

At Reynolds numbers greater than 100, the formation length is on the order of 2.5

cylinder diameters or less; as Reynolds number decreases below 100 the distance for

formation increases. The increase in formation length at low Reynolds number is .9

also suggested by the photographs in Figure 5.1.

This discussion of the near-wake dynamics and the previous one on vortex

development precedes our description of the other elements of the fluid dynamics of

the cylinder wake because it is probably fundamental to the behavior of the other

wake characteristics. Although it is not well explained by rigorous theory and

extensive empirical characterization, there is ample evidence that this secondary

transition (a) contributes to the generation of three-dimensional disturbances in

the primary vortex street, and (b) is the vehicle through which transverse cylinder
24

motion and upstream turbulence (Gerrard ) can influence vortex formation (see

also Reference 20). The three-dimensional nature of the vortex street, the formation

length, and the vortex strength are the dominant wake characteristics which control

the sound radiation as will be discussed subsequently.

5.3 MEASURED FLOW-INDUCED FORCES AND THEIR FREQUENCIES

5.3.1 Mean Drag and Vortex Shedding Frequencies

The time-averaged drag on a circular cylinder is strongly dependent upon .

Reynolds number because, as the characteristics of the formation of vortices change,

so too will the rate of fluid momentum that is transferred to the wake. Also, as

vortices are formed, time-dependent forces are generated on the cylinder which

balance the rate of change of momentum associated with the circulation of each S

vortex. The force system and its relationship to a vortex pattern is diagramed in

Figure 5.9. The illustrations of Figures 5.1 and 5.2 show a regular vortex system

to exist; we have truncated the street in Figure 5.9 to only three vortices. For

the time being we will restrict our attention to the average drag force F -.x

designated in the figure. A drag coefficient C is defined as
D
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5In the subcritical range, Rd < 2 x 10 the pressure coefficients reflect the

separation occurring over a larger sector of the cylinder than it does in the

supercritical range. in the latter range the pressure coefficient in the separated

zone, called the base pressure coefficient C , increases and the wake contracts.Pb""''""" "

This results in the observed reduction in CD. In the supercritical region the width
of the wake d reduces in size to less than a cylinder diameter, bu: as Pd continues - -

to increase the streamlines expand again. This expansion is reflected in Roshko's
6pressure distribution for R = 8.6 x 10 and causes an increase in the dragd

coeff icients.

UMIn the range of 104 < Rd < 3 x 105 the drag coefficient is particularly ....

contant, probably -wing to the nearly invariant wake characteristics in this range.

It is also the upper extreme of the range over which laminar to turbulence transition

has occurred in the formation zone of the wake. For Rd greater than 8 x 103

14
Bloor has shown that this transition occurs abruptly in the shear layer within a

distance less than one-half cylinder diameter from the separation point (see

Figure 5.3). Before the formation of a vortex, these transition waves fully break-

down to turbulence. This abrupt breakdown in the shear layer is in contrast to

3 3that which occurs in the Reynolds number range 1.3 x 10 to 8 x 10 for which the

breakdown occurs more gradually and is preceded by the clearly-distinguished - ,

transition waves. Thus, we see that the behavior of the drag coefficient is

paralleled by the occurrence of the secondary disturbances. The drag is, therefore,

governed by the mechanics of wake vortex development. As we shall soon see, it is

also related to the frequency of vortex shedding. Roughness on the surface of the
30cvlinder has been observed to decrease the base pressure coefficient and increase

5the steady drag at Reynolds numbers near 3 10 when the boundary layers are

turbulent. The boundary layer separation points move forward when the cylinder is

roughened.

The vortex shedding frequency can be measured by placing a hot wire anemometer

probe into the cylinder wake and measuring the frequency of the velccity disturbances

that are sensed. The probe must be on one side or the other of the axis of the

wake. The fluctuations in velocity are associated with the individual vortices, as

sho-.-n in Figure 5.9. The vortices move with a velocity U and vortices with the

same circulation direction have a streamwise separation distance . Two rows of ". -' -'.-.
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vortices exist, each with vortices of a common circulation direction. Thus, a

fixed probe on one side of the wake will sense an undulating velocity of frequency

U
f= c

s

because as vortices of alternating sign pass by the probe, the direction of the 0
velocity disturbance will alternate. If the probe were to be placed on the axis of

the wake, it would sense alternating velocities of a frequency 2fs . The frequency

of vortex passage, or of vortex production, is typically expressed in the dimension-

less form

f d U
S = s = c d-

CO CUW i

This dimensionless frequency is called the Strouhal number in honor of the earliest

investigator of the phenomenon. Another method of measurement consists of deter-

mining the frequency of fluctuations of the oscillating lift on the shedding cyl-

inder. This force component is F (t) in Figure 5.9. "
y1 4Strouhal numbers in the range of Reynolds numbers from 10 to 10 are shown in ---

Figure 5.12 which is reproduced from Roshko's original report. It shows Kovasznay's

as %ell as Roshko's measurements on a variety of cylinder diameters. Background

turbulence levels in the wind tunnels reported by the two investigators were between .

2,30.03 and 0.18 percent. It is interesting to recall now Rayleigh's postulation

that S is an increasing function of Rd , and to see that it applies in Figure 5.12
12 d' 3from Rd = 40 (Kovaszvay's lower limit of vortex function) until R = 10 . Exceptd d

for the Reynolds number range 140 to 300 the Strouhal number depends smoothly on Rd. -
13

in this short range (Roshko's transition range) Roshko reports irregularities and

bursting of the fluctuating velocities in the wake. At lower Rd velocity

fluctuations are sinusoidal, as well as above this range. However, although the

.. vortices ara shed uniformly and coherently along the entire axis of the cylinder up -
31

to R = 150, is shown visually by Hama, three-dimensionality begins to develop in. d
the wake at R between 150 and 300. At Rd greater than 300, Hama's photographs show

d d
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Figure 5.12 - Strouhal Numbers for Vortex Shedding Behind Circular
13Cylinders--Low Reynolds Numbers (Roshko1 )

that a spatial periodicity occurs in the filaments of shed vortices. As the

vortices are convected downstream, the vortex street becomes turbulent, The range
2 3 14.

of Rd between 4 x 10 and 1.3 x 10 we have already noted corresponds to that in

which laminar-to-turbulent transition occurs just prior to vortex formation. At .6
3

Reynolds numbers above 1.3 x 10 , corresponding to the shrinking region of observed

transition waves, the Strouhal number is nearly constant.

Measured values of Strouhal number at higher values of Reynolds number are

shown in Figure 5.13. These values have been obtained by measuring frequencies of

fluctuations in lift or wake velocity. The collection of points reflects the

degree of repeatability in the values of S throughout the Reynolds number range up

to the "transition" range* shown in the figure. For Reynolds numbers greater than

5 x 105
, the irregularity in the cylinder wake is reflected in the wider range of

* *This and other names used in this text which are given to the various regions

' of vortex shedding are due to Roshko. However, other names have been given by othrer
authors. To avoid confusion, names will be used here sparingly and always with
reference to a figure.
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Figure 5.13 - Strouhal Numbers at High Reynolds Numbers

reported values of Strouhal number that have been reported. The particularly large

values of S that have been reported by Delany and Sorensen
3 6 and Bearman

3 5 relative

37 38
to those of Jones and of Roshko appear to be out of line with other values. The

reason for this is not understood, however, all investigators of this range of

Reynolds number have reported difficulty in establishing a predominant frequency.31 ""'

Jones, for example, quotes a range of Strouhal frequencies for the lift fluctu-

ations of from 2.5 x 10 - 2 to 2.1 x 10 -  at any given Reynolds number in the range of

from I x 10 through 5 x 10 . At higher Reynolds numbers in the range 5 x 10 to

7
2 x 10 the lift fluctuations are more periodic, with a predominant Strouhal fre-35 ":

quency of 0.3. Bearman used flow visualization to disclose the existance of two

laminar separation bubbles, indicating the formation of two separate vortices above

and below the stagnation point as illustrated in Figure 5.4 for the supercritical

range.
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The existence of higher Strouhal numbers at high Reynolds number has been

linked with the contraction of the wake that is illustrated in Figure 5.11. The

streams are assumed to be parallel downstream of location t; separation occurs at
38

* location s. Roshko has postulated that the frequency of vortex shedding is

dependent upon the (theoretically-calculated) separation of the free stream lines

of the shear layers d and the velocity of the free stream lines U . Now,
w 5-

U i(~)1/2%

*6 38
where C is the base pressure coefficient. Thus, Roshko's definition of StrouhalPb" 

"

number is

f sd 
,= fd O.

Us

This number has the value S 0.16 for circular cylinders, 90 deg wedges, and flat

plates set normal to the flow. It is nearly constant over the range of Us d w/v from
4 5

1 10 to 4.4 x 10 The point is that the increase in Strouhal number for Rd in

the supercritical region of Figure 5.13, as reported by Roshko, is in direct

proportion to the product

d ' ~ lc 1/2

The variations in observed values of S are accompanied by corresponding

variations in the mean drag coefficient. High values of S are associated with

'5
relatively low values of C As will be seen in Section 5.5, von Karman s formula

for the drag on a bluff body shedding a vortex street is (since h/'=0.281) -. "

r 2
h U-_U 21U

CD = - 5.65 -- -2.25 (U
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where h is the vortex row spacing shown in Figure 5.9. For the case that the vortex

velocity U is a constant percentage of U over the Reynolds number range, the drag

coefficient is proportional to h/d. Now, further assuming that the vortex street 0

spacing is proportional to the shear layer spacing dw, and that S is constant, we

find the result

C1) k S- S

where k is constant over the range of Reynolds number. Arbitrarily selecting

k - 1/5 we use Strouhal numbers in Figures 5.12 and 5.13 to construct the dotted .
38

line shown in Figure 5.10. This comparison, first shown by Roshko, supports the

speculated correspondence and it further shows the intimacy between cylinder drag

and the details which govern the vortex generation.

The interdependence of the mean drag coefficient and the geometry of the vortex39 ,40,

street has been further clarified by Bearman.39  He used Kronauer's 4 0 stability

criterion which states that the vortex spacing ratio h/ is determined by a require-

ment that the drag induced by the wake is a minimum. It will be shown in Section

5.5 (Equation (5.37)) that the drag coefficient of the vortex street for an arbitrary -

spacing ratio is

2 ri°'''''

C.. d\U oth -+(h -2) -h coth -h

d. .U z.I 
-U 

\.,.

Kronauer's criterion states that the spacing ratio, for a given vortex speed U
v

relative to the free stream velocity, i.e., U = U - U, is determined by
3 v c "

U Uconstant

Bearman has shown that this condition predicts spacing ratios which depend upon the

vortex velocity as shown in Figure 5.14. Using measured values of U /U, and of
v
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Figure 5.14 - Vortex Spacing Ratio as a Function of Vortex Velocity for

the Kronauer Minimum-Drag Requirement

the streamwise vortex spacing Z for a variety of vortex wakes* Bearman was, thus,

able to determine the transverse spacing h. Then he defined a Strouhal number

38
analogous to Roshko's, which is

•. f h

S""

For values of Us/U. between 1.1 and 1.47 (which represents a range of base pressure

coefficients of from -0.21 to -1.1) this Strouhal number is a constant, equal to

0.18; see also Chapter 9. The significance of this number is that it applies to a

wide variety of bluff-body cross-section shapes: circular, elliptical, ogival,

prismatic, and flat-plate. Also, both Roshko's and Bearman's definition of

Strouhal number are entirely compatible and the assertion that h/d is a constant

is apparently borne out by available experiment.

*These wakes were varied and controlled by bleeding fluid and by inserting

splitter plates at the base of the cylinder; see also the end of Section 5.4.
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5.3.2 Oscillatory Lift and Drag on Circular Cylinders

Our consiu,-ration, later in this chapter, of the acoustic radiation from

vortex-shedding cylinders will require a knowledge of the oscillatory forces,

F (t) and F (t) on the cylinder. As each vortex is shed from the cylinder it
x y
generates a lift force which changes direction as vortices are produced in each

shear layer. This force may be written

-iW t
F y(t) =y e

where w - 27ff is the shedding frequency. The drag fluctuation is generated as aS S

result of oscillations in the base pressure coefficient. Since the base pressure

responds to disturbances which are spatially symmetric about the wake axis, and

since these disturbances are generated twice as each vortex pair is produced, the

frequency of the drag fluctuations will be 2f , and
S

-i2w t
F (L) --

Fx rx S

The vortex shedding is essentially nonuniform along the axis of the cylinder for

Rd 1. 150. Thus, our consideration of the fluctuating forces must be founded on a

statistical basis. The pressure distribution on the cylinder we, therefore, write

in a general form as

p(i[¢(z t)
p('z,t) = () Cos 0 e + pb( 2 u-s) sin e e

Here 6 is measured from the y axis as shown in Figure 5.9. The expression shows

that the circumferential variation of the pressure fluctuations which yield lift

is maximum at 8 = 0 deg and minimum at 0 = 90 deg. The fluctuating base pressure is

given by pb because the pressure component at 2.; has a maximum amplitude there.
fnto i[;(zt)] S.

The phase function e expresses the axial variation in vortex structure -"

S

-72 -S
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which occurs for Rd > 150. We assume that both the fluctuating lift and drag have

similar axial correlation characteristics. Although the pressurc amplitude call be a

deterministic function of location, the phase function has been observed to be a

stochastic variable at most Reynolds numbers.

The total force on the cylinder is

F(t) = (Fx(t), F (t)) p(e,z,t) n() g dOdz (5.8)

0 0

where n(O) = (sin 0, cos 0) is the normal to the surface of the cylinder and L is

its length. Substitution of Equation (5.7) into Equation (5.8) gives an expression

for the dimensionless forces:

F (t) ~/Lw)
v d I i e(zt) e t

1 2P U 2 (5.9a)
0 0

.. . -

and

F (2 w -2i, t
1 2 2 1- -2 2 i e S dz (5.9b)
7OU dL

2~~ ..- -. 0-

The time-mean-square oscillatory lift coefficient is defined as

0
2 1I 2 - 2 (t2 )-

[1= -odL F(t) (5.10a)

and the drag coefficient is

-2
(= o d  [F(t)] (5.lOb)

D 2 0
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where the bar denotes a time average. Looking ahead to an interpretation of experi-

mental data, we note that if the unsteady forces are temporally harmonic, the mean-
2

square is just (1/2) P2. This situation is expected at Reynolds numbers less than S
53 X 10 where the shedding frequency is well-defined. At higher values of Rd whered

the vortex-shedding covers a more distributed frequency range the mean-square must

be taken in its strictest meaning. This discussion is pertinent because various

investigators have measured the fluctuating lift by determining either peak values

or temporal mean-square values, Later, the measurements will be compared.

Another difficulty in interpreting lift coefficient measurements lies in the

unknown function 4t(z,t). As Hama's3 1 photographs have shown, the vortices are

J Itwo-dimensional, i.e., 0(z,t) 0 0, only for Rd < 140. At greater values of Rd,9

three-dimensionality occurs. Thus, if we let k. describe a typical axial lengthz

scale over which ,(z,t) is constant, it is important that the shedding cylinder on

which the lift is measured have a length less than Z z. Of course, if the lift is

deduced from n pressure distribution, as in the case of Gerrard, the lift co-
2 -1

efficient is closely related to a pressure coefficient, p(i/2pU-,) , as is seen by

comparing Equations (5.9) and (5.10).

Values of the root-mean-square oscillatory lift coefficients measured by

various investigators are summarized by the points and solid lines in Figure 5.15.

1.0 ' I ' ' I ' ' 'I " I ' ' 'I ' ' I -- "
& SCHWABE 4 1 (0.71 AMPLITUDE)

0 KOOPMAN 4 2

0.8 I LEHEYND HANSON 4 3  
:-..--- VIBRATING CYLINDER/ a _A

*% Ps .

0.6R rZ

71 N IL ESTIMATE FOR FIGURES 5.27 AND 5.29'

04HUMPHREYS60
£ (LFT) LD =64 A'

, JONES3 7 (RMS LIFT) L/D

0.2 RMS LIDT)

0 I SCHMIDT (PRESSURE)

0 1 , , I I I , I I "

102 103 104 105 106 107-

Rd

Figure 5.15 - Summary of Measured Values of Root-Mean-Square Oscillatory
Lift Coefficients on Circular Cylinders * 4
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(Representative values, which will be used later are shown as dotted lines.) Of
32 48 4d49

the group, only Gerrard, McGregor, Koopmann, and Schmidt determined fluctu-

ating lift by the integration of a measured fluctuating pressure distribution. Their

measurements confirm our representation for the circumferential variation of

pressure used in Equation (5.7). McGregor obtained the value of 0.42 for the lift
-4 5coefficient in the range of Rd from 4 X 10 to 1.2 x 10 and this agrees well with -"

Humphrey's value. The values shown here attributed to Humphrey4 and Macovsky4 5

have been deduced from their measured values of lift amplitude by assuming periodic

lift fluctuations. Their published oscillographs (time histories) of lift fluctu-

ations show that this is a reasonably accurate interpretation of the data. In

Humphrey's case there was some irregular modulation, of long time scale, of an

otherwise periodic lift signal, thus, his quoted values of average amplitude were

used to estimate a root-mean-square lift. Because R - 2 x 105 marks the upper
d

limit of observed periodicity, this approximation could not be applied to Humphrey's
5 5

data in the range 2 x 10 to 6 x 10 . Maximum values of lift coefficient decreased S

in this range of Reynolds number from 0.8 to 0.35 roughly matching the peak values
47 37

obtained by Fung. Root-mean-square values reported by Fung and by Jones appear
49to agree rlosely. Schmidt's measurements were obtained in the same facility as

Fung's, but he noted that the lift coefficients were reduced if the cylinder was

44
well-polished. Bishop and Hassan have provided direct measurements of root-mean-

square lift while the coefficients attributed to Macovsky were determined from his

quoted maximum lift levels. The single point attributed to Koopman is the lowest

value of Reynolds number for which oscillatory lift data are available; it was ob-

tained b- integrating a pressure distribution. Finally, the measurements of Leehey
43and Hanson were obtained by an indirect method.* The vertical bars denote the

upper and lower limits of lift coefficient that were reported. Unfortunately, a

*These measurements were accomplished during : experiment involving wind-

induced cylinder vibration and Aeolian tones. They first determined the level of
wind-induced vibration at a particular vortex-shedding frequency. They then excited
the cylinder electromagnetically in still air at the same frequency that it was
wind-excited. This was accomplished by passing an alternating current through the
steel wire around which had been placed a system of permanent magnets. By measuring
the current through the wire and magnetic field strength they determined the force
generated on the wire and this was proportional to the cylinder vibration level
which they measured at the same time. From this they deduced the aerodynamic lift ..
on the wire at any given point in the experiment.
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certain level of cylinder vibration accompanied the measurement, and this is known

to influence the lift (see Section 4 of this chapter). --

In spite of the wide range of reported lift coefficients shown in Figure 5.15 0

there appears to be a general trend toward maximum values in a range of Reynolds
4

numbers near 4 x 10 At either extreme of this region the coefficients appear to

be somewhat smaller in value. The three most plausible reasons for disagreement

among investigators are:

1. Environmental influences, such as upstream turbulence and cylinder motion

can modify the lift (see Section 5.4 of this chapter).

2. Spatial averaging of local pressure along the axis of the cylinder can

reduce the apparent lift as suggested by Equation (5.9). 9

3. These measurements, being dynamical in nature, are subject to a degree of

experimental inaccuracy. Scatter in individually-reported data is for example,

12 percent in the case of Bishop and Hassan,* 30 percent for the pressures

reported by Gerrard, and 25 percent for Macovsky's measurements. The range of

values shown in Figure 5.15 is not too far out of line with the scatter.

Measured fluctuating drag coefficients are less numerous than lift coefficients.

47 49 50 48Figure 5.16 shows measurements of Fung, Sch;nidt, van Nunen, McGregor, and

Gerrard 3 2 which are substantially in agreement. The maximum appears to be at
4

Reynolds numbers near 4 x 104. The drag fluctuations are approximately one-tenth

of the lift coefficients.

5.3.3 Representations of Axial Phase-Uniformity:

Correlation Lengths
Even though the vortex-induced fluctuating prejsures may be locally of the

same amplitude along the cylinder axis, the phase of the pressure may vary

stochastically as (z,t) in Equation (5.7). Variou attempts have been made to

quantify the axial phase variations. Most of these measurements have been made
9 45 31

using flow visualization. Phillips, Macovsky, and Hama examined the patterns
45

of dye injected into the wake of cylinders, and Macovsky also observed the three-
13

dimensional patterns of wool tufts attached to cylinders. Roshko estimated the

length scales of the vortices by observing the behaviors of Lissajous patterns be-

tween two hot-wire anemometer probes in a wake as the probes were moved away from

*Errors are the limits of the spread in observed values expressed as per-

centages of the centroid of the population of data.
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Figure 5.16 Summary of Fluctuating Drag Coefficients on Circular Cylinders

I one another along the axis of the cylinder. Gerrard5  does not cite the details ofH

any measurements, but he states that the correlation length is on the order of

three diameters for R~ less than 2 x 10 . Correlation measurements, in the strict
52sense, have been made between axially-separated sensors by Prendergast (pressure

p fluctuations), ElBaroudi 53(velocity fluctuations near the separation point),
19 43Ballou (velocity fluctuations in the wake), Leehey and Hanson (velocity fluctu-

49* ations in the wake), and Schmidt (local lift fluctuations).

PThe two-point correlation yields the form of the function ,(z,t) that is em-

3ployed in Equation (5.7). Considering that the pressure is measured at two

locations which are separated axially, the time-averaged product of the pressures

-. is written
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p(6,zlt) p(ez 0 p(ezlt) p(O,z2,t) dt2 21

0

This is just the correlation which can be expressed in an approximate form in terms

of Equation (5.7) as - .

p(6,zlt) P(OZl,t) 2 [( sin2  2 2o-..

L spb2w s

__ _ _ __ _ _ __ _ _(5.11) . -

x Re exp i[ 1 (Zl) - 42(z2)]} i

The averaging time T must l..nger than both the characteristic shedding period

2rr/w and the period of oscillation of the phase function P(zt). Also, for

• Equation (5.11) to be valid, the period of variation of the phase function must

also be longer than 2a/w s . The bars over the phase functions denote the replacement

of the time average of the exponential by an exponential of the average phase

difference. In effect if os >.> 4/t this assumption could be considered to be

equivalent to the use of a conditional average of time larger than 27/w s  yet less

than 2v (a/Dt) -
. The function (x,t) could also be assumed to be of the form

O(z,t) +kz + iaz (5.12) -. -

This gives rise to a phase of the form i(w t-kz) - cz which describes a travelling
5

wave of speed w /k. Actually, the vortex filaments have been observed to "peel

off" the cylinder, propagating from one end to the other of the cylinder so that

once formed the axis of the vortex is not quite parallel to the axis of the 6

cylinder. With a phase of Equation (5.12) the time-averaged phase function is

s imp~ly

-' -tz 1-z2 ik I-z 2

-ep a((1)Zl-Z~ *12 ) +ik(z 1 -z 2 ) -

Re exp i- (z e e (5.13)

which is a decaying harmonic function of the argument a(zl-Z 2).

1 2.
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The correlation coefficient is defined as

(P(e,zlt) p(6,z2,t)) .
R (z,z2 )=[2e )p(~ 2 t (5.14)

where the p (O,z,t) are the mean-square pressures measured at any location along _0-

the axis. From Equation (5.7), we have

2i 2 2 2 2

F2 (Oz) = 12 L (wS sin2 O+P(2ws cos 2 (5.15)

Combining Equations (5.11), (5.13), (5.14), and (5.15) gives

R pp(zlz) e cos k(z -z 2) (5.16)

This form of the correlation coefficient is typical of those which are often

measured in fluid mechanics. It is also an analytical form which is frequently

used in theoretical modeling. The correlation length we will define as Equation

(3.82a)

Rpp -Q " ":'-

2A3 R-) dL (5.17)

so that

3  2 2 (5.18)

k +czL

therefore, if k << ct, A = cx
3

rhe above analysis is pertinent to the axial correlations of wake velocity as

well as to lift correlations. Figure 5.17 shows examples of correlation functions
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Figure 5.17 -Axial Covariance Functions for Fluctuating Lift on

Circular Cylinders

at various Reynolds numbers from 3.3 x 103 to 7.5 x 105. Note that at the lower .

end of the range of Rd the function is unlike the representation given in Equation
d

(5.16), but at the upper end the equation matches the measured functions. Figure

5.18 shows values of 2A 3/d which have been reported by the various investigators.

Perhaps the most striking aspect of Figure 5.18 is that it is difficult to draw a •

general conclusion about the correlation length, although for Rd < 140 all investi- -

gators are unanimous in reporting large correlation lengths. Hama's photographs

show that vortices are correlated along the entire length of the cylinder when

R = 117, i.e., 2.% /d = 96. With the exception of the correlation lengths measured _
d 35

. by Leehey and Hanson, most investigators cite d to 6d for R < 2 x 105. It
3Rd
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Figure 5.18 - Summary of Measured Values of Lift Correlation Lengths on

Circular Cylinders

is tempting to explain the larger A3 of Leehey and Hanson as being caused by cyl-

inder vibration, however, they suggest that the uniform decrea e of A 3 with in-

creasing Rd is evidence to the contrary.
d

5.4 ENVIRONMENTAL INFLUENCES ON VORTEX SHEDDING

As suggested in the last section, measured values of lift fluctuations can be

influenced by cylinder motion, surface roughness, and upstream turbulence. There
24

are few self-consistent investigations which quantify these etfec, . Gerrard has

made a systematic investigation of the effects of upstream turbulence in the range

of Rd from 8 x 102 to 4 x 104. He measured the intensity of the velocity fluctu-

ations in the cylinder boundary layer just downstream of separation, at x - 0; see -

Figure 5.10. This velocity increases with R in a fashion similar to the fluctu-
d

ating lift coefficient. Figure 5.19 shows this behavior for two levels of upstream

turbulence, 0.02 and 1 percent of the free-stream velocity. There is a consistent

increase of a factor of 3 to 4 in the fluctuating velocity, us, for Reynolds
3

numbers greater than 10 and this increase is caused by the increase in inflow

turbulence. The similar variation of u and C, with R suggested to Gerrard that
R d
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Figure 5.19 - Variation of Life Coefficient (dashed lines) and of "Shedding Velocity"
24

(solid lines), with Upstream Turbulence Intensity (Gerrard )

0
these two flow variables were related and that environmental influences on one

55variable reflected similar influences on the other. Furthermore, Gerrard has

argued that high free-stream turbulence slightly increases both the vortex strength

and the vortex shedding frequency. He has also speculated that the variation in

formation length for cylinders of different diameters measured by Bloor, 14 shown in

Figure 5.8, is attributable to a higher level of incident turbulence for Lhe smaller

diameter cylinder. This may not be entirely correct, because Lhe measurements by
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Ballou, also shown in Figure 5.8, were obtained with a free-stream turbulence
19 43

level of 0.04 percent of the mean velocity. ' This level of turbulence is

comparable to or less than that encountered in Bloor's measurements. Gerrard5 5  0

contends that an increase in lift of a factor of four, suggested by the increase in

us, cannot be explained by the possible reduction in formation length and increase

in vortex strength that he has speculated as due to incident turbulence. It would

appear that the question of the cause of increased lift by upstream distrubances ..

can only be fully answered by an experimental investigation in which all the

pertinent dependent variables: lift, formation length, vortex strength (see also

Reference 56), and zhedding frequency are measured as functions of both Reynolds

number and upstream turbulence. A formal connection between u and fluctuating lift 9

should also be established.
24

As well as effects of incident free-stream turbulence, Gerrard has determined

that the streamwise velocity fluctuation at separation, which he called the shedding

velocity u , can be increased by acoustic excitation. At a Reynolds number of ..

6.9 x 10, Gerrard found that sound with a root-m..an-square velocity of 0.01 percent

of the free-stream velocity could increase u by a factor of 2.5. The effect is

frequency-dependent and this increase in u was observed at an excitation frequency

equal to Ohe transition wave frequency of secondary disturbances.
1 4

Motion of the shedding cylinder, transverse to the direction of flow, has been
obsrvdb-n37

observed by Jones3 to increase the root-mean-square lift at high Reynolds numbers.

Figure 5.20 shows one set of his results. Not only the lift amplitude, but also its -'-

phase relative to the cylinder displacement are important as will be discussed as a O

nonlinear interaction in Chapter 9. The effect is undoubtedly dependent upon

Reynolds number. Some other isolated measurements of fluctuating lift coefficients

have been published with observed values of cylinder displacement. Those data are

also shown in Figure 5.20. An increase of the lift coefficient with the peak-to- O __

peak displacement of the cylinder appears to be uniform. It is also more pronounced

in the Rd range between 2 X 10 and 4.5 x 104.*

It is not possible at this time to quantitatively relate the increase in lift

coefficient to cylinder vibration other than in a completely empirical . se. An ..

experimental relationship between the rate of vorticity generat.on and transverse

*Note that Koopmann42 measured fluctuating pressure and that Leehey and Hanson4 3

determined an increase fluctuating lift without a corresponding increase in Zc"
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Figure 5.20 - Dependence of Root-Mean-Square Lift Coefficient on

Cylinder Displacement

displacement has been shown by Griffin and Ramberg
5 7 at a Reynolds number of 144.

Using a forced vibration frequency equal to the vortex-shedding frequency and an

amplitude of motion equal to one-half the diameter they determined that the rate of

vortex generation increased by a factor of 1.65 over the rate for no motion. This

implies that the vortex strength is increased by transverse motion. Transverse

motion also organizes the vortex shedding along the axis of the cylinder, shown

58
visually by Koopmann at R = 200, as well as changing the vortex spacing in the

57 d
vortex street. These aspects will be further discussed in Section 5.5. The

effect of cylinder motion goes far beyond influencing the magnitude of oscillating

lift. The entrainment of the wake disturbances by the motion of the cylinder brings

about both a phase and amplitude relationship between the cylinder motion and the

wake induced lift as will be discussed in Section 9.6.2.
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Another influence on vortex-shedding can be effected by splitter plates. *1
Figure 5.21, by Gerrard, 5 5 shows a diagram of a cylinder with a splitter plate and -1
the variation of Strouhal number as the length of the splitter plate was changed. -

The splitter plate interferes with the cross-wake interaction of the shear layers.

The reduction in Strouhal number for a plate length equal to the cylinder diameter

implies that a spreading in the wake width occurs and that the drag coefficient
9

d

0.21

10.20 . i4

0.19 0

0.18

0.17I

0 1 2

L
d 55 p, :.- ,

Figure 5.21 - Variation of S with Length of Splitter Plate; 55

d 1 in, Rd =2 × 104

increases; see Section 5.3.1. The results are essentially in agreement with those
59960

of Apelt, West and Szewczyk. 5
' Because a point in the wake, one diameter down- 6

stream from the cylinder, coincides with a formation length of 1.5d, as shown in

Figure 5.8, the splitter plate interference is conjectured to have caused a down-
stream shift in formation. This downstream shift may also cause a reduction in the

strengths of shed vortices. In e rlier studies, Roshko 38 found similar effects of

splitter plates on Strouhal numbers in the same range of Reynolds number, and in

Reference 25 he foiind that a splitter plate, ith T/d = 2.65, annihilated vortex
106

shedding at R. > 3 × The influence of splitter plates on vortex shedding from

airfoils will be discussed in Section 9.3. 0
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5.5 ESTIMATIONS OF WAKE-INDUCED FORCES IN
TWO-DIMENSIONAL FLOW
A very simple, yet analytically powerful, representation of the vortex street 0

as a two-dimensional array of line vortices which trail behind a two-dimensional

bluff shedding body is illustrated in Figure 5.22. We will use these diagrams to

illustrate the estimation of the oscillating forces as well as to discuss some

stability characteristics of the wake. The modeling of the two-dimensional vortex

street wake in this manner was originally proposed by von Karman and Rubac.h and in

its original form, the von Karman vortex street, is shown in Figure 5.22a. This con-

sisted of two parallel and infinite rows of vortices which are separated a distance

Figure 5.22 Vortex Street at Time to Showing the Vortex Spacing

and the Control Volume Boundaries

iv ----- -

2 "

Figure 5.22a - Idealized Infinite Vortex Street of von Karman ,.

A B.

I 3
- - .

22

DC
Figure 5.22b - Semi-Infinite Street Behind the Blunt Body, at Time t,

Showing Geometric Parameters - 0

4- 0 7 .- '.
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Figure 5.22 (Continued) '. -B-B

A__- 2-

-- - -- -"

I

I I I I,,q 3' , ,I-
I_ _ II

0 
C

Figure 5.22c - Semi-Infinite Street Behind the Blunt Body, at Time t + Dt/2, .

Showing Vector Decompositions of Moments of Circulation 0

h apart. In each row, the vortices of like sign are separated a distance £ apart

and those in the upper and lower rows have opposite sign with the vortices alter- S

nating in position. In analytically modeling the two-dimensional wake-induced

forces, the von Karman vortex street is truncated as a pair of semi-infinite sheets

behind the shedding body as shown in Figure 5.22b. In the present context it is

assumed that all the time-varying momentum is transferred to the cylinder with no .

viscous losses.

Complex variables will be used to analyze this two-dimensional problem. The
61-62method applied here is essentially that of Sallet which is an extension of

5,63 64 65 .von Karman's analysis, although Ruedy and Chen have presented similar

analyses. The complex velocity potential for the finite vortex street, shown in

Figure 5.22a,* is

p . ".( .-

-(z) = i - n (5.19)

2 0

sin " -: "

*The analysis of the infinite vorteX street is classical, treatments in such
books as written by Nilne-Thonpson, 6 3  66 67

Lamb, and Wille provide excellent reviews
of some of the physical aspects of the vortex street stability and configuration. S
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where .2 h0 4 2

and

z - x + iy

It is assumed that this potential will correctly yield the vortex-induced velocity

for the semi-infinite street depicted in Figure 5.22b. The complex velocity of the

street Is

dT'(z) = u - iv
dz

= i ot I (z-z) - cot (z+z) (5.20)

The first term in the brackets is the field velocity which is induced by the upper - -

vortex row and the second term is the velocity induced by the lower row at y = iV'2,

The velocity induced on vortices in the lower row, i.e., at y = x - ih/2, by the-

upper vortex street is

U(x) cot (x- -ih)V 4,

or at the locations of the centers of the vortices,

L'h co(nZ nh i (. iz

v 2 - -co 2-- n = 1,3 . . . "i : - "

h' 3,.i-
2 2 2 •Y ,.2

or

tanh T iih' (5.21)
v 2.48

488 " "

*

-. " . " o



for all vortices in this row. The row is, therefore, seen to translate with this

velocity to the left. Similarly, the lower row induces a translation of the same

velocity in the upper row so that the whole vortex system translates along the x 0.

axis to the left at U . In a typical physical situation, the vortex street which
v

formed behind a cylinder moving at a velocity U. is convected at the speed Uo - U

relative to the fixed frame. Thus, Figure 5.22b shows a control volume ABCD that is

fixed with the moving vortices so that a mean flow U enters the control volume on 0
V

the left. The control volume encloses the shedding body and an arbitrarily large

even number of vortices; here we use four vortices. As time increases from t the
0

body moves to the left within the control volume and vortices are produced in its

wake. In one complete shedding cycle, a pair of vortices is formed in a time At. -0

Figure 5.22c shows the system one-half cycle later after the formation of vortex 5.
5

The stability of the row, as considered by von Karman and Rubach, and quoted

in many texts (e.g., References 63 and 66), determines that there is a fixed

relationship between h and Z which is ..

h 0.281 k (5.22)

Brhf68 "-"
In a later development, however, Birkhoff points out that as the vortex street .0

moves downstream, the momentum of the system, which is proportional to the moment

of vorticitv Fh, must remain constant. This requires that h increase as the

circulation F of each vortex diminishes under the action of viscosity in the far

wake and gives rise to the spreading of the wake which can be observed in Homann's ..
69

photographs, Figure 5.1, and which has been measured, e.g., Frimberger and
23 . ' .-

Schaefer and Eskinazi. Furthermore, the pair spacing '. tends to remain constant
39

so that von Karman's relationship is only approximate. Also Bearman's 3 results,

and Figure 5.14 show that the spacing ratio is dependent upon the vortex velocity. S

However, it is still often analytically convenient to use von Karman's constant

because it represents a constant value which roughly agrees with measurements.

A momentum balance for the control volume62 ,6 3 will account for the forces

per unit length on the cylinder which are induced by the formation of vortices, i.e.,

in vector form

489
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-F.+ - pdc (5.23)

where M = net rate of momentum flow from the control volume
f

p = the pressure on the control surface (and the integral
is around the circuit ABCD in Figure 5.22)

dM/dt = the rate of increase of momentum by the formation of ....
vortices in the control volume _

F = the complex force per unit length on the cylinder

The pressure on the control surface is, by Bernoulli's equation, given by "

_ 1 P [ Cn (5.24) •

P t

where Cn is everywhere a constant and is the flow potential which is the real part

of the function T. The momentum flux per unit cylinder length that occurs across

each surface is, in complex notation,

B Bi iii
M o uvdx + 0°  v dx

A A

M = u dy- ip uvdy

MBC -oo... .

B B

(5.25) -. "

MCD 0 uvdx + ip0f v2 dx (525

C C . . . ..

A A
C 2f

MDA -PJ u dy - ip uvdy

D D
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r- .r _ r . , r- . - . r--r ,-r W .W _r , - -.q .., . . . . . J .. . . . .. .

Using the coordinate variable z x + iy, substitution of Equations (5.24) and (5.25)

into Equation (5.23) gives the two-dimensional force per unit length, now written

as a complex variable, as 6

Fx  iFy i-- (z dz + io dz*.

x y 2 dz ~ C, t ,d*

+ a (M -iMy) (5.26)

at x y
63

where z* x - iy. Milne-Thompson shows that 3'/3z - 0 on surfaces AB, CD, and

AD since they are selected far enough from the vortex-shedding body. .

Then

S2dz $ dzz dz = i [+( -i h-) tanh 2-- (5.27a) '

x +ic °  
-

0

for the line BC lying between vortices 0 and I as shown in Figure 5.22b. If BC (or

x) were to lie between vortices 1 and 2, for example on B'C', we would find that
.7. 0

dz i- 2 + i tanh (5.27b) . .

This dependence of the integral on the location of the control surface will be

further discussed shortly.

The rate of momentum increase to the control volume can be examined by reference

to Figure 5.22c. Following Sallet's61 '6 2 development, we have decomposed individual

vortices into two components, each with circulation F/2. The moment-arms of these :.

decomposed vortices are illustrated by the dotted lines on the figure. The incre-

mental momentum ot each vortex pair generated in time intervals At, e.g., positions

2 and 3, is given by6 3
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A(M+iM) = 20 r -i (5.28a)

1/2
where r (the distance between the vortices) = (1/2) (2 +4h2) The momentum ofv i 63 .""L.-.

the pair at positions 2 and 1 is"'

-o r
A(Mx+iM) r rL +i (5.28b)

Originally, at t = tot as shown in Figure 5.22b, the control volume contained an

even number of vortices. Now, the addition of pairs of vortices, into the control

volume occurs at time intervals At where

At (At S

is one-half the shedding period. In the instance between Figures 5.22b and 5.22c,

vortex 5 was added so that the total circulation was decreased by an amount -I'.

Using Equation (5.26) to consider the lift component of the forces Fy, we

obtain

F o h _3M
v --- tanh 2- + yt.::. ".

-4..- . -

since 2 /3t = 0 on surfaces AB and CD as long as they are far from the wake, for BC

lying midway between vortices 1 and 2. In the time interval At/2 leading to the

creation of vortex 5, the incremental change in momentum is one-half that of a - -

complete vortex pair or

AM- 0
y 8 .

so that, for the time interval At/2
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am AM +po r

y1 y 0(U-
at At 4 (U-u)

and, therefore,

+P 0 2 
:.'.7Th'.F = o i o L "--: ::

y tanh + (U-Uv) (5.29a)
y 4k 4 v

Alternatively, if the control volume were to be drawn with B'C' between vortices I

and 2 then the creation of a vortex 6 would increase the momentum by AM = -P F/8,"N y 0
so that now

aM AM rY__ Y __ 0 (U _Uv

at At 4 (- )

Then, by using Equations (5.26) and (5.27b), we have

2

F=----- tanh - (UU) (5.29b)
y 4. 4 v

Equations (5.29a) and (5.29b) represent the extremes of lift forces F which occur
y

at the time intervals At/2 during the formation of vortices so that the amplitude is

just the magnitude of one of these extremes. Using Equation (5.21) we obtain the

amplitude of the fluctuating force per unit length in the form

P
1F i= -- (U.-31J) (5.30)

y -4 V

The rate of momentum increase M is not temporally oscillatory according to thisx
theory so that, from Equation (5.28),

x - (5.31) '* ""'

3 t 2 L. z ...1% 4...
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0

Combining Equations (5.26), (5.27), and (5.31) we obtain the magnitude of the

average drag force per unit length as

0

h2
= + r (U0,-2U) + P (5.32)x ,0' '0'

Amplitudes of lift and drag coefficients, defined by Equation (5.10), can now

be expressed as

CL [1 32U - (5.33) .
L 2 Ud SC

C-D 2r h 2U v r
1~ U + r - Ur (5.34)

D Ud M 
"urd

The dimensionless frequency of vortex shedding, f. 1/At, is written

f d d
S - (5.35)

Now, by substitution of Equations (5.21) and (5.35) into Equations (5.33) and

(5.34), we obtain

0C,~~~~ (1- (3 -2°"t 5.6

/ 2 f
UZ nh + rh/w00

C [ - oth -+- -2 (5.37)
( ~ U 2. 2 \ J

The parameter Z/d has been deduced from measurements of U- U by a number of

authors.* One of the most classical and complete experimental surveys of wake

*Equation (5.37) yields the relationships used in Section 5.3.1; von Karman' .

1/2
formula for CD is obtained by letting h/Z - 0.281, or coth uh/k = (2)
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structural parameters is that of Fage and Johanson.
7 0 '71 Figure 5.23a shows the

27 m___

experimentally determined values of Z/d with R as summarized by Chen. These

values of £/d as well as values of S in Figures 5.12 and 5.13, are used to calculate
-1/2

the root-mean-square lift coefficient as CL (2) using Equation (5.36) and assuming

time-harmonic forces. Figure 5.23b shows the result using the wake properties in

Table 5.1. An alternative calculation can be carried out by using Equation (5.33)

and empirical values of 1'/U,,d. The calculated root-mean-square lift coefficients

are of the correct order of magnitude, but they do not precisely agree with the

2 32 45
high values of C that have been reported by Gerrard and by Macovsky. In

L7
assessing the validity of Equations (5.33) and (5.36), it ig well to note that wake

8'

4

2

• .. '-."

1.0 I .

MOVING
C-8 BLOOR AND GERRARD 56

GB 0 SCHAEFER AND ESKINAZI 2 3

.6-STATIONARY UGRIFFIN AND RAMBERS7

06 FRO U

0.40

0.2

0.0-
20 40 102  103  4 5

Rd .

Figure 5.23b - Oscillating Lift

Figure 5. 25 Strea.ftcj~r ',,~rtez sPacing k. and Roo t-Mean -Square Oscillating
Lift Coefficients (Calculated)
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S.3

TABLE 5.1

VORTEX STRENGTHS AND VELOCITIES

F 0

Rd U0  Author

60 2.44 0.1 Schaeffer and Eskinazi23

120 2 0.1 Schaeffer and Eskinazi
23

56
144 2.5 0.1 est Griffin and Ramberg5 .

2,000 1.7 0.14 Bloor and Gerrard55

16,000 1.46 0.18 Bloor and Gerrard5 5

Griffin and Ramberg5 6

144 4.2 0.). est (Vibrating Cylinder)

properties £/d, F/Ud, and U v/U vary with distance downstream of the cylinder.

Furthermore, Equation (5.36) is sensitive to small uncertainties in ld, which is

numerically near 0.9. Also, Equation (5.33) is sensitive to values of F/U d which

must be derived from velocity measurements; the wake using appropriate modeling of

vortices of finite core radius. Thus, vortex strengths are not known to great

precision. Finally, measured wake parameters and lift coefficients have not been

determined together in an experiment. P

The effect of transverse cylinder motion is shown in Figure 5.23 at R - 1.44.
d

57
Griffin and Ramberg measured greater vortex strengths with a peak-to-peak cyl-

inder displacement of O.3d than with no motion. This increase in circulation,

shown in Table 5.1, is responsible for the calculated increase in the lift co- -

efficient. Other aspects of the interaction of the vortex-induced lift and motion

of the shedding body will be treated in a special section of Chapter 7.

There has been another attempt at calculating the frequency and magnitude of

fluctuating lift as reported by Gerrard. 72 This is a direct calculation of the

potential field which results from the dynamical behavior of parallel shear layers.

Each shear layer is modeled as a sheet of elemental vortices .,hich are free to move

under interaction with each other and with the mean flow past the cylinder. The

motions of the shear layers generate a resultant set of large-sized vortices or

concentrations of vorticity in the wake of the cylinder. The geometry of the vortex

street and the dynamical characteristics of the calculated lift coefficients are in
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reasonably good agreement with measurement. A similar model of the vortex street

generation had been used earlier by Abernathy and Kronauer. Their calculations

disclosed that the shear-layer exhibited a "mode-like" behavior in which concen- ,.

trations of vorticity would occur in groups of 6, 4, and 2. The individual circu-

lation of each cloud, however, increased dramatically as the number of clouds

decreased to two per wavelength. They calculated a vortex spacing ratio h/ -- 0.28 C"""

for this case. They also point out that the number of vortex clouds, or concen-

trations, times the spacing ratio h/Z is roughly constant.

5.6 FORMULATION OF THE ACOUSTIC PROBLEM FOR
r- COMPACT SURFACES

5.6.1 General Equations

For the purpo3es of this chapter, we consider an acoustically compact surface

to be that which has its diameter much smaller than the observation distance from

the body and the wavelength of sound. To broaden our base of discussion somewhat,

we consider compact surfaces also take those of noncircular cross section which

have acoustically-small thicknesses and chords. It will soon be apparent that this

important class of surfaces has the special property that the radiated sound power

bears a simple relationship to the statistics of alternating forces exerted by _---

* wakes on the bodies. This is why an exhaustive treatment of the oscillating load- ".

• ' ings has been given in the previous sections.

As a practical matter, we start with the integral relationship for the
74

radiated pressure that is due to Curle, and that was derived in Chapter 2. There

we found the linear-acoustic radiated pressure disturbance, pa(x,t) at a point x is

' (using Equation (2,73) but disregarding the viscous stress lij)

2 c ~(~~.i).
P (Xt) - dV(y) .

- ~ ~[u] S (5.38)

S!

4 r i ij dViy)

S
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The terms of this equation are illustrated* in Figure 5.24a. The Reynolds stress

fluctuation, which we write as

Ti (y,t) - Quiuj - oUiU.

as we did in connection with Equation (3.58) where u and u. are fluid velocity

disturbances, are restricted to the wake region. The velocity of the cylinder

is u n , the stress in a direction normal to its surface tensor Pj reduces to the

normal pressure p 6k., if shear or viscous stresses near the surface are neglected.

All integrands are evaluated at the retarded time

r-
t - t --
r c

0

ZII

0 ,'U(Z)

XS

n °2

AU.

-- -- ' -T i " '""

U0 0  /

y .

Figure 5.24a - Cross-Section Geometry of a
Cylinder in a Cross Flow Figure 5.24b - Geometry of the .- 1

Rotating Cylinder

Figure 5.24 Diagrams of the Acoustic Fields of the Flow-Excited Cylinders

*For purposes of illustration the circular cylinder is examined, but general-

ization is simple.
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where r jIx-_y. Assumption of a no-slip boundary condition on the cylinder yields

2uiu' = u 6.. i, j = 1,2.. --i -- "
ii ii

where u is the resultant surface velocity of the surface. The terms n and n are

direction cosines of the outward normal to the surface. 9

Because we are considering compact surfaces, the derivatives outside the

integrals may be used to transform the integrands. For all derivatives of this

type we have (as in Section 2.3.3)

f A y t- 

-

r dy

A ,t- -c

=j r -yAQt ) c r r 2

V v

If the exLenL of the body and the volume encompassing fluctuating Reynolds stresses -

are small compared to r, then the second term is O[1/r] compared to the first term.

Thus, we write the dominant terms of Equation (5.38) as

Pa(X1t) 2 2
4c2 r3 f 

.ij 
C

1 f 1 x' 2
40r - dn 4Pnc 2f n [pu +p] dS(y) (5.39)

o r f ".s s.. ''

This result is identical to that which was derived by Phillips
9 and it applies to .

both stationary and moving cylinders. The connection between the radiated sound,

the unsteady lift on the cylinder, and the wake vortex development has been made

in a general way by Equations (2.99) through (2.101), and Figure 3.4.

409

499...'

p 0 .

%..-..- ,-



5.6.2 Importance of Quadrupole Radiation
The first term in Equation (5.39) is the quadrupole source radiation, while

the other terms are dipole terms. To appreciate the significance of the dipole .

terms relative to the quadrupole we consider the specific surface pressure field on

the cylinder in Figure 5.24 which is responsible for fluctuating lift forces acting

normal to the direction of flow. These forces are expressed in Equation (5.7) as

co 0 5.0
p(ez,t) = PL(ws) cos 0 e (5.40)

Any motion which is induced in the cylinder as a result of this pressure distri-

bution will be perpendicular to the stream, so that the normal component of

velocity of the cylinder surface is

-iw t 
u (e,z,t) = U(z) cos 0 e (5.41)

where U(z) is the velocity (perpendicular to the flow direction) of the center of the

cylinder. The acceleration associated with this velocity causes a directly pro- 0

portional fluid reaction pressure which also has the directivity cos 0. Thus, both

of Lhese integrands have the same circumferential directivity which is identically

zero in the direction of flow and which has its maximum absolute value in the

cross-stream direction.

We will now consider the rough orders of magnitude of the quadrupole and

dipole terms before establishing specific analytical forms. To simplify our evalu- .

ation we will consider the stationary cylinder. The maximum fluctuating velocity

in the cylinder wake is, for example, u, so that the quadrupole contribution can be 0

written in an approximate form as

o f[ 2 -

pq c 2 w uu dy

U

o 2 2 "" "'S c- u • d" ' ' -

c r

500
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where r is the distance to the observation point. We have considered the coherent

vortices in the wake to radiate coherently over an axial length segment A and to
3

extend a distance downstream of the cylinder equal to md, where m is a large number.

The upper bound of the volume within which vortices are correlated we write as

d * md • since the width of the wake is d and the effective axial length is A.3.

Now, the dipole term behaves as

~ 0aPfTdA 3

Pd c r s.f-. 3

where pf is the fluid pressure and, using Equation (5.10a), is given by S

1 2 CPf 2 oC- L

Using Equation (5.33), we find the lift coefficient to depend upon the velocity

fluctuations of the convecting vortex as

•* - t- -t

~ T inu d
L 2Ud 2Ud

since itud is a measure of the vortex strength. Combining these expressions, we

have the ratio of acoustic pressures radiated by the quadrupole to that by 'the

dipole:

2
W 2

m- Sd pu
r 2 o

c 0 2m I 2,,S 
(5.42)p 2 w0 2 c U .

-- f U ,u ''
2r c

0

Now, because 2nS - 1, the ratio of quadrupole strength to dipole strength increases

with the Mach number of the mfean flow and the intensity of the wake. The downstream
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13extent of the coherent wake has been shown by Roshko to decay to less than 40

percent of its maximum in a downstream distance lOd for R between 500 and 4,000.
d

The distance is most likely smaller than this at higher Reynolds numbers. The in-

tensity in the wake is on the order of u/U. = 0.2, as indicated in Figure 5.4 and in

measurements at greater Rd. Thus, for these instances of practical importance ;.--.

Equation (5.42) assumes the order of magnitude

pq
Pd ""

where M is the Mach number U./c o . Thus, for the low mean Mach-number flows that are

the topic of this chapter, the quadrupole radiation is not a significant contributor

to the total flow-induced radiation. In the remainder of our discussions the

quadrupole tern kjill be ignored.

5.6.3 Radiatior from a Rigid Cylinder in a Cross-Flow

A clsed-form expression for the radiation from the rigid cylinder in a cross-

flow will now be derived. By neglecting cylinder motions,* we find that Equation

(5.39) takes on the simple form

U a (x ' t) -4Wc 2 In . 3 2 "Od..(5.4.)or .r

Sre o -L/2

The force per unit length exerted by the flow on the cylinder is given by

2 T

Fi(z,t) f n i p(O,z,t) d dO (5.44)
02

so that Equation (5.43) can be rewritten

*The radiation which results from the transverse motion of the cylinder will be

discussed in Chapter 9. 0
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- 1rL/2
- i (xt) [F,(zt+ dz (5.45)Pa(X t) c° L/2 g=.]

This relationship is identical to Equation (2.77). The radiated sound pressure in

any direction is, thus, seen to be proportional to the time rate of change of the

total force on the cylinder in that direction. Thus, there is sound radiated 0

normal to the flow direction by the lift fluctuations as well as in the flow

direction by the drag fluctuations although these forces are only on-tenth the lift

forces. Note that the radiation is also independent of the shape of the body.

Expressions for the forces which permit a consideration of the axial nonuniformity 0

of phase are derived from Equations (5.7) and (5.8) or (5.44). The forces per unit

length are of the form

Fi(z,t) = i(w) exp[i4(z,t)] eiwt (5.46)..

where 4(z,t) is the axial phase function and w is the radian frequency. The ."-

amplitude of the force per unit length at a location on the cylinder is (w)'
which for a given value of U., is, in general, a function of frequency. When the

vortex shedding is discrete, the lift and drag components are concentrated at the

frequencies w and 2w, respectively.

The time-averaged radiated sound intensity I(x) is found using Equation (2.15); .

by substitution of Equation (5.45)

L/2 fL/2
I(x) - 1 c 3 dz1 dz 2

167 pc -L/2 -L/2

1 T
_]f Fi zli't+ r Fdt (5.47)_ .C 1(2,t+ r ".0I

0
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*o

where w is w or 2w depending upon whether periodic lift or drag fluctuations are
S S

considered. In determining this equation we have assumed that w >> 3p(z,t)/at as

we did in Section 5.3. Now, incorporating Equation (5.46) into Equation (5.47), we S

find

2 ~ L/2 L/22
3(X) = 0 I [ 1 

2  R (Zl-Z2 ) dz dz (5.48)2 3 4 J R ' 116T2 oCo -L/2 -L/2

where we have assumed that the characteristics of the correlation function are

those which were developed in Equations (5.11) through (5.16). The integral in

Equation (5.48) can be evaluated in terms of the correlation length as

f L/2 fL/2 
~L $

fR ( z dZ = dr dz2R (r)

pp1-z2) d 1dz2  f2
-L/2 -L/2 -L -L/2+r

2[LA -y A. .

3 c3

where A is the correlation length as defined by Equation (5.17) and
3

r R(r) dr

0

is the centroid of the correlation function. The centroid of the correlation

function is on the order of 2/3 A3 as indicated in Reference 47. Therefore, under

these simplifications, Equation (5.48) reduces to

l/-) 0__o cos 2 6 $2 (5.49) "16c 3  r2 ¢L S 2A3 (L-y)
16c r

0

504

S' '-



for the sound intensity radiated by sinusoidal lift fluctuations; for sound
2 2

radiated by drag fluctuations we replace CL by CD, Ws by 2w s , and cos 0 by sin 0.

In the range of Reynolds number for which the vortex shedding is irregular,

li(W) j2 is continuous over a frequency range and Equation (5.49) must be modified.

For these broadband fluid forces, IPj( M)l2 describes a force spectrum which can be
written as a spectral density pp(w), i.e.,

pp

2 (- ) pp rl 2122 (550)
It M( ) (w) -21P0U -j d(.0

by generalizing Equation (5.9). The Mpp(u) is a dimensionless surface pressure -"

pp
spectral density which would be measured locally by a pressure transducer on the

cylinder. Equation (5.50) expresses the dimensional spectral density of the

circumferentially-integrated pressure, which is equivalent to the lift per unit -

length. Our fluctuating lift coefficient is related to this pressure spectrum by .

2O

LC I dw (5.51) :-

-eL )

this relationship can be deduced by comparing Equations (5.50) and (5.10). Similar

relationships can be determined for the drag spectrum in terms of a pressure .'r-

distribution which is maximum at 0 = 90 and 270 deg.

Use of these relationships gives Equation (5.48) in the form

2 U 2
(x) cos U (w) d2 2 co  2pp.

16v p°c r -c ) (r 2 "

x (L-r) Rppr) dr (5.52)

'--"1.- .
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These variations, Equations (5.49) and (5.52), in the expressions for the radiated

sound intensity can be used to estimate sound levels from the known properties of

the flow-induced forces over rather extensive ranges of Reynolds number.

5.6.4 Review of Measured Acoustic Intensities

Measurements of sound levels from cylinders in a cross flow have been conducted

in recent times by Holle,
7 5 Gerrard, 7 6 Phillips,9 Leehey and Hanson,

43 Koopmann,42

Etkin et al., and Guedel. To facilitate comparisons with theory we follow

Phillips' example and rewrite Equation (5.49) in the form

2
2 2 - 2A

-2 c 6FS2 M]d cosO 0 (_Lc(.3
Pa -- 2 1 CL d I- (5.53)

which clearly exposes the sound pressure level as a function of the lift coefficient 9
and the axial correlation length. Figure 5.24 shows the measurements of Phillips,

Holle, and Gerrard, as presented by Phillips in the form of a linear function of
2U JS Ld/r 1. The measurements were conducted at e - 90 deg and, collectively, over

a wide range of Reynolds numbers. The slopes of the lines in Figure 5.25 are given

by

1/6

3 4
In the Reynolds number range between 10 and 10 a typical value of the lift co-

efficient is 0.3 (Figure 5.15), and of the correlation length is 10d (Figure 5.16).

This gives M = 0.6 which agrees favorably with the slope of the line through the --

data of Holle and Gerrard.

This correspondence between the measured sound pressure and the calculations

which use the parameters of Figures 5.14 and 5.17 are approximate. Inconsistencies

in the measurements are minimized by taking the i/6-th root of the pertinent p
2"

parameters C and A /d. A precise verification of Curle's equation and of the

integrated result, Equations (5.49) or (5.53), awaited the nearly simultaneous
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Hno4 3  42
attentions of Leehey and Hanson and of Koopmann. In both cases, simultaneous

measurements of the fluctuating lift coefficient and of the correlation length pro-

vided a critical comparison of experiment and theory. Table 5.2 shows the ratios

of calculated-to-measured sound intensities for the investigations. In all cases,

the flow induced peak-to-peak cylinder displacement 2X was not zero so that the2

measured values of CL may have been influenced by this effect.* The agreement in

this table, however, clearly shows that calculations of sound levels may be made

quite reliably given accurate measurements of the cylinder forcing parameters.

TABLE 5.2

COMPiRISON OF MEASURED AND CALCULATED SOUND INTENSITIES

2Xd  -1/2 2A3  1cl ..

d C L3IlRd d dL -- d 10 log I Author
mean s.-

2100 0.03 0.15 4(=L1d) 3 Koopmann4 2  .

4000 * 0.04 15 1 Leehey and Hanson 43  "
43

4090 * 0.03 13 0 Leehey and Hanson
434140 * 0.08 12.5 1 Leehey and Hanson•.' °

6050 * 0.42 9.7 2 Leehey and Hanson

6260 * 0.43 9.2 2 Leehey and Hanson 4 3

6450 0.056 0.51 8.5 3 Leehey and Hanson43

*Indicates that cylinder displacements were not measured.

We now consider the speed-dependence of the mean-square radiated sound pressure
6

by noting that Equation (5.53) shows a Ur- increase for a given cylinder diameter d.

This dependence is borne out by the collection of experimental results in Figure

5.25. However, in specific instances, for example, a specific cylinder over a •
i' considerable speed range, this dependence on speed may not be observed. An example

" is shown in Figure 5.26 where the measured sound level increases with a substantially
6

greater speed dependence than U . The change in the dependence shown in the figure

occurs at a speed for which the vortex shedding frequency coincides with a resonance

frequency of vibration of the cylinder. This change reflects the change in the

oscillatory lift coefficient as the speed increases.

*Recall that it is the contention of Leehey and Hanson that cylinder motion did

not influence the correlation length in their measurements.
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Figure 5.26 - Sound Intensity at Shedding Frequency Measured at r 12 Inches
43and 0 90 Degrees (Leehey and Hanson )

In spite of this apparent complication in a simplified interpretation of the

relationship, Equations (5.48) and (5.49) are very powerful for making simple 9; "

acoustic estimates. Equation (5.48) states that the radiated sound intensity from•

any acoustically-compact rigid body is directly proportional to the time derivative

of the mean-square fluctuating force so that

1 Cos [F 2
1)2 3 2 1 (5.54)

0 0

where 0 is measured from the direction of the fluctuating force vector. Thus, in a

practical situation in which the radiating surface is small, the acoustic intensity
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could be estimated by calculating the magnitude of the mean-square fluctuating

force, and the overall sound pressure has the dependence on speed as given by

Equation (5.53). 0

The radiation from a circular cylinder whose axis is set at an angle to the

flow direction has been measured experimentally by Guedel. Let 4 be the angle be-
tween the flow direction and the normal to the axis of the cylinder in the flow-

cylinder plane so that the velocity component normal to the cylinder is U cos 4.
2F[. Assuming that the root-mean-square periodic forces are proportional to (Um cos ]

and that the vortex shedding frequency is proportional to U cos , Equation (5.53)

shows that

-2 6 62 u (Cos 6.
Pa

Guedel's experiments substantially support this result, yielding an exponent which . .

varies from 5.34 to 6.
78 79Measurements of shedding frequencies by Smith et al., and Ramberg have

verified that f d = S U cos 4 increases slightly with yaw angle . The increase
S c

is approximately 15 percent with 4 30 deg and 25 percent with 4 = 60 deg. The

implication of this can be seen by referring to Equation (5.33). Given that the

Strouhal number based on U cos 4 is constant, an increase in C based on Ucos
L

would imply an increase in I'/U d cos 4 and, therefore, an increase in the fluctu-

ating lift coefficient. Guedel's results, however, indicate that the product CL A3

6
decreases with cos 4 since the dependence of sound intensity is less than (cos 4)
This discrepancy can be intepreted as indicating a loss in axial coherence as 4 is
increased. Indication of a decrease in A3 with increased yaw angle have been shown

78 79 0
by Smith et al. The recent results of Ramberg show that the wake thickness at

the end of the formation zone is independent of yaw (1)<50 deg) and that the forma-

tion length is only weakly influenced by yaw. The base pressure coefficient, de-

fined with the velocity U, cos 4, is generally less than the coefficient at zero yaw

angle by a factor as large as 1.2 at (p - 50 deg. For yaw angles greater than 50 deg,

Ramberg finds, for cylinders without end plates, that the character of shedding

changes from one in which tie vorLices are nearly parallel to the cylinder, to one

in which they peel off from the tip and are aligned with the flow direction.
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Vortex induced vibrations of yawed cylinders due both to oscillating lift
80

fluctuations and oscillating drag fluctions have been studied by King (see also -

Chapter 9). •

5.7 RADIATION FROM ROTATING RODS

We turn now to an examination of the acoustic intensity from cylinders rotating

transversely to their axes. Such cylinders represent the most rudimentary treatment -

of vortex shedding sounds of propellers. Figure 5.24b shows the spin axis to be

perpendicular to the axis of the cylinder with the angular velocity of spin denoted

by Q. The local tangential mean velocity is

11(z) = S2z (5.55)

and at the tip of the cylinder

U(zT) fz U
T ~TT

where z is the radial coordinate measured from the spin axis. We assume that if

there is a mean advance velocity parallel to the spin axis it is uniform and
negligible compared to the tangential velocity at z - z /2, where z is the tip

t
coordinate, or the radius of spin. The rod extends from a hub of radius zh.

The analysis consists of writing Equation (5.43) in a slightly more general

form to account for the fact that the fundamental frequency of shedding and the

magnitude fluctuating forces increase outward along the cylinder. The linear in-

crease in shedding frequency with distance from the hub is given by

w d - 2r U(z) for zh < z (5.56)
s h .

We are essentially assuming that the vortices are shed from the cylinder continuously

along its length although experiments by Maul and Young suggest that this as-

sumption is not strictly correct; the vortices are shed in a stepwise fashion along

the length with lengths of individual patterns on the order of 4d at R - 2.85 x 104.
d

Also, since the shedding frequency varies along the rod, we must maintain the

general interpretation of the oscillating force spectrum that is given in Equation .6
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(5.50). Now, combining Equations (5.47) (with w moved inside the integral),

Equations (5.50) and (5.56), we obtain the total far-field acoustic intensity as*

z
2____ ~ C ~ p 2  

- 2
l(x) 3 e2 dw dz I  dz 2  poU(z)J

16IT 0 C r f f
00 r O Zh Zh

29
x w Rp(z- 2 ) p(to) (5.57)

where 6 is the polar angle measure,' from the axis of rotation. The continuous

spectral density function 4 pp(w) is strongly peaked near wn = is; we will assume that

it can be expressed in terms of a universal function with a dimensionless frequency

as its argument. Thus,

4(W 4 (d (5.58)
pp U pp (U

in order to conveniently substitute Equation (5.58) into Equation (5.57) we must

further assume that the correlation length is small relative to the distance z- zh

and that the shedding frequency is constant over the correlation length. Under this

further assumption we now obtain the frequency spectral density of acoustic intensity

as

zS
I(x,w) COS 2 2 A

2 T-2 (z) 3I6T2p c rL"

X -- 4)p dz (5.59)

*Here we will neglect the effect of rotation on the retarded time; when a ro-
tating source is a tone the rotation causes the generation of harmonics of the tone
frequency at multiples of ,. The effect disappears as f- O and for broadband
sources at all values of . These harmonics will he discussed in Chapter 9. .
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The total acoustic intensity is given by an integral over frequency,

I(x) =J T(x,w) dui

In deriving Equation (5.59), it was assumed for simplification that the centroid of

the correlation is negligible. If also A is independent of z, we rewrite the
3

intensity spectrum in terms of the rotational tip speed UT as

2 22

cos d (od 2 2A3 2Ll6, 2 r20c ..U/ d d

0 0

z /L 4 U
rUUzd1U U1  /wd dz (5.60)

- 2
J~T  U LUTJ UfPP L-" T

z /L

where L ; (z -zh ) is one-half of the total length of the rotating cylinder. Equation
t h(5.60) clearly shows how the acoustic intensity depends upon both the Mach number

and the dynamic pressure based on tip speed as well as on a dimensionless frequency

based on tip speed. The integral signifies the summing of the local oscillating - _

pressures along the cylinder; the magnitude of the mean-square pressure increases
with U4 (z) while the time-scale of the vortex shedding decreases as [U(z)] -  The

with.while.."The

integral is a net oscillating pressure spectrum which has been made dimensionless on

the cylinder diameter and the rotational tip speed. This net spectral density has
S

the form

T 0 T

if zh << z t so that since L = z then U(z ) 0 and U(L) = U
h tt n r
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The spectral density of the radiated sound pressure from the rotating rod is

distributed over frequency even if the vortex shedding at a point on the radius of

the rod is locally a pure sinusoid. This can be seen more clearly by considering 0

a simple analytical example of a locally periodic spectrum at each value of z

given by

up [ E (Z) -2.)

for - < w < . The pressure fluctuations at a radial point z on the rod occur at

discrete frequencies given by

UZ + 2rrSU(z) 
'"

The sound spectral density for the rotating system is obtained by substitution into

Equation (5.61) as

* F(~) _ ~l w

T U2 T S for < 1

2 2 lT 2r 27TUSCL 
i i-ii:

(5.62)

=0 for I2.SI > 1

so that the acoustic intensity spectrum is

2 2 2A
I ) cos d 2 2 32L 2 2

I(XW ('T) (2iiS) - qw d T CL16rr r poco 
.-

40_ w}
2d~wd/UT f s 2 1T--for- < 2aS.

d (UA/UT 
" -

x U-- 2----/a- (5.63) ' ".

0for ,-- 21TSTT
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and the total intensity of the sound is determined by integration to be

2 2 2A ,
dcos 2 2 32L 2 (5.641(x) M d-d q (5.64)2 T ~ T TC;L

28r
0

2where M - /C and q= 1/2 (PU2). These relationships will be compared to 0

measured sound levels.

The validation of these relationships is provided by experiments conducted by
82 83 84Yudin, Stowell and Deming, Scheiman et al., and previously unpublished results

of the author. In the 1930 to 1950 time-span, most quantitative measurements of

radiated dipole sound from cylinders were obtained on rotating cylinders. This was

the only practical means of achieving high Reynolds number flow without high back-

ground acoustic levels. Stowell and Deming's results, for example, demonstrate

that the radiated intensity behaves as

6
U L

(x) cos2  T
r

0

Examples of measured autospectral densities of the radiated sound intensity are

shown in Figure 5.27. Reynolds numbers RT, based on the diameter of the cylinder

UT

-20 (f/ic

13i 
-2" "- '

(3 2 X104 62
3 0 4.0x104 104

0 4 . 104 12"

oO0V -4 --"' '0.
0

-60 - 0 - 17 d, V . 15 / c
-40 2 tt 0IA. ROTOR. "0.h hr.. OIA ROD 

"- " '"

10-1 100 101

UT

Figure 5.27a - Spectral Density of Noise from Rotating Rod
(Author's Measurements, L/d 16) .
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Figure 5.27 (Continued)
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Figure 5.27b - Spectral Density of Noise from Rotating Rod

(Scheiman et al.,8 4 L/d = 30)

4 5
and the tip speed, range from 2 x 10 to 4.9 x 10 The measurements were obtained

on rods of length 2L which were spun about their centers either out of doors or in

an anechoic room.* That cylinder vibration did not influence the measurements is

indicated by the absence of resonance effects in the measured spectral densities.

for Reference 84 and the present case, the sound levels were found to be in-

sensitive to a superimpos'id axial mean velocity with magnitudes at least as large

as 1/10 (UT). The measured spectral densities are shown to be dimensionless

functions of q and 'T which are more peaked at the lower values of RT. Comparison
T kT -1/12T

2
with Equation (5.63), with CL 0.45, S = 0.2, and 2A3 = 5d, is shown in Figure

L .3
5.27a. Theoretically, if the vortex shedding is temporally sinusoidal along the

entire radius of rotation of the cylinder, a spectral peak will occur at wd/U T  2,rS

- 1.26 with sound absent at higher frequencies. The measured spectral density at

Pa 2 x 104 increases as (wd/UT) 6, and then rapidly decreases for wd/U > 1.0 in
.T T

rough agreement with the simple theory. The disagreement for wd/U T  1 is probably

due to a spectral broadening of the local vortex shedding such as has been observed

by Maul and Young for a bluff body in a shear flow. As Reynolds number increa3es,

*The neasurement3 by the author were obtained at the David W. Taylor Naval Ship

Research and Development Center Anechuic Flow Facility.
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the spectral densities of the intensities broaden in a systematic fashion until at
5

RT = 4.9 x 10 the. spectrum has a greatly suppressed peak.
Various directivity measurements are shown in Figure 5.28; they generally

support the cos dependence. The discrepancy at 6 = 30 deg is unexplained
particularly in light of the observations of Gerrard7 6 and Guede77 on a sationary

rigid cylinder which confirm the basic cosine directivity. -

Total radiated intensities for a variety of experimental cases are shown as a

function of tip speed Mach number in Figure 5.29. The measured intensities are in

close agreement with values which were calculated using Equation (5.64) and the

measured parameters in Figures 5.13, 5.15, and 5.18 at the appropriate values of R V
-1/2 T

Estimated values of the measured C2  and 2A are shown in the respective figures.
valus ~eL 3in rsetv

An average value of a given parameter was selected for a range of Reynolds number

between 1/2 RT and RT for each estimate. Although the precise values of the shedding

parameters are perhaps somewhat questionable, tie trends of computed and measured

intensities, shown in Figure 5.29, demonstrate an important point.

6The speed dependence of the radiated sound is UT for a limited range of MT that
4' -

is bounded by RT < 4 to 10 x 10 . For higher values of Mach (and Reynolds) numbers,

the speed dependence falls off becoming more like U . This change in speed depen-

dence is matched by the calculated intensities. The calculations show that the re-

duction in both the fluctuating lift coefficient and the axial correlation length at
105

high Reynolds numbers can account for this observed change in speed dependence.

This result amplifies the statement made in the last section regarding Gerrard's5 - "o .° -~

observed U speed dependence. .

In certain practical situations, the speed dependence of a particular sound

source does not always uniquely describe the physical nature of the source. As

seen in these instances, the nature of the noise mechanism is identical in each case.
4 5 6The observed U , U5 , and U speed dependences are the result of the shedding process 0

itself being strongly Reynolds-number dependent over a large range.

5.8 OTHER TOPICS IN VORTEX-INDUCED NOISE

The problems of acoustic radiation from, and the forced vibration of, cylinders

of noncircular cross section are rather specialized to specific instances. Also,

extensions of the acoustics and vibration problem to multiple tube banks has been
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Figure 5.29 - Variation of Sound intensity Level with Tip Mach Number

given by some investigators. In those cases for which data are nonexistent, the

fundamental formulations of the previous sections can be used to provide estimates

of force coefficients. When vortex structures are known, the estimated and measured

magnitudes and correlation lengths of lift can be used to predict acoustic in-

tensities for these, more complex, instances.

5.8.1 Cylinders with Noncircular Cross Sections

There has been a surprisingly large number of measurement programs in recent

years that have yielded data useful for acoustic estimations. The measurements

often have had application to the prediction of wind-induced fluctuating forces on

architectural structures. Generally, the measurements are limited in scope so that

wide ranges of Reynolds number or large numbers of unsteady parameters have not been

reported. Table 5.3 summarizes a number of useful results on some important shapes.

In all cases, with the obvious exception of shape d, sharp corners existed on the

shapes. The oscillatory lift coefficient, when it was determined as the result of a

direct force measurement, has been made dimensionless on the thickness d and the total

span of lift measurement L. In all cases, the highest reported value of the lift

coefficient occurred when the flat side of the sharp-edged cylinder faced the wind.
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TABLE 5.3

LIFI COEFFICIENTS ON CYLINDERS -

-'-1/2:. ' "-

Shape Rd C L  2 3 d S Source

a - I 10 4-3104 0.054 - - Integrated pressure
O

- 4.5'104 0.054 - 0.23 Measured lift 86 (L/d=6)

c 4.5.104 0.52 - 0.14 Measured lift 86 (L/d=6)

d - I 4.5x10 0.28 - 0.21 Measured lift 8 6 (L/d=6)

4 4 87
e -C Ljjd 3x10 -11xl0 2.5 InLegrated pressure

d,,

' L. 104 0.7 to 1.3 3 to 6 0.12 Integrated pressure
88

g-- 3.3-I3>4 1.0 - 0.125 Measured lift 8 9 (L/d=4.65) 6

h- 1 d 3.3-13>104 0.35 0 0.083 Measured lift 8 9 (L/d=4.65)

2d -
4 89

i..= Id 3.3-13104 0.05 - 0.118 Measured lift (L/d-7.8) -
,"d I-41---

88
According to Vickery, the magnitude and the correlation length of the lift are

reduced by free-stream turbulence; both values are shown in Table 5.3. The
90

periodicity of the lift is also reduced. Bearman and Trueman show separation to

occur at the forward sharp edge of the square cross-section which causes a strong

wake vortex field that is strongly correlated along the span. In case h the
89

separated shear layers still do not reattach before the trailing edge, but in

case i they reattach before clearing the downstream trailing edge. In this case

the lift coefficient is small, perhaps due to the formation of a weaker, more

irregular wake than J.n the other cases.

Steady drag coefficients and vortex shedding frequencies have been obtained on36 0 _

a variety of shapes by Delany and Sorensen. The largest values of drag were

observed on shapes with sharp corners such as c, e, f, and g in Table 5.3. Drag

coefficients of approximately C = 2 were measured in the nominal Reynolds number
4 6 D

range 10 to 106. Rounding the corners, to the extent that the radius of curvature
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was 0.25 to 0.3 of the length d, resulted in values of C and S wlhich were similar
D

to those observed on cylinders of circular cross section. In the absence of

measurements of fluctuating lift coefficients, we can only surmise that oscillating S

lift on the noncircular cylinders reduces and becomes comparable to those measured

91on circular cylinders as the edges are somewhat rounded. Rockwell has found that ...

oscillating pressures on square cylinders depend upon the angle of incidence to

the flat facing side a. The pressures increase somewhat as a reaches 4 to 6 deg, -
but drop to less than 0.1 of the value at a = 0 when a > 10 deg.

Strouhal numbers and vortex spacings have been measured in the wakes of elliptic
92

cylinders of Modi and Dikshit. Elliptical cross sections of various eccentricities

e were used; e l-b /a where a and b are the major and minor axes, re-

spectively, e - 0 for circular cylinders, and e = 1 for a flat plate. The cylinders

were oriented with their major axes aligned with the direction of flow. Strouhal

numbers defined as S = fh/U where h is the projected height in the direction
h

normal to the flow, ranged from 0.20 to 0.22 for angles of attack 0 deg through

90 deg and eccentricities e = 0.8, 0.6, and 0.44. The Reynolds number U1,a/v was

68,000. Unsteady lifts, or vortex strengths, were not measured, but the steady drag

coefficient based on h was reported to increase with angle of attack. At zero angle

of attack, CD was on the order of 0.67 to 0.8 for the values of eccentricity ctted

above. Longitudinal vortex spacing in the far wake was found to be approximately

5h. Finally, the vortex convection velocity (U.-U )/U,,, was found to be approxi-

mately, 0.9 for e = 0.92 and 0.95 for e = 0.44. With these parameters, the

equations in Section 5.5 can be used to make order-of-magnitude estimates for the

oscillating lift coefficient.

5.8.2 Unsteadiness in Tube Bundles
This topic is of specific importance in diagnosing vibration and noise in some

heat exchanger applications. However, the fluidic interactions of parallel-oriented

vortex-shedding bodies in close proximity are of sufficient general importance that

we will briefly discuss some aspects of the sources of unsteadiness in tube-banks.

Other, very much related, vortex-shedding phenomena are known to control the edge

tone and the jet tone; these are discussed in Chapter 3.
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Flow across two parallel cylinders which are displaced a distance G perpendicu-

lar to the flow direction causes unsteadiness with a range of frequencies. FigureSp v c93
5.30 shows the frequencies which have been observed by Spivack in the range of Rd

from 10 to 10. As the gap thickness between the cylinder surfaces increases from

zero the Strouhal number, based on the single cylinder diameter, increases from

approximately 0.1. This is because the vortex-shedding, which occurs on the outer

surfaces of the cylinders when the gap is closed, is determined by twice the

cylinder diameter. As the gap opening increases, the velocity of flow through the

gap increases. For G/d > 0.5, disturbances of two frequencies were sensed throughout

the region of flow surrounding the cylinders.* The source of the higher-frequency

disturbances is believed by Spivack to be related to jet instabilities associated

with gap flow. Unfortunately, his measurements of mean velocity were not conducted

near enough to the gap to disclose the existence of a jet-like mean velocity profile

which would have generated these disturbances. As the gap width was increased to a p

O_L_

U,, G

Old©I
0 M A IN SE Q U E N C E : -' -: .

0.4 o GAP

S0.3 
-

0.2

0.1

0.0
0.5 1.0 1.5 2.0 2.5 3.0

G/d 0

Figure 5.30 - Strouhal Number as a Function of Separation of Two

Cylinders (for Air Speeds from 20 to 140 Feet per Second
with 11/8-Inch Diameter Cylinders)

93
(Spivack9)

•*These higher frequency disturbances were not restricted to locations immedi-

ately behind and on the centerline of each cylinder, but rather they existed at ... -,

locations both above and below the cylinder pair.
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critical value, G/d 1, the disturbances attained a single frequency because the

vortex shedding occurred independently on each cylinder.

Measurements of unsteady forces on this geometry are not available, however, it

is likely that lift fluctuations will occur at both frequencies because both of the

disturbances were easily detected throughout the flow field.

When the tubes are grouped into bundles, the tube interactions are more complex

and dependent upon the cylinders in adjacent rows being staggered or in-line. The

work of Chen 94 -9 6 has provided unsteady lift coefficients and Strouhal numbers

useful for the purpose of making predictions. Figure 5.31 shows the general arrange-

ments of in-line and staggered tube groupings. The pertinent parameters are the

dimensionless transverse T/d and longitudinal L/d tube spacings. For either arrange-

ment, the wakes of forward cylinders impinge on those downstream influencing the

shedding from those cylinders. Measured spectral densities of velocity fluctuations

in the tube banks have disclosed disturbances of increasing degrees of periodicity
96

as the tube spacings increase. At small tube spacings, such that the clearance

magnitudes are less than the diameters of the cylinders, the fluid velocity
97

disturbances can be broadband, other than tonal. Figure 5.32 shows the Strouhal
94

numbers, defined as S = f d/U , as obtained by Chen from measurements of the

frequencies of flow-induced vibration in tube bundles with both the in-line stag-

gered arrangements. The increase in the Strouhal number with a reduction in L/d '
96for a constant value of T/d near two can be explained by postulating that the

length scale which is pertinent to the fluid disturbances is proportional to L

rather than to d. This is because L determines the intertube gap distance. Thus,

as L/d decreases, a Strouhal number fsL/Uoo, where U. is the mean velocity into the

tube bank, will be roughly a function of T/d.

-AL

L0 0 T
0i0

, i0 0 0  uo o0 T0 0 0 0 0T 0 0 T ...
0 0 0 0 T 0 OF-

u. uoo 0 0 0 T'_
--- o o 0 0 ""-
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0 0 0 0 d 0 0

0 0 0 0 0 0
(a).In-Line Tubes (b)-Staggered Tubes

Figure 5.31 - Arrangements of Tube Bundles -
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The amplitudes of unsteady forces on tubes have been deduced from the measured
96 ".'." ; -

values of vortex-induced tube vibzation by Chen. His results, which are summarized

in Figure 5.33, show higher amplitudes of lift coefficients in staggered tube

alignments. For L/d greater than 3.0 (a gap distance G/d > 2) the lift coefficients

increase with T/d in a regular fashion. Chen's values attained 0.5 to 0.9 for Rd

3 4
between 1 x 10 and 4 x 10 depending upon the geometry of the bundle. In this

Reynolds number range, as we have already shown in Sections 5.3 and 5.4 and Figures

5.15 and 5.19, the lift fluctuations on single cylinders are particularly sensitive -

to environmental disturbances. In his method of measuring the lift fluctuations,

Chen necessarily recorded levels of transverse vibration whose peak-to-peak dis-

placements were on the order of 0.5d. Motion of this magnitude is certainly capable

of causing an augmentation of fluctuating lift as indicated by Figure 5.20. Also, as - - ---

Leehey and Hanson 4 3 have shown, lift augmentation can occur without substantial in-

creases in correlation length an4 without the attendant "lock-in" which often occurs
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(Chen9 )

in cases of cylinder motion. This "lock-in" is the condition discussed in Chapter 9,

for which the frequency of vortex shedding nearly coincides with the resonance fre-

quency of the cylinder and, over a small speed range, becomes independent of speed.

Thus, it is plausible that cylinder vibration influenced Chen's measurements and

that the results in Figure 5.33 are upper bounds.

Th,::- is little experimental information on correlation lengths in tube

bundles. owever, Chen 9 4 reports complete correlation along the entire cylinder

axis, but h.e does not state what the tube length was.

Finally, we note that because tube banks are contained within enclosures,

96
vibration-acoustic resonances are possible. Thus, as Chen 9  suggests, vortex

shedding may couple with these modes. These aspects of fluid-resonator coupling

will also be examined in Chapter 9. Figure 5.33 shows the corresponding coefficients

of unsteady lift, also from Chen, which apply to rigid tubes.
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Combinations of forces on tubes both in the flow direction (drag) and perpen-

dicular to the flow cause a whirling motion of the tube when those forces attain

the appropriate relative phase and magnitude with respect to each other and to the
98-100

motion of the tube. A condition of self-excitation has been derived by Blevins -8 - I 0 0

which states that the critical velocity through the tube bundle is given by

U 2()1/2] 1/2
I-~f d 1/~Kyl4 2 .

r (C K -p d

where m = mass per unit length of the tube

U = average velocity in the tube gaps

f = mechanical resonance frequency of the tubes with loss factor nr

The first term in brackets contains a dimensionless force coefficient C ; K a
x y

stiffness coefficient for forces aligned with the flow direction. For T/d < 1.7
-4 

41
the formula C K = [2(d/T) -1] (d/T) agrees well enough with measurements to give

:20% error in estimating the bracketed term, Forces F arise from changes of tube

drag due to variations in flow between adjacent cylinders as they vibrate. The

entire term in square brackets is called the whirling parameter, and is a function

of transverse spacing T/d as shown in Figure 5.34. When the velocity exceeds ,U
cr'

the self-excitation occurs. The source of excitation, as postulated by Blevins, *.

has to do with motion transverse to the flow causing stream-wise forces induced .- "--..-

by changes in gap clearance as the tubes vibrate. Modulation of the gap clearance 4i

alters the through-flow and, therefore, the drag on the tubes. The problem is most

severe when T/d lies between 1 and 2 so that modulation of the gap clearance is

most severe. Although the theory has some proponents, it is apparently not without

question. 101,102

5.8.3 Methods of Reducing Vortex-Induced Forces

We will end this chapter by considering methods of reducing the total forces

on cylinders, because these reductions will necessarily reduce the noise and

vibration of cylinders.

Reducing the axial correlation 'ength reduces directly the total mean-square
103 104

force. This has been accomplished by Scruton and Weaver who installed a
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helical strake consisting of a smaller-diame, r cylinder wrapped around the larger

cylinder in a helical pattern. Sharp-edged strakes are more effective than those

with cylindrical cross section. Strakes of height 0.ld and pitch 5d to 10d have

been found to be effective in completely reducing vibrations. ..

Axial taper of the cylinder is also effective since it allows for a variation

of vortex shedding frequencies. Because the correlation length of vortices is on

the order of 5d to 8d, the taper should be sufficient to change the vortex shedding

frequency by at least 30 percent in distances of 5d. This is equivalent to a 6

percent taper.

Splitter plates, discussed in Section 5.4, are known to modify the shedding

frequency. Although measurements of fluctuating forces are not available, we can

speculate that splitter-plate lengths greater than 3d should reduce fluctuating -

forces. This reasoning is based on the fact that formation lengths extend as far

as 2d downstream of the base of the cylinder, as shown in Figure 5.8. The splitter

plate will interfere ,.fith wake formation, delaying it while allowing viscous
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dissipation to reduce the rate of introduction of circulation into the wake. Also,

shear-layer reattachment may occur on opposite sides of the splitter plates perhaps

prohibiting the formation of the vortex street altogether. Splitter plates will be

further discussed in Chapter 9.

Since free-stream turbulence apparently increases alternating lift forces

(see Section 5.4 and Figure 5.19) in the Reynolds number range 10 through 10.-

reductions of upstream turbulence may reduce alternating forces. Accordingly, it 5

is expected that slightly rough cylinders and tubes will generate larger lift coef-
49

ficients than will smooth ones. Schmidt has observed reductions of nearly 1/4 in

with smoothing of the surface of the cylinder. His data., shown in Figure 5.14,

were obtained with polished surfaces. The effect could be more pronounced at

lower Reynolds numbers. Alternatively, we would expect large-size roughness to

cause decorrelation of the vortex structure. Prismatic forms located at the

separation position could be expected to generate trailing vortices which decorrelate - ,

the vortex street. Unfortunately, such shapes would also cause cavitation in 6

liquid applications. Finally, we note that Vickery88 has found that increases in

upstream turbulence result in decreases in lift coefficients on prismatic forms.

A particularly useful method of reducing vortex shedding is to install

fairings to reduce "bluntness." These, then, -re classed as airfoil (or hydrofoil) ..

shapes which will be discussed in Chapter 9.
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CHAPTER 6
STOCHASTIC THEORY OF FLOW-INDUCED VIBRATION AND NOISE

6.1 INTRODUCTION
Flow-induced noise from an interaction of a structure and its bounding fluid is

related to both the forces of interaction and the vibration of the surface. We have

already seen in Chapter 5 that the Aeolian tone intensity is proportional to the mean

square force exerted on the fluid by the cylinder. In more complicaLed fluid- .

structure interactions the structure is most certainly excited to motion and this

motion causes additional sound. In general, it is possible for these two contribu-

tions to be equal in magnitude to each other, in which case, they may constructively

or destructively interfere, thus, causing a modification of the total sound power .

radiated. Often, however, in many practical situations one of these contributions

will dominate. The determination of which component is dominant may be ascertained,

of course, by separate evaluations of the respective powers. A commonly encountered

situation is that of boundary-layer induced noise. If the surface is flat and rigid

and if the boundary layer is also homogeneous in the plane of the surface, then the

direct radiation from the boundary layer is, by Powell's reflection principle,

Chapter 2, quadrupole. If the bounding surface is allowed to vibrate in flexure,

but not so much as to alter the boundary layer, additional noise will be generated O

by the vibration of the surface. In many practical occurrences this noise will -

generally overwhelm the direct quadrupole noise from the boundary layer itself.

In another example (Chapter 9), when a lifting surface encounters a gust, the re-

action force between the body and the fluid radiates sound. However, given a finite

structural impedance, the lifting surface will vibrate and radiate additional sound.

In this chapter general relationships, which describe flow-induced vibration

and structural radiation will be derived. These relationships will be fundamental

to many of the discussions in the remainder of this monograph. Therefore, it is 0

necessary to express a response variable, e.g., the normal surface vibration

velocity i- • in Equation (2.73), to an interaction variable, e.g., fluid surface -.

pressure. We define a blocked surface pressure as that which is generated by the

fluid on the surface, but with the surface rigid. We will assume, in this chapter-'"

that whatever surface motion occurs, it does not influence the fluid dynamics. This

assumption is essential to keep the analysis straightforward and it is physically -

valid for most fluid-structure interactions except those invclving vortex shedding
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and hydrofoil singing discussed in Chapters 9 and 10. Furthermore, we will assume

that the response of the structure is linear, i.e., the response velocity is linearly

proportional to the driving force. The structure, unless it is highly damped (we

will define "highly" in due course), will be assumed to respond in its "normal" modes

of vibration. Therefore, given a known description of the blocked fluid character-

istics on the surface, we ask the question: what surface motion will result, and

what acoustic radiation will this motion induce?

Because the subject of fluid-structure interaction is complex and many-faceted,

it is expedient, at this point to interface with several well-known texts. The

analysis that will be presented in this chapter is to be considered somewhat intro-

ductory and only the results that are necessary to interface with these references

will be developed. The problems of structural acoustics can be approached in varying

levels of approximation. The response of each structural mode is formally written1*
down as a blocked force coefficient divided by the impedance of the mode (see Lin,

Crandall, 2 ,3 Cremer, Heckl, and Ungar, 4 and Skudrzyk 5 ) then the total responsu of

the structure is found by a summation of the responses of the individual modes. In

this chapter the impedance of a mode we are interested in is defined as the ratio of

a complex force applied normal to the surface divided by the normal response

velocity; i.e., in the notation of Section 2.4, z = n • F/n • u = Z.F./.u.. Refer-1. 1 1 1i-

ence I extensively examines the statistical formulations for both stationary and

nonstationary random driving fields as well as linear and nonlinear vibrating

systems; References 2 and 3 are collections of contributions by experts and include

discussions of vibration caused b, jet noise and turbulent boundary layer pressures. .

Reference 4 emphasizes the statistical description of structural vibration (including

the use of damping treatments) for both local and distributed force excitation,

Reference 5 emphasizes more thc single mode-character of vibrating systems. Once

the vibration velocity is known, the acoustic radiation can be determined either for
6 7 8each mode, or for the overall response using an average radiation coefficient.

Basically, the far-field acoustic power is equal to the response vibration velocity

times a radiation impedance. Junger and Feit present the general methods of calcu-

lating the radiated fields for known vibration distributions on plates and shells.

Although these are deterministic analytical problems, the methods can be used to

derive the radiation impedance for use in statistical analyses. Maidanik 7 8 provides

* A complete listing of references is given on page 619. 4
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radiation impedances for individual modes of essentially flat rectangular panel

members but he also shows how to determine average impedances which are averaged .-

over a multiplicity of modes. Lyon, 9 and Lyon and Maidanik10 show how to avoid A

considering the responses of individual modes by using energy balances. Here the -

kinetic energy of response is assumed to be shared equally by all modes of vibration

in the structure and the power dissipated by the damping in excited modes is equal

to input power from the fluid excitation. Because the dissipated power is pro-

portional to the time and space-averaged mean square vibration velocity, the average

vibration level of complex structures can be estimated once the input power is known.

Radiated power is proportional to the product of the mean-square vibration velocity

hi and the average radiation impedance of the modes. This approach, known as statisti- 0

cal energy analysis (or SEA), is successful for highly complex structures for which

many modes are excited by the flow. Analysis of individual modes of structures is

necessary when considering narrow enough frequency bands, so that only a few modes

are concerned.

6.2 RESPONSE OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS .

TO TEMPORALLY RANDOM EXCITATION

Consider the motion of a spring-mass system that is illustrated in Figure 6.1.

The mass M is excited to a displacement x(t) by a force f(t). The force on the

kp d{l )  kspxlt)"- " -""

- •9

Cd f(t)

Figure 6.1a - Mass-Spring System Figure 6.!b - Free-Body Diagram

pFigure 6.1 - Illustration of a Single Degree-of-Freedom Linear Oscillator
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mass by the spring is opposite f(t) and equals k x(t), where k is the spring
sp sp

constant. The damping is assumed to be linear and viscous so that the damping force

7 of the "dash pot" is C (dx(t)/dt). The force balance on the mass, which leads to
2 2

its acceleration, d x(t)/dt ,is

Md x(t) = f(t) - k x(t) - dx(t)

dt2  d dt

thus,

MN(t) + Cdx(t) + k x(t) = F(t) (6.1)

d sp

where the dot denotes the time differentiation.

Because the force is random in time, we formally introduce the Fourier

transform pair

X(W) = 2 x(t) e dt (6.2) .

and

I -
-iWt

x(t) = X() e d

_Co

in order to consider the steady-state vibration. (If we were interested in

transient motion, we would necessarily have to introduce initial conditions and then

use the Laplace transform. Here we assume that the motion has lasted a number of

cycles so that transients have diminished.) Substitution of Equation (6.2) into

(6.1) leads to

2
[-Mw -iCd w+k ] X(w) M F(GO (6.3)
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or

-ix(w) +iw (6.4)FM2 2 , -
0 G1_Wi~ 0 w

where

1/2(.5)

is the rescnance frequency. The loss factor is defined as

CdQ

= (6.6)
'-o M ,

The Fourier transform of the velocity of the mass is -iwX(w); the ratio of the

velocity to the force is the admittance (the reciprocal of the impedance) of the

spring-mass system. When q << I and the frequency of the force coincides with the

resonance frequency, the velocity is largest. '

The spectral densities of the force and velocity are simply related. Using

the definitions of the generalized Fourier transform and the autospectral density

developed in Equations (2.104), (2.124a), or (3.39), the relationship between the

force and velocity spectra is

S(w) 2 --.- '
w) 2 (6.7)

IF M [( 2 _w2) +n2 2 2 2 ]
-M W 0 +r'. ...

where P (W) = (P (w). The mean-square velocity is found by integrating over all
vv xx

frequencies:

V J 4 (w)d w (6.8)
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The maximum response occurs when wi + w and it is controlled by damping, i.e., for
-0

frequencies slightly above and below w (for 4-'.jj-w -kj q/2), 1) (w) =1 /2 (P (W)
22n 0- 0 Vv VV 0

1/2M r, ag' illustrated in Figuire 6.2. Figure 6.2 illustrates this behavior of

Equation 6.7, but in a dimensionless form that also represents the acceleration

response of the mass. At low frequencies, w << woo the acceleration response is
4.

proportional to w; because c (w). the acceleration spectrum, is equal to
2 ~ =aa

Vv xx

2

M Li ( VY (uCOINTOOLOLEE

'0 Iogj

and1) Visou DapnWp

and because 4~G) k 2when Mt (w) << k 2 wG) (i.e., M « x) Lhis
xx SP F F' aa SP xx 2 s

respcnse is stiffness-contro) led. nn the other hand, when MP >> k (V (w), i.e., >
aa sp xx

>> w the response iz; deterrmined by the inertia of the mass. in the vicinity of

the resonance, the response is sensitive to the damping in the system as represented

by the loss fartor r). The quality factor of the system Q is

Q (6.9)

and ic is a measure of the ratio of resonant vibration to the mass-controlled vi-

bration of the svstem; while the fraction of critical dampiLng is defined

5 42



C0

Cd 1 "(6.10)

00

The critical damping is that required to just prevent oscillatory motion. For light

-3 -2
damping, n << I (typically, ri lies between 10

3 and 10-  unless special lossy treat-

ments are applied to the structure) the acceleration response to a broadband force

is dominated by the peak in the frequency range . - w n/2 < w < w 0 + w n/2. The

mean-square response is found by integrating over all frequencies as in Equation

(6.8); thus,

2 oF
V -2 - nw

2 2 4 2) Wo
0

2 T5- F (Wo (6.11)

0

The first factor of two arises from the double peaks at w = + w and the effective -- o .

bandwidth of the resonance is (1r/2) w thus, we require that the bandwidth of the

force (w) F satisfies

(6w)>> P - W (6.12)
F 2 o

It is instructive to note that the time-average power dissipated . D in the

system in a time T >> 1/w is just equal to the power applied to the mass in' i.e.,

T/2

, 1 f f(t) -(t) dt = f(t) V(t) (6.13)
J
-Ti 2. -9

or
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D in (6.14)

F~or the~ single mode of vibration that we have here, the dissipated power%

Dd

which is rewritten in termi -f the mass and less factor

1P TOIV 2(6.15)
D 0

'Iliese relationships can be seen by multiplying Equation (6.1) by x(t) and integrat-

lug. Since the motion is simple harmonic, i.e.

x(t) -A cr~s uw t + B s in w it (6.16)

we IiiuvL x L L ) t )x (t 0 . Using Lqtat ion (0.6) to elimina te the Camp ing

cuetf f icilt illnd combining Equations (6.14) and (6.15) we have a simple expression

* I 'ir the steddy ';!ilLC mean-square velocity

2 in (.7V M u (.7

V Il I linitLfa] oon ;tbnx('I) xadx( tO) C] thc resultinug vibration 1

havej) -i t12) co!av'i f nu-Ai

Now, We sue that Ji we know tther thos average Inplat powe'r, or the splcctrum

II i lte o(IC111ii lug I 0rCe WC call 111id thv nican-squiirc reiipon!e . flowever * ill Lhough

Yquti~ Iiii (6.1 1 ) aiid (I )diilt Ill IMInet 1',ill 141tm rn ,i ivr hais a cl ear advanltage'

0 ii~1 tI1 ie l ii L It 11 0: ii o illi -01111 v ? el'4u b t(, a I ];it vx(! tif i oil npi.'C t ilifll ('I a i-i Iiir 14

WIi IteLdOuli o 1'1r (Iseuird. 'hety tii]py dilti r Ili thet tii irl,4toi oined f-r

lie ut'o ftil oi St ib ill, Ie It-j i-l a nil , J! -.I .ii ii i a i e a i Izat-li I

['jillin (6. 17) is I 11rct ;iiiad utulli tool brl c!,It ii' le i :Itit: rk HpOill' (if

(Oltii ~ ~ ~ ( t1,X1. nyil.ii'so iili 'e/e ut 410 1 -euluuui: th de-v1Ijiii-i t i l 1I (,n~ i ol I o Iu 4.d



by Lyon9 and Lyon and Maidanik,10 with further discussions by Smith and Lyon,12

13 14
Fahy, and Maidanik. Equation (6.17) is just the simplest. of many more-general

relationships. Note that in developing Equation (6.17), we assumed that (D()is

flat compared to the impedance function; this is the only limitation to using the

relationship for the simple oscillator.

We will now consider the simple vibrating plate excited by the stochastic force

field to see the extent to which these notions apply. We shall see, in fact, that

Equation (6.17) will apply to this case as well.

6.3 GENERAL FEATURES OF STRUCTURES DRIVEN BY

RANDOMLY-DISTRIBUTED PRESSURE FIELDS

6.3.1 Modal Velocities and Excitation Functions
The method of normal modal analysis used in this subsection has been developed

and used in a number of references, among them are References 15 through 27; a text

on the method is that of Lin. A motion variable for the vibrating surface is ex-

panded in its normal modes; each mode describes a cundiLion of resonance. The

vibration of the surface is, therefore, regarded as a summation of the contributions

of the complete set of these modes. The equation of moLion, for the flexural dis-

placement directed normal to the surface F = (y,t) is

mst + C + L(11) -p(y,t) (6.18)

where m = mass per nitt area of the surface

C = viscous damping coefficient

p(y,t) = fluctuating load per unit area which is assumed to be
distributed over the surface of the structure

Vae funiction L(.i) is a linear differertial operator opecific to t 1- type of
28 ,29

structur 
.

L -T ' 2, menibran. ,f uniform tfns%fn per unit lengt.., r -

i D , thin plate ot uilo ,rn 5t1 fn .,-,, 1) K

4 4

Ii' .|J',1 k(," 'H( i011H it b('IIH tll ''Cst,,d : IF, 1 1 51 III. upt lv 'i'l uh,

lit p 1, dlrv'i:t,'d :iiward; tlcrcfr - ''. iilnii/i s-dn i,; ,J i,d. 4



=T string of uniform tension per unit length, Te
e Dy2e

34
=D beam of uniform stiffness, D the "Bernou11i-Eujler" beam.8 4 s

Dy1

The bending stiffness for flat plates is .

3 2
D =Eh /12(1-v )(6.19)

s p

and for beams it is

3
D = Ehi /12

where E = Young's modulus

h = thickness of the plate or beam

v = Poisson's ratio
p

The radius of gyration

h(6.20)

is also used. For structures with boundaries, the flexural displacement may be ex-

vanded in terms of its normal modes *5(y)

000

where the subscript n is used here to simply order the progression of mnodes.* If

the L(4) operaitor is fourth-ordt-lr

L ( p (y)) D k (. y) (6.22)
11 i S HI T

*For two-d imetilHiond 1 sL ruCtureti, Omi double tIndyx (in,n) would replace the-

6igeindex for m order ilong, y I atd n order ailung "OL' 11 L)"--d "" i Iiinni tiy

tevl, ai Htrlj- or a~ beaw'ii, Lbv .ingle u ut-d4r ti would be tvLaint-d'
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* while the second order operators give

( y)) Tk ()(6.23)n e n n

The parameter k is the wave number of the spatial distribution of C; it is deter-
n

mined by the boundary conditions applied to the surface; an example will be given in

Section 6.4. The functions 4) (y) are the eigenfunctions of the operator; they are

the normal modes of the structural vibration and they also depend upon the geometry

of the structure and its boundary conditions. The coordinate y is in the plane of

the structure and the displacement is normal to that plane. The eigenfunction

4()we will make dimensionless (although there is no universal opinion in this(Y
L regard) and normalized according to

if ')' T d y A A6 (6.24)
A

where 6 =1 when m =n and 6 =0 when m n if the modes are uncoupled. So-
mn mn

lutions of7 W'.) are not necessarily uncouplEd, but in many cases the solutions inay *

be expanded into a series of orthogonal functions which represent the mode shapes of

* fundamental modes that would exist if the structure were in a vacuum,~ i.e., without

fluid leading. Example., Y Mf (y) will be given in Section 6.4.

The displacement, as presented in Equation (6.23) also includes an amplitude

function a nand a time function g n(t). The time behavior may well be &tochastic

and representable as a generalized Fourier transform as used it, Section 6.2.

* Equation (6.21) is similar to Equati~on (6.1) except thait -.he structural dynamics

0 provide the stiffness (or potential energy), This ;tiffaess is dependent upon not

only the properties D Sand T., but also upon the wnvcelength of vibratiii and the

* geometry of the structu) ;_. For example, tIiou,-h the harmon~c operazor V"t,, some

modes of a curved ziructure will hiave a greater k.Liff1 ~eSS Ulan MUCdeb of a flIa t

structure.

* The load per Unit area ie app I it-d ionral 1 0 the p~lane of thev itructuvec; it may

* CoOH I sL of a tiperpoti ~iton of I ';a 1 ly iliplied forces, random (in space and time)..

prensure I ids, and flul IMack r.-ICicton LO the In')Lion ~.The fluid back reaction-
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included in p(y,t) can be viscous (damping), inertial (added mass), and acoustic

radiation (appearing as a damping because it represents energy irradiated from the

plate). In more complicated situations in which multiple structures enclose a

fluid, the fluid reaction on each structure is dependent upon the motions of adja-

cent structures in which cases the whole fluid-structure system becomes coupled,
30 31 32 21

see, e.g., Strawderman, Obermeyer, Arnold, and especially White and Powell "22-2

for general treatments. Only the single structure and the unbounded acoustic medium

will be considered in this chapter. The nature of the fluid back reaction will be

discussed in Section 6.6.

In the case of an excited plate or beam, we substitute Equations (6.21) and

(6.22) into Equation (6.18) to obtain

n nZ,[ms~()+Cg(t)+kDgnl(t)] an~'n y) = -pGy,t)

where Cd is a damping coefficient and the wave number k and eigenfunction n(y)
d n n

ar-: determined by the boundary conditions. Multiplying both sides of the equation

by Ti (y) and integrating over the panel area we obtain
n

[mt+ (t)+C Ds(0) an 1 p( ,t) (y) d2 y[sgn t)+Cdgs n= A'-- n. ..
P A "." ".-

p

-P (t) (6.25)

2 4
rnd similatly for second order operators for which k T replaces k4 D Now,n e n s"."

Equation (6.25) is in the form of Equaticr (6.1), where angn(t) is the modal dis-

placement and P (t) - A is the modal force. Thus motion of the uniform structure

can he thought of as comprised of a set of motions and oscillators, all of which

respond 8imultaneously and independently if the modes are uncoupled.

d f the motion is free, p (t) - 0, and undamped, Ti = 0, then Equation (6.25) -
reduces to ".' •  "

n T, n

K 48

n(t) 4 gn~t) ,. -0

1'4 ._ 0
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and g(t) has the form

-iW t

ng

anw he r aifesonnefeunyo h oeo irto. Smlry o h

2 4s s

n n n

* ditions on the structure.

* A wave-mechanical interpretation of the motion can be seen clearly in the case

of free-bendig waves on an infinite plate. The displacement is of the form

which represents waveb traveling on the plate in the direction k/1kI as illustrated

in Figure 6.3. Substituting this function it,.,, Equation (6.18) we find

2_4 i(ik.y _t

(-m Wdt u+D k )e 0w)

* for the free traveling waves which exist very far from the source of wave excitation.

ror the case of light dlamping we can neglect the term IC "i leavliig thL criteriond
* that thc, %wave nuter of the waves is related to the frequency by

4 4 2 m
k =k =(6.27)

iITc pha He fipiJv~ir. ) the IMIIJ1p WIg .'b IF; def 1ned fIl
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Figure 6.3 - Amplitude of Straight-Crested Bending Waves on a Fiat Plate

The Function that is Illustrated, Re(C), Represents the Physically -

Realizable Amplitude

1/2

C k (D (6.28)

,°. '\.T• /

which leaves

.exp ilkp k t _ Cb.. .. ..

4 CXPJI~k! M --CbtJ,.

The term In brackets defines the phase fronts of the travel ln, waves. 0

The magniLtude f th,., Wave vcttor 'p is reLcd to the wave]engbh byP

j k1, l - 2-  
Sk I

S . .



and Equation (6.28) shows that the shorter bending waves travel faster than the

longer bending waves, Figure 6.4 illustrates the behavior of Cb with k For
p2 P 

.,
membranes and strings, the operator L( ) is second order which gives rise to a k

4 p
rather than a k in Equation (6.27). Thus for membranes, the phase speed is

p

Cb

.C Cm

CC• ~C
O . ,"

CO

Figure 6.4 - Phase Speeds as a Function of Wave Number for Bending Waves
on Plates Cb, Membranes cm, and Acoustic (Dilational) Waves c.

T 1/2
C (- B ) (6.29)

which is independent of wave number. Membrane waves are similar tu dilational

acoustic waves in this respect.

Another facet to be noted from Equations (6.28) and (6.29) is that when the

structure is stiffened by increasing D or stretched to increase I , the bending

wave speeds are increased. We shall see in Section 6.5 that the wave number depen- S

dence of flexural waves (f plates (these are called dispersive waves) compllcat es

the acoustic radiation phenomenon, because as frequency if; increased, the bending".

waves travel faster with speeds which may exceed the speed of sound in the adjacent

t lu Id. 0

3°..' .
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The motion of finite panels is a superposition of free-bending waves. Depending

upon the shape of the panel and the manner in which its boundaries are constrained,

the superimposed waves will reinforce or interfere. Thus, only at preferred frequen-

cies will there be a large group of waves reinforced with a discrete value of k =kp n

At some other frequencies these waves will interfere. The frequencies of reinforce-

ment are w and they are related to the values of k by Equation (6.28). The func-
-n n -

tions Ifn () describe the spatial variation of amplitude for the reinforcing wave

systems and they are also called mode shapes of the vibrating plate.

6.3.3 Random Excitation of Single Mode Oscillators
Analysis for each mode of the finite plate proceeds along lines similar to -

those in Section 6.2. Ir is convenient, however, to deal with the velocity of the

mode. Analogously to the derivation of Equations (6.4) and (6.10) we introduce the

flexural velocity analog to Equation (6.23)

V(y,t) = V(w,y) e dw (6.30)

and

V(wY) = E V (w) T! () (6.31)n n
n

The autospectral density of the velocity can be described in terms of the auto-

spectral density of surface pressure and impedance of the surface following the

methods leading to Equation (6.10). From Equation (6.31) the velocity spectral

density is just a summation over the n modes. Assuming that the modes are uncoupled

and described by an orthogonal set of (yn() (see Equation (6.24)) we have

2
IVn( ) 2-

vv()=Y2, T "n 5

• 4'0 (w) (6.32)
n

n

t hFor the n mode of a vibrating structure, Equation (6.25) gives
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+i.pn (Wa)
n0

V (w) = (6.33)n 2 2
-m s W- imsns WnW + Wnm

where 1 is the mode-dependent structural loss factor that replaces C /w and where
d n

P n(w) is the Fourier transform of the P n(t) of Equaticn (6.25). The spectral density

of the mode n of the panel. velocity is, using Equation (2.124),

2W 1,1 (W)

n (W) = (6.34)s( (2 nW2 +1 W221m )+nsWn2 s n

This relationship is general, as long as there is negligible modal coupling. If

there is a case of fluid loading that is not negligible, it may still be used to

approximate the response, m should be increased by the added mass and nl should

be increased by the radiation loss factor r r so that it is replaced by a total

loss factor

T= ns + r1  
(6.35) S

see Section 6.6.2. The simple approximation afforded by Equation (6.34) does not

apply in cases of heavy fluid loading if such loading strongly couples the invacuo

modes; see Section 6.5.2.

The function 4 (W) is the autospectral density of the modal pressure P (t)
Pn n

that was introduced in Equation (6.25). Physically, it expresses the degree with

which the excitation field couples to the structure. As shown by the integral that

defines Pn (t), this coupling is spatial, i.e., it depends upon the spatial phase of

the driving force relative to the spatial phase of the vibratLioL mode. A simple

example would be for p(y,t) = g(t) sin 2knY1 and Tn (y) = sin knY I , then Pn(t) wouldn n nyl Pn~
be identically zero. The modal pressure for this mode would be greatest when

p(yl,t) = g(t) sin kny because the spatial phases would exactly coincide. It is

necessary to express the autospectrum of the modal pressure in terms of the
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statistics of the surface pressure induced on the plate by the flow. Defining the

autocorrelat ion

R (T) = <P (t+[) P (t)> (6.36)
pnp n n

nf

and using the definition of P (t) given in Equation (6.25), we have

R (T) JJ.2 p2 R ,(y1 -y2 T) Y n(Yl) Tn(y 2 ) d 2 dY I  (6.37)

nnp A A
1) P .

The wave-number-frequency spectrum of the surface pressure is related to its corre-

lation function by

2 =e~ i k r - wi )  ( ,) d w' " " '
Rpp(r,-T) e (kw) (6.38)

in the case of the correlation being spatially homogeneous in the sense of Equations

(2.129) or (3.45). Modal shape functions are also defined

Sn(k) = ff e k y )l dy (6.39)Sn n , -

A
p

Substitution of Eq'iations (6.38) and (6.39) into Equation (6.37) leaves the auto-

spectrum of the modal pressure as a generalization of Equation (2.133)

(W) i (kJJisk ) 12 d k (6.40a)
p 2Sk fA

p -00

where the normalization condition, Equation (6.24), is
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I ( 2k)I' d-k (2Tr)2 A (6.40b) . .

Equations (6.37) and (6.40a) represent generalizations of Parseval's theorem.

Equations (6.34), (6.38), and (6.40a) provide the cardinal results of this sec-

tion and these results may be furtner used to derive general input functions. As

long as the mode shape function Y n (y) and the statistical properties of the excita-

tion are known, the velocity spectrum of the mode can be calculated using Equation

(6.34). The mean-square velocity of mode n at frequency w can be determined from

Equations (6.14), (6.24) and (6.31) as

T/2

L = dt -f n(;ny) Kn(I 2 d2-*

/2 A
p

so that

24 (V )

V p (6.41)
n I W

s n-

where ,' = m A , The velocity is also related to the time-average inputc power to the
s p

mode ( in)n by Equation (6.17), rewritten here to apply to a single mode

inn (6.42)
n Mr W

s n

and the restriction of a flat spectrum p (w) must be maintained.
Pn

By equating Equations (6.41) and (6.42) we obtain an explicit relationship for the

time-average input power into the mode in terms of the statistics of the exciting

pressure field, i.e.,

2 1 u
A Pn n

( . = (6.43)Tin n ii -"i

Tile function A'I. (wo) is the spectral density of the mean-square modal force applied '.-
p p)

to the n mode, and it is flat over tire frequency band ,

B S1
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In comparing Equations (6.41) through (6.43) we see that the average kinetic

energy of mode MVn is determined by the resonant motion in the frequency band n,
snn

and that the power into the mode depends upon the spectrum level of the modal force-.

A ) (w) and the mass of the structure.P Pn 2 - -'-

6.3.4 Response Estimates for Structures of Many Modes

In some practical circumstances the response parameter of interest involves

large groups of modes of a structure rather than the response of a single mode. This

interest would come from a need for a broadband rather than a narrowband description.

Prior to actually estimating broad band response of a structure we must first find a ......

descriptor of the number of structural modes resonant in a frequency band. Recall

from Equation (6.26) that the uncoupled modes of a structure (either one- or two-

dimensional, membrane or plate) wi.l resonate at specific frequencies Wn which aren"-

uniquely determined by a discrete set of one- or two-dimensional wave numbers k nn

These wave numbers are rougi~ly determi-Led by the number ol flexural wavelengths that 0 '

will "fit" within the boundary of the structure. Furthermore, the mode-shape of the

vibration will be dependent upon both tne geometry of the boundary and the structural

constraint that it applies to the boundary, i.e., clamping, pinning, etc. We will

be considering the influence of boundary conditions on the shape functions S (k) O

in the next section. To illustrate the method of ordering and numbering modes, we ". .-.-.

will examine the invacuo modal patterns of a simply supported rectangular panel in

Figure 6.5. The order of a mode of vibration on a rectangular panel is given by the

number of half-wavelengths that can "fit" within its boundaries. In the two diagrams

shown, the 1.3 mode has I half-wave in the 1-direction and 3 half-waves in the 3-

direction. The fundamental would have a half-wave in each direction, and the wave

number ordering involves two indices so that k replaces km in our discussion.

The wa;e numbers for this 1,3 mode are k = 2./X = n/L and k = (27/(2L /3)) - -

1 1 1 3 3
3 .//L Letting r. be the mode order in the 1-direction and n be the mode order in

the 3-direction we have

k2 9 +
nn M n

2 
(6.44)
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Figure 6.5a - Wave Number Lattice for a Simply Supported

Rectangular Plate

- -L - O N E -D IM E N S IO N A L
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1.3 M O D E 4,3 M O D E ""

Figure 6.5b - Modal Patterns and Hode Shapes in the 1- and

3-Direct ions

Figure 6.5 - Mode Orders of Structural Vibration of Rectangular Panels
which are Simply Supported

for a resultant wave number of the (m,n) mode. That the k and k combine quad-

raticaily for a rectangular panel can be t;ui by r:f eronce to th form of L( ) in

: -quarion (6.22). If tile fle ural displacement of tihe panel or miermlrane is given by

I~~ ~ I exur ' i3eib
"" m '  

-11 

• -

where 'I(y) and T (Y) are harmonic functions in kv 1 and k y3 then for :embranes,

the laplacian of becomes _

35 
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1- 0

2 2 2 V( ~ j(
V k Y Y (y y

nM 1 n 3 11miyl Yny3

!'2 2

= (k2+k2) I(Y) n(Y)
m n m1 n3

-because (Yl
)  k = m(Yl) Yn(Y3

) " For panels, the biharmonic

'ml 4'nY3J k9(M ~~/
operator applies and we have

r. 4 + 2 3y 2 2 +
; 2 2 42..." 1 1Y YlY3 "Y3 1

therefore, \,4 = (k 2+k 2 )y Alternative representations are given by

Leissa for certain other boundary geometries.

Still considering the vibrations of a rectangular structure, we note that a .

combination of Equations (6.28) and (6.44), with indices m,n replacing the single

index n, will give the resonance frequency w for the m,n mode of the plate. The

available resonance wave numbers will appear as a lattice as shown in Figure 6.5a

and the resonant mode at frequency w = wi is that value of m and n for which

Equation (6.28) is satisfied. If we consider a band of frequencies %w, that is large

enough to contain at most one mode, then there will also be as many available modes

included as illustrated in the annular sector. First consider the number of .-.'-

resonances included in the quarter circle of radius k = k which is the wave number
p

of free-banding waves on an infinite plate with the same properties as the finite

plate. This wave number is

1/2

k (6.45)

and thc toLal number of modes accumulated in the range 0 < k < k is 4,12

2 2

L 111 3 p

-) ) ;



because the area of the quarter circle is nik / and the area defined by each of the
p

interstices in the lattice is IT/b ii/L Y Resonance conditions exist whenever

k = k .The average increase in the number of modes per unit increase in wave
p mfl

- number is, therefore,

dN k pL L3
n(k ) - -(6.46a)0

and, accordingly, the increase in the number of modes per unit increase in frequency

is

dN dk n(k)

n~) dk~ dw p cgp

n(w) 1 l 3 (m)

* where c 9is tile group velocity of the waves, ~~

1/2

I cC 2kj)
m

* Because the longitudinal wave speed in a plate is

1/2
(0) (6.46b)

we can write tlie modle density as
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A
n(() = M n--_ (6.47)

47TKC~

where Ap L L is the area of the plate.
p 1 3

Equation (6.47) shows that the modal density of a plate is independent of fre-

quency. Also, the plate area has been introduced instead of the length and width.

Equation (6.47) applies generally for the higher modes of all single plates. For

membranes, Equation (6.46) still applies

kA
n(k) =P (6.46c)

p 21.

but, because

1/2 

k = s
p T C

P m

the frequency modal density increases with frequency as

A w
n(w) = (6.48)

2ii

In like manner, the wave-number modal densitv for a b-eam of length L is

n(k ) = L

p VT. .

and

n(k )
nL (6.49)

C11g 2ui (,KC.-)

• ..



* which shows that the frequency mode density decreases as frequency increases. For

a long narrow structure one would expect n(w) to follow Equation (6.49) for fre-

quencies above the fundamental resonance frequency and below the first lateral mode - S

for which kL 3 < 1. For both, kpL3 > 7 and kpL > r, Equation (6.49) applies.

Figure 6.6 illustrates this dependence of the mode density on the width k L of a
p 3

rectangular panel for which L > L for all modes k L > 7T.

20
BEAM MODES

2/(L3 kp' , EQUATION (8.49)

10

PLATE MODES"
EQUATION (6.47) ' "

I" L -1 -6o
1.0

0.1 1 1o0f ll i
k L

3

paFigure 6.6 -Modal Density for Rectangular Plate for which
kpL I > P and L 3 < L . Note Regions of Plate-Like and-"Q.-.

Beam-Like Vibration. '" -

Equations (6.47) and (6.49) are independent of the nature of the constraint

applied to the panel or beam (clamped, free, etc.) for modes that have more than •..

1-half-wave between boundaries. Thus, we need not be concerned with the details of"

constraint at this point, but only with the one- or two-dimensionality of the .

structure and whether the bending waves are nondispersive with C 9as a constant, or -

dispersive with C dependent upon wave number.
Thus, we are now in a position to illustrate the melthods of estimating the

klow-induce Lc.ponse of sructures in frequency bands for which* an

nI q ons (6.4t7))n (6.49) rendepe tenae of the onsfraent

nsi oer this tin, ut obnee eon a t weo-ae s 'Ian thy frteend

bastutr andr whehther the bendingerves, ae noadlstepri y wihoke ase afconteand or

f fSdispered oit Cf depenodn uonwaveonumber..-

n~u ) .u..>.
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As indicated by Equations (6.31) and (6.32), the flexural velocity spectral density

on a two-dimensional. structure is a summation over all modes of the modal velocity

spectra (w). It has been assumed that the modes are uncoupled. As illustrated '
mil

in Figure 6.2 and shown in Equation (6.34), the ¢ (w) for each mode is sharply
mn

peaked about all frequencies for which w --+ w . Thus, where we consider the mean-n
square velocity in the broad frequency band of a filter 1w, centered on wf, Aiwf must

be large enough that A.-f >> ;(> w)/2 and n(wf) >f > 1 . The total mean-square
f Tn f f

velocity in the Aw is just the summation of all w lying in wf + Wf. The fre-n f f- .-.*

quency interval between modes must be small enough that the set of resonances

resembles a continuum. Using Equation (6.32)

w f +zw f / 2

V 2 (,j fA 2 f ( v) d j

Wf -Awf /2

f f
V- 2 Jmn(w) dw-

Wf -A. /22

f f

S2

mn n-".d'

all modes I" -win A.') 0

where Lo is the center frequency of the filter band and V is given by Equation
f n

(6.41). We already specified that the modal force spectrum, 4) (G) must be roughly

Pmn S

constant over the resonance frequency band (-,/2), n, but now if we also require
'T in.

that it is flat over the entire filter bandwidth of interest Awf, then we can

approximate the summation by an integration over all n lying in Aw because n(w)

Aw >> 1. Thus,
f

if +.Jf /2
), v'() (6.50)

V'(wfVf) (w) n (w) dw ('otz"
TM (cont.)Uj f- 'J)f /12 _
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2S

Vn(w n(w Af (6.50)
mn f f f

2-1
where V (wf) is again given by Equation (6.41), but it now represents the typical

" n f
mean-square modal vel.ocity generalized as a continuous function of frequency. If

the structure is a plate of area A then Equations (6.41), (6.47), and (6.50) give

the mean-square (time- and area-averaged) panel velocity as ,

p ( A _ AwfAwf) Pmn __ (6.51).-. -

rwV (Uf AwJ f) 2 47TKC W f(.1
s T

rhe time-average power per unit area that is supplied to the plate by the flow

is

fin A (inn
p modes in inn

L~UL

For a large enough bandwidth to include more than one mode this may be approximated

as

w +Aw /2f fP..
A in~(w) n(w0) dw ""'

p (0 AW/2
f f

0
From Equation (6.41), we find the power spectral density* per unit area to be --

1 n (w) = n (w)/2Aw and < w<in in'-""

T (w) j

Pmn
s

*Reverting now to the standard frequency notation.
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P A

Pmn A p,.
Am (6. 52a)

2ms 4

with the total input power given by

T in(W) dwin = fW"
<

The input impedance per unit area of an infinite plate is equal to the average (over S

all modes) resistance of an infinite plate,
4'9'12

R = 8m KC
sJ

therefore, the input power spectral density per unit area can be rewritten

Pan (w) A .

T1(in R (6.52b)

where P (w) is given by Equation (6.40).
Pmn '

The relationships just derived, Equations (6.50), (6.51), aud (6.52), are sub-

ject to rigid restrictions. It must be established before these are valid that

V 2 (w) is indeed nearly independent of the mode order. This, in turn, requires that
mn
the modal damping is roughly constant for all modes in the frequency band. If one

mode is very lightly damped its response will overwhelm the vibration of others in

the band and it must, therefore, be considered separately. A less obvious but often

more important restriction to the use of these approximations is that the auto-

spectrum of the modal pressure, c (w) of Equation (6.40), is the same for all "
Pmn - 1

modes iii the band. Suct may noL be true if, for example, the wave number spectrum

of the excitation pressure is very large for only a restricted range of wave number.

Then, only certain modes in the frequency band will be selectively excited. This
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situation can arise when boundary layers excite structures. It is also likely to

arise when vortex-induced pressures excite the trailing edges of hydrofoils. Another

restriction can occur when acoustic radiation from the structure is ultimately esti- 0

mated. As we shall see in Section 6.5, certain classes of modes more effectively

radiate sound than others. Generally such a modal averaging as undertaken above is

not appropriate when a self-excited acoustic or hydrodynamic feedback is involved.

The input power, Equation (6.52b), is related to the mode-ensemble mean-square

-
velocity V (w,Aw), Equation (6.50), by a relationship analogous to Equation (6.50).

V 2 ( ,A) )  in (6.52c)M T T. .

The mean-square velocity is dependent upon the boundary conditions of the plate by

influencing the details of the shape function S mn(k), as we shall see in the next

sect ion.

6.4 MODAL SHAPE FUNCTIONS FOR SIMPLE STRUCTURES

The input power and the mean-square flow-induced velocity depend upon the nature

of the modal shape function S (k) which appears in Equation (6.40). Equation (6.39)
mn

gives this function as a spatial transform of the mode shape function ' (y). For
mn

more general boundary conditions and geometries, other than clamped, simple, and

free boundaries, closed-form expressions for either Y.n (y) or Smn (k) need to be

derived for each case.

The simplest and most straightforward boundary condition for which to write

S mn(y) is the simply supported rectangular plate. In this case the displacement and

curvature of the plate vanish because it is considered to be held in place with pins

that do not exert moments on the edges. The mode shape function (for yY 3
0 the

33

center of the plate) satisfying Equations (6.22), (6.24), and, (6.25) is

- LI

V (y) 2 cos (kY) cos (kn) v y < (6.53a)
mn m'l n:

Y31 < 23
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where the cosine futctLion is used for odd-order modes and the sine function for

even-order modes, as illustrated by the sketches of mode lines In Figure 6.5b.

For odd-order modes which have an odd number of half-waves along a dimension e.g.,

cos k L /2= 0

kL m+ )T,m-- 0,1,2,3,4 .... (6.53b)

and similarly for knL3. For even-order modes having an even number of half waves,

sin kmL /2 = 0

k L
ml = m, m = 1,2,3,4.... (6.53c)

and similarly for knL 3. Note the use of the double index (m,n) in the subscript of

'mn(y), this denotes the two-dimensional nature of the function. The related modal "

shape function 12'2 4'2 7 for the simply-supported membrane or plate is

sin /1 k sin /1
O(k) 2A COs c 2 k3L 3  (6.54a)

mn p k 2 - -
1 3( N

which separates into Lhe two functions 0

mn S(k)) S(k 3 ) (6.54b)

A direct consequence of the normalizing Equation (6.26) is that the integral of

!Smn k over all k is

iSmn(k)
2 dk J 1 (;2 d-(2-), f =nf I m 

""1 "Y "

Therefore, the analog to Equation (6.40b) for the normalization is
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2L 2
is'k dk 21 Af2mn k p (6.55)

regardless of either the shapes of the panel or of its dynamic boundary conditions. -- '

The function S mn(k) is peaked about k = km and k3 = k which defines its main .'-

acceptance region. We consider the separate functions S (ki) for the eveik-order

mode which can be written in the alternative forms

2S(k) 4(2)1 /2k sin ( k )
mm 2 ki1 1- -

, 22 2

2 l ) 0

* and similarly for the cosine-dependent function. Figure 6.7 shows 2Sm(k )/1 as a "i

m 11

*." function of kl/k. By virtue of the boundary condition of vanishing displacement at" -. -.

,'.k,

*Yl = + L/2' kL/2 = m for the even-ordered mode. The maximum occurs when k I = k , . ..

1/2 1

2S (k k

____ = -n (6.56)

II

and the wave number bandwidth of this main acceptance region is i

2 k

: l 2
= -or .

I Mn

(6.56)Ak=

1 2
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Figure 6.7 - M,1odal. Shape Function for Onae-dimensional Even-Order Mode Shape
Shown Htere for (k L ) /2 p ri = 4-r; Simply-Supported Panel

ml

In thle limit of k << k

2S (k) 32 .2 1 1l
ml 1 sin (6.58)

L(kL 1

and when k. , k
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2s(k) 2 4
mL ()\m sin2  kiL 1  (6.59)

L(kmL 1 )2 \1/1

The only difference between the even- and odd-ordered modes lies in the appearance

of the sine or cosine function in the transfer, and accardingly, in the behavior as ,

k approaches zero; Sm(k) and Sn(k 3) for even-order modes vanish in the limits of 0

zero wave number. Otherwise, the approximate relationships of Equations (6.56)

through (6.59) apply.

The shape function for a cl;Lmped-clamped beam of length 1. has been given by
34 3Aupperle and Lambert and Martin3 5

2S(k) 232 (k L)

m rnt i - (kL) 1 kL'+kL .0

(6.60)

LL
Ssin (k+kl) ..

(k)-kL (k +k I

where k L = (m+1/2)-T for m > 3. The value 1(2S(k))/L12 
= 2 just as it is for

simply-supported beams. However, the limiting values are

L _ sin 2  for kI >> k (6.61)
(k L) 1m

and

2Smk 12 kL._

6 sin 2 1 for k -< k (6.62)

L 2"
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The shape function-squared for the clamped-clamped boundary condition at low wave

numbers is, thus, a factor of two greater than for the simply supported boundary

condition, but it is functionally similar. S

The effect of the boundary condition on Sm(kl) for k >> km can be more gen-

erally considered by noting that for k /k > 1, integration by parts of Equation

(6.39) with

mn(Y %m( )  n(Y3 )  "-

36: -
yields, e.g., 36

2S I (k )- i kILI W j
lim L (i) - i  (1) -

k/k >>l 1  =Z, 2 'm.
1  1j=0

(6.63)

-i k1 L (j) (- + 1

e 2 m L!

where

-~ (j) (m 1m 23.(J) (i_=_ _._.

m (I) J)• i

37
and similarly for S (k 3). Chase has derived similar expressions to Equationn3
(6.63) for both circular axisymmetric surfaces and rectangular surfaces. The

boundary conditions determine the values of the edge derivatives, \'J (+Li/2)

i 1, 3. Thus we have the following possibilities:

1. Y (+L1/2) = 0 for zero displacement at the edges.

Dm (+Li/2)
2. i 1 0 for zero slope fur a clamped boundary condition requiring

a nonva:lishing moment.
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2(+L /2)

3. 2 = 0 for zero curvature for a simple (pinned) boundary

requiring a vanishing moment.

The sy.mmetry of mode order about the center of the panel determines the combination

of the terms in the brackets. One needs only to consider the lowest-order nonzero

derivative in evaluating Equation (6.63). For substitution into Equation (6.60) we

find for T (yl) harmonic in k y that

T m ) (1) ( -2 i\ fo r k >> km \2/.1 .

which makes

2 k M for k >> k (6.64)

where j is the lowest-order nonvanishing derivative boundary condition. For a

clamped plate, j = 2; for a simple support, j = 1; and for a free motion (or nearly

free allowing some displacement) at the edge, j 0.

6.5 ESSENTIAL FEATURES OF STRUCTURAL RADIATION

6.5.1 Analysis of a Simply Supported Panel
The mathematical problem of determining the sound that is radiated by a body

with a known velocity normal to its surface, is a deterministic one. The pre-

scription of the velocity of the fluid normal to and on the surface is identified as

a Neumann boundary value problem; the complexi', of the solution of the acoustic wave

equation depends upon the geometry of the body 3 well as upon the variation of the

velocity over the surface. General methods of solution for flat, baffled surfaces,

and spherical and cylindrical shells have been described by Junger and Feit. 6

It is outside the scope of this book to discuss, in any extensive detail, the

problem of structural radiation. To provide for a straightforward application of '.'.,

other published accounts it is instructive to outline here, as an example, the
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solution of the problem of radiation from a rectangular baffled plate. Figure 6.8

illustrates the geometry, of the panel that lies in the = 0 plane with co- -

ordinates +LI/2, +L 3 /2. The field point at which the sound pressure is to be evalu-

ated is y'= y,'y y. The velocity of the panel normal to the Y2  0 plane is

{,°..I

SIIY 2

7 r

2 1

*regon the v;elocity is identically zero, i.e., it is baffed. This velocity field'

can be described in terms of its temporal Fourier transform V2 (,y), Equation (6.30)

and it is a superposition of the normal modes of the surface 4'n(Y) , as in Equation ..

* 63) h qainfor the acoustic pre.=sure in the fluid pa(Y,t) is Equation.. ".

(2.5), repeated hye:"

Vp

VP = (6.65)

7-,V
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In as much as vGX,t) is a stochastic function of time, it is convenient to use the

Fourier transform of the acoustic pressure

00

Pa(Y~k1 ' I eik y+iwt
= (2r)2J.J Pa(l~Y~Y3t) dyldy dt (6.66)

so that Equation (6.65) becomes

- + (k2 _k p =0 (6.67)
2 a a

p which has a solution

~22 1/2~

pa( kIw) A exp -i(k-k for <0

(6.68)

- xp[-y 2 k~k) ]for y > 0

2 2 2
where k k + k3'and we use the convention

1/2) = for y > 0 (6.69)

1/2 2

(-1) 112 -i for y2 <

*The linearized boundary condition (for which the convection term (V. V in

Equation (2.4) is ignored) is

3V .3

(6.70)

0 Y0
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so now we can relate the field acoustic pressure to the panel velocity. To do this

we write the Fourier transform of the velocity V(k,w) given by Equations (6.30),

(6.31), and (6.39). Thus, 0

V(k,) = V( i) dy"t"de"'"l"

(2)3

(6.71)

V(k,w) 2,f Vmn (W) S (k)
(2T) mn

1P

Note that the double sum over m and n replaces the simple sum over n, and that

V(k,w) is subject to the -equirement that V(y,t) vanishes on the baffle. Equation

(6.70) becomes •.

i pa(Y2,k,w)
-iwV(k,.) ... - for Y2 > 0 (6.72)

Combining Equations (6.68), (6.71), and (6.72), we find the Fourier transform of the

pressure to be a summation of influences of all modes,

2-, 2 .1-/ (k),,(k-. 2 1/2
P ,_ V (W) S +iy (-k ) (6.73)

S 1 n mn 20
2t ( 2T )2 0- 2 - 1/2k

* 1

The acoustic pressure p (G,t) is the inverse Fourier transform of the wave number
a

transform. The function pa (V,)- is

+i kl +k )+(k-k -k3 ) 2_ .i j~oj"S  W e  " 33

a(Y," )  (271) oVmn (12 132n 2 2
k2-2 1 / l-3" (6.74)
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This function is the same as derived by Junger and Feit who evaluate the inte-
36

gral approximately using the method of the stationary phase. The result is most

profitably written in spherical coordinates, Figure 6.8, as

2 -- r cos ¢":[.["

Y, = r sin 4 cos cos 4)

Y3 r sin 4 sin "

The dominant part of the integral occurs when the phase of the exponent has a

vanishing rate of change with k or k3 . Junger and Felt 6 show that this pair of
wave number components is

227 2 2
k 2+ k= k sin 2
1 3 o

kl k sin coo 0 (6.75)

k 3 k sin sin 0

these wave numbers are the trace wave numbers of the acoustic wave front projected

on the surface of the panel. The approximate integral is.

+1k r

Pa(R, ,W ) W (W) k 3 ) e (6.76)
mn

which is valid only whern k r >> .

The sound pressure in the far field will be the linear superposition of pres- .

sures from all uncoupled modes which are resonant at the frequency. The directivity

of the sound from each mode is associated with the coincidence of trace wave numbers

k and k with mode wave numbers k and kn, respectively. There will be distinct
1 3 M n

points in space (a,4) at which each mode radiates most effectively; these points .

occur because of the local reinforcement of sound waves at (R,0,)) radiated outward

to that point from the mosaic of half-waves which compose the mode of the plate.

The individual waves will be most in phase when k and k coincide with the trace
m n
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wave numbers k and k respectively. We will discuss this coincidence further in1 3'
Section 6.5.3. The coordinates of maximum sound intensity will be determined by

maxima of S mn(kl,k3).

- Equation (6.76) applies to the far field pressure of a baffled rectangular panel

- of any modal character. All that is required is a specification of S (k) for that-- mn

panel. For flat panels that are not rectangular,6 the pressure is functionally .

similar to Equation (6.76), but there are differences in numerical coefficients and

- in the detailed forms of S (k). Similar expressions can be derived for curved
6 mn . -

surfaces. The presence of the modal acceptance function S (k) in the integrand is° Bmn

common to all cases. The differences lie in the replacement of the harmonic function --

2 2
i(k o-k Y2

2_ 21/2

(k2-k)2

which is characteristic of the planar radiator, with functions that are appr:rriate

to other coordinate systems, spherical, cylindrical, etc. -

6.5.2 Fluid Impedance of a Simply Supported Panel
In our solution of Equation (6.21) no specifications were placed on the compo-

nents of the pressure P(y,t). it must now be recognized that, in general, P(y,t)

includes a number of contributions. The first is a pressure, e.g., Pbl(y,t), which

is the primary driving pressure caused by hydrodynamic flow. This will be discussed

in subsequent chapters. The fluid adjacent to the panel offers reaction pressures

to the panel motion. Most often these are acoustic and inertial and they are

governed by equations of the form just described. In specialized cases fluid

viscous damping and hydrodynamic damping (see Chapter 9 and References 38 and 39).

We will now restrict attention only to the impedance offered by the acoustic

reaction pressure and separate it from the primary driving pressure so that in

Equation (6.2) we replace the single pressure by .9

p(y,t) = -pa y,t) + Pbl(Y~t) (6.77)
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and we are ultimnately* interested in the vibration v(y,t) and sound pa(y~t) induced

by the hydrodynamic pressure field p bl (y,t). We still assume that the flow is un-

affected by the panel motion. Furthermore, we will assume that p (y,t) acts on both

sides of the plate and that

9i p a(yt) -Lim p a(y,t)

The modal acoustic pressure, following Equation (6.25), is

1 fF(W +iwt d- Ip 2 (y)ipa(yl'y~y~lt) Ym(1)e dy13t

a 2 2j j a 3 mn~1'1
mnnn

p

Because

Pa (Y'W) ~fe ~ pa(Y2k,w) dk

substitution gives

000

P' (y, U)) fJfPa( 2 ' k S*n(k) dk (6.78)

*Here, again, we must respect the sign convention: is positive upwards, and
p(y,t) is directed downwards. However, the reaction pressure will be opposite the
excitation pressure, therefore, we have used the minus sign.
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for the modal acoustic pressure in terms of the acceptance function. Now, combining

Equations (6.73) and (6.74) gives the required expression

) S* (k)So 22 /2 'Y2
Pa 2 (2)2 Pc op op J -r o )1/2
mn

The fluid reaction pressure p (Y2-3O+, w) on the upper side of the panel (with an -

equal, but opposite value on the bottom side) involves the integral of the combi- .

nation of S* (k) S (k) for all indices o,p. Because the integral is not identically
mn op

zero for mn different than op, it is clear that the m,n mode is influenced by the

motion of the o,p mode; i.e., the modes are coupled by the reaction of the fluid.

This fluid-modal-coupling in unbounded fluids has been discussed in these terms by
40-42 21 . .

Davies; cot), by enclosed fluids has beer, discussed by White and Powell,
31 32Obermeier,1 and Arnold, and inertial coupling of modes in cantilever plates by

Blake and Maga. If the fluid is light enough we can ignore the coupling of modes;

for flat plates the coupling by acoustic radiation appears to be much exceeded by

inertial coupling at low frequencies. The equation for the modal pressure on the

surface of the plate becomes

~a(y-" ,L3 =pcdk (6.79)

( 2 TT ) . .-°" -

(27o)2 2{.1/ d ,V(.0) (.9 iii

mn _il~~

kI

The dominant contribution in the integral will come from wave numbers near kI = k1 in

and k = kn. This is because these are the large acceptance regions of S (k), see
3 in mn

Figure 6.7. Physically, the fluid and structure can most effectively transfer

energy when the length scales of motion are well matched. If both k and k are

less than k the integral is primarily real, ineanin , that the fluid reaction appears
0

as a pure resistance because power is radiated away from the plate. However, if
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either k mor k nis larger than kf then k =k is larger and the radical in thei n o n 1/2.

denominator provides an imaginary or inertial term that decays as exp [P(kk 0 Y2 .
with increasing (y2 >0) distance from the plate. The modal reaction pressure on the

plate can, therefore, be written in the convenient form of an impedance

A p (0,") A(r -n V M",
ppa p mn- imn mn
mn

(6.80)

= A p c o0 amn-imMn V mn()

if we ignore modal coupling in Equation (6.75). If such coupling exists then the

r and m art really parts of an impedance matrix with the maximum values on then mn 7 .

diagonal m,n = o,p. The terms rn is the radiation resistance per unit area (given

by the real part of the integral) and mmn is the added mass or accession to inertia6

per unit area (given by the imaginary part of the integral). The radiation resist-

ance has been further reduced

cmn o (6.81) L.. _.

where the dimensionless coefficient a is called the radiation efficiency of the
MIL

mode.

6.5.3 Radiated Acoustic Power

The tine-average radiated acoustic power radiated to one side of the plate is

defined as

T/2
...f - .4 ...

a im J pa(Yt) V(yl3 ,t) dtdyl3
tad T 1

T/2 A

. .

By substittLtion of the inverse transform of Equation (6.66) r the p-essure on

Y2  , and the representations of the velocity given Equations (6.30), (6.31), and

(6.71) we find the average radiated power is the real part of the integral
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IF~ ~ ~~ d~f d I dw f dw' V()*(t y~~w
rad %Imn J d Vrunw'n k)n Pa~y- 2'

co -00 -00

sin (-) T

,,7 

T

or, making use of the formal limit

T0
sin (w-w') - 2-T

T -W '" -: T'

it is the real part ofo. -li = T-
T"+  d ( ,;,o' -. .y .0'0 .-(-' s n

mn -00 mn

Using Equation (6.73) for the wave number trar sform of the pressure we have a formal

e)Dession for the radiated power,

f CO 4aY-. e (). -

rd(2d) mn op2k"k -

As before, we can ignore the cross coupling and make use of the autospectral density

of the velocity, Equation (6.32) in order to simplify the relationship. Furthermore,

because 1 ' isthe integral over all frequencies and the sum of all modal contri-

rbutions of the power spectral density I (w), then we have the final result that

rad 2 )2Po~oi/ --''" "

n
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f f jSmn(k)i (ud1 rad 00 (2T) k<k 2 1/2 mn

mn F~ 1I k\0

or

cl(w) = c A o D (W) (6.82)
rad o o p mn mn
mn

is the radiated sound power spectral density of the mn mode where

(-)12

mn A (2f) 2 J1/2 J(6.83) -

p fk<k [l(k)

K 0 
_ . . '

is the modal radiation efficiency. This factor has already appeared in Equations

(6.79) and (6.80). The flow-induced vibration velocity spectrum for the m,n mode is

given by Equation (6.34).

The radiation efficiencies of baffled flat plates has been determined by

Maidanik, '
8 Davies, 24 and Wallace4 3 ,44 for various ratios of length to width.

7
Radiating modes have been classified by IMaidanik into surface, edge, and corner

modes depending upon the relationships between k., k , and k . We have already seen

the importance of these relationships in determining the directivity of sound in

6 Equation (6.76). Figure 6.9 illustrates the edge and corner mode classifications

that arise from these relationships. First we recall our discussion of multipoles

as illustrated in Figure 2.2. There it was said that for two sources that are

separated a distance d the sound pressure increased as k d = 2pd/, until k d > 1,o 0 0 ;Z
b in which case the two sources radiated without interaction. Similarly, in the case

of a radiating surface, we have already said that the modal pattern represents a

. mosaic of alternately-phased pistons which are spaced /2 = Ri/k . If X /',0 < 1 the

fluid can pass from one piston to the other before they can oscillate through one
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(7,21 MODE (7,6) MODE
km > k0 , kn Kk 0  km > k0 , kn > k0

Figure 6.9a - Edge Mode Figure 6.9b - Corner Mode

Figure 6.9 - "Edge" and "Corner" Mode Radiation for a Simply-Supported
Rectangular Panel. Shaded Areas indicate Uncancelled Regions

of Volume Velocity.

cycle because the characteristic wave speed in the fluid C is faster than the wave
0

speed of the piston motion, 2'w/X. Therefore, the pistons effectively cancel each

other. Maidanik argues that this cancellation occurs everywhere between adjacent

pistons except at the baffled edge of the pistons at each end of the array. if

> 1, then the adjacent pistons can radiate more independently because they
M 04

cannot interfere. In the illustrated case of an edge node there is cancellation

along yl, but not along In the case of a corner mode, there is cancellation

along both coordinate directions, and, in the case of surface modes, we have

k > k and k > k so there is no cancellation. In Figure 6.4 we see that for wave
*0 m 0 nl 1/2*

*numbers above a threshold k = C (m /D )'the phase speeds of waves on a given
p o s s

plate will be supersonic. This is because of the frequency-dependent character of

the phase speed. The frequency at which the in-vacuo bending wave speed equals

the acoustic wave speed is called the acoustic coincidence frequency

0 s
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For membranes, on the other hand, dependency on the phase speed will be either

subsonic or supersonic at all frequencies, because of the nondispersive nature of

the phase speed. 6

The mode classifications are illustrated in the wave number plane in Figure

6.10. The locii of edge modes lie along the k and k coordinate axes. When bothm n-- .- - .k and k are less than k all modes are well-radiating surface modes and they ____

m no

radiate analogously to the infinite plate on which the bending wave speeds exceed

the speed of sound, i.e., k < k or C > C . The evaluation of the integral inp o p o
Equation (6.79) is controlled by the location of modes in the wave number plane.

Figure 6.10 illustrates the critical regions of k , k that will be evaluated below.m 11 -- -

n  n

'EEDGE

.,kP CORNER "

k0 7

ko  k m

Figure 6.10 - Radiation Classification for Rectangular Plates
Shown in the Wave Number Plane 0

. ... ... o

-s - - - - . . . *. . 4.... . . . ..
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6.5.4 Radiation Efficiencies of Simple Structures

For corner modes k > k and k > k thenjm o nl 0

1/2

k (k +k) > k
mn m n 0

lies outside the region of integration in Equation (6.83) and the radiation efficien-

cy is controlled by the low wave number tail of the acceptance functions (see Figure

6.7 and Equations 6.53 and (6.54)). Thus,

k
0

1 -1 2n fk° k
mn A (27) 2 2 (k22 2 1/2

p o (k -k

(6.84) j, 4

2 for k > k
k m o

32 o
2 2 2

A (2,). k k and k > k
p m n n 0

8' 5 k A for lowest order modes,m=n=O, k - 1:'' oo 5 o p 0 p " 'i'

For edge modes, e.g., k < k and k > k, a general approximation is
n 0 11 0-

k -k

2k o n dkl ]/2
0 4 IS n(k3)I dk f:A (2.-0)2  2 2- 2

p .. o (ko0k 3 _k1 )

(6.85a)

for k < k
ko3 n

2H

A 2  and k kp III m 0 '.."'

Nearer to coincidence a more exact relationship is

5 .-
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+ 22k(L k
1+T m

0mn 2 Tj 3/2 (6.85b)
A k2
p M (2- m

Finally, at frequencies above the acoustic coincidence frequency we have acoustic

surface modes, and, using Equation (6.55) because k >> k
0 mn

0 n 1.0 for k 0 >> k : (6.86)

These modes radiate well because each half-wave of the vibration behaves like a

baffled piston whose dimension exceeds an acoustic wave length. 9 -

These formulas have been derived as examples. More exact formulas will be 0

found in References 7, 8, and 24. Figure 6.11 shows radiation efficiencies derived

by Davies for the cases k > 2kI koL > z, and k > 2ko. One can clearly see the

dependence of a upon mode order. For clamped panels a should be increased by
mn mn

6 dB for corner modes and by 3 dB for edge modes because of the difference between

the low wave number acceptance functions.

Radiation efficiencies of unbaffled plates and beams have been derived by
B a e 45,46 .. ,.-,-

Blake. For an unbaffled plate which is koL >i, k L > ii and for which

k /k <C 1, k /k > 1, it is found1'
on o m 0

8 2 r ( (6.87a)

closer to coincidence k - k
0 Th

/ -9
1/ ki.

(2)1/2 + t 2:; o 3 (k-'.n 1 ,.-ra 6 ; k A p-"k / (6.87b) .: " :,,::._

mn 16-,; k 2 2 21
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* greater than unity was reported there.

The radiation efficiency for an unbaffled beam for which k L 1, k Ll > 1,

and k /k <<1 is 6 o3 o

3 'k 2

2(k w)(6.88a)
n
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C ._ _ _ ....

100

Cr BAFFLED 4

'* 1-0 
S UNBAFFLED,

-30 . *.
-. 0

-4 0 , 0 , I I

- 0.2 0.3 0.4 0.6 o.0.0 1.5 2.0
ko/k

Figure 6.12 - Measured and Theoretical Radiation Resistances of the Unbaffled
1.33 FeCt by 2 Feet by 1/2-Inch Steel Plate in Water

(The points are from o 50 Hertz analysis and * 1/3-octave band levels. 1
The curves are --- , Equation (6.87a); -- , Equation (6.87b); -.- , Equations

(6.85) and ... ; Equations (6.90).)

10which, when compared to the baffled case,

2

(6.88b)
"- T. .- ."

2
shows additional (k w) -dependence due to baffling. Other radiation efficiencies of

06 47cylindrical shells are given by Junger and Felt and Manning and aidanik. Radia-

tion from prolate spheroids has been calculaLed by Chertock. 4 8 4 9

6.5.5 Relationships for Estimating Total Acoustic Power

:n Section 6.3 relationships were derived for estimating the mean-square

flexural velocity averaged over the structure in terms of the Input power accepted
I.

from the flow. Equivalently, the mean-square velocity of the structure could have

. been derived from knowledge of the modal excitation force. Either way, the re-

sponse of both simple and complex structures can be estimated. In like manner, the
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power in a frequency band Aw radiated from the structure with a high mode density

can be estimated as 
7

W +AW /2
f f 2 $- " m n. -:

P(WfAWf) 2 2 PoC A a 4n (w) dw
p mn -nnwo -Aw~ / 2 n,., --"""...--

fin Aw

2=

c A "o(w) V2  (6.89b)

-- oo p .f..

as long as there are many modes in the band, n(wf) AW f >> I, and Awf is larger thanmf
the band of resonance.* The mean-square modal velocity V n(wf) is the average over

Tmn f
modes so that

V =Vn(W) n(wf) AL )f

is the total reverberant velocity in the bandwidth. Furthermore, it is assumed that

the mean-square velocity of edge modes is the same as for corner modes so that we

can integrate the radiation efficiency over all regions in the wave number domains
-2

illustrated in Figure 6.10. The mean-square velocity V is taken as the physically

measurable motion as would be deduced from a set of accelerometer measurements.

lt is also that which can be estimated from Equation (6.51).

The average radiation efficiency of a simply-supported rectangular panel has 0

7 8 24
been determined by Maidanik7' and by Davies. This quantity is

2 G n(k) k dk d-+ n(k) kdkd-

n mn.
0 edge 4 corner

*Note that in the above, the functions ,M(W) and C(w) are all symmetric for
mm

+ w. The total power in the band is, therefore, twice that given by the integral.
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where n(k) is the wave number mode density, Equation (6.45), and N is the total

number of modes, i.e., k mni included in the annular wave number region

)2 T

(Ak) =k A4 p p

* where fi;:

Ak 1 1/2
Ap 2 AW (tWKC

The angle eis the arc through the edge mode region sin e k 01k as can be deduced
e e op

in Figure 6.10. Using the approximate relationships of Section 6.5.4 we find, for

*edge and corner modes combined,

2
_ 32 k0  2 (k~ 2(L 1+L 3) 9a'i3 Tf 'k k

2TIAk \p p p

7,8
for k 0/k p< I and either or both k oL > 2 and k oL 3> 2. Maidanik 'has provided

this and additional formulas, e.g.,

above acoustic coincidence: a (1 -ifor k < k (6.90b)

at acoustic coincidence: - (2) 1/2 1/ +Ck nL 3 , for k p k 0(6.90c)

and for acoustic corner modes:.-

16L1+L 3  k \2
G.6 for kL and

3 A k ko I
TI po p0L (6.90d)

ao3
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'24
while Davies' obtains, for still lower wave number corner modes,

3
32 1+3 3 o

I-A for koL and kL 3Tr (6.90e)
-3 Ak~ 0ol o 3r p o'.

Equation (6.90a) shows the important result that adding rib stiffeners to a panel -

will increase the radiation efficiency of the panel. This increase is brought about

by increasing the total perimeter 2(LI+L3 ) of the edges while keeping Lhe total

radiating area constant. The second term of Equation (6.90a) is controlled by the

edge modes and it is the magnitude of this term that is increased by ribbing. ..
7

Maidanik has experimentally verified these equations using the arrangement

illustrated in Figure 6.13. A reverberant vibration was generated in the ribbed

aluminum test panel by a mechanical shaker; radiated sound power was measured in an

acoustically reverberant chamber while the mean square velocity V was determined on

BAFFLE

~A-. 1 .1 -A~l: -. ....-
Vl~- V,-.|1

r 1-/°" "2

" r1/2"

1 1 -.. .. .6 -..-. 1.. . 6 ll SEC -
(4)SETO

-~ A A'

1/ 2"' 1/2:"

Figure 6.13 -Aluminum Test Panel, Steel Ribs, and Wooden Panel.
Circled Numbers Indicate Accelerometer Positions;

Shaker at Position 4

-... ... ............ ~ ...... *-.-e.-.--.x

(From Ref..7)
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the panel. The radiation efficiency was determined using Equation (6.89). Figure

6.14 shows the measured values of a with and without the baffle in place. Generally - "

the vibration level of the ribs was from 6 to 15 dB lower than that of the panels. 4

The radiation efficiencies as determined from the mechanically driven panel are in

close agreement with the theory. Also shown are a for the unbaffled panel without

ribs. These values are notably even less than those of the ribbed panel without a

baffle. This is because adjacent subpanels provide baffling to their neighbors. ,

For frequencies less than 250 Hz there are a number of limitations to the experiment

including the fact that rib and plate vibration levels were comparable. Other points

included in Figure 6.14 were determined by exciting the panel with a reverberant

acoustic field and measuring the response. The agreement of these points with those -

measured by direct shaking shows that the individual panels inside the ribs were

acoustically independent of each other and responded to the sound field essentially

as described in Section 6.3. -
• ..

10 0.

-10 so''; 6 NSA
UNBAFFLED MEASURED DIRECTLYO~ UN•BE AVERAGE OF POSITIONS 1,2 AND 3 .'-..

O O0 UNBAFFLED PANEL 00 MEASURED DIRECTLY' 3 0 AVERAGE OF POSITIONS 2 AND 3

0 @* DETERMINED FROM u(w) RTot
00oD BAFFLED PANEL &9" 

M
E

A S U R E
D 

D I R E C T
L

Y

- A-40 00 AVERAGE OF POSITIONS 2 AND 3 .- -
00 • DETERMINED FROM u(w.) RTot

-so Al:+ 
+

25 63 160 400 1,250 4,000 12,500

THIRD OCTAVE BAND CENTER FREQUENCY
IN CYCLES PER SECOND

Figure 6.14 - Normalized Radiation Resistance of Test Panel in Figure 6.13
(From Ref. 7)

(-Theoretical curve for the ribbed test panel from
Equation (6.90). ----Theoretical curve for the unribbed
baffled test panel from Equation (6.90.)
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Another example of a radiation efficiency measurement is provided by Manning

47
and Maidanik for a cylindrical shell. The geometry of the shell is shown in

Figure 6.15. The flanges were removable so that the effects of adding rib stiffeners

could be determined. The ends were baffled with plywood boards. Measured radiation

efficiencies are shown in Figure 6.16. The ring frequency f is
r

LOUDSPEAKER
R- PLYWOOD BAFFLE

L
X

RING FLANGES

Figure 6.15 - Test Cylinder. Diameter d = 36 Inches, Length 1 = 24 Inch Thickness,

h = 1/8 Inch, Flanges 1/2 1 Inch Area A = 19 Feet Squared. From Reference 47.

20

o AVERAGE EXPERIMENTAL VALUES
WHEN SHELL EDGES ARE FREE

10 i AVERAGE EXPERIMENTAL VALUES

WHEN SHELL EDGES ARE FLANGED

o AVFRAGE EXPERIMENTAL VALUES
WHEN 3 RING FLANGES ARE USED

- THEORETICAL CURVE FOR TEST
0 CYLINDRICAL SHELL (3 FLANGES)

I- THEORETICAL CURVE FOR TEST CYLIN.
DRICAL SHELL IFREE EDGES, FLANGED)

-0 "

-20
0 0 

[r-30- 
3 -

-.40 , , I , , I . , I , , I * I * I , , I , , I .. .

25 50 100 200 400 800 1,600 3200 6,300 12,500

THIRD OCTAVE BAND CENTER FREQUENCIES IN CYCLES PER SECOND

Figure 6.16 - Average Values of the Mleasured Radiation Efficiency for S
Three Different Boundary Conditions. From Reference 47
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where a is the radius of the cylinder; f is the acoustic coincidence frequency of

the cylinder. The modes that radiate most efficiently are those which form circum-

ferential. strips at the ends of the cylinder. These modes are such that there is

little acoustic cancellation around the circumference. Theoretical estimates are .

based on applying the appropriate of Equations (6.90) for the classes of modes that

were calculated for the cylinder.

The approach to be used in roughly estimating structural radiation and response

is to first determine the excitation spectrum 4 (k,w) that is included in Equation O
p

(6.40a). The autospectrum of the modal pressure 4 (w) can then be approximated
Pmn

using the limiting functions for Is (k)2 shown in Section 6.4. The input power,using

Equation (6.52) or the mean-square velocity, Equation (6.51), then can be estimated.

The radiated sound power can be estimated from Equation (6.87) using the approximate

relationships for the radiation efficiency o. Illustrations of these procedures will

be given in Sections 6.7 and 6.8. In succeeding chapters some estimates will be

compared to measured flow excited vibration and sound for simply defined situations.

Another and perhaps more potent use of the equations is their use in scaling one .

known circumstance to another. Often it is desired to conduct an experiment on a

prototype and extrapolate the results to another size. These relationships provide

guidelines for planning and conducting the experiments. It is hoped that the

examples of acoustic measurements shown exemplify the character of piecision to be

expected in other similar experiments of the future.

6.5.6 Added Masses of Simple Structures
The added mass per unit area on one side of the panel can be determined from the

integral in Equation (6.79) for k > k . In the case of low frequencies for which

k > k the integral gives the mass per unit area as
mn 0

mn 0 k > k (6.91a)
mn k n o

mn

=0 k < k
mn o
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This function is fairly universal, applying both baffled and unbaffled plates.

In the case of beams, the added mass per unit area is4 6 for k > k
m 0

mm = for k L < I (6.91b)
'"m 4 M 3

and

7Tp oL3oL3 1 -l"rL 3 >mm - for kL> 1

o 3

6
where L3 is the width of the beam. Similarly, for vibrating circular cylinders of

radius a, the mass per unit area is , .0

m p uoa for k > k (6.92)
m o o

-0 for k <k -
m o

6.6 RADIATION FROM STRUCTURES IN HEAVY FLUIDS

6.6.1 Radiation from Essentially Infinite Point-Driven Plates

Until this point, the chapter has been concerned with resonant response of

structures with boundaries. When damping is large enough for real structures, waves -

generated in the structure by a localized force are dissipated before they reach the

boundary. As a rule, this occurs when n k L > 1. Without reflections at the

boundary of the surface, the multiple reflections necessary for resonant modal vi-

bration cannot occur and the surface is effectively infinite. Accordingly, we -.

examine the radiation from locally-applied forces on effectively infinite planar

structures.
6,50-53

Although this topic is treated elsewhere it is instructive to quote some

results here. For the geometry illustrated in Figure 6.17, the acoustic far field

pressure far enough from the plate that k r 1 is 5 0 5 2
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Y2

PLATE IN 1, 3 PLANE

Figure 6.17 -Coordinate System for the Field of a Point-Driven
Infinite Plate

-ik $F i0rp
Lp(r,6,t) 020 f(w r (6.93)0

where

f (a) = CS(6.94)
Cos ~ +

and

00C (6.95)
m W

Equation (6.93) applies when the area over which the fo z xtends is smaller than
* the bending wavelength which, in turn, is smaller thi., *.h-. a._.ustic wavelength,

i.e. , the frequency of excitation must be low enough Wt. K> k .When the fluid
p 0

loading is large, >> 1, then

0 0 o3 ep(r,O,t) =r(6.96)

2TT r
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This expression should be compared to Equation (2.63b) for the dipole radiation from

a point force in an unbounded fluid. We see that when the fluid loading is large,

a point force applied to the panel radiates twice the sound pressure that it would

in free space, but still with a cos 0 directivity.

Now if fluid loading is small, 1 < 1, then the pressure is omnidirectional

(except near $=0 and -t)

k 0F -i(k 0r-w)

p(r,¢,t) e (6.97)

but reduced by the factor 3. This source has monopole-like directivity in contrast ....

to the dipole-like directivity that occurs with fluid loading.

Figure 6.18 illustrates these relationships for cases of an oscillating force

of one newton magnitude applied to various materials and thicknesses. The ordinate

is 20 log Ip(r, ,t)I for R = 1 meter, and on the axis of the force, 0 - 0.

6.6.2 Elements of Fluid Loading Without Modal Coupling
Although fluid loading may, in general, be eXpected to couple modes at a first

approximation, such coupling is frequently neglected. An example of when such coup-

ling can he ignored was given in Section 6.5.2 when it was shown for flat rectangular

panels what cross terms may be ignored. Therefore, fluid loading is often approxi-

mated as an added mass and damping to the modes which are assumed to have the same

in-vacuo mode shapes ipn(p).
'mn(Y

The fluid loading factor defined in Equation (6.95) has a general importance

in hydroacoustics, especially, that should be emphasized; even for finite plates the .-- -

value of determines the relative importance of fluid loading. To see this, we

rewrite Equation (6.25) incorporating Equations (6.30) and (6.31) and including the

decomposition of pressures:

[-m w2 + in r, 'w w2 m V (W) = + iW [Pb ) (W) (6.98)s s s mn mn s mn ,-b-o a
mn mn

where b (w) is the modal excitation pressure, but P (u) is the fluid loading

mn mn
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pressure given in terms of the inertia and fluid loading coefficients, Equation

(6.76). Introducing these coefficients we have a modified form of Equation (6.33):

2 2""- :
[(-m -M )wi -iLO(m r W +P c, )+w 2m ] V() = +iwJ ~ () (6.99)smn s s mn o o Mn mn s VMn-Iw __~b(w

mn

W is the in-vacuo resonance frequency of the plate. Under the influence of fluidmnloading we have a new resonance condition
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2 2 (6.l100a)

F. L. VAC

with a new effective bending wave speed of

1/4

F = Cb (AC s2 n )lb
and an effective, or total, loss factor T)T which is defined as

nT=[+ On]L ](6.101)

-n +~ =ro +rni n s rad

The factor rl is the radiation loss factor of the structure. Thus, the magnitude of

*the fluid loading factor determines the level. of radiation damping to a structure.

In the prcfvious equations of Section 6.3, if fluid loading is to be accounted for,

11 should be replaced by n T' The methods for doing this will be iliustrated in

tefollowing examples.

Finally, we note that the raltio of the modal input power to the modal acoustic

* radiated power is, by Equations (6.42), (6.82), and (6.99),

2[ P )ad(w))m p 0c 0A p u VM1 n (Lo)

ran mn 2 o m n
in A W. V n V.)
s p'T mn mm

(6.102)

p c mn (Tj rdm

s l1in PT rad * s mn
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If the assumption of equal modal energies applies for all modes in a band and if the
9

modal excitation force is the same for all the modes, then Equation (6.102) applies

for average power levels of all modes in large frequency bands, i.e.,

;rad (0)Aw 1 rad
n ()A _(6.103)

Fin rrad + s

where the bars denote average values. Structures may be considered to be lightly

radiation loaded when ra .< . Only in these cases do increases in structural

damping result in commensurate reductions in radiated sound power. In the alterna-

tive case of rlra d > r , structural damping is ineffective and all power into the

structure is radiated as sound. 2

6.7 EXAMPLE 1: RADIATION FROM A RECTANGULAR PANEL " "
DRIVEN BY A TONAL LOCAL FORCE

Examples of the use of the relationships that have been derived in the previous ..

sections will be worked out. The sound that is radiated at large distances from a

steel rectangular panel driven at its center with a temporally periodic (tonal)

point force wili be calculated. The situation is as shown in Figure 6.19. A tonal

force of magnitude F is applied to the center of the rectangular panel of a struc-

ture which forms the interface between unbounded air and water regions. The water

phase is unbounded and occupies the region y2 > 0. AG a practical aspect, the panel

mav be a structural member which is uncoupled from its surroundings just enough to

be considered a separate member of a structural aggregate. It is assumed that the

panel is simply supported. Because the excitation is a pure tone, energy methods

which involve pnwer sums and modal averages are useless. Instead, the following

factors must be determined: .

1. The mode order

2. Acoustic classification of the mode order

3, Response amplitude of the panel

4. The location in space of the maximum for field pressure .

S. The magnitude of the far field pressure

The particulars of the problem are:

Magnitude of the force, F = 1 N amplitude
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IWATER, Y2 >

i At

p..

100,

AIR, y2 < 0

Figure 6.19 Geometry of a Point-Driven Rectangular Plate Set in a
Rigid Baffle which Separates Air and Water Regions

Length, L = 1.5 meter

Width, L3  0.6 meter

Thickness, h = 0.0254 meter (1 inch)

Structural loss factor, r= 0.01

Frequency of excitation, f =4180 1z

Speed of sound in water, Co = 1480 m/s

Longitudinal wave speed in steel, C 5200 rn/s 7.

6.7.1 Determination of Mode Order

We must determine which mode, or modes are resonant at 4180 Hz with water load- -

I / I

ing on one side. The added mass is

m PP
mn 0 0

pn k h p k
s p orn p p
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* To a first approximation we use the in-vacuo value of wave number:

1/20
(Cb)A (WKC)

= ~~0.0254 x50.1/

(12)j

(C ) =1010.1 rn/s
b VAC

Thus, the modes in the panel are subsonic,

k LL 2Trf -1
b C =2 6

b b
. .. ..O

* Theref ore

j .!n 7.7 x 26 x 0.0254Le
S

-0.20

The added mass is 20 percent of the steel mass. The bending wave speed is adjusted

t to

Gb 1010 (T I )1/

C =966 m/s
b

and, therefore,

k =27 mn
b



It is convenient to normalize the wave number on (Ap)112= 0.95 m, thus,

p

1A) /2" -.- "..

k% (A)"
k' __= 4.1

2rr

The resonant modes of the panel are defined as

k 2  =1 (k2 A +k2A 1/2

27T 271 M p n p

= Ym +¥n 1/2 -

where ym is either m or (m+I/2) as defined by Equation (6.53). Figure 6.20 is a .. _.. °/2 1/2 2 1

diagram of the dimensionless wave numbers k (A /2 and k (A ) /. The inter-
m p n p

section of k with the k which determines the resonance lattice, defines the
p n

resonant mode. This occurs for (m,n) = (2,2) and (m,n) = (5,1). The former modes

are not resonantly excited because T 2,2 is zero at the center of the panel. Thus,

only the (5,1) mode is important to this problem. To a first order of approximation

this is true, but for insurance one should ideally examine other modes that lie very

near the k -arc.
p

6.7.2 Acoustic Classification of Mode Order

At 4180 Hz the acoustic wave number is

2Tif
0 C

0

6.28 x 4180 = 17.74 1
1480

and
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2 5EDGE CORNER

-MODE ORDER

2.5

.27 31\V

2

* ' \ *\0 Ak pFA-(2,0 1

0

12 3 456

km V',r~ (20")

*Figure 6.20 -Wave Number Locus for 1.5 x 0.6 x 0.0254 Meter Panel at f=
4180 Hertz; Half-Integer Modes are those with Maximum Admittance at

the Center of the Panel. The Wave Number Band Ak is Commensurate
p

with a One-Third-Octave Analysis Band.

k (A )1
- 2.68

2Tr

1/2Trhe arc k (A ) /2rt is also drawn in Figure 6.20 showing that the (5,1) mode is an
0 p

edge mode. Thus,

k > k and k < km 0 fl a
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6.7.3 Response Amplitude of the Panel
Equation (6.33), which must be used for a pure t6ne, gives

W p (W)
;V ( nfl

(M +m )(W 2  W in W i W)s n n T mn

where w mnis the resonance frequency of the mode. The modal pressure is

~mn A ~ mn ''~

A- f +-j6(YY 0 y dy

0'

p

2F
A
p

by Equation (6.53b). Therefore, we have the modal acceleration

~I~n uJ) -2F 2

mnm2

for the response where

M= (min )Tn A
s mn p

6.7.4 Location In Space of the Maximum Sound Pressure Level
For the edge miodes we have k > k and k < k so, by Equation (6.53),

in 0 ni D'
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22 -2

S5 1 ( 1,k3  = m(k-k 3)

where k1 and k are given by Equation (6.75). The amplitude of the sound pressure1 3
*in Equation (6.76).

1pa (RO, Pw)j (27T) - r V V5 1 (W) S5,1 (k1,k 3)

Ad where S 51is maximum at the angles defined by

k 3 k =k sin 6 sin

Therefore, by Equation (6.75),

2 2 -2 2
0 n

so if k = 0, insuring that cos (k L 1/2) =1,

kn
sin~ L0 0*

and this makes

sin 0 1
0

because water occupies only the upper half plane. The maximum sound pressure will

occur in the yy 3 plane at angles with thc -axis of
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=+sin' 2.38

+ +62 deg

The magnitude of the cosine fu~nction is, by L'H6spital's rule,

Co (I~ k L) L3
liu 2 -)"- form n 0,1,2...

kk k -k n
3 m

so that

2 2L 3
S 5  (k1,k) 2 k 4

6.7.5 Magnitude of the Far Field Pressure

We find now that

-1 p 2L3

pa(w)I (2w) * W IV (W)l

5,1

L1 L3 PO IV5 _ m

2 2'y
ITr5

or0

4 s__ 0 k~\
ip ,) T y ~m 4T ~4-Tir'

5,1 5 \smn/ (W)s res
W T W
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where 'y 5.5. The first term in brackets is the ratio of the dry-to-wetted mass.

The second term is one-half the sound pressure that would be radiated into the space

above the plate if the plate was intinite and lightly loaded, Equation (6.97). It -

is also 0 times the pressure that would be radiated by a point in free space. The

third term shows the resonance effect.

The total loss factor includes both radiation and structural damping by Equation

(6.101). Thus, because the radiation is edge-mode, we have, by Equation (6,85) or
1/2Figure 6.11 and the parameters of the problem (letting L = A ,
p

2 1/2 L3 'ci -[ 11 1 ko (Ap) )1/2mn -[m (Ap) 1/2P 2 (A b.. 2

2 _
ffi 2 (6.28-2.68) (0.-6-

(6.28x3.5) 2 " (=: _)

= 44 x 10
- 3

-

The fluid loading factor is

o~ 
... .•pch

p hw

1480
7.7(0.0254)(6.28) (4180)

f 0.29 3

Therefore, by Equation (6.101)

T= 0.01 + (0.29) (0.044)

= 0.018

The radiation damping accounts for half of the total damping of the panel. S _
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The radiated sound pressure level at the resonance is

/ P\f m •

20 log Pa 20 log 20 log s + 20 log ' -
2 o- l TFY5 m s+ m n

k F
-20 log [T + 20 log 0 

0

where the final term is then the free space sound pressure level (Equation (2.77))-

-6 2
given in Figure 6.18 and pref is 10 N/m 2 .  At 4000 Hz

k F

20 log 0 P 122
4lTrrP

0

Therefore,

20 log = -13 + (-2) + (-11) - (-35) + 122

i0 - 6

131 re 10 N/m
2

is the sound pressure level at 62 deg off the centerline of the plate in the y 2 ,y 3

plane referred to a distance from the center of 1 meter. Of course, the actual .

sound pressure level at a 1 meter distance is not 131 dB because, at this distance,

the field point is not in the far field of the plate. The 1 meter reference for far

field sound pressures is just a universally recognized convenient distance at which

to specify the far-field sound pressure. At other distances r' the sound pressure S

level would be adjusted by

2 [lr)meer

20 log p _  =131 + 20 log
Pref r9

The sound pressure level at the field point (r,c,O) = (1 m, 62 deg, 90 deg) is -

shown in Figure 6.21 for a I N force. In showing the resonance curve the calcu-

lation is envisioned that the frequency of excitation varies through the resonance O
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1401.5 m X 0.6 m X 0.0254 m
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Figure 6.21 -Radiated Sound Pressure at 1 MIeter from a Point Force of 1 Newton
Driving the Center of a Rectangular Steel Panel. The Field Point (R,q ,O)

-(1 Mceter, 62 Degrees, 90 Degrees) is the Point of Maximum Sound Level)

frequency, w re 2-.,f .e Thus, for this mode, a sharp peak in the noise level

occurs. Also shown are two calculations for radiation from a very large (effec-

tivelv infinite) plate of the same thickness. The directivity of this sound is

symmetric, a torus, about the axis of the force. The upper curve applies to the

sound pressure on the axis while the lower curve applies to the sound pressure at

62 deg off the axis. This curve is to be compared to the sound pressure level of

the rectangular panel. Eve-n though the panel iuf~nife the vibration that is

structurally "near-field" or within a distance o /-flexiral wavelength from the
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drive point, radiate3 sound just as if the panel was infinite in extent. These

sound pressures are pres4ented by the "infinite plate" levels in Figure 6.21. Thus,

when the Diode is driven off resonance, the sound that is radiated is given by the

"infinite plate" levels. Of course, in reality, the sound from other modes of the
e . .- .

panal could overwhelm the drive point radiationi. If the panel could be suitably

damped, fo)" example, with a total loss factor of n =- 0.2, the resonance mode
T0

radiation would be dominated by the radiation from the drive point.

6.8 EXAMPLE I: RADIATION FROM A RECTANGULAR PANEL DRIVEN
BY A BROADBAND FORCE

The example just considered will be extended to apply to the panel that is point

driven with a broadband force spectrum that has a magnitude of I N root-mean-square

in each adjacent one-third-octave band. This one-third-octave spectrum extends from

500 Hz through 25,000 Hz. The sound pressure level, <p > far from the panel,a
averaged over the surface of a hemisphere of radius r, is related to the power by -

•

(see Equation (2.11c))

I = <P2r2

ad 0  0

2
The power is also related to the mean square velocity of the panel <V > by Equation

(6.89b)

-2

Frad p oCoAp o < V2 >

The cross correlation of the pressure on the panel is

(r) p(y,t) p(y+r,t) dy dt

pp A p;..f _it. d.

-F 6(r) .;.. :
P fo • .- -

A

Therefore, the wave number spectrum 4' (k,w) dow can be written .
P
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A(2) " P

I C

-- .2v. jJF -

f S(2) -

A OT

L

i.,,~ 1 f (w;) d "w"-

where ,i.() is the freCQueIc y autospectral doi;,ity cf the- applied force. Note that
I.

the wave number spectrum is white, i.e.. it i - independent of wave number. When

applied to -he center of the panel, the force excites all ncdes that are resonant .

in the trequency band of che force. The modal pressure Spectrum is, by Equation . -

G 4 a), i7-

i¢() = !sF ,s (kl d-:k

(2r) -A A

, ''
A2  2 2 A F 

.2

Pn ~A2
p

The medn- ,quare rnodoi velocity for resonant modes is, by Equation (6.41),

2 __ F
1) ( 4n2

Dmn A2  w...
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*, . , ,

and the mean-square velocity of all resonant modes in the frequency band Aw is, by

Equation (6.50),

i (w) n(w) Aw
V2 1 F

4 2 2I(m s~rean) flT Ap.',.. .

where the factor 1/4 accounts for the fact that only 1/4 of the total number of

- modes have high admittance at the center of the plate.

The lowest resonance frequency of the panel is for the m = n = 0 mode, that is,

h following Equation 6.53

where ..

-1/4.

I

m Po
mn = 0.88 '.-"m pk .

p for f < fo0" Accordingly,

ii ~~f0 = 161 Hz i.'

* At frequencies less than f0 we assume that the motion of the plate is the stiffness

00 7

*.: controlled first mode. Equation (6.34) gives

612/
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and we will use 1 of Equation (6.84) instead of a.

The total sound pressure from resonant modes is Acw and is now

22 (_ T, _ 2

P2 (W'AW) 8 K 0 16 2 r2 ( C ) )

where

1/4

Cb .

and where

2
F (w,Aw) = 2 qF(W) AW

is applied at the center of the panel. For a one-third-octave band

Pw= 0.235 w

where w is the center frequency of the filter band. The mean-square sound pressure

from nonresonant motion at frequencies less than w is

2 2-.2 W, A) 16 F (W, W) _

2 r h 2  m )2

or
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p 2(w, iw) (4 0~~ 0h 22 w~
p 1 1 1  161 r CO \+ /

The above equations show the pressure radiated from the finite plate as a

. function of that radiated by a force on an infinite plate in fre4E-space times

pertinent structural-acoustic factors and the mass ratio. This type of grouping of

terms will be characteristic of future analyses in this book.

Before proceeding with calculations, we must verify that the number of modes

, in the frequency band is much greater than one. From Equation (6.47) the density of

modes of all orders will be 9

A A w
n(w) - =47, K Cz 4 2  -_-

Z. 4 TTCbpb

therefore, at f = 4180 Hlz

"- n(, ) A =(0.95) [6.28X4180])

9A6 [(0.235) (6.28) (4180)]|2
(4x3.14) (966),

= 13 modes

while at f = 400 Hz, the number of modes is only slightly greater than unity. The

density of modes with a high admittance at the center cf the plate is only 1/4

the total mode density, 1/4 n(w). Therefore, we can expect at least one excited

mode per band only at frequencies greater than about 1 kHz. Between f = f 1 160 }Iz

and 1000 Hz the actual sound pressure will vary depending upon whether or not a

particular band contains a resonance.

Figure 6.22 shows the radiation efficiency o and the function k /k for the
p 0

parameters of the example. Equations (6.84) and (6.90) were used where appropriate.

The cross-hatched regions express the uncertainties of Equations (6.90d) and (6.90e).

,At f = 4180 1IZ we calculate 'iT by EquatJon (6.101), Figure 6.22, and , 0 '9

= [(0.01)+(0.29)(0.071)i

= 0.025
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-10 lo" d
APPLIES TO
PLATE IN WATER:
1.5 m X 0.6 m X 2.54 cm
PLATE IN AIR:
0.33mnX 0.13 m X0.12cm lp

20

10

-10- 69d 
C

-20 (69) J

CORNERABOVE

COINCIDENCE

Steel n Plate inAi ao n Wate Medi

p ~ ~ Fgr Here thRadiatipgcontrfiutenchevl o cuticumla ivampng oaflte

modes. Table 6.8.1 shows the ratio q /r, for various frequencies including the
rT

*coincidence frequency, f 10,000OO Hz. Note that radiation loss factors are defined
c

*as

615



TABLE 6.8.1 -COMPARISON OF RADIATION LOSS FACTORS AND TOTAL LOSS FACTORS OF
A 1.5 x 0.6 x 0.025 METER PLATE WATER LOADED ON ONE SIDE, =~ 0.01

-0

Frequency a 1 10 log flr/ (TI+ls

500 0.03 0.04 -2.5

1,000 0.04 0.035 -2

3,000 0.06 0.02 -2

10,000 15 1.5 0

20,000 1 0.10 0

The radiation loss factor at 10,000 Hz indicates that the coincident modes may be ..

critically damped; critically-damped modes have Tr = 2. One could argue, therefore,

that radiation loading would probably be important for these modes. The average

frequency interval between modes is the reciprocal of the mode density, i.e.,

A(w) M -l = 470 rad/sec/mode, A(f) = 75 Hz/mode. For the parameters of this .0

example, the resonant modes at frequencies less than 4 kHz will be uncoupled by

radiation damping because, on the average, the band widths of the resonances will be

less than the mode spacing of 75 Hz. At greater frequencies the resonance band

widths increase due largely to radiation loss, and at 10,000 Hz in particular, all 0

the resonant modes would probably be coupled by radiation damping. The estimate

mode without regard to these effects may overestimate the radiation at a given fre-

21/2
quency. The root-mean-square force F in all frequency bands is 1 N, so that we

again use radiation from the free-space force in Figure 6.18 to calculate the panel

radiation. Thus, for f= 4180 Hz,

<p2> k 2F 2(w,Aw) ('c' 2

I0 log 2  0 log o 22 logj +l log ?__ __Pref 16TT2 r 2 2 i0 8o C +b0lg ,:o

ref ref

mr m
+ 10 log - + 10 log s

T S mn

= 122 -4 +(-1) +[-5-1-11+161 - 11

= 115
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Figure 6.23 shows the equivalent spatial average sound pressure at 1 m., Note that

the expected peak at the coincidence frequencies is removed by radiation damping.I f4
At frequencies less than f the sound pressure level increases as f due to the S00

fact that it is proportional to the volumetric acceleration of the fluid associated

with the displacement of the 0,0 mode of the panel. This example has limited

practical significance because the required effects of baffling at low frequencies

would be difficult to realize in a physical situation. S

150

ILa

140 17'.10-2

- . -

Lu -130

Z E

-W 112

"" ~TO CONVERT FROM LEVELS RELATIVE TO 1/ BAR - i

• "" 90 -- ~TO LEVELS RELATIVE TOl1pPa ADDl100dB -.. "'

•1/3-OCTAVE BAND CENTER FREQUENCY (Hz)

*Figure 6.23 - Sound Pressure Levels in One-Third-Octave Bands for 1.5 Meter .

x 0.6 Meter x 2.54 Centimeter Baffled Steel Panel in Water, Driven with ' .

1 Newton Force Spectrum Levels in Each Band, Radiation S..
Efficiencies in Figure 6.22 Apply to the Panel i.,,

La I
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The effects of radiation damping will not be as apparent in aeroacoustic

structures as they are in water-loaded structures. To see this, we rework the

example for an acoustically equivalent steel panel in air. To do this, we maintain -_

the plate thickness so that (c /C )is the same in air and in water and that L /h
o b1

and L /h are the same. Such a panal has the dimensions 0.33 M x 0.13 M x 0.1 cm

with the radiation efficiencies shown in Figure 6.22 applying. Figure 6.24 shows the

sound pressure to be expected from such a baffled panel. Note the peak at the
4

coincidence frequency as well as the f behavior at f < f 0*Due to light mass

loading, now f 190 Hz.
00

130 
. -

E
120

I" -110 -

W 100

w90

o 80
4f

Uj 70"
>

I-6so .

50Q

401 1 1 1 1 L 1 -1 1 1

20 100 1,000 10,000 40,000)

Figure 6.24 - Sound Pressure Levels in One-Thlird-Octave Bands for Rectangular -

Steel Plate Simply Sht pported in a Rigid Baffte Plate in Air.
Dimensions: 0.33 Meter x 0.13 Meter x 0.12 Centimeter;

-2
Structural Damping: ow1 10.-

s0
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INDEX

Acoustic coincidence frequency, 582 Aerodynamic Influence Functions
Acoustic compactness, 497 (see Lift, fluctuating on airfoils)

and lifting surface noise, 908 Air, physical properties of, 427
Acoustic impedance, specific, 39 Airfoils, summary of noise source (table), 903-904
Acoustic intensity, 17, 39 Array, as a spatial filter, 760

Aeolian tone, 504 Average:
far field, definition, 38 in space, 154, 555 - -'

jet noise, 166 in time, 17, 153, 543 .
rotating rod, 514 over resonant modes, 562-563

Acoustic power, 40 Axial flow fan noise:
and input power, 599 basic equation for blade rate tones, 1131
dipole, 49 broadband related to loading, 1152-1159
effect of reflecting surface on, 48 ducted rotor, basic equation, 1199

free jet, 169 general equation for, 1124-1128
monopole, 48 Gutin Sound, 1142
rectangular plate, 579-581 laminar flow tones, 1145

Acoustic radiation: table of rotor parameters, 1154 .
point force on infinite plate, 594-597 thickness noise, 1159"•'

rectangular panel: turbulence induced, 1190
example, 604-609 p -
formulation, 571-575 Barotropic fluid, definition, 35

Acoustic radiation damping, 598 Beam, mode density, 560
Acoustic radiation efficiency, 8 Beam, radiation efficiency, 587

baffled beam, 587 Bending waves, phase speed of, 549
definition, 8, 581 Bernoulli's equation. 82, 233 -

measurements, 587, 590-593 Bernoulli-Euler equation, 546 .
modal average, 588-590 Bessel's functions, 1128
mode classifications of Blade element analysis:

rectangular plate, 583, 602 turbulent inflow, 1181-1185
numerical example, 615 Blade rate forces:
unbaffled beam, 586 acoustic radiation from, 1136.1147
unbaffled plates, 585 blade element analysis, 1130-1136

Acoustic radiation efficiency, (see also lift, fluctuating on airfoils)
*rectangular plate: induced by turbulence, 1186

corner mode, 584 example, 1192
edge mode, 584 limiting equations, 1189-1190
surface mode, 585 influence of expanded area ratio, 1180

Acoustic radiation loss factor, 247, 553, 615 measurement example, 1141
Acoustic radiation resistance, 579 Blade rate noise:

(see also acoustic radiation efficiency) fiom compact rotor, 1141
Actuator disc, propeller, I 112 general behavior, 1100-1103
Added mass, 593 general equations, 1131, 1138

and fluid loading, 597-598 t]lade row:
Adiabatic, 35, 55 acoustic blade interactions, 1176

exasin,36,240 and unsteady lifting and surface theory, 1177 ,.
aerodynamic blade interactions, 1174

oscillations, 245 as spatial filter, 1100-1101, 1187
Advance coefficient, 428, 1113 basic equation of interaction tones, 1164

nomographs, 33, 429 harmonic analysis of wake defects, I 'l
Aeolian tone, 89, 449, 507 Kemp-Sears theory, 1161, 1166-1168

intensity of, 504-507 thrust coefficient, influence of blade interaction. 1120
(see also vortex shedding, cylinder, airfoil) viscous and potential interactions, 1167
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Blade slap, 1169-1172 Bubble distribution:
Blade stresses, 1123 definition of, 250
Blade thickness noise, 1159 in mixtures, 252
Blade turbulence interaction, 1103 (see also nucleus distribution) 0
Blade vortex interactions, 1097, 1169-1173 Bubble dynamics, basic equation of, 238-242

(see also Blade slap) Bubble equation, lineatization, 243
Boundary layers: Bubble rebounds, 287, 335

equilibrium, 624 Bubbiy mixture:
self-preserving, 624, 629 sound propagation. 248-259

Bubbles, collapse of cavitation, 283 speed of sound, 251
adiabatic gas law, 292 transmission in, 251
and presence of walls, 301
colapse time, 285 Cascade (see Blade row)
details of final stage, illustration. 293 Cavitation:
effect of internal pressure on, 291 and nucleus distribution, 381-383. 386-390

(see also diffusion and vaporous cavitation) and turbulence structure, 386
effects of viscosity, 300 behind disk, 321
empty bubbles. 294 behind orifice plate, 32i
illustrations, 286-287 bubble screening, 387-388
limiting functions, 295-299 event rates, 384-390
limiting velocities of bubble wadl, 288, 297 free jet, 322
minimum radius, 291" 29 in periodic vortex street, 320
non-spherical bubbles, 300 mass of gas diffused during, 271
Rayleigh's equation, 383.385 propeller noise, bubble model. 394.397

Bubbles, formation of, 413-423 propellers. 365
and noise, 413 (see also propeller cavitation)

(see also bubbles, linear oscillations) separating laminar boudaiv laaei , 327
by diffusion, 267-272 tip vortex, 319, 368
in turbulence, 312-316, 422-423 photograph, 368
jet break-up, 417-421 turbulent boundary layer, 324
jet break-up in cross flow, 408-411 Cavitation, bubble:
periodic, 409, 414 photographs on hydrofoil, 358
sizes and sounds (table). 4; 2 photographs on propeller, 367
splitting, 422 Cavitation inception:

Bubbles, linear oscillations. 244-258 bubble equation. 306-310
amplification factors. 26o critical pressures for, 260, 308
damping, 243-247 diffusion influences, 268
noises emitted from, 397-4 12 disk, sharp edged, 321

observed, 407-411 hydrofoil. 303. 312
sound pulse illustration, 398 influence of dissolved gas, 272, 3 10
speed dependence, 404, 406, 411, 412 in turbulent boundary layer, 324

resonance frequency. 243, 245 isolated roughness, 331-333
simple harmonic motion. 243-248 or~rice plates, 321

Bubbles, non-Linear motion, 259ff scale effects, 302-306, 327.331
critical pressure, 260-262 separated laminar boundary laye r, 327-330
critical pressure illustration, 262 thresholds for gaseous type equation, 311, 315
critical radius, 261 turbulent jets, 322
limiting radius, 265 vortex ca,'itation, 316
onset of. 259 vortex streets, 320
radius time curve illustration, 259 Cavitation index, 17, 234, 302-333
radius time dependence in turbulent layer, 326 nomograph, 429 .
radius time formula, 264
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Cavitation noise: Coincidence frequency:
alternative length and time scales, 346, 348-350, 370 acoustic, 582
dependence on hydrostatic pressure, 347-352, 370 hydrodynamic, 842-84-4
free jet observation, 353 Coaxial nozzle, vortex shedding, 1011
hydrofoil cavitation observation, 35"7-365 Compressor noise:
hydrofoil noise from, 357 overview of sources, 1097-1100
rotating blade, 376 Continuity equation, 34, 52, 82

(see also propeller cavitation) Convection velocity of turbulence, 177,665
rotating rod, 345 Corner (acoustic) mode, 583
rules c.f siruliude, 344-352 Correlation area. 189, 669, 868 p

with shock formation, 350-352 definition, 669
with unequal cavitation indices, 348-349 Correlation functions:

single bubbles: and statistical probability, 153
and liquid compressibility (shocks). 341 and Taylor's hypothesis, 183
and lquid compressibility (shocks) cent roid, 504

effect on spectrum, 343 Fourier transform of, 155-160
and stages i bubble histoiy, 338 illustrations of, 216, 480, 656, 658,738,999, 1059
ideal spectrum function, 337-341 inequalities, 659
time trace. 335 separable representations of, 182, 184

Sstochastic models: Correlation length, 64, 180, 672
and statistics of turbulence, 383 relationship to wave number spectrum, 180
ard bubble statistics, 386 Correlation volume, 189
prediction and scaling rules, 374-380, 390.397 Covariance (see also correlation functions)

Cavitation noise modeling: spatial, 64
and hydrofoil cavitation, 360.361, 378-379 Critical pressures, 234
and jet cavitation, 354-355 cavitation inception. -60-262
propeller cavitation, 394-397 crevices in hydrophobic particles, 276
stochastic theories of, 381-397 Cross spectral density: .

Cavitation nuclei, determination from filtered signals, 213
(see Nucleus distribution) measurement, 208

Cavitatin. number, physical interpretation of, 208-209
(see Cavitation index) spatial, 155, 158

Caiation sheet, 367 Curie of vector, 82
photograph on hydrofoil, 364 Curie's equation, 69, 497 .

Cavitation thresholds, 2^2 Cut-off, (cut-on) frequency, 1169, 1200
(see also nucleus distribution, critical pressure) Cylinder:
acoustic methods of measurement, 281 drag coefficients of, 464

(see also bubbly mixture, transmission of sound in) pressure distribution, 464
everit counhti.ig, 281 Cylinders, noncircular cross section, 519
influence of gas content. 2"72 Cylindrical coordinate system, 41
mei,,uiements, 273, 2"74
stabilized caitation nuclei, 275 Damping:

Cavitation types: acoustic radiation, 598
photograph on headform, 305 bubbles, 244. 246
photograph on propeller, 367,3 68 control of hvdroelastic vibrations, 1055-1056

Cavity resonance. 125 hydrodynarmc. 1044
Cavity tones, !29, 130 in presence of vortex shedding. 1050

sound radiation from, 133 in simple harmonic oscillator, 542, 533
" Strouhal number illustration, 130 vibration decay, 544

Circulation, definition, 84 viscous, 1046
Circulation of Vortex Streets. 320, 988. 992 with fluid loading, 599
Clamped beam. 565
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Decibel. 18 Euler's equation, 52
Delta function, 99 (see also momentum equation)

as Fourier transform of exponential, 99, 156 Expanded area ratio, 1117
Diffusion of Gas:.

and gaseous -,avitation, 2467 Fan (see axial flow fan)
nd vaporous cavitation, 270 Feedback:

coefficient, 269 in self excited flows, 144
convective, 268-270 vortex shedding
critical pressure for, 262 cylinder wakes, 484, 6 1057
rectified, 270 trailing edge flow, 1057-1062

Diffusivity, (diffusion coefficient), 269, 427 Filter:
Dipole, 2, 44, 69, 91 electronic, 18

directivity, 48, 518, 917 one-third octave, 22
enhancement to jet noise, 1011, 1034 Flexural waves, 549-551
force, 46, 73-74 matching with acoustic waves, 578
heaving sphere, 71-73 matching with hydrodynamic waves, 851
near a half-plane, 914 Flow induced vibrations:
sound in free space, 44, 914 by convected pressure fields, 834-844
sound in two ph.se flow, 203-2C4 cavitation induced, 363-365

Directivity patterns: hydroacoustic mode classification, 858
compact dipole, 48 mode classifications, 851
edge noise, 916-917 noise control principles, 861 668
jet noise, 167 Fluctuations, stochastic. 97
point force on infinite plate, 595-596 Fluid loading, 553, 566-579, :-
propeller noise, 1144 Force dipole, 73-74
quadrupole, 50 Fourier transform, 24, 92. 98, 1 _-o0•
rotating rod noise, 518 relationships, 155-160

Displaccmcnt tlhikrncss, 642 spatial, 102
Distortion harrn, , Free surface boundary, 48

(see also axia, ow fan) Frequency, 19
general description, 953, 1101 Frequency filter function, 211
formulation of unsteady loads, 1132-1135 Friction velocity, 628
rotor-stator interaction, 1162-1165 Froude number, 17, 237, 414

Divergence operator, 35
Divergence theorem (see Gauss' theorem) Gaseous cavitation, 231, 267-2"2-" .
Drag coefficient, cylinders Gauss' theorem, 62, 68

definition, 462 Gradient operator, 35
fluctuating, 472, 477 Green function:
oscillatory, 473 free space, 93

Duct acoustics, 1193.1196 half-plane, 912
opening in rigid wall, 133

Eddy (see vortex) rigid plane, 95
Edge (acoustic) mode, 582-583 separable, 102
Edgc tone, 140, 143-148 sources in duts, 1195-1196

effective dipole force, 148 Gutin sound. 1142 
Stroulial number, illu:,tration, 146 in duct, 1201

lfi, weicv, Propeller, 1121
1 functions, 547 Half-plane (see irailing edge)

jr,.Plesset theory, 209 1 lelicopter i otor iuise, 1153, 1172 - -

Jic process, 154 (see also blai_ vortex interactions)
urf€or Function, 985
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Helmholtz integral equation, 92 Laminar boundary layer, 118, 121,327, 790, 971,
trailing edge noise,919 1007-1010, 1145-1149

Helmholtz (cavity) resonance, 132, 135 Laplacian operator, definition, 37
Henry's law, 268, 427 Law of the wake, 636
Hole tones, 139, 143 Law of the wall, 633
Hydrodynamic coincidenc.e, 834-840 Leading edge noise (see Lift, fluctuating on airfoils)

frequency, 837, 839, 842. 844 Lift, fluctuating on airfoils:
Hydrodynanic inst ahility, 118-121. 135.149 aerodynamic influence functions, 933, 939-942 -: .

differential pressures due to, 935,943-946, 952amplification by sound, 142.144 due to gusts, 932, 939-942
amplification by vibration, 1057-1060 due to upstream wakes, 951-954 -
free shear layer, 121, 963 due to vortex shedding, 1001
in wake of airfoil, 963-969 sound radiation in turbulence, 946-950
in wake of cylinder, 457-459 surface pressures due to, 943-945

Hydrophobic particles, 275 Lift, fluctuating on cylinders:
correlation function for, 479

Impedance, definition, 538 correlation length, definition, 479
Impedance measurement illustration, 474

acoustic, 39 sound radiation from, 502-508
infinite plate to point force, 564 theory versus measurement, 495

Inlet flow distortion (see Distortion Harmonizs) two-dimensional vortex model, 486-495
Intensity (see acoustic intensity) Lifting surface theory, 1177
Internmittency, "/95 Lighthill's equation, 52, 60
Isothermal motion, 240 free-space form, 62

Loss factor, definition, 541
Jets, turbulent: (see also damping)

noise, 61
axisyrnmetric disturbances, 196 Mach number, 5, 14. 31 -
enhancement by proximate edge, 1034 Matched asymptotic expansion, 109
formal analysis, 160-166, 189 Mean square, 18, 152
frequency dependence, 169, 192 Membrane waves, 551
measurements, 166-170 Micropascal, 18
subsonic noise, 160-170 Microscale, turbulence, 180

turbulent velocity: Modal density, 559, 615
covariances, 177 Modal force (see modal pressure)
cross spectral densities in, 187 Modal Pressure:
dimensional analysis, 192-195 definitions for random excitation, 548, 554
integral scales, 180 from turbulent boundary layer, 840
turbulence levels, 174, 179 from point force, 604, 606, 611
vorte, structutes, 141 random excitation of single mode, 554
wave number spectrum, 182 vibration of hydrofoils, 1039 .

two-phase, 197-207 Modal shape functions:
bubble noise from, 206-207 asymptotic forms of, 570
dipole sound from, 201,203 cantilever plates, 1042
monopole sound from, 203 ducts, 1195.1196

Jet laminar, 118, 121-122, 135-149 even-order mode shape, 568
Jet stability, 135-149 for simple structures, 565-571
Jet tones, Strouhal number illustration, 139 normalization, 566

simply-supported membrane, 566
Karman vortex street. 486, 906 simply-supported plates, 565
Kirchhoff's equation, 56-60 Mode count:
Kutta condition, steady flow, 929 hydrodynamically coincident modes, 852

inportance in ,analysis ot trailing edge noise, 1016 Momnentum equation, 34, 82
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Momentum integral equation, 642 Pressure, acoustic, 18, 35-39
Momentum thickness, 642 Pressure, dynamic, 27, 30
Monopole, 2, 41 Pressure release boundary (see free-surface boundary) -

and cavitation, 334 Propeller cavitation, 365-376 .

sound in inhomogeneous discharge, 203 blade analyses, 390-397
Moving axis correlation, 185, 660, 1184 blade passage frequency, 366

noise, 369, 372 - -

Newmann boundary condition, 95 noise, dependence on speed, 374.378
Noinographs: noise scaling, 370, 373, 375

advance coefficients. 33 photographs, 367-368 ...
bubble resonance frequencies, 245 tip vortex, illustration, 368
cavitation indices, 429 velocity dependence, 376
decibel addition chart, 24 Propeller diagram, 1115
dynamic pressure, 31 Propeller noise control tradeoff example, 1124 I
hydrodynamic coincidence frequencies, 844 Propeller singing, 1158-1159
radiation efficiencies of plates, 615 Propulsive efficiency, 1112
tip velocities of propellers, 33
vibration and noise control, 863 Quadrupole, sound, 2, 49-51, 61

Nozzles, 135-137 importance to Aeolian tone. 500-502
Nucleation, cavitation, 275 lateral, 49

wetting, 275-277 longitudinal, 49
Nucleus distribution: Reynolds stresses as sources of, 66

illustration, 279, 280 sources. 49-51
measurement of, 278 jet noise, 66, 167

event counting, 281 Quality factor, 542
acoustic absorption, 281 (see also damping)
optical methods, 283

Radiation:
Orifices, 149 condition, 51-52, 94
Orifice tones, 141 loss factor (see acoustic radiation loss factor)

Strouhal numbers, illustration, 142 resistence (see acoustic radiation efficiency)
Orr-Sommerfeld equation, 120 Radius of gyration, plate, 546

(see also hydrodynamic instability) Random variable:
Orthogonal functions. 547 homogeneous, 153-159

spatially homogeneous, 103,153
Pascal, 18 temporally homogeneous, 153
Peclet number, 270 Random vibration:
Pipe flow, 783 (see also power. input and modal pressure)
Pitch, 1186 multi-mode oscillators, 556-564
Pitch angle, 1I15 simple harmonic oscillator, 541 -

Plane boundary, sound from turbulence near, .6-79 two-dimensional structures, formulation, 552-565
Powell's relection theorem, 74.79 Rectangular plate:
Powell's theory of vortex sound, 80-90 flexural modes, 5,56
Pow r dissipated, 543 mode density, 559
Power, input: Reduced wave equation, 92 .

simple harmonic oscillator, 544 Retarded timc, 61
Power: Reynolds number. 13, 235, 236

and modal pressure. 563 Reynolds stress, 54, 55
input to flcxural waves, 555, 563-565 fluctuating. 63
net of many modes, 563, 565 near a half plane, 919

Power spectral density (see spectral density) Ring frequency, cylinder. 593 0
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Ring tone, 143-144 Spectral density, (continued)
Rotating cylinder, geometry, 498 intensity, 217
Rotating rods: measurement, 20, 213

directivity patterns, 518 power, 4,217
measured, 515-518 pressure, 4, 100, 217
radiation, 511-517 wave number, 105, 155.160

- spectral density of noise from, 516 Speed of sound, 36
Rotor-Stator Interactions (see distortion harmonics) Sphere:
Rough surfaces: heaving, 7 1-73, 107

cavitation inception, 331 volume source, 42 .
turbulent boundary layer, 637-641, 647, 654, 679, Spherical coordinates, 41

727,7 34, 742-744,770-772, 804 Spinning modes, 1140, 1200-1201
condition for propagation in ducts, 1200

Sears function, 931 Stability (see hydrodynamic instability)
Self-sustained tone. 144, 1046-1056 Stagger angle, 1162, 1176, 1186

(see also Feedback) Stationary phase, method of, 574-575
Shape factor, 642 Statistical energy analysis, 539, 544
Shape functions, modal. 554 Stiffness, bending of plate, 546
Shear Layer, examples, 117 Stokes' theorem. 85

and jet tones, 122, 142.! 48 St ress tensor, 96
and sound radiation, 124 Lighthill's, 53
behind cylinders, 457-458 Stokes', 53, 82 p
instability at trailing edges, 962-963 Strip theory, 939
linear stability analysis, 118-123 Strouhal number, 466-468
shear noise, 172 definition, 127

S Sirrulitude, 12 lifting surfaces, 969-978
of turbomachines. 1111 table, 974

Simple harmonic oscillator: vortex shedding cylinder, illustration, 467-468
Linear response formula, 541 Surface, acoustic influence on sound generation, 67, 74-80,
rnass controlled motion, 542 915-917
power relationships, 543 Surface tension, 238. 427
resonance frequency, 541
stiffness controlled motion, 542 Taylor's hypothesis, 174

Singing, hydrofoil (see vortex shedding hydrofoil) Tensile strength of water, 231 -
Solubilit, of air in water. 268, 427 (see also cavitation thresholds)
Solidity of rotors blading, 1119 Third-octave-band spectrum, 21,218
Sonmecfeld's radiation condition. 51 Thrust coefficient, propeller, 1112, 1114
Sound, dipole: Time average, 17

from compact body, 509 Torque coefficient, 1114
from compact force, 503 Total loss factor, 247, 553
from ngid cylinder, 504 (see also damping)

(see also vortex shedding, cylinder) Trailing edge noise:
Sound pressure level, definition, 16 (see also vortex shedding, airfoils)

combination, 23 aeroacoustic scattering theory, 1012-1018
overall, 20 and surface pressures, 1018

Sound pressure spcctruni. 18 axial flow fans, 1148-1152 L
*Source level-,, surerposiiort, 70-71 blown flaps and imipinging jets. 1027-1033

Spectral density, 21, 25 compared to boundary layer noise, 889. 891, 1016
cross, 100-101 compactness arguments, 908-917
dimensionless, 24 dipole near half plane, 909-915
frequency, 155-160 evanescent wave theories of, 1023
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Trailing edge noise: (continued) Turbulent boundary layer, induced vibrations:
from flexible surfaces, 1035 Dyer's criteria for spatially homogeneous
from wedges, 1036 excitation, 838-840, 856
from turbulent flow past edge, 918-924 hydrodynamic coincidence, 842 a
general scaling relationship, 923, 1022 of hydrofoils, 1039-1040
influence of yaw, 923 measurements, 847.848
measurements, 1031, 1032, 1034 modal pressure, 841, 843
measurements on propeller fan, 1151 mode classifications, 845
relationship to surface pressures, 1018-1023 multi-modal estimates, 849

Transition to turbulence: parametric dependences, 864-865
body of revolution, 790 sound from, 856-861
condition for in boundary layer, 787-790 speed dependence, 855
intermittency, 795 Turbulent boundary layers, sound radiation from:

Tube bundles, 521 (see also traiiing edge noise)
fluctuating lift, 525 boundary layers on flexible surfaces, 878 .
Strouhal numbers, 524 comparisons with other mechanisms, 889, 891 
vibration in, 525 dipole sound, 871-873
whirling parameters, 526 efforts at measuring, 873

Turbulence: formulas for, 878, 880, 883, 885
correlation functions, 158 Turbulent boundary layer, wall pressure:
expectation, 151 and quadrupole sound, 885
mean square, 152 at low wave number, measurements, 863 6
probability, 151 at sonic wave numbers, measurements, 766
sound from free, dimensional analysis, 61-66 at sonic wave numbers theory, 878
variance, 152 attenuation by elastomer layers, 783
wave number spectrum and Fourier transform, 156 circular cylinders, 810
in axial flow fan inlet, 1181-1193 covariances on trailing edges, 998-1000
interaction with airfoil, 904-907, 936-943 convection velocities, 744

Turbulence microscale, 670 influences of surface impedance, 878-881
Turbulent boundary layer: influences of viscous absorption, 881

axisymmetric on cylinders, 807 in transitional flow, 797
body of revolution, 790-795 measured frequency spectrum, 731-735
bursting events, 680 on trailing edges, 993-998
convection velocities, turbulence, 665 outer-inner variable scaling, 734 . .

law of the wake, 636 rough walls, 770
law of the wall, 633 separated flow, 806

on circular cylinders, 809 space-time statistics, 737
logarithmic region, 636, 637 spatial resolution, 772, 777
on NACA 0012 airfoil, 962 theoretical frequency spectrum, 709
on NACA 63-009 airfoil, 964
parameter estimation formula, 645 Unsteady airfoil theory, 926-931 . 1
Reynolds stresses, 654, 673-675 (see also lift, fluctuating on airfoils)
roughnc.ss height, 638
streamwise vortex, structures in, 675 Viscosity, kinematic of water, 427
surface roughness, table, 647 Viscous sublayer, 633
turbulence inersities, 649-653 Vortex, I, 80, 81
turbulence spectra, 661-663 sound 87-89, 124, 497-508
turbulence statistics, 655 sound from half plane, 1004
von Karman constant, 637 Vortex formation leneths, 461. 962
with pressure gradients, 800 Vortex shedding, airfoils (see also Vo rex shedding,
with pressure gradients, wall pressures in, 801-805 cylinders, hydrofoils)
wall shear coefficient, 631 acoustic radiation formula, 100'
in transitional flow, 793-795 blunt edges, 1011
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Vortex shedding, airfoils, (continued) Vortex shedding frequency, 466
and turbulent flow structures, 967-970 Vortex sheet, 118, 121
at blunt trailing edge, 961-962, 966-969 Vortex spacing ratio, 471
at sharp trailing edge, 959-960, 971 Vorticity vector, 82
effects of edge vibration, 1058-1060
fluctuating forces, 1001 Wall shear stress, 631
frequency of, 971-978, 974 (table) Wall pressure fluctuations (see turbulent boundary layer,
laminar flow tones, 1007 wall pressure)
relationship to other sources, 903-905 Water, physical properties, 427 .
rotating blade with laminar flow, 1145 Wave equation, 37
supression with splitter plates, 964 Wave number:
tonal pressures due to, 985-987, 990,992, 1008, acoustic, 43

1010-1011 free flexural waves, 549
wake strengths. 992 lattice, 557

Vortex shedding, cylinder: mode density, 559-560
acoustic intensity, 505-511 on resonant rectangular plate, 566
acoustic intensity, effect of yaw, 510 trace, 164, 575
and Orr-Sommerfeld's equation, 453-459 Wave speed, longitudinal, 559
effects of cylinder vibration on, 483, 509, 1057-1058 Wave vector filter:
effects of free stream turbulence on. 483 analogy to rotor response, 1101-1104, 1182. 1186-1190
effect of splitter plates on, 485 as measurement tool, 760
fluctuating velocities in wake, 456 formulae, 755 P
formation zone, 459-462 Weber No., 17, 413
frequency of, 465, 467-469 Wedge, scattering, 1036
mean velocity in wake, 455 Wienet-Hopf technique, 912
photograph, 451
vibration control, 526-528, 1056 Young's modulus, 546

vibration modeling, 1066
Vortex shedding, hydrofoils:

(see also vortex shedding, airfoils, cylinders)
analytical modeling techniques, 1042, 106 1-1067
control by hysteretic damping, 105 1-1056
vibration, 1037-1041, 1046-1049
wake-vibration coupling. 1057-1061
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