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-~ This bookis a comprehensive and unified treatment of the mechanisms
of flow-generated sound that occurs on ships and in marine machinery.
Often the control of these mechanisms involves the essentials of both %
fluid mechanics and structural dynamics.

Dynamical properties of various types of flow and qf various structural
elements that are typical of ship application are thus-examined in detail
beginning with the fundamentals of each physical source. -Organization

-of the book' provides for the treatment of elementary sources of flow noise

, Sy
and the principles of random vibration,4n Volume l.» Normal mode e
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PREFACE

The requirements for reduced levels of shipboard sound and vibration have . QH:A:
become increasingly demanding as each technological advancement in ship systems

leads to a more sophisticated design goal. It is now clear that many traditional

means of control that invoke the obstruction of transmission paths and the mechan-
ical isolation of sound sources have now been fully exploited and in many instances - ®

are proving inadequate. This is particularly true in cases involving fluid flow. ::VT-';iff
Modern technology now requires noise and vibration control that is fully integrated l |
with the design of hydraulic machinery, propulsion equipment, and turbo machinery, L
to name only a few. It 1s often the case that the physical fundamentals of design L..Q.,.V
also involve parameters which are essentially common to noise and vibration produc-

tion and that very useful performance and acoustic tradeoffs may be conducted in

design if only the noise-producing fundamentals are recognized by the designer.

These tradeoffs may even be conducted as early as the preliminary design stage. . ! .-
These tradeoffs are as feasible in the private sector as they are in the Navy. 1In o 1';5
fact in almost every aspect of noise and vibration control which is important to the '??;
Navy, there is a parallel development of understanding in some other application. —"-"";;5;

The purpose of this book is thus to provide an integrated description of the funda- .- Q,z.m
mentals of fluid-dynamically generated sound and vibration which is founded on the
combined principles of acoustics, classical fluid mechanics, and vibration.

It is the aim of this book to set down the fundamentals of sound generation by

different classes of fluid motions and flow-body interactions. Since the generation

of sound 1is intimately connected with the creation of turbulence and other manifes-

tations of flow unsteadiness, it is important to understand both acoustics and the

appropriate elements of unsteady fluid mecharics. Thus a great deal of attention

has been placed on the essentials of various turbulent flows, hydrodynamics of cavi- 7 ®
tation, boundary layer theory, and lifting surface theory. The purpose is to o U
develop understanding and perspective on the part of the reader; for this reason, ix;l;:i.
theoretical relationships that are derived are coplously illustrated with experimen- .

tal data. This 1is often done through the use of dimensionless forms which give ;Wil,,
generalized presentations to support and extend the theory. In most cases that :

involve experimental resuls not collected by the author, ilils has required a

vit
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complete reworking of the data into a form that is consistent with tte philosophy

of the book. Fluid dynamic sourc:s so treated include such classes of flows as flow
tones, jet noige, cavitation, vortex shedding sounds, all forms of subsonic lifting
surface noise, and sources which occur in axial flow machinery. Since in underwater
acoustics, vibration often plays a dominant role, there is a chapter on the funda-
mentals of random vibration as it relates to flow-excited structures.

The scope of the book is broad, and all topics could not be covered completely.
So, each chapter includes an extengive reference list. The lists are not exhaustive,
but are reasonably complete.

The book 1s written for scientists and engineers who are not experts in fluid
mechanics or acoustics; however, a knowledge of the fundamentals of each, particu-
larly fluid mechanics, would be helpful. The treatment of structural vibration and
structural acoustics is relatively cursory because there arec already rather good
monographs on those subjects that are available, as referenced. Although much of
the mathematical treatment used is rather sophisticated, the analyses have been con-
centrated and kept identifiably separate from physical discussions whenever possible.
This 1s so that readers desiring a more descriptive approach may also be served by
the book.

The book has evolved from the author's own research experieuczes, as well as
from the literature of both the aeroacouslics and hydroacoustics communities. The
author is 1indebted to his colleagucs at the Center and, in particular, to those in
the Hydroacoustics Branch of the Ship Acoustics Department for their continuing
interest in the project. Many people contributed to the preparation of the various
chapters. Special thanks go to Professor Patrick Leehey of MIT whose graduate
course on flow noise provided me with both Instruction and inspiration, and to
Drs. Alan Powell and Maurice Sevik who provided continuing understanding, stimula-
tion, and encouragement as the work progressed. The work could not have been under-
taken at all without the help of S. Blazek and A. R. Paladino of the Naval Sez
Systems Command who sponsored much of the writing. Technical consultations with
current and past colleagues at the Center on as many aspects of the work as possitle
were necessary to give the work depth and perspective; thanks are extended to
G. Franz, J. T. C. Shen, G. Maidanik, M. Strasberg, F. C. DeMetz, as well as to
T. Brooks of NASA, and R. Schlinker of UTRC. From time to time T imposed on a

variety of experts to review selected chapters for content; gratitude is extended to
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M. Casarella, D. Crighton, M. Howe, R. E. A. Arndt, R, Armstrong, F. B, Peterson,
A. Kilcullen, D, Feit, M. C. Junger, F. E. Gelib, R. Henderson, R. A. Cumming,
' W. B. Morgan, L. J. Maga, and R. E. Biancardi. Thanks are also due to
D. Paladino and J. Gershfeld who read all or part of the manuscript and located
many of the inconsistencies and errors.
The creation of camera-ready copy was made possible by a team of B. Devaney,
' B. Hay, J. Seidenstricker, and M. Gotthardt of DTNSRDC. C. Naas (also of DTNSRDC)
and K. Simon (of Forte, Inc.) did the exceptionally difficult job of editing.
T. Gilleland and R. Schmidt of the Center's Publications Department coordinated
the typing and artwork,
i Finally, the main debts are owed to my wife Donna who initially suggested the
project and whose enduring gifts of love, support, and patience made possible its
completion and to our daughters Kristen and Helen for their cheerfulness as they

virtually grew up with the book around them.

e i ———— -

W. K. Blake

Bethesda, MD
June 1984
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CHAPTER 1
INTRODUCTION

1.1 THE DISCIPLINES OF FLOW NOISE

Sound and vibration produced by the flow of fluids has provided important
limitations to various types of ships, aircraft, and fluid machinery. In many
industrial and marine applications, thresholds are set for allowable levels of
sound and vibration for reasons of habitability as well as the acceptable perform-
ance of onboard acoustic sensors on marine vessels. Flow-induced vibration may
also generate fracture and damage in many structures that are exposed to flow; such
structures include turbine blades, prorellers, and buildings. Yet, in spite of this
importance, the control of flow induced sound and vibration in engineering applica-
tions is a discipline that is more-~or-less reserved for specialists., This is in
some contrast to other more classical areas of sound and vibration for whicn the
practicing engineer has at his disposal any number of texts. One of the purposes
of this book is to fill that gap. The problems of vibration and sound that involve
fluid flow are made worthy of separate and special treatment because of a three-way
int~raction of unsteady fluid mechanics, structural vibration, and acousties. Thi-~
book, then, presents an interdisciplinary look at a truly interdisciplinary subject
«rea.

In a practical sense the generation of vibration &n sonnd may be expected
whenever there is a relative motion between two adjacent bodies of fluid, as 1. che
case of jet noise, or between a fluid and a body moving through it, as in the case
of noises from air frames, propeller fans, and helicopters. Thus, the sounds gen-
erated by sources such as cavitation, the formation of gas bubbles, propellers,
ventilation fans, fairings over sonar systems, flow ove: cav’~ies and discontinu-
ities in surfaces, and the flow past wings, control surfaces, and rotor blades,
and many more, are all determined by the nature of the flow disturbances as well
as by the vibrational acceptance of the surfaces to flow excitation and the ability
of those surfaces to then radiate sound. This book will deal with each aspect of
this process.,

Also, by tradition, hydroacoustics has often been regarded as the subject area
produced by a flow-body interaction, particularly when the fluid is a single phase,
and the direct result of the time-varying forces exerted at the fluid-body interface
which are set up by the locally-generated flow disturbances. The interaction can

be made more complicated if the motions of the body and fluid become coupled by
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some feedback mechanism; such cases are referred to as "self-excited." The emitted
sound is a superpositiou of fields created by the fluid forces as well as the
induced body vibration. Noise control in all such situations may be possible by
modifying the flow-induced forces, the structural response to those forces, and the
efficiency by which structures radiate sound. Clearly then, efiective engineering
of sound and vibration requires an understanding of the many features of fluid-
structure interactions in the machine under design.

Traditionally, the subject of aeroacoustics has been regarded to include those
flow-induced noises that involve aerodynamic interactions of fluids and bodies.
Tnerefore, it includes jet noise, air frame noise (which includes noises from flow
over slots, gaps, and leading and trailing edges of lifting surfaces), the Aeolian
tone (the singing of wires in the wind), and czbin noise due to boundary layer flow
over aircraft fuselages. By acciden:, really, it is generally. assumed that if the
noise arises from a flow-body interaction, the surface is either rigid, or if it
does vibrate, the noise primarily results from the distribution of aerodynamic
forces on the bodv and only secondarily from the vibraticn of the body itself.
Quite often pi. _.ical interest will lie in high speed fluow noise because of the
application to modern aircraft.

Also, by tradition, hydroacoustics has often been regarded as the subject area
of two-phase flow noise, e.g., sounds from cavitation, bubble formation, an! splashes.
Application generally lies with low speed marine vehicles and so such topics as jet
noise are of little importance to marine application because the radiation effi-
ciency of this noise is very small at low speeds. The other sounds due to inter-
actions between bodies and single-phase flow, that are important to aeroacoustics
are equally important here, but they are made complicated by the fact that the body
ceases to act as a reflector, but rather as a more active contributor to the overall
sound field. Quite often the structurally-generated sounds are more important
because of the poor radiation efficiency of the fundamental fluid dynamic noise
source. Propeller singing falls within this class of sources.

This book will take a broader look at the subject of vibration and sound. We
begin with a comprehensive theoretical treatment of acoustics and sound generated
by fluid motions and surface vibration in chapter 2. Following this we shall deal
with three classical source types that do not necessarily invelve vibration of a

structure. These are monopole (cavitation, chapter 4) dipole (vortex-shedding

sounds, chapter 5) and quadrupole (jets, chapter 3). General theoretical analysis
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is again presented in chapter 6 when we examine the fundamentals of random vibra-
tion. The next three chapters deal with specialized topics that involve boundary
layers (chapters 7 and 8) and flow around lifting surfaces (chapter 9). The broad
and important subject of sound radiation from axial flow machines is examined in
chapter 10,

1.2 DIMENSIONAL ANALYSIS

Three elements, then, must be considered in a comprehensive solution of a
problem of flow induced sound and vibration: the unsteady fluid mechanics (turbu-
lence characteristics), the response of any contiguous structure (impedance distri-
bution, damping), the acoustic radiation field of any body vibration and turbulent
flow sources. In view of this variety of interacting components of flow--noise
problems, it is necessary to establish a systematic approach toward identifying the
controlling parameters. This will be done now using dimensional analysis for the
example of turbulent flow past a lifting surface such as is typical of turbo-
machinery, aircraft, and marine components without cavitation. The analytical
approach used here has wide application. As i1llustrated in Figure 1.1, the surface

has a chord L, and thickness h; the fluid moves past the surface at velocity U and

P,. SOUND
PRESSURE

Figure 1.1 - Illustration of a Body Subjected to a Disturbed Flow; Body
Vibration ug of Wavelength KS Resulting from Surface Pressures

Pp of Integral Length Scale Af
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surrounds it with a turbulent field of intensity u, (|ut| <0.3 U_, generally) and
length scale Ac' Forces are exerted on the surface from a pressure distribution

of magnitude Py and length scale Af. Just how these pressures are developed will

be the subject of later chapters (5 thruugh 10), but for now we simply say that they
are only correlated over the area Ag. Therefore, we may think of a distribution of

localized forces F of magnitude ;;"P{T

If As is the area of the surface, and if the pressures are evenly distributed over ‘,
it, then the number of such forces is of order As/Ag. The lengths Af and At may
not be equal, one having to do with the ambient turbulence, the other with the
bounding flow adjacent to the surface. In either case, each may be proportional to _
the chord L if all the turbulence is created by the subject surface. The force dis- ;1;.V
tribution will induce a flexural vibration level u_ on the surface, with a wavelength .

XS. To complete the picture, the sound pressure radiated from the surface P, has a

wavelength Aa. Having introduced the vibrational wavelength, the acoustic wave-

length, and the fluid length scale, we have acknowledged the existence of laws of L
similitude based on relationships among them. We shall identify next the circum-
stances under which these scales become important. The turbulent pressures are
distributed over a range of frequencies f with a continuous spectrum function Gp(f)
which is bounded by the upper and lower frequencies f2 and fu. The pressure is
related to its spectrum by (see section 1.4.2)

£
2 22 [
P, = (P UL) .’. Gp(f) df

£y

. 't.".“‘.,"*;" -

and similarly for the power

u

P

n(f) df S
£, ()
The sound pressure is a superposition of contributions from the free turbulence

region, the force distribution over the surface which is imposed equally aad in R

phase opposition to the force on the fluid, and the flow-induced vibration. 1In S

actuality, the superposition of radiated pressures from each source type must !




regard bcth the amplitude and phase, but for now we are only interested in the gross
relative magnitudes of sound power that are possible from each source acting
separately.,

First, the total radiated sound power PT from the dynamic shearing motions in

the turbulent region alone (neglecting the surface stresses and vibration due to the

presence of the body) will follow the similarity law (Sections 2.3.3 and 3.6)

- 4

v, :

Pr ~ 0y 5T (1.1) _{

(o] t R

o -

where <, is the speed of sound in the liquid and Vo is the total volume occupied by 'Tj.' -

the turbulent region. Equation (1.1) shows that E& increases as Mach number to the
fifth power. This shows that radiation from free turbulence at low Mach numbers is
significantly less important than at high values. 1If we assume, for the moment,

that the free turbulence is created only by the motion of the body, and accordingly - *

that VO is proportional to L3 and At is proportional to L, then the law of simili-
tude will be

32,5
!PT ~ QOUm LM

where M = Vo/co is the Mach number of the flow. The power consumed by the surface

in working against the flow will behave as

P - p_UL

so that we may define an acoustic power loss factor as

Pr_ o

=7 Mac S

P i
and . !';

n o~ M (1.2) :
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Thus, the relative efficiency of sound production by the dynamics of the turbulent
region increases as the fifth power of Mach number in agreement with the previous

assessment of quadrupole sound power. This dependence on speed is shown 1in

Figure 1.2,

log M

Figure 1.2 - Dependence of Radiated Acoustic Power on Mach Number for
Elementary Compact Flow Dipoles and Quadrupoles. Acoustic Power is
Shown in Relation to the Availatle Fluid Power

The radiated power spectrum from the force distribution over the surface,
assumning that the surface is rigid, has a frequency spectrum (Sections 2.4.3, 5.6,

and 9.2) which may be expressed as

2 .
F . (f) f A - fi
h s fL f
) -\ T (7) D(?’ ?“)
H ."'.t. (o} o]

w C
o ¢
R . 2 - - R .
The function Fh(f)f represents the frequency spectrum of the rate of change of hy-

drodynamic forces at a point on the surface. The first term represents contribution

to the total power by each of the uncorrelated force elements, the second term
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represents the number of such elements on the surface, and the third term represents
the various scattering effects which may occur when the chord exceeds an acoustic
wavelength, Aa = co/f, or when the correlation length /\f exceeds )‘a‘ The factor D
expresses the spatial matching between the pressures on the surface and the sound

and it approaches one when L/)\a or Af/ka are both much less than one. These effects

are discussad at length in Chapter 8. TFrom the above it can be stated that Fi(f)

will depend on the parameters of the problem as

2 2,2 ,4
Fa(f) ~ (o U™ Ap G (D) (1.3)

o

therefore, we may write the acoustic power spectrum as

U 2 (A fA
o 3.2 (fL f fL f
ﬂD(f) ~ <C—-) QOUOOL (q) (L—) Cp(f) « D (E-—, ‘E—) (1.4)

or

2
2 [A fA
g3 2.2 fL ( f> . fL f
‘.'TD(f) ~ M OodmL Gp(f) <——Co> T 14 (—C ' T >
The pradominant frequency of the flow excitation is fg which we shall let be fQ -~

Um/Af. Now, if we let Af ~ L, as done for the noise from free turbulence, then the

ratio of the total acoustic power to the mechanical power depends on Mach number as

n_ o~ M (1.5)

Thus, the total sound power efficiency for the force-dipole increases with Mach
number less rapidly than for the quadrupole power, as shown in Figure 1.2. This
means that at low Mach numbers, dipole sound caused by acoustically compact surface
forces may be more important than quadrupole sound emitted by the distribution of
shear stresses in the turbulent flow around and in the wake of the body. ©Note the
ahove analysis has shown the relationship between these co-exlstant sources to be
speed dependent and that quadrupole sound may tend to become relatively more impor-

tant than dipole sound at high speeds.
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A third source of sound power arises from the surface vibration, the sound

power spectrum from which is dependent on the vibrational surface velocity as

A -—
s fL 2
ws(f) ~ Potols O (Co 4 c°> us(f)

The function or(fxs/co, fL/co) < 1 is the radiation efficiency (see Section 6.5) of
the structure. It is a function of the overall geometry of the structure, and of the
ratios Xslka and L/Aa. As XS/Aa + 1 and L/)\a > 1 then 0 *» 1. The vibrational
velocity of the surface is related to the surface impedance, Z(f) and to the local

force spectrum Fi(f) as (see Sections 6.3, 6.4, 7.6.1, and 8.6.1)

A
F2(f) -5

h 2
:5(f) - ______ffﬁl_.c (fi)

where the factor AS/A§ accounts for the number of local force units of magunitude Fh

on the surface where G(Af/ks) is a coefficient that expresses the spatial matching

of the hydrodynamic force distribution with the wavelength of vibration in the
structure; it is analogous to D(L/Aa, Aflka) of Egquation (1.3) and it also is a
function of geometry. If each vibrational mode of the structure behaves as a linear
harmonic oscillator, then at a given frequency (Section 6.2) the flexural impedance

of any mode will behave as

£ 2 f
- 1) (1)

or, introducing & nondimensional i{mpedance function z(f/fr),

-1
N (EL
2(f) = (pphfrAs) z (f ) <fr>

\'r

where n 1s the loss facter of the structure. The rrsonance frequencies fr form a

discrete set which, for a given structural geometry, vary with the body length

gscale L and bending wave speed Cys 2S




and cb varies as

1/2
cy ~ (frhCL)

where =¥ is the bar wave speed in the structural material. 1f we fix the value of

f/fr and combine terms then we can write the power spectrum in the general form

- A
FRee) [ =2 Ae e \2
£ h /\2 G -,\—- —
s 2&) . £ . 's/ \"r

“s(f) ¥ poCoAs " % (E_-’ c ¢ 2
(%)
T

) o
Introducing Equation (1.3), and rearranging, we find the sound power spectral density

2 .2
[Aspph] fr

radiated by each mode in the same form as Equation (1.4)

A 2
f £
2 2 G (—) £)
U A p_C £ by f
n (£) © 32, ( f) 0 0 . s fL s r’
s ~T 6 U_L T (-—-——) o, (——, > - Gp(f) (1.6)

(o}
(o]

as the general similarity function for the sound power spectral density radiated

from flow-induced structural vibration. Equation (1.6) contains in general fashion
all the factors pertaining to the hydroacoustic coupling of the unsteady fluid
motion, the structural vibration, and the acoustical properties of the fluid medium,
To proceed further in our assessment of the importance of structural vibration versus
radiation from flow-dipoles we must invoke certain particularities of the factors

oL z(f/fr) and D(fL/co, fAf/co) in Equations (1.4) and (1.6).

Part of Figure 1.3 shows Equation (1.4) to arbitrary scale nondimensionalized
on the mechanical power factor poUiL2 and normalized on the hydrodynamic pressure
spectral density acting on the surface. The curve represents an "acoustic radiation
efficiency” as a function of frequency of the hydrodynamic dipole forces acting on

the surface as if it were completely rigid. The departure of the curve from an f2-

dependence at frequencies fL/co > 1 is provided by the fact that U(fL/cO) decreases
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Figure 1.3 - Relatlve Spectra of Radiated Sound Power from Fluid
Dynamically Induced Vibration and Surface Forces

inversely with frequency when the surface becomes larger than an acoustic wave

length. The fundamentals of this are given in Section 9.2.

We deal now with the behavior of Ps(f) also shown in Figure 1.3. The coupling

factor G(Af/ks) may be assumed to vary slowly or not at all with frequency in com-

parison with the other factors in Equation (1.6). Very low and very high frequency

regions may be identified in which certain simplifications may be made. In the very

low frequency limit, which lies below the fundamental structural resonance, i.e.,

for £ < fr the impedance function behaves as |z| = 1. The fundamental resonance

frequency may be thought of as "scaling' on the length parameter I and the thickness
q y b 8 2] Y

parameter h as indicated above, so we may say roughly that fr ~ C_._h/L2 for a partic-

ular structural configuration., At these low frequencies, the acoustic wave lengths
are larger than the extent of the body, i.e., for fL/cO < 1, considerations of

Sections 2.1.2 and 6.5.4 suggest the behavior

10
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where the minimum value of m is 2 for a baffled structure, or for a volume source

(Section 2.1.2). Accordingly, equation (1.6) may be rearranged into the form
(with m=2)

3.2 poCo ’ L 6 o : fL 4 lAf
£) ~ Mo U LS ¢ (f) « |22 (—- <—> ——> G (-—) 1.7
PO~ Mool Gy 6) - |5 ) = <Co o a.n

for f<¢ fres and fL/co<< 1. This result diffcrs from Equation (1.4) in two important
characteristics which provide for thc importance of structural vibration. First the
factor (poco/ppcﬂ)2 provides for very different radiation impedances for similar
structures in dissimilar fluids. For example, two geometrically similar structures
of a given structural material in air and in water will radiate acoustic power in
proportion to the ratio of fluid acoustic Impedances squared. Since P5%6 of water is
4,5 x 103 larger than for air, the (poco)2 term will account for 70 decibels greater
sound output in water than in air. The second important frature in comparing
Equations (1.4) to (1,7) is the presence of fa compared to f2. Thus, low-frequency
energy conversion will increase more rapidly with frequency for flow-induced vi-
bration than for radiation due to the forces themselves.

We now consider a high frequency limit., Ar frequencies above the fundamental

resonance of the structure, the behavior of |z{2 ig marked by a sequence of minima
and maxima which are due to the many structural resonances of the structure. A
simple means of conceptually avoiding this complication is to obtain an average
value of J;(f). This 1s obtainad by summing the responses of all resonant modes , 7
between two limiting frequencies, f, and f. + Af, where Af increases in direct ®

1 1 -
proportion to fl' Dividing the summed power by 5f we find the average power -

'.".A

spectrum

v ‘ C
I PSS

i R e
Jg(f) =7 E;(f) df o
f s
.. 9
11




In Section 6.3.2 it 1s shown for flexural vibrations of a plate that the effective
value of l/'lzl2 behaves in proportion to fAS(nhCQ)_l. We take this behavior as rep-
resentative of typical structural impedances. Also at high frequencies such that
the acoustic wavelength is smaller than both a structural wavelength and the dimen-

sions of the structure, i.e., f )\s/co >1 and fL/c0>1, then o= 1 (see Section

A
6.5.4). 'ine average power spectrum then is of the form (éssuming constant G <7£>)
s

2
— 32 5o (CQ (L 3
Ps(f) ~ M poUmL Gp(f) (PPC2> T F) (1.8)

which is also shown in Figure 1.3. We note that the frequency for which £ As/co =1
is called the acoustic coincidence frequency fco of the flexural waves; equation
(1.8) only applies at frequencies greater than this. Between the two frequencies fl
and fco the function E; peaks at some maximum value as indicated. The details of

the fluid-structure interaction would determine both the magnitude and the frequency
of this maximum. Figure 1.3 shows that for a given structure geometry the relative
importance of the two radiation contributions will increase or decrease in propor-
tion to (poco)/(ppcl)' It is therefore often, though not exclusively, the case that
in certain frequency regions E;(f) > TD(f) in hydroacoustic applications and that
PD(f) > E;(f) in aeroacoustic applications. As Figure 1.3 implies, there may be
frequency ranges for which the roles of the sources may b2 reversed.

The above remarks, therefore, are not to be taken to suggest that aeroacoustics
is exclusively a rigid body phenomena. Two prominent examples of aerodynamically-
induced structural radiation are cabin noise of alrcraft and certain sounds of circu-
lar saw blades. Therefore,the above equations are derived to be suggestive of the
parameters which control radiation from the two sources. A specif{lc example is

worked out in Chapter 9.

1.3 SIMILITUDE IN AERO- AND HYDROACOUSTIC MODEL TESTING

Equations (1.1), (1.3), (1.4), and (1.6) through (1.8) indicate what essential
conditions of dynamic similitude must be maintained in model testing for the respec-
tive source strengths. First, regarding the fluid, Equation (1.3) reflects the fact
that the fluid forces will be simulated when U , &f, and P, are maintained in appro-

priate relationship. This relationship 1s assured when the inertial forces, which

12
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are proportional to p U2A2, are maintained in the correct proportion to viscous
o ®f P

forces which scale on uUmAf. Thus, hydrodynamic similitude requires that the ratio

inertial forces _ oUoo £
viscous forces u

is fixed in two scales. Now, when this ratic of forces is maintained for models of

two sizes, A_ will be proportional to the body dimension, i.e., A_ ~ L, so that we

f
finally state that the requirement is that the ratio

£

is constant for both scales and that, in general, Af/L is a function of R

-

= F(R)

r“l\

The ratio R 1s the Reynolds number of the flow. Dimensional arguments further

dictate that the frequency will scale as

[amed
-

(=31
c

so that a dimensionless representation of the flow-induced force field is S

) N
> . (& R) p
piUle‘ P AU,

where Cp(fL/Uw) is a dimensionless function of the dimensionless frequency and O

Reynolds number. Also required is the maintenance of the function U(fL/co) in the

13 ':::in?i
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two scales; this regquires acoustic similitude which implies that the ratio of the

inertial to compressive stresses in the fluid is also maintained. This ratio is

y Lo il -
e, . S

poU°2° 42
(o) C2 | :.
oo g
. which means that the Mach number M must be comparable in both scales. Reynolds number %f A
ui and Mach number similitude also ensure appropriate representation of both guadrupole ﬁif:
iﬁ noise (Equation (1.1)) and force dipole noise (Equation (1.4)), as can be seen by j?”
é; examining the terms involved. i;ré‘;?
- A contradiction arises, however, when we hold model and full-scale measurements ?f";7f
to the same fluid medium. 1In this case equality of both Reynclds numbers and Mach )
numbers can only be achieved when the model size Lm equals the full-size, Lf. There- i
_ fore, the only practical resolution is to select one of these dimensionless parame- poceosui
" ters to be maintained equal in both scales. Generally the selection {s made to ;!
maintain Mach number similitude and to assume or verify by some indirect meane that
the dichotomy in R caused by the smaller size Lm < Lf does not seriously limit the L
- validity of results. A
A

Similar arguments apply when structural vibration is the dominant sound source.

First, maintenance of acoustic similitude requires that

M

M

If the fluid and structural media are the same in both scales, then we also have




At the scaled frequencies,

+h
=]
|
[
)
/4-\
rl (=
82 |m
~——
nl(‘
b
g

()

then, we therefore have equal coupling coefficients: in Equation (1.6)

radiation efficiency (Or)m = (Gr)f
structural impedance (Z)m = (Z)f
fluid structure coupling (Ga)m = (Ga)f

if and only 1f we can be sure that

(.-‘\f)m (A

£°f
Lm Lf

and that the nondimensional hydrodynamic force spectra are similar, i.e,,

£L . fL
Gp (ﬁ—’ Rm) B Cp (U ’ Rf)

even though it might be stipulated that the Reynolds numbers are disproportionate

by a factor

If the integral scale and spectrum function are each weak functions of Reynolds
number then the above near equalities in Af/L and Gp(fL/U) will hold. This is what

often happens in practice when the flows are fully turbulent. Exceptions occur when




the flow is transitional between laminar and turbulent, the flow is characterized by

a discrete vortex formation, and flow-structure-acoustic interactions are mutually

coupled through a complex feedback mechanism. In these three interaction classes ?;“*”*’
the fluid mechanics will be especially sensitive to the delicate force and impedance f,;;;f-ﬁ
relationships that characterize each aspect of interaction. Another variable which
must be either simulated or measured is the damping in the structure n. This is a

difficult parameter to scale when it depends on internal friction in joints of

structural members. Damping is scaled when it 1is due to hydrodynamic or radiation
losses so that similarity in the above structural and acoustic variables is

maintained.

Table 1.1 summarizes the various force relationships which must be simulated in oo

=

aero- and hydroacoustic modeling. The parameters Weber (We¢), Froude (F1), and cavi-
tation indices (K) appiy to the simulation of two-phase fluid mechanics. These

variables will be discussed in Chapter 4. The table is exhaustive for all processes _
that do not involve heat conduction, mass transfer, or chemical reaction. It is not P inin
possible to rank the dimensionless variables in the order of importance in similitude, :7*1”3f

because such a ranking depends on the test objective and the groupings that are im- :3

portant in each test. About the only generalization to be made is that We, Fr, and

2
K are irrelevant in single-phase fluid media. The compressibility pc” applies to

both two-phase fluld and fluid-structure interactions. Also listed, although not F,L-‘
previously discussed here, is a similarity in surface finish shape and size. Along
vith similarity in R this requirement maintains proper simulation of flows which are RN
transitional between laminar and turbulent. The similitude in We¢ for fluid-body Sf;4;
interactions also implies similarity in wettability. ot
1.4 REPRESENTATIONS OF SOUND LEVELS _.-: , -
1.4.1 Sound Level Definition o
In dealing with acoustic signals radiated by a source into free space, the T

parameter most often measured is the sound pressure at some point in the fluid.

This quantity may be related very simply to the acoustic intensity radiated from the
source as long as the pressure measured is entirely due to dilatational (acoustic)
deformation of the fluid. Also, it Js required that the measurement must be made

far enough from the radiating source so that the radius of curvature of the acoustic

16
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TABLE 1.1

DIMENSIONLESS RATIOS APPROPRIATE TO REQUIREMENTS OF SIMILITUDE

Similitude Parameter Application
(Inertial forces) (Viscous forces) R = pOUL/; All flows
Geometry Gross: Body size, shape All flows
Surface Finish: (kg/L)l = (kg/L)2
(Compressive stress) All flows

(Inertial stress)

M o= U/co

Material (fluid) compressibility

Fluid [1} - fluid {2] and fluid (1)
structure [2) interactions

(Fluid (acoustic) imp>dance)
(Structural mass impedance)

Tluid-structure interacrions

(Energy dissipated) + (Kinetic energy)

Fluid-structure interactions,
hydroelastic coupling

(Pressure stresses) (Inertial stresses)

K= (P_-P )Y/1/2 .\L‘2
2y

Cavitation

(Inertial forces) (Gravitational forces)

_ 1/2
Fr = U/(glL)

Buoyancy and hydrostatic
effects

(Gas inertial stresses)
(Surface tension)

& = PUZ L/s
€ B

Gas jet disintegration in
liquids, bubble splitting

wave fronts is much greater than an acoustic wavelength.

When these conditions are

met then the "far field" intensity I and acoustic pressure p are related by

where © ¢
o0

is the sgpecific acoustic impedance of the fluid.

intensity or of the pressure squared is the reported parameter

or

L S IR R T O L I Ay T 2P P O AP

T/2
1
=7 I(t)dt
-T/2
17
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ki

_ T/2
p’ = % I p’(t)de

-T/2

which 1s also called the time mean square of the pressure.

The sound pressure level is defined in decibel notation ask

p2
LS = 10 logT—
Pref

6 2
n/m° (1 wPa or micropascal) for sound pressures measured in

5

where p2 is 10~
ref _ 9
liquids, or pref is 2 x 10 n/m~ (20 uPa) for sound pressures measured in gases.

Similarly, a sound intensity level may be defined

LI = 10 log

I
Iref

1

where Ir is 10~ 2 W/mz. A third level determinant, the sound power level, is

ef
defined as

L = 10 log
P E}ef

where E;ef = 10"12 W. The sound power is obtained by integrating the sound intensity
flux across a surface circumscribing the source. The full meaning of acoustic pres-
sure, intensity, and power will become clear in Chapter 2 when we discuss radiation

from particular sources.

1.4.2 Sound Pressure Spectra

The sound pressure, being a temporally dynamic variable, is composed of a super-
position of disturbances at different frequencies. In the traditional sense, in
order to sample the acoustic pressure at specific frequencies, the signal sensed by

a microphone or hydrophone is electronically filtered over a frequency band, squared,

*One decibel is an increase of sound power or intensity by a factor of 1.259.
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and time averaged. This quantity pz(f,Af) is the mean square pressure measured with

bandwidth Af centered on £. If Af = f_ -

2 1’
1/2. Figure 1.4 describes the functional operation of

then f 1s defined as the geometric
mean of fztl, {.e., f = (flfz)
a "frequency analyzer" that performs this operation.* The overall mean square

-_— ——

pressure p2 of all frequencies and pz(f,Af) of the filtered pressure are related
(see the appendix of Chapter 3) by the spectrum function G(f). This relationship is

found as follows:

[v+}

p2 (e, 0F) = I c(6) u(e) |? af (1.9)

(o]

where lH(f)i2 is the filter response function which ideally passes signals only

between f2 and fl and no other frequencies; accordingly, we may have

f
—E 2
p (f,4f) = J G(f)af

£

for a flat filter pass band. We can deduce from the above that the spectrum function

is given in the limit of narrow bandwidth, i.e.,

3
)
lim | (ZfAf'-=G(f)
Af+o

Put in a2 more operationally significant form, if G(fz) = C(f) = G(fl) this says
that

pz(f,ﬁf) = G(f)Af

*The filtering and averaging process shown is known as an analog frequency
analysis and was, at one time, the only method used. The frequency analysis of time
dependent signals is now accomplished with modern sophisticated digital or hybrid
digital-analog instrumentation. For the purposes of the current discussion, mno
distinction needs to be made between them.
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WAVE FRONTS

* plt) ACOUSTIC PRESSURE
SOURCE

2
FILTER plt, a0 sauare |P ltt.Af | AVERAGE Y]

@
Figure 1.4 - Illustration of Acoustic Pressure Measurement and the
Functional Diagram of a Frequency Analyzer

(Symbol p represents instantaneous voltages proportional to
acoustic pressure. Identical notions hold for such measurements
as acceleration, displacement, velocity, and force, etc.)

- ———rry

The overall sound pressure level is found from the spectral density function by 'T"Tj“

.'.'._.‘I..’._

-

o p? = j G(£)dt (1.10) -
. o -

3 [
: Therefore, if, as illustrated in Figure 1.5, we have pz(f,Af) in a series of adjacent

bands between f1 and f2, i.e., Afl, Afz, Af3, ..., etc., then - .
' N e
- v RER
- I 2, by
and ;fﬁ
»
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S) and the

Equivalent 1-Hertz Spectral Density G(f)

N

= &S
P

i=1

= center frequency of the ith

bandwidth

1]

- f

= number of bands in f2 1

band

P (fi.Af )

(1.11)

the bandwidth of the pressure spectrum is narrower than the bandwidth of

the filter, as illustrated in Figure 1.6,

=tA g e e

p(£,5f)

then Equation (1.9) gives

[o2]

u(e ) |2 j G(E)df

1 o 2
= < >
o for fo f1 or fo f2
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) Figure 1.6 - Filtering of a Narrow Band Signal; the Filter

- Output Equals the Mean Square Level

This means that the filter passes the overall mean square pressure of a narrow band

i pressure and the increasing or decreasing of the filter bandwidth f2 - f

effect on the value of pz(f,Af) unless f

that the value pz(f,Af) increases with increasing Af.

tional to the center frequency of the filter., An octave band 1is that for which

1

Af = fz - f1 and f2 = 2f.. One-third octave bands are those for whlich f2 =

1/m octave bands are those for which f2 = (21/m
»
- commonly used proportional band, the 1/3 octave band, Af =
1/2

center frequency (fzfl) . In general,

» af _ 21/m -1
By wvhere typically m = 1, 3, or 10,

»

- 22

»

) - fl is reduced to be smaller than the

bandwidth of G(f). For broadband pressure spectral densities, Equation (1.10) shows

Commorily used frequency bands are proportional bands for which Af is propor-

)fl. Accordingly, for the most
0.232f where f is the

Sttt

-

b |
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1.4.3 Combination of Levels
Sound pressure levels radiated from two uncorrelated sources A and B power-sum;

i.e., the net contribution from the sources 1is
2
P = py +pg

the sound pressure level is

$), /10 (L) /10
(ig)pop = 10 log %10 +0 ° B %

SB SA)/IO}

L. + 10 1og§ 1+1o
SA

The rather complicated-looking term on the right is the quantity to be added to L

to obtain (LS)TOT

) the net sound pressure level will be 10 log (2 1 /p ) or (L )

SA
For example, if the individual sound pressure levels are equal

(L SA SB
Figure 1.7 shows the number of decibels to be added to (LS) to obtain (LS)TOT
function of LSA - LSB'
To find the average of two mean square sound pressures, we nnte that

= .12

Pav = 7 Pror
accordingly,

AQpy = bgdpor — 3

These level combination formulas are useful in obtaining overall sound pressure
levels from spectra of one-third octave band levels. Equation (1.11) formally

describes this process., The overall sound pressure level, which we may denote as

N
L),~-@H. /10
4= (Lg)y + 10 log E {1+10[ 71778 l]
1=2
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Figure 1.7 - Decibel Addition Chart for Combining Levels L1 and L2
can be evaluated by successively combining pairs of levels. Figure 1.8 illustrates

this pairing process for a spectrum of band levels defined as

— )
Ls(f,Af) =10 log[p (f,Af)/pref]

1.4.4 Use of Dimensionless Spectrum Levels
In this book we will be continuously relating engineering estimations of
LS(f,Af) with both theoretical relationships and laboratory measurements. Analyt-

ical treatments as used in this book introduce the Fourier transform pair

=]
r

A(w) = %-ﬂ- J a(t) el¥tqe

-0

and
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Figure 1.8 - Level Combination Scheme to Determine the Overall Sound
Pressure Level (OASPL) of the Spectrum Shown in Figure 1.5.

(Note LS levels at 6300 Hz through 10,000 Hz
contribute little to the OASPL.)

20}

a(t) = j Alw) e 194,

-0

where « is angular frequency. As we shall see in Chapters 2 and 3, if the mean
square pressure is independent of both the duration of time from averaging and the

instant that the averaging is begun, then it is related to the spectral density ¢(w)

w

p2 = j ? (w)dw (1.12)

00

where ¢(w) 1is symmetric about w = o, This integral relationship is fully consistent

with the above definition of the Fourier transform.
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The angular frequency w is related to the frequency f by
i w = 2nf (1.13)

The spectrum functions G(f) and ¢(w) are also proportionately related. Equations
(1.10) and (1.12) give the equation

E 2 d(w)dw = G(f)Af

the 2 on the left-hand side accounts for the symmetry of ¢(w) on w < 0 and w > o.

By virtue of Equation (1.13) we can write

G(f)

Pl =

(1.14)

in terms of the operation used for obtaining G(f) we can calculate ¢(w) from meas-

ured band levels using the formula

2

p(w) = L 1m P (f,Af)
'i AW 41 Af+o Af

If we can assume that G(f) is nearly flat over Af then the following may be

) written:
. 10 log G(f) = 10 log pz(f,Af) - 10 log Af

or
=
- 10 1og 8 = 1 (£,86) - 10 log Af (1.15)
= Pref
. and, thrcefore,
..'.
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10 log ®(w) = Lg(f,0) + 10 log pief - 10 log 47 - 10 log Af

1]

Ls(f,Af) + 20 log Prog = 11 - 10 log Af (1.16)

Equations (1.15) and (1.16) may be used to determine the required spectrum quanti-
ties from measured sound pressure levels.

It is typical in flow-induced noise problems that the sound levels increase as
speed to the fifth or sixth power, and for dominant frequencies to increase in direct
proportion to speed.

Accordingly, if we normalized G(f) or ®(w) on the standard acoustic reference
pressure, we would need a spectrum for each velocity condition. However, theoret-
ically the spectrum function may be scaled on definite functions of speed. Using
the nomenclature introduced earlier to describe similitude, we often find that the
sound pressure spectral density can be expressed in dimensionless forms such as

(see for example pages 515, 516 for vortex sound)

YO

e (

allslal]
N’

in which the spectrum may be also written ®(w)U/L = ¢(w L/U). The factors q2 and
U/L take account of the dimensionality of ¢(w) which is pressure squared times
time. The factors M2 and (L/r)2 are scale factors determined by acoustical proper-
ties of the source; $(w L/U) has dimensions - pressure squared. These parameters
will vary from case to case as we shall see in various chapters. Current interest

is in relating the Equation (1.16) to Equations (1.14) and (1.15). Figure 1.9

shows dimensionless and dimensional representations for spectral functions for the

sound pressure as described by Equation (1.16). At a scaled frequency

wL _ 27fL e Y

[ - e ]

with j
Aw = 2mAf -.._’
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Figure 1.9 - Dimensionless and Dimensional Spectral Levels of a
Flow-Induced Noise in Water

2.5cm, r = 1lm, U =15 m/s and 30 m/s)

(L
the scaled spectrum level is

2w) T

i (%)

Accordingly, using Equation (1.15)

10 log ¢¥{(w) = 10 log + 20 log q + 20 log M + 20 iog %-- 10 log %

2

U
dw) 7
L.(f,Af) = 10 log L 4 20 log —3— + 10 1og 47 22 + 20 1og M + 20 1og &
S 2 P U r
2,2 (L ref
o (%)
or combining
2 ) ot L
Ls(f,Af) = 10 log 5 + Lq + 20 log M + 20 log < (1.17)

where Lq = 20 log q/pref.
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Returning momentarily to the expressions relating ®(w) and G(f), we note that
spectra of dimensionless scaled frequencies and of absolute frequencies are simply

related. If 2 = w L/U then

20 (w)dw = 28(Q) AR = G(f)Af

accordingly,
U 1 U
¢ (w) o (w) i (H) G(f) L
with
wL _ 27nflL
=7 =77

Also incremental bandwidths of scaled frequencies are simply related to incremental
bandwidths of absolute frequencies; that is if true similitude exists for given L
and U,

Accordingly, we have all the simple identities

p7(£,06) = 20 (%L-) -(A—‘{,’-)-Ii = 20(w) 4w s 1

= G(f)Af

that allow a particulariy simple interpretation of spectrum functions.
ref’ 10 log M, and 20 log M

are shown in the nomographs in Figures 1.10 and 1.1l. The determination of dimen-

The commonly used scaling factors Lq = 20 log q/p

sionless sound levels from absoclute sound pressure measurements will be conducted

using the above equations in a reverse process. When dealing with propellers and
rotorr, the primary variable on which scund levels must be normalized 1is the tip

speed of the blades UT. The forward velocity of the rotor is Va, so that since Q
is the angular velocity of the rotor and R, = D/2 is its radius, the tip speed is

T
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1/2
_ 2.2
UT = [(RTQ) +Va]

the advance coefficient of the rotor J is defined as

where n is the shaft rotation frequency, expressed in revolutions per second when

the velocity is expressed in ft/s. Therefore,

1/2

Uy = m(Dn) [1+ (;’)2]

The tip velocity is completely determined by any three of the parameters @, J, Va,

and D. The nomograph in Figure 1.12 allows computation of U_ for any such combina-

tions of these parameters. Rather than specifying J, often Ehe ratio 60n/Va = N/Va,
where N, in revolutions per minute, is specified for a propeller of diameter .
This ratio, in the units rpm/knots (turns per knot or TPK) is also given in the
center of the nomograph.

Accordingly, if an Lq based on rotor tip velocity 1is desired for a given for-
ward velocity (knots) of a rotor of known TPK and D, one finds U, in Figure 1.12

and Lq in Figure 1.10.

T
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CHAPTER2
GENERAL THEORIES OF FLOW-INDUCED NOISE

In this chapter we will discuss the theories and derive the equations which are
the foundations of theoretical hydroacoustics. The general relationships will be
specialized in later chapters for application to experimental acoustics. First, the
common relationships of simple linear-acoustic theory will be explored to emphasize
the fundamental qualities of single and multipole source-types. The general theory
of fluid-induced noise generation will then be derived with considerable attention
given to the classification of source-types and noise mechanics, as well as to the

influences of solid boundaries of various types on radiated intensity.

2.1 FUNDAMENTALS OF LINEAR ACOUSTICS THEORY
2.1.1 The Wave Equation
We begin with the equations of continuity and momentum for inviscid, fluid

motion.* [n tensor notation, these are, for a fluid free of volume sources

p 3 _
~ + 3;: (Qui) =0 (2.1)

and the momentum, or Euler's, equation is

3
P ;;1 + Pu, 5;% = ~ ég; (2.2)
j i
respectively, where p = instanianeous fluid density
P = instantaneous pressure
u, = three-dimensional local fluid velocity
X and t = space and time variables, respectively

*The equations are derived in this form in a number of basic texts, among them
1 %%
are those of Milne-Thompson, Batchelor,2 and Sabersky and Acosta.3

**A complete listing of references is given on page 113
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We will have occasion later in this chapter, and elsewhere in the book, to
manipulate these equations in vector form for which we make use of the del operator,

which is

9
dy

3

A A "
V= = i+ j + N7 k

~ ~ ~

in three dimensions, where i, j, and k are the unit vectors in the x, y, and z
directions, respectively. 1In this notation, the equations of continuity and momentum

then are
==+ 7V + (pu) = 0 2.3)

where V - (pu) is the divergence of o: and

-

o g%-+ o(4+7) U = -VP (2.4)

- ~ ~ ~
respectively, where u = (uxi+uyj+uzk) = (ui) and VP is the gradient of the pressure,
Thaese equations apply to fluid regions which are free of local mass, momentum, and
heat introduction, or of gravitational (or body) forces. For barotropic fluids we

can write the pressure in terms of the density as

[+ 4
P - P = constant (p-p_ )
o o

in which = has special values depending on the thermodynamic equation of state of the
fluid, For 1deal gases undergoing isothermal expansions a = 1l; conversely, for
adiabatic expansions (vanishing heat transfer among adjacent fluid elements) a = Y =
Cp/cv’ where cp and ¢, are the specific heats at constant pressure and volume,
respectively. For liquids, the state equation takes on a more complex form, however,

the variations in pressure and density are related through the fluid compressibility.
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The speed of sound in the fluid is determined by the rate of change of pressure

with density at constant entropy using the relationship:

2 _ _811)
. c = (Bp (2.5)
- s
E For the present, we will restrict considerations to lossless (or inviscid) fluids so

that the acoustic compression-expansion process is certainly adiabatic, The so-
called linear acoustic approximation results from the assumption that local veloci-
ties u are much less than the speed of sound in the fluid. Even for real fluids, if
2 the disturbances are of long enough wavalength then the fluid gradients are small so
that nearly adiabatic expansions occur. lnder t:ese conditions small deviations of

pressure and density from an equilibrium can be expressed as an acoustic pressure P,

. . _ 2
P, =P -P_=c (0-p) (2.6)

where PU and p, are the equilibrium pressure and density, respectively.
i The linear wave equation is obtained by taking the time derivative of Equation
(2.1) and the gradient a/axi of Equatjon (2.2). Neglecting the vesulting second-

order terms we obtain (see also e.g., refs 28, 38, or 39)

Iw
&~
ko]
n
1
Q
&1
N
c
=
[o9/ FoB)
L4 kel
e}
)] o
= [+4
-
~—
"
]
[=%] 5
=]
AN
o
[0}
o] @
x| €
[y
S ——

at i 1 1
2 5%u . du 3u Ju
[ -3 p _ i + e i + 2) pu i o i
7 P oot T3 oX j ox, o 9x,ot
. Bxi i i i 3 i
. dp, = c_ do
»
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Combining these equations, the wave equation for density fluctuations in a homogene-
ous fluid is obtained

2 2
2o _238:g%-o0 2.7
o 2
ot ox
i
or
2 2
3'p 3p
a 2 a 2
2 "% T2 =0 p, (2.8)
ot Bxi

for the pressure fluctuations, where az/axi = VZ is the Laplacian operator.

Specific functional forms of solutions of the wave equation depend on the
geometric order (one-, two-, or three-dimeasions) of the fluid region. The sclutions
are also obviously dependent on whatever temporal and spatial character the boundary
of the fluid has. In consideration of rhe sound field that is realized at some
distance from a vibrating body, the sound pressure at a given time is the linear
superposition of the acoustic contributions from each of the spatial wave harmonics
that are invoked to describe the surface motion and all the frequenciles that describe
the time variation of each of the spatial harmonics. In a few instances, however,
consideration of acoustic energetics can be simplified. These are classified into
two options. Either the motion is spatially uniform over the surface, i.e., of the
zero-order spatial harmonics, or the motion has a prescribed spatial variation of a
given harmonic and the time behavior has a single frequency. In all other more
general cases the temporal wave forms at fixed values of differences (r-cot) but
varying r will depend on r.

Considering, now, only those cases which fall into the above options; solutions

of the wave equation consist of functions
f(r,t) = G(r+cot) + g(r-cot)
where r is the magnitude of the distance to the observation point from the source.

Wave functions g and C with arguments of the form r + ¢t = constant are constant

valued for decreasing r as time increases. These correspond to waves travelling
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toward the origin of r. Alternatively, wave functions for which r - cot = constant
m apply to disturbances which remain constant as r increases with time; these are o e
y ®
outward-travelling waves. The functions g and G may be the same or different de- AT

pending on the boundary conditions, e.g., in the case of standing waves on a string
Qi" they are the same.
II3 We examine the general characteristics of the radiated sound at distances from
a source which are large compéred to a typical dimension of the source and compared

to an acoustic wavelength. This point we shall call the acoustic far field. We

express this sound pressure in the form

P (x,,t) = £ ™ os(8) g(r-c t) (2.9)

which separates the radial and surface functions from the characteristic wave

.~

behavior. 1In this representation S(g) is a surface function of the surface vector ’

coordinate s which is independent of distance from the source and which depends only
on the shape of the body and the coordinate system used, i.e., whether it is spheri-

cal, cylindrical, elliptical, etc, The surface funcrion satisfles a ~equirement that

the Laplacian with respect to variations in the surface plane describes node lines

R 4 ]
1

Lff of wavelength Zﬂ/ks, i.e., Vﬁ S(g) = —kz S(g), In the radial function rﬂm, n depends
' on the dimensionality of the radiation; m is greater than rero and {t will be deter-

mined below. The function rmpa(xi,t) = S(;) g(r~c0t) clearly satisfies the wave L

equation :

2 ‘oz(rmp,) Dz(rmp ) ',VL-.,' -
a a L

¢, 5 ~ 3 = ( (2.10)

Jr ot

If ks = 0, i.e., the surface motion is the lewest order, or breathing mode, S(s8) = «,

where « ig a constant. The linear form of Equation (2.2), i.e.,

'aur dp'] f...-...
S T (.11

glves the perturbation velocity in the r~direction u., as




K 5 I

r _ ~(m+1)
Po3g =+

ag(r cot) r og' (r cot)

(2.12)

?

- " ag'(r—cot)

in the far field since, for r >> 1, the term r-m-l dimi.ishes with respect to the

term ¢ .
Now, by integration we find the radial velocity in the far field

1 du a 1
N e — -, ———————— — ' —
a4 5 Te dt 5 < o .[ g'(r cot) d(cot)
o ocor
La 1
U T oo g(r-cot)
ocor

This shows that the far field radiated sound pressure and fluid velocity are related

by the specific acoustic impedance of the fluid PeCar since

p2 (%, ) N
A =y (x,t) (2.13)
pc !

o 0

This relationship is fundamental to all far field acoustics. The radial component
of the acoustic intensity Ir(;,t), which is the instantaneous power flux along the

radially oriented acoustic ray, is

I_(h,t) = P, (%,0) u (x,t) (2.14)

so that, using Equation (2.13)

Ir(;,t) _P (,t) (2.15)
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These relationships permit a determination of m in Equation (2.9) by considering
the acoustic power which is transmitted through a surface Er located a distance r
from the source. At this point we must make a distinction between cylindrically
(two-dimensional) and spherically (three-dimensional) radiating surfaces, for these
determine the precise radial dependence. 1In any case, the instantaneous acoustic

power transmitted across a far field surface S0 is
2 >
f P (st)
P(t) = J.*-E—E——~ dsr (2.16)
S 0o o0
[o]

where s is the conrdinate in the plane of the surface and s is the surface vector.
Examples are shown in Figures 2,la and 2.,lb for cylindrical and spherical geometries.
In the case of radiation from a line source oriented along the z-axis we consider

the power per unit axial Jength which is

27

d _ 1 L2 amil 2,
a;‘[ P(t)] = xR J- r g (r cot)de

for the cylindrical coordinate system as shown in Figure 2.la. We see that the

power 1is conserved only if m = 1/2 because only this radial dependence ensures that
the total power radiated through a closed fluid surface is independent of the surface
chosen, This condition must be satisfied because the fluid is assumed to be fric-—

tionless. Thus the cylindrically spreading far field acoustic pressure is given by

pa(Q,t) = pa(r,z,e,t) = r_l/2 « g(r—cot) (2.17)

Similarly, for a spherically radiating source, the instantaneous power is

2.,
pa(x,t) 2
P(t) = | 2——1° sin ¢ d¢de
p c
[eJNe)
S
no2T (2.18)
0O 0
o] (o]
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Figure 2.la - Cylindrically Spreading Acoustic Waves for a Line o
Source Parallel to the z-Axis

T S
. S, | = r< sin ¢ dpdd
i =
..
. o
| 2
Figure 2.1b - Spherically Spreading Acoustic Waves
Figure 2.1 - Cylindrical and Spherical Coordinate Systems
Integration is over the spherical surface, as shown in Figure 2.1b. The condition ®
m = 1 ensures power conservation at all distances from the source. Thus, a .
spherically spreading sound wave behaves as Ll
M & 2.19 -
p (x,t) = 7 glr-c t) (2.19) o
in the acoustic far field. On the surface of a sphere, the first term of Equation
(2.12) gives the volume acceleration V(t), o
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. Bur(r=a) xg(a-c _t) . 4
v(t) —— ds = —2— S(s) ds
ot - az

o]

2
=g(a—c0t) a

a2
Po

4m

since S(;) = S(¢,8) = 1. The acoustic pressure fluctuation in the fluid is found by

. r-a
pov (t- E—_—>
- o’

4Tr

substituting into Equation (2.13)

Pa(r,t) = (2.20)
Analogous results for waves propagating to the far field when S(g) is not a
constant on the surface may be derived for a fixed frequency by using the methods of
Section 2.6. In this case, as we shall see in Chapter 6, nondecaying outward propa-

gating waves ozcur only when there are surface harmonics such that ks is less than

or equal to kb'

2.1.2 Characteristics of Multipole Radiation

In the later analytical treatments of this chapter, complex formulations will
be interpreted in terms of combinations of simple sources. In the following analysis
it will be shown that these source combinations can represent the driving of the
fluid by localized time-varying volumetric (or dilatational) changes, forces, and
moments.

Monopole Sources. To begin, the relationship for acoustic radiation from a

volumetric pulsation is derived. Physically, this source can represent the radiated
sound from an axisymmetric bubble vibration. The time-varying characteristic of the

pressure a* a single frequency is assumed to be given by

iwt

p(r,t) = p(r,w) e (2.21)

where p(r,w) is a complex pressure amplitude. The source motion is completely radial

so that the wave equation for the radiated acoustic pressure is

. IR oo
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A LA

- 2
13 (.2 ag(r,w)> W - -
L (r (r + 2 5w = 0 (2.22a)
' which is equivalent to
2~ 2
3 [rg(;,w)] +(¢_»_) [rp(r,w)] = O (2.22b)
ar o

The acoustic wave number is

= 9
ko =2 (2.23)
o
ol
N and the solution to Equation (2.22) is
~ ho
1 p(r,w) = % ot ikr (2.24)
b
. The positive root of /=1 = +1 is chosen for outward-travelling waves. The instan-
- taneous volume of the sphere of radius a is
i_ Q = % Tra3
'_' and the (small) amplitude of the time rate of volume change, the volume velocity, is
§ 10 =
) Q(w) = 4ma ur(w) (2.29)
The amplitude of radial motion of the surface must be small compared to the radius y
: of the gphere. The boundary condition on the surface is given by Equation (2.11). ::'. -',;::.'j-.'
- e
!_ Combination of Equations (2.11), (2.24), and (2.25) yields .,. o
L ik ] +ika Rt
A ;E-— = | ¢ = e, ur(w) -:?f%ﬁﬂ

so that

- iwpo Q(w) —ikoa

A= zn—(-ﬂT{o—a—)- e (2.26)
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therefore,

-iwpo é(w) +ik°(r-a)-1wt

Pa(r,t) = ——Zm — ° (2.27)

is the radiated pressure from the source when koa << 1. This condition states that
the diameter of the sphere is small compared to the acoustic wavelength, Ao = 2n/ko.

s0 that Za/)\o << 1/7. This result is identical to Equation (2.20).

Dipole Sources. The next order of source complexity is the dipole which can be
represented by the case of the heaving sphere. This, and equivalent interpretations
which will be described subsequently, are demonstrated in Figure 2.2. The center of
the sphere oscillates along the z-azis with velocity U(t) = Uze-iwt; the sphere is
impervious, In this case, the motion of the sphere causes a back and forth
"sloshing' of fluid without any net volume change. As the sphere moves forward,
fluid moves to its rear. The motion is symmetric about the z-azis and unsymmetric

about the angle ¢, The acoustic pressure amplitude satisfies the equationa’5

1l 39 ( 2 aﬁ) 1 1 3 éﬁ_ 2. _
rz % & 35 + rz sin ¢ 39 (sin ¢ 3¢) + kop =0 (2.28)
the boundary condition
1 dpla,d) | i (w,9) = -iwl (W) cos ¢ (2.29)
p0 ar r z
and the far field radiation condition
- -1
lim p(r,d) ~ ¢ (2.30)

oo

The formal solution to these equations is derived in Appendix A. On the surface

of the sphere, which is assumed to be small, the amplitude of the pressure is

PO

[ |
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- N -1
pa,$) = 5= wp a_2 U, cos ¢ (2.31)
i. r
ii for koa << 1, r = a, and in the far field
i U cos ¢ 1i(k r-wt)
21 3 "z o
’ pa(r,¢9t) =3 DOCO(kOa) kof e (2.32)
for kr > 1 > k a.
. o o
E; The pressure on the surface of the sphere 1is directly proportional to the radial

accaleration inz cos ¢ and, therefore, it represents the inertial loading of the
oscillating fluid. The total force in the z-direction required to overcome the

inertial loading is

. F, =j P(a,$) n, ds(a,?) (2.33)
N s
2
o where the component of the outward normal in the z-direction is n, = cos ¢, and the
incremental surtace element is :
| »
ds(a,$) = a* sin ¢ d6do i
thus, the inertial force is .
s E
2nom LIS
Po 2 T
FZ =.[ 7 ainz cos ¢ [cos ¢][a” sin ¢ d6d¢] e
6=0 ¢=0 el
(2.34)
_ —i2m 3
=3 poa wUz
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Since this force is inertial it may be regarded as an entrained fluid mass times the
acceleration (-inz) of the surface. The added mass at low koa for the heaving
sphere is chus simply (1/2) povs, where Vs is the displaced volume of fluid.

The radiated sound pressure is shown by Equation (2.32) to be directed along the
z (or ¢=0) axis.

It is zero in the antisymmetric about the x-y plane. We emphasize

that Equation (2.32) applies in the cases for which kor >> 1., In the intermediate
region of koa < kor < 1 the field is given by the spherical Bessel function, as ex-
plained in Appendix A, but the angular directivity is still cos ¢. This directivity
is characteristic of dipole radiation which results from the imposition of a con-
centrated force to the fluid. The equivalency can be seen by substituting the axial

force FZ from Equation (2.34) into Equation (2.32) to obtain

Ze © (2.35)

This shows that the radiated pressure is proportional to the time rate of change of
the inertial force exerted on the fluid by the sphere. The sound has the cos ¢ di-
rectivity in the direction of the force. This result has a much more general sig-
nificance as will be discussed later on, see Sections 2.5.3 and 5.6.3. The
dipole-force representation is shown in Figure 2.2b,

These results can also be derived by considering the acoustic field of a pair
of simple sources which are aligned with the z-axis as shown in Figure 2.2c. The
vector distance between the sources 1is 2dz. The field point from the centroid of the

and r,. The resultant

system is at rhe coordinates r, $, with individual ranges r, 2

sound pressure is given by the sum of individual contributions

+ik r
(o]

) -t Q) [ 1 e+1ko‘2
p(r,¢)) = 4T 1 i-

oo — e,
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Figure 2.2a - Oscillating Figure 2.2b - Point Figure 2.2c - Image System
Sphere Force of Sources

Figure 2.2 - Equivalent Dipole Forms

The sign applies to the phasing of the sources. For separations dz << r, we need
not make a distinction between the small directivity differences for the two sources.

Thus, we can write

2 _ 2 2 L2

ry=rx + dZ 2rdZ cos ¢ ¥ 1 2rdz cos ¢
22 2 L2

r,=r + dz + 2rdz cos ¢ =r <+ ZrdZ cos ¢

for r >> dz in the far field so that the far field acoustic pressure is

2wp é(w) cos (kd cos 9)} +ik r
P(r,0) = — (= { °z e ° (2.36)

sin (kodz cos ¢)

where the cosine and sine apply to sources which are either in phase or out of phase,
respectively.

In the case that kodz << 1, the cos (kod cos ¢) is replaced by unity at all
angles because the sources simply reinfcrce each other. The interesting function,
from our point of view, is sin (kod cos ¢) which becomes simply kodZ cos ¢ for

kod << 1, 1In this case the resultant acoustic pressure is
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+ikor
- 3 . e
p(r,9) ~ Oocoko [Zdz Q(w)] cos ¢ Z}&;;“ (2.37)

and 2dz é(m) is the dipole strength. So comparing Equations (2.37) and (2.32) we

obtain

24 Q(w) = ZTrazUz(w)

as the effective dipole strength of the oscillating sphere. This treatment shows
that, although the sound from two sources reaches a given point in space, because
the disturbances were not produced in phase, they interfere. Thus, even though there
is a certain degree of near field fluid motion ("sloshing') because there is no net
introduction of fluid into the region, the radiated sound pressure is greatly
diminished. The treatment also demonstrates that tne nature of the dipole is such
that it pertains to a gradient of a disturbance in the fluid. In this case the
gradient, represented by the two closely placed sources in phase opposition, gives
rise to an additional ko-dependence in the radiation compared to that arising in the
radiation from the simple source.

The result has other important implications regarding sound pressures radiated
by sources near boundaries.5 In the case depicted in Figure 2.2b, the x-y plane is
a model of a rigid boundary when the sources are in phase. This can be seen by
evaluating the tangential gradient (1/r) 3p(r1¢)/8¢ as ¢ = 7/2 and noting that it
vanishes there. Thus we see that the normal velocity vanishes everywhere in the
z = 0 plane as it would physically on a rigid surface. Alternatively, sources in
phase opposition give a vanishing pressure and a velocity-maximum on the z = 0 plane.
This is as it would be on a free-surface. Thus, a compact simple source (i.e., one
whose largest dimension is smaller than acoustic wavelength) in water near the sur-
face would be expected to behave as a simple dipole as long as 2hkO << 1 where h is
the depth of the source. These boundaries can influence the acoustic power output.

The time averaged, far field acoustic power for the simple source is obtained

using Equations (2.27) and (2.18);
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where the factor 1/2 accounts for time averaging. For the dipole we use Equation

(2,37) to obtain
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The presence of the free (pressure-release) surface reduces the power output of the
monopole by the factor 1/3(2k0d)2. In contrast, Equation (2.36) shows that the
presence of a rigid surface increases the acoustic power output by 22 when kodz << 1,

Quadrupcle Sources. Compositions of quadrupoles witt dipole pairs are shown in

Figure 2.3. In sketch a, the quadrupole is representad as an array of four simple

sources, or two dipoles in the z-y plane separated by a distance 2dy. In sketch b,
the quadrupole is shown as a pair of force couples separated a distance 2dx and Zdy.
This pair of force couples imposes no net moment. These two orientations of dipoles
i which impose a fluid moment-pair are called lateral quadrupoles. Another orientation
of dipoles in which the forces are in-line is called a longitudinal quadrupole,
which imposes no net moment and no net force on the fluid.
Of importance in most fluid applications is the lateral quadrupole for which
the far field directivity will now be derived. The far field pressure amplitude from

the dipole system of Figure 2.3a can be written in the terms of Equation (2.37) as

3 +ik r, +ik r
i _ pccoko . o o1l o o 2
o) T ———— 2 w s { -
p(r,*'ye) Aﬁko[ [*sz( )] cos ¢ rl r2

(2.38)
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Figure 2.3 - Quadrupole Forms
where Equation (2.21) applies. As in the analysis of the dipo’e » write
r ~.ridy sin ¢ sin ©
2

for r »> dy. Substitution into Equation (2.38) yields

+ik r
~ i 4 . e °
p(r,9,0) = 5 pocoko [ZdZZdyQ(w)] sin 2% sin © Z-TW (2.39)
where we shall call 2d22dyé(u)) the quadrupole strength. This can be written in . _
terms of the dipole force, Equation (2.34), o ;
24 2d Qu) = —2— 24 F Foed
z % pkc Uy Tz
o o o
-0 4
o that e
+ik r i
3.2 e °
~ i ~ = . . . nt 2 .- ;
p(r,d,8) = 5 ko [2dsz] sin 2¢ sin € . (2.40) i
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This expression shows that the guadrupole pressure is of order 2kody less than the
equivalent dipole pressure. Thus, the spatial gradient represented by two closely
spaced dipoles gives rise to an additional ko-dependence compared to dipole radia-
tion. In other terms, the two spatial gradients represented by four monopoles gives
a k§~dependence compared to simple monopole radiation. The net force on the fluid
is also instantaneously zero, yet since the fluid disturbances emitted from each
dipole do not cancel identically; sound is still radiated. Statements which were
made above for the monopole imaging apply equally well to the imaging of the dipole.
The directivity of the sound from the lateral quadrupole is concentrated on four
lobes which are oriented at ¢ = (2n+l) n/4, n = 1,2,3,4. The sound pressure level

is zero on the x-y and x-z planes,

2.2 SOMMERFELD’S RADIATION CONDITION

The far field rrdiation from multipole sources has been shown to be dependent
+ik r
on the distance from the source as e ° /4mr. This can be seen by reference to

Equations (2.27), (2.37), and (2.39). Further reference to Equation (2.19) shows

that for outward travelling waves the general spherical wave propagation is given by

1 ik (r-c_ t)
(r-c t) = — e ° ©
re o 45

Therefore, for these outward travelling waves we have the far field condition that

lim r (»g% -tk p) = 0 (2.41)

r —»

Alternatively, for inward travelling waves, we have

ik (r+c t)
rg(r+c t) = L e © °
& (e} 4m

s0 that
lim r (%% +ik0r) -0 (2.42)
r—)(XJ
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This has been termed the absorption condition by Sommerfeld.6

These radiation conditions have been shown by Sommerfeld6 to be necessary for

the uniqueness of a solution of the wave equation for an unbounded medium surround-

.

ing the source. In two dimensions, the radiatilon condition is

. or )

. lim V¢ (—B-P— —ikor> =0 SR TR
and similarly for the absorption condition. Quite simply, the radiation condition R
ensures that for a single source distribution which radiates to the far field the 3:1:5;1:

n solution of the wave equation excludes inward radiation. It amounts to a far field . Q ,
boundary condition. Similarly, in the case of a surface source distribution which L
radiates to an interior, the absorption condition rules out any internal sources : ‘-l\

which radiate outward.

-

2.3 LIGHTHILL'S THEORY OF AERODYNAMIC NOISE
2.3.1 The Wave Equation

We will now determine the wave equation for the acoustic pressure which results

]

;
: P 1w
RO |

B - eteten = vy
i

E from turbulent motion. For a spatlally concentrated region of turbulent fluid L
7,8,9

oy

.:
!

motion, Lighthill's formulation is unique in that it considers this region as
an acoustic source which drives the surrounding fluid. The starting point of the
analysis will again be the equations of continuity and momentum. However, now the

velocity disturbance u, that we are considering, includes both acoustic and, in a -® .

i
restrjcted region, hydrodynamic contributions. We will not assume inviscid motion

in the region of turbulence.

Y

In this case, the equation of continuity is, again,

(pu,) = 0 (2.43)

and Euler's equation is i
du du a1
S P S & |
P T + Pu, 3y, - + 3y (2.44)
] J K_
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1
where ‘l’iJ is the Stokes stress tensor. 0 This stress tensor is written

- 2
Tij --Pdij (3>u ekk 61j + 24 Eij (2.45)
where
du du
1 i j >
€. == |5v— + 57— (2.46)
ij 2 (Byj ayi
43 before, the fluid pressure is P and Eij are the fluid strains. The momentum

equation can be written in the form

d
= = 5, Y, (pu ju ) (2.47)

Thus, taking the divergence of Equation (2.47) and the time derivative ot Equation

(2,1) for a fluid medium that is free of volumetric sources, we have

2
2 9T 2
37D ij 3
= - + (pu U,)
3!:2 ayiayj Byjayi 173
2 toc] 6.1
Now, since ¢ V'p = ——2° , we have
o dy . 9y,
i3
82 2
3 - e,Tp = E:EE__ [Ti"p“1“'+cg Peys)

By rewriting the stress tenscr as
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Tij = —PGij + rij (2.48)

we can separate the contributions of the viscous stresses and the pressures, or

normal stresses to obtain the wave equation in the final form

2
2 3°T
a_;z) - 2vPp = 3L (2.49)
ot Y15
where
T = pu,u, + (P—czp) 6, - 1! (2.50)
ij i’j o 1j ij :

is Lighthill's stress tensor. The tensor puiuj is called the Reynolds stress, and
it expresses the intensity of the turbulence in the source region. In a strictly

irrotational or vorticity-free flow, Phillips11 has shown that ;IG; = ¢, The pres-
sure p and density p are the local instantaneous pressure and density of the fluid.

The noise producing character of the fluid field is such that outside a speci-

fied region of the disturbances

i -
8y18yJ

Now, the pressure and density in the far field ambient, undisturbed fluid are PO and
Poe These quantities are constant so that spatial and temporal gradients of Po and
po are both zero. Thus, we can write the wave equation for the instantaneous

density fluctuation (in the absence of mass injection) as

2 '
Ouiuj + [P—P0 - co(p—po)] éij - Tij \ (2.51)
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where we now introduce the fluctuation of pressure P - Po into the stress tensor.

If, in the fluid region, the fluctuation in pressure is a thermodynamic variable with
adiabatic fluctuations, then the pressure and density fluctuations are related by
Equation (2.6). Under this circumstance the pressure and density terms cancel
identically in Equation (2.51). Often the magnitudes of the Reynolds stresses domi-
nate the viscous stresses in turbulent motion. The wave equation in the absence of

mass injection is now finally reduced to the more simplified form

2 2
" (p~p ) |22 (00 ) = ) (oouiuj)
at2 o o 3y18yj

(2.52)

which shows that the acoustic field is driven by the region of fluctuating Reynolds
stresses., tside tlie region of the Reynolds stress fluctuations, the velocity fluc-
tuations are acoustic. Thus, outside the region of turbulent fluid motion Light-
hill's equation reduces to the wave equation of linear acoustics theory. As we shall
see later in this chapter, the knowledge of the behavior of the stress tensor Tij’

in the source region is crucial to the analytical modeling of acoustic radiatiom.

It is often the case in hydroacoustic applications that sources of mass in-
jection (simple sources) coexist with turbulent sources in the fluid medium. These
sources may be represented by adding a term pq to the right hand side of Equation
(2.43). This term represents the rate of mass injection per unit volume to the
reglon. It is the modified continuity equation which connects the mass and dila-
tational variations of an elemental volume of the fluid to q. When q = 0 these two
variations compensate and the standard continuity equation holds. The momentum
equation in the form of Equation (2.47) is unaffected by the presence of the mass
source, as long as it can be stipulated that the source injects fluid with no
additional iomentum, say at zero velocity. This can be deduced by examining the
momentum of an elemental control volume enclosing the source and fixed with the

fluid. The elemental force on the volume is

8F,
i

D[(Oui)évl/Dt

= [D(pui)/Dt+puiV~U] v
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Equation (2.47) follows directly from this equation. The new wave equation may Le
derived as above and includes an additional volume source & or, nearly equivalently,
pov in the context of Equation (2.20). The appropriate form of the wave equation

which applies to mass injection co-existant with turbulent stresses is

2 2
3" (p-0 ) 3" (puu,)
-—-——-—20— - Ci Vz(p-po) = —_3_%_1_ + po‘g—il (2.52a)
at Yy yj

in which the second order term q(p-po) has been neglected compared with the first-

order Pa-

2.3.2 Kirchhoff's Integral Equation and
the Retarded Potential

The acoustic field radiated outward to a point in free space from a distributed
region of sources is the summation the individual contributions which result {iuia
each of the sources which compose the region. In the physical summation process that
occurs, contributions reinforce and interfere depending on the instantaneous phase
relationships ameong the various sources. In a rudimentary sense, this summation
process has already been demonstrated in Section 2.1.2 to determine the acoustic
tields of dipole and quadrupole source distributions. In more complicated physical
situations, the acoustic radiation is determined as a weighted integral of the
source distribution as well as the propagation to the far field. 1In the mathemati-
cal integral formulation described below, this is accomplished by the use of the
retarded potential.

We begin by deriving an integral equation for the density fluctuation Da = =0,
in the manner of Reference 12, although References 13, 14, and 15 have alternative

derivations. The wave equation is written

2 1 3% o(y,t)
Vip, - =5 —= = T g_’t (2.53)
< c” 9t c
o o
- 82Ti' . R
where c(y,t) is the source term of Equations (2.51) or (2.52), and where ¢ = 3;—5%- et
1773

is specified over a volume V contained in the problem volume V as illustrated in
Figure 2.4a, The field poxnt x is considered to be surrounded by a small surface § x?

while the point y is located somewhere within the region V which is surrounded by -!-
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surface L. A function that' is defined as v{x,y,z,t) = pa(x,y,z,t-r/co) where r =

+ > 12
|x-y|, can be shown ~ to satisfy the equatien

2 2r 9 "1 3y 1 > r
L =)+ =0 -=-] = .
Viv + c {By ( 2 6t> ‘ 2 (?’t c ) 0 (2.54)
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—_T T~
// \\
’ \
/ \
/
sy \
L / \
‘\/ \
/ o
/ x|
/ |
/ ]
! /
CONTROL t /
SURFACE, ] /
X 1
/ \ /
/ \ { /
9
/ \\  PHYSICALLY-MOVING ,/ (‘52-
\  SURFACE, RADIUS s, CONTROL
N " SURFACE
DISTRIBUTION, VOLUME, V ~< -
Figure 2.4a - General Radiation Figure 2.4b ~ Radiation Field for a
Geometry Heaving Sphere
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by substitution into Equation (2.53). Multiplication of Equation (2.54) by 1l/r and
integration of that relationship throughout the entire volume contained within the
; surface I yields

1 2 > 2 3 [F1av >
- J‘J\J. T Vov av(y) + e Jjj’ sy—‘ [-—2 a—t-} dv(y)
o) i r

Green's theorem yields the relationship

_f\ﬁ {% Poy-vi? (%)} v (y) = J‘j {%3_2 oy g_n (%)} s

+S
X

A 3

Therefore, in conjunction with Equation (2.54), we obtain ,‘

I s @ v [ i) wo

T+$ o
X

.u.—‘-w-;-'a
r
x Ye2,t- -C—-) .

R

Aot allitd

[ R

The surface integrals include all surfaces. 1If x lies within the circumscribing

-

surface L and if this point is surrounded by a surface Sx of vanishing radius then
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;i x

However, 1if ; does not lie inside Sx, then

j Jv% (%) ds(¥)
SX

Thus, we have

Aﬂv(;) =

nlr--
o~

\

for ; inside L and
(-5)
-1 N o/ e 2 10r
0=7 J]]. r dviy) +J]- {c r 9
o \Y z

for ; outside I. Now, considering only that ; lies

N
Da(x,t), and that
9p
ov _ 3 | - |2
90 an [Oa (y,t- c )] - [Bn }

i.e., [f] = f(t-r/co).

fluctuation as

59

where the brackets denote that the function is evaluated at

(%) £2dQ = 4mv(®)

"
o

* g <Y9t_ c >
o -+ 2 1 3r /9v 1 9v 3 1 >
m — YW +H {r S ACIRES (?)} s
T

1 dv 3 1 -
50 o (;)} as ()

(50)

within I, we have that v(;,t)

1o [31
c_ on ot

[o}

Use of this function now yields the instantaneous density

the retarded time t-r/co,

o~ e

e ¢ —
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- ap a (=
[o(y)} > 1 3r a (r)
” S AvGy) + H {—Cor ErY [——at :I— le) —5—

(2.55)

1 BOa .
+ ; ~an— ds ()’)

which is Kirchhoff's equation for the fluctuating fluid density. The surface integral

is taken over all surfaces which are contiguous to the subject volume, V; the volume

Vv, has been introduced since the source density is presumed to vanish outside - - 64 o
Unless other surfaces are present, the bounding surface T may be expanded indefinite- <‘;.
ly far from both v, and x so that the surface integral vanishes. This can be seen by : o
noting that if the disturbance is initiated at t = t,, a surface ¥ can be selected ;'f;
suitably far from the sources that Oa(to~r/co) and its derivatives vanish identi- f“’“%;
cally. The condition is analogous to the radiation condition. Thus, the instantan- R
eous density fluctuation is given by volume integral }F-{
1 oG] )
- - -2
ame_(x,t) = = = dv(y) (2.56)
o v B
o S
N :‘3--«-
If VO is finite, then this equation shows that pa(x,t) ~ 1/r sufficiently far from T
V. .
o} b
Now, using a comparison of Equations (2.52), (2.53), and (2.56), we find the -
Kirchhoff formulation from Lighthill's wave equation as X
L
> 1 J'J". 1 [32(ouiuj) . B
47 - = = = | ————— ! 5 .
Tlelx,t)-p ] 2 J TR av(y) (2.57)
o V J L
- _

where ci(o(;,t)—oo) = pa(;,t). As before, the bracket in the integrand denotes that Sl

the retarded time is used. This equation is the central result of this section
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because the integrand includes the required retardation or phase effects which give
rise to the multipole nature of complex source regions.

The source term in Equations (2.49), (2.52), and (2.57) involves two spatial
gradients. Now, in Section 2.1.2 it was shown that the quadrupcle radiation results
from two spatial fluid gradients. Lighthill's source term is, therefore, interpreted
as having a quadrupole nature. Furthermore, the source term is determined by cor-
related fluid velocities which give rise to the stress tensor Tij' Physically, those
local stresses are either in-line or lateral, as illustrated in Figure 2.3. Thus,
the compressive stresses Tii’ Tjj’ Tkk represent longitudinal quadrupoles, while the

. (i#k) represent lateral quadrupoles.

shearing stresses TiJ

2.3.3 Acoustic Radiation from Free Turbulence

In Chapter 3 the radiation from subsonic jets will be examined in considerable
detail. However, it is instructicaal to examine here some of the elementary aspects
of the radiation from stochastic fluid motion in order to illustrate the types of
analytical manipulations that are common in applying the previous results to hydro-
acoustic problems. This is most easily accomplished without the reference to
specific detailed applications. It is the purpose of this section only to examine
some basic concepts. The first treatment of Lighthill's source term in this manner
was done by Proudman.

We will recast Equation (2.57) into a form which permits an estimate of the
radjated sound intensity from a restricted region of convected turbulence when solid
surfaces are not prescnt. This estimate will depend on an appropriate statistical
representation of the turbulence. We not the following relationships for the re-

tarded function [F] = F(y,t-r/co), and its derivatives:

and

r . 2 (x;-¥.) (x,-y.) 5
Mﬁ[g]dv(y) m g d_\_<L>+m {[%]1__%_1_+_[12=_1_11_} V)
it Yy t o r T T
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so that combining we have,

([ wo-ff] [] o &[] 2 as

Now, Gauss' theorem provides that

d > >
(1% Eoh ] 20

)

where n is the outward normal to the surface I, Since this surface can be arbi-
trarily selected to be far enough from the source region that outward-travelling

waves have not reached a range r > c t, we can set the surface integral equal to
z
zero. Thus we have the identity (in free space, no surfaces)

oF ] dv(y) _ 3 IF] ™ ,
J]}.[Byi] r Xy J]i[ r v (y) (2.58)

This relationship is a formal mathematical statement of the operation leading to

Equation (2.37). Recall, that expression for the far field radiation from two
closely spaced sources in phase opposition involved a gradient of the acoustic field
pressure from the single simple source. This can be seen by comparing Equations
(2.27) and (2.37). Similarly, by the repeated application of these operations, we

have

2 (T,.1]

-+ 1 3 -+

éﬂ(p(x,t)-po) = —3-5215;7 J:[I iJ dv(y) (2.59)
N i

as a free-space form of Lighthill's equation which applies only when there are no

solid surfaces enclosed by the surface Z. Under the assumption that the largest

linear dimension of the source volume is small relative to the range r, and that the




velocity of the source relative to the receiver is small compared to c, the deriva-

2
(x,-y,)(x,-y.) T,.
1 J'J’j i 7177 747 [3 13] aves
e (y)
c: 3 Btz

tives in Equation (2.59) yield

6 (p(x, £)=0,)

2
X, X 9°T,
) L i3 J'J'J L avy) (2.60)
" 4 3 2
¥ ¢, r ot
3T 3
since _El = 0. Near field terms of the order r ~ are neglected compared to terms
at
of the order r
Our next objective will be to determine the time averaged acoustic intensity in
the far field due to fluctuations in the Reynolds stresses using Equation (2.60).
i The intensity is (Equation (2-15))
c
2
1(x) = = (p-p)
OO o

x o/ . v(y)) dv(,) (2.61)

i where




' = -
Ty 7 Ty~ Ty

and T;j must approach zero at least as fast as ]y]_3 as |y|+ (see also Crow17). The

term in brackets is the spatial covariance of the retarded stress tensor which is a

> >
function of both position vectors Y1 and Yo The integration with both of these
vectors extends over t. jource volume Vo. The covariance of the stress tensor in-

volves products of velocity fluctuations of the form

2., 2.
aTij'aTkQ=82 (pu.u.) —32 (pu,u,)
at? TR YT R Y ity
1 2
wher2 (pu,u.,) = cu.u, - p u,u, and where we have used the source terms introduced in
1] i3 oi]j

Equations (2.52) and (2.57).

We shall formally consider the mathematical consequences of specific forms of
covariance functions in future chapters. However, for now we will develop certain
general notions as they apply to turbulent fluid flow. Let us consider that the
disturbances are the result of the irregular motion of a collection of eddies of
typical correlation length A. This length is interpreted as a limiting separation
ot two velocity censors in the flow so that the temporal average of the prr -t of
the signals from the sensors is considered negligible compared to the tempc :ean

square oi each signal separately. For example, letting the velocities in the 1 and

-+

k directions at two points in the volume VO be ui(;l’t) and uk(;z,t) we can write,
-> -+

; = + ¢

with Yy Y1 {,

7 B 3 .
Ui(yzyt) = Uk(Y2+Ayt) >> “j(yl’t) uk(yl+A’t) (2-62)
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i.e., the mean squares of the separate signals exceed the covariance of the signals
-> - -> -
for £ > A. TFor small separations £ << A the covariance approaches the product of

the root-mean-squares of the separate signals; i.e.,

/2

lin  [o,(7,0) u, G #,0] = [2G,0 ut G+, 01} (2.63)

>
KR
-5
The covariance of ug and Uy is a continuous function of £. Now, we will assume
that the turbulent patch is translated at a constant velocity UC which is uniform
throughout VO. Under this assumption, the individual eddies are locally translated
in a wavelike manner according tc the formula x - Uct = constant. Thus, a measure

of the time variation is

3
at ~

=] S
[g]

ol

Now, we further assume that ug o~ Ui and that UC << c, - Under these simplifications

Equation (2.61) caun be written as

4
U
1R ~ —— 5 (7\5) (0 uh? -« ay (2.64)

This result follows directly from Equation (2.62) which im,.les the representation

-+ -» > > >,
, o |x—y1| | > lx-yl - & 2 2 2,2 .65
Ti_] yl)t- _—_O- lkz )‘1"’5,"-' _—j— -~ pO uk uk t((‘j,g) ( . )
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where R(y,£) is a correlation function of the stress tensor fluctuation and where by

N
definition R(;,O) =1, and R(;,A) ~ 0. Finally, by neglecting the retardation

effects we can write

a2 82 -
— (T..), — (T, ,), dV(&)
J]. at2 ij’l 3t2 k&2

fﬂ R(Y,5) dv(d)
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as long as the eddy correlation length A and the characteristic length scale of Vo
are much lrss than an acoustic wavelength and propagation velocity, respectively.

Equation (2.64) is rearranged as

8
- 1 Uc Vo
I(x) ~ g — —= (2.66)
2 "0 5 2
(a4m) CO Ar

in order to emphasize that the acoustic intensity from free convecting turbulence
increases as the eight power of the convection velocity and is linearly propurtional
to the acoustically compact volume of the volume of turbulence. A review of the
derivation leading to Equation (2.60) will show that the existence of the two
spatial gradients in Lhe compact source gives rise to the c;a dependence in the
acoustic intensity. The high exponent on the Mach number is, therefore, set by the
double spatial gradient in the source term and is thus a characteristic of sound
emitted from a distibution of subsonic flow quadrupoles in an unbounded acoustic
medium,

This fundamental result gives the often quoted eighth powetr velocity dependence

¢f radiated sound power from free turbulence. Equation (2.66) is a much simplified
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relationship which gives some variable dependencies that apply to noise from free

jets and wakes. Chapter 3 will consider some more exact theories which will account
. ->

for explicit forms of the correlation function, R(;,i), effects of turbulence convec-

tion on radiation efficiency, and kinematic scaling.

2.4 EFFECTS OF SURFACES ON FLOW-INDUCED NOISE

It must be emphasized that the expression for the acoustic radiation from a
restricted zone of fluid stress fluctuations given in the last section applies only
when there are no reflecting boundaries in the field of consideration. When a
boundary exists and its surface impedance is not identically equal to that of the
fluid, its effect is to physically alter the sound field by causing acoustic reflec-
tions. It may also disturb the flow locally causing surface pressures which act as
radiating dipcles. The mathematical fundamentals of this class of situations have

been developed by Curle18 and by Powell.l9

2.4.1 Curle’s Development of Lighthill’s
Wave Equation

Provision has already been made in our discussions for considering these
effects. Equation (2.55) is a general formulation which applies as long as the ob-
servation point X remains somewhere within the control surface fixed with respect to
the acoustic medium which we have designated as I, as shown in Figure 2.4a.

Let us now let I not necessarily be so far from the source region that dis-
turbances have not reached Iy = c t. This is a relaxation of =ur former condition
on L and it allows for reflections from some surfaces in the control volume. Zqua-
tion (2.55) expresses the acoustic density fluctuation as a volume integral of the
source region plus surface integrals over I of the density fluctuations. The surface
integrals can represent the effects of reflections 1f the surfaces of integration
coincide with physical boundaries. Equation (2.55) for deznsity fluctuations in the

fluid 1is now rewritten
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4 (p(x, t)-p,) = -1.2. Jj . ai’Ldvf)
0 v yi yj -

1l or ap 0 (%) 1 op >

z

to reintroduce the control volume V and to explicitly denote the source term. Since
all derivatives of the ambient density po are necessarily 0, we can use pa and p

;ﬁ interchangeably. We have let Z be any closed region which includes both Vo and the
observation point x. Applying Gauss' theorem to the volume integral as in the

beginning of Section 2.3.3, we obtain

S P L

( AT + . o
; 1j ds(y) d ds(y)
i + JJ' 2y {ayj } . 3 J:f By (1)) =X

z
(2.68)
" where the only part of the region within V for which Tij # 0 is Vo.
ii Substitution of Equation (2.68) into Equation (2.67) yields )
2 (1,,)
- _ _l_ a ___iJ__ - cL -
an(e(x,t)=p ) = 2 Tx_ax, Hj - dv(y) S
o 3 v B
- - A
[ ] »
1 i 2 - e
+ 7 JJ T [a—y—‘ (le'l'DCO 61] )] dS(Y) -
c 1 -
o L T
) i ; :
L s rop ) Sl
+ 2 axi J) - [Tij+pcO uij] ds(y) (2.69) e
o -
since the surface integral in Equation (2.55) can be rewritten t ~5
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Now, since Lighthill's stress tensor is given by Equation (2.50), Equation (2.69)

becomes, by substitution

- 2 [T ] -
4ﬂc(§(o(x,t)-oo) Sxiax,‘ ”‘ _él_dv(y)

R
+jf r—i [331 (pu, u; +'[ +p6 )] ds(y)
% L
ﬂ louju ti) 496, ) ds(y) (2.71)

18
which is Curle's result. Equation (2.71) states that the acoustic pressure is
directly radiated from a volume distribution of quadrupoles plus a contribution from
motions and stresses existing on any surfaces present. The surface effeci can be

interpreted as a distribution of dipoles as can be deduced by comparing the surface
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integrals to a model of the dipole in Section 2.3. Recall that the method leading to
Equation (2.37) fnvolved the calculation of radiation from two sources in phase
opposition. To do this, it was necessary to determine the gradient of the free

-ik r

o
space Green function, (;) e , in the direction of the vector between the source

centers. This 1is a limiting form of the operations on the surface integrals in
Equation (2.71). Those integrals provide contributions which are proportional to the
resultant fluid forces on the surfaces.

The momentum theorem, Equation (2.2), rewritten as

5 a(pui)

_._‘)
L3y [pu uJ+T +pS, ] 2

. 1 1 It

(2.72)
1

is used to change the integrand in the first surface integral of Equation (2.71).
Thus,

Ei 3(0Ui) .
Anc (O(x t)- -0, ) = Bx Bx J]. ———l— dV(y) - J]‘ T | T3 ds(y)
v

£
..a_ _i. -t >
+ 8)(1 Ji[ m [Duiuj+t1j+p61j] ds(y) (2.73)
z

The second term is, thus, a dipole contribution from the acceleration of the body in
a direction normal to its surface.

Therefore, the sound pressure is the resultant of three contributicons: the
radiation frcm the turbulent domain, radiation due to the instantaneous contiguous
surface motion with phase cancellations included, and radiation from a distribution
of forces acting on the region. Eguation (2.73) could as well have been derived from
direct use of Equation (2.56), but with the source term representing a superposition
of monopole, dipole, and quadrupole sources. An equivalent inhomogenecus wave

equation may accordingly be written
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P .
vzpa_.}_z_-a——a-=—po—g—::1+g§}‘—§——;%‘ (2.74)
¢ 3t 1 1%y
where a = volume velocity of simple source
Fi = 1th component of the force vector per unit area normal to i
T, . = stress tensor
13

In using Equation (2.74) poé denotes all the mass flux and Fi denotes all the forces

acting on the region. In the context of the integral form above, Fi includes all of

the Rj(Ouiuj+T;1+péij). As we shall see next, the efficacy of Curle's result and of

Equation (2.74) in describing the nature of flow-induced noise is particularly

realized when the surface in question is much smaller than an acoustic wavelength;

then 8Fi/3yi represents a divergence of the concentrated force exerted on the fluid.

2.4.2 IMustration 1: Radiation from a
Heaving Sphere

To illustrate the dipole equivalency particularly with regard to surface accel-
eration we will reexamine the radiation from a heaving sphere., Figure 2.4b is a
diagram of the source region as it pertains to Equation (2.71). The amplitude of
heaving motions 1s infinitesimal. compared with the radius of the sphere. The surface
L, therefore, consists of a surface Sl’ which encloses the moving physical surface

and the far field control surface of the complete fluid region S The source point

9°
N

y is shown to be on the surface of the sphere of a radius a which is translating in
an oscillatory fashion along the z-axis (see Figure 2.2a for the coordinate system)

as

_ ~iwt
UZ(t) = UZe

Expansion of the a/axi derivative of the second surface integral, yields terms

of the order uy/c0 and a/r compared to the first integral. Far enough from the

sphere and for small velocity amplitudes, this term may be neglected. The quadrupole
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term is also neglected because only very weak Reynolds stresses are generated by the
osclllating vortical flow setup in the hydrodynamic near field of the sphere. There-

fore, Equation (2.73) gives the far field radiated pressure as

% du. (y,t)
i i ->
J]. r [po at ] ds(y)
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amp, (x,t)
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since 2.u,
i7i
effect is approximated by writing for R >> a

= U, is the fluctuating veclecity normal to the surface. The retardation

r =R -a cos ($-¢(¥))

so that the exponential becomes

wfeg) b

e ~e l1-ik a cos (¢-p(;))3 (2.75)

>

where ¢ is the angle made by the position vector x with the direction of motion and
— -> .

#(y) is that angle made with y. This allows the acoustic pressure to be written

down as
23 .
o Lok a UZ —1(wt—kOR)

= —9—Z7£%———-cos o e ZT.J~ c032 h(;) + sin ¢(;) . ¢(§) . d¢(;)

Q

72




'S

~—1

which is functionally identical to the result obtained in Section 2.2. This can be
seen by combining Equations (2.34) and (2.35).

Note that if we had carelessly ignored the retardation effect, the resulting
surface integral would have been exactly zero. Thus, the dipole radiation emerges
here as a second order effect of the motion of the sphere; it is a mathematical con-
sequence of the series expansinn of Equation (2.75) and a physical consequence that
the excess pressure and suction at opposite poles of the sphere do not instantane-

ously cancel identically.

2.4.3 lllustration 2: Radiation from a Concentrated
Hydrodynamic Force: The Force Dipole

1f, instead of a surface in motion .n a stagnant body of fluid, we consider a
fixed surface in a moving fluid we are led to another important relationship which
characterizes dipole radiation., The geometry of Figure 2.4b applies to this problenm,

except that now S. is a rigid surface on which uiii = u_ = 0, Specific instances

1 n
will be considered in later chapters. The flow around the surfaces is presumed to be

unsteady, generating dynamic pressures on S For a closed rigid surface, Equation

L
(2.73) reduces to
2~ 3 jﬂ ds(¥)
- = e—— r -L—— _L
wred (b, 0)-p) = 5 2.p (;,t C> { (2.76) .
1 S [s] ‘ :
1
.

if we ignore the viscous surface stresses Tij and the contribution of Reynold's
stresses in the wake. (This latter simplification is considered in more detail in

Chapter 5.)

For any surface whose dimension is substantially less than an acoustic wave- L
®
length, Equation (2.76) reduces to give the acoustic pressure fluctuation as T
£
2 > p i DRI
4rc t)-p L [——} S
'co(p(xy ) Po) ax. T A 1
i ®
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which expands to

[

. x of
' PR S T N 1
] ‘ﬂTpa(x,t) + S rz [at :l (2.77)

as the radiated pressure resulting from the concentrated force, f exerted on the

i’
I fluid, Note that the pressure is greatest in the direction of the force since X, =

: r cos ¢ where ¢ is the angle measured from the force direction, see Figure 2.2b and
L Equation (2.35).

Note that we could have derived this result by replacing 0(;,t) in Equation

i (2.53) by the concentrated force gradient, i.e.,
%p. Bf, (1)
: 2 1 i > -+
VP, -3 T3 84y-y,)
<, ot ¥y

as in Equation (2.76). Incorporating Equations (2.56) and (2.58) yields (2.77)
directly. The result could also have been derived from Equation (2.74).

2.4.4 Powell’s Reflection Theorem

In Figure 2.5, we specify the bounding surface to come in contact with the

source region. Now, we have dissected I to be

Z=S°+Sl+52

where S2 = control surface of the region of ipterest

§; = an impedance boundary which can reflect sound and which intersects S, ;,Q_,._

A~4
79
-
]
- 4

4
-3

et
. Lt e o
Y et

far from V
)

So = adjacent to the disturbance region and it does not necessarily have
the same impedance as S1

As before, we select S2 to lie far enough from Vo that disturbances have not yet

reached SZ' Since Tij = 0 outside VO it vanishes on Sl’ but not on So. Therefore,

using Equations (2.59) and (2.72), Equation (2.71) can be written (since Riui =

Lu = ul):
nn n
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Figure 2.5a - Simple Boundaries Iucluding Figure 2.5b - Fluid Stress Region
Surfaces Contiguous to a Fluid Adjacent to a Physically Closed
Disturbance Region Reflecting Body

Figure 2.5 - Surface Geometries Used to Illustrate Powell's Analysis of
the Influences of Surfaces on Radiation

z.r.pa&,c) ax 3x J‘f —-—J— av(y)

3 au
n n > 3 1 >
_J‘ r— l:p T ] dS(y) + —ax—l Jj? [pulu +L. +p51n] dS(y)
S
o S,
in ou 3
- T 1F e ds(y) + Er—- ——-[p (y,t)] dS(y) (2.78)
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This expression, which is really just a restatement of Equation (2.73), emphasizes
the multiple effects of the adjacent boundary. On the boundary contiguous to the
source volume, a contribution is emitted by the acceleration in the direction normal
to the surface, Bun/at. Another contribution arises from the distributed stresses on
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the surface which are Lj[puiuj rij+p61j] Puju + Too +pé, The fluid pressure
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fluctuations include both hydrodynamic and acoustic contributions and they account
for the normal stresses on the surface. Viscous, le, and Reynolds stresses, Duiuj, ‘
which involve normal motions and gradients on the surface will alsc radiate. The IR
contributions frou the adjacent surface Sl involve the normal motion of that surface
as well as the scattering of the acoustic pressure P, The integral relationship of VR
Equation (2.78), originally derived by Powell,19 is an extension of Curle‘s18 result f%" ff;ﬂ
that emphasizes the influences of boundaries adjacent to the region of the turbulent '
stresses. The result 1s general and it includes all of the acoustic and hydrodynamic
effects on the fluid region. Although the result applies for boundaries of any
shape, it will be seen in later chapters* that evaluations of Equation (2.78) are

not trivial. When the turbulent region encloses a physical body, as shown in Figure -
2.5b, the surface of the body consists of S0 and part of S, 1is extended on both sides 7

1

of a strip of wvanishing thickness to connect to control surface S It is clear the

I
contributions from the connecting surfaces Si and SE must cancel. This analytical

situation could apply to noise from a wake behind a body in flow. e

Another situation could arise in which surfaces Si and SI coincide with the
physical boundaries of a wedge. Thus, in Figure 2.5 the surface S1 + S0 reduces to
a point at the apex cof the wedge and the turbulent region could be adjacent to the
wedge surface. This problem includes acoustic diffraction about the sharp apex and ‘f;-
so is difficult to solve using straightforward estimations of the integrals in 3
Equation (2.78). The difficulty arises because a priori knowledge of the acoustic
pressure on the surface is not available, '-{ﬁ

A situation which consists of V0 being adjacent to a plane boundary has aigli— _dj;
cation to boundary-layer induced noise. This problem was considered by Powell and
its result has important general implications for any flow region adjacent to a
boundary of large radius of curvature.

An illustration of Powell's problem is given in Figure 2.6. The plane surface - ‘
S0 + S, separates a r~al fluid region from its virtual image, denoted by primes. .

1

This image system is provided to account for reflections at the boundary SO + Sl'

For the image stress system T;j, enclosed by the surface S; + Si + Sé, the acoustic
g

field outside at position x vanisles identically. Velocity fluctuations in the ‘

plane of the surface are designated by ug - Thus, using Equation (2.78) we have -

*In Chapter 8 this integral relationship will be further exawmined for applica-
tion to turbulent boundary layer noise.




Reflection Theorem

Figure 2.6 - An Illustration for Powell's
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When the surface S1 + So is rigid and the fluid is assumed inviscid, T;n = 0, we

have the simple result that

i 2

, 4Tp_ (R, ) = o ﬂ —J— av_3) (2.81)
- a Bxiax

: . v !

‘ which is the statement of Powell's19 reflection theorem. This theorem states that:

"The pressure dipole distribution on a plane, infinite, and rigid
surface accounts for the reflection in that surface of the volume dis-
tribution of acoustic quadrupole generators of a contiguous inviscid fluid
flow, and for nothing more, when these distributions are determined in
accordance with Lighthill's concept of aerodynamic noise generation and
its natural extension."

Kl

Powell goes on to state that the result, Equations (2.80) and (2.81), are independ-
ent of the Mach number of the mean flow as well as the wavelength of the sound. The g -"'g
stress tensor itself acccunts for all effects of refraction and scattering by fluid
inhomogeneities. The above result emphasizes the confusion that could arise from

the interpretation of Curle's result, Equation (2.73), as indicating that the pres-

ence of a surface contiguous to a turbulent region results in the generation of three

physically distinct acoustic sources. This is patently not the case when the con- .
i tiguous surface is large compared with an acoustic wavelength whether or not the . -4
surface may react to the stresses induced on it by the turbulence.
In these more general cases, Equation (2.80) isolates the importance of dipoles
i oriented in the plane of the surface whose strengths become doubled by the plane. .. .. -
Ffowcs—WilliamsZO considered the more general case of a flow source region over “9 A

nonrigid, plane, homogeneous boundaries. To consider the simple case of a very soft

boundary, the difference between Equations (2.78) and (2.79) is taken which gives

[T _. P
Z*TTP (x t) = ax ax =l dv (/) ax ax —L dv (y) .

.t' e
[ ] -
2 + —a—ﬁ 2 [Qu2+ +p) dS(y) < Y ," -
2 an r n ‘nn P Yy [p] do(y) (2.82) :

g S I
: ° e
[ ] i;'.

- 79




If the surface is limp enough so that no normal stresses may be maintained, then

p =0 (i.e., it is pressure release) on So' The surface Sl Ffowcs-Williams takes
far enough from the source region that it vanishes. The sound field then consists
of the interference of the primary source field with its negative image except for
the addition of the term involving the induced surface motion. This term Ffowcs-
Williams speculates is second order. For more complicated boundaries whose imped-
ances are intermediate between hard and soft, Ffowcs-Williams shows that the effect
is still only to modify the sound field by adding to the primary wave field given by
the integral over VO, a reflected wave, given above by the integrals over Vé. A
reflection coefficient appropriate to the surface impedance causes a phase shift, but
no resonances. Thus, the sound resulting from a turbulent flow over any plane
homogeneous surface 1s essentially quadrupole or higher order with no alteration in
the physical mechanism of the radiation, barring the possible contribution of shear
stress dipoles, This has broad implications since what is required for enhancement
of the sound field are inhomogenei:ies of surface impedance (scatterers) or inhomo-
geneities in the surface stresses. These implications will be discussed at greater
length in Section 8.5.2. The benefit of Equation (2.82) over (2.80) for the case of
pressure release boundaries lies in the vremoval of the unknown integral of u over
the bounding surface.

Equations (2.81) and (2.82), in the latter with p = 0, for the completely rigid
or completely soft surfaces, respectively, bring out an interesting aspect of imaging
multipole sources. Consider the thickness of the stress layer in a direction normal
to the surface to be much smaller than an acoustic wavelength. Then, using the
idealizations for the lateral and longitudinal quadrupoles shown in Figure 2.3, it is
easy to see that a rigid surface causes destructive interference of lateral quadru-
poles (call the result an octupole!), but a doubling of the sound for longitudinal
quadrupeles. The converse holds true for quadrupole sources near a soft boundary.
Similarly, one can deduce alternate reinforcements for dipoles near either hard or

soft surfaces, Therefore, in Equation (2.82), the volume integrals do not cancel.

2.5 POWELL'S THEORY OF YORTEX SOUND
2.5.1 General Implicatiens
The formulation of a region of vortex motion as an acoustic source was a major

step towards a physical undurstanding of turbulence induced noise. However, the
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consideration of the acoustic sound pressure as a volume integral of the Reynolds

stress sheds little light on the details of the mechanism. Lighthill's theory does
not identify the characteristics of vortex dynamics that are noise producing. It
seems that Lighthill was motivated toward a description of sound intensity in terms
of the statistical characteristics of the turbulent source vegion. It was necessary
to use representations which could be substituted by measured velocity correlations
and length scales. Furthermore, the identification of the acoustic character of the
source field as a distribution of quadrupoles and then the subsequent establishment
of the effects of eddy convection on the acoustic pressure, were directed at an
understanding of the observed acoustic aspects of jet noise.

Powell,21 on the other hand, was apparently interested in the aerodynamic
(hydrodynamic) aspects of the flow which caused the noise. The question involves an
understanding of what characteristics of the eddy motion actually produce the noise.
From this perspective Powell examined the connection between vortex motion and sound
generation. The identification of the formation of vortices in the flow as the

fundamental noise-producing mechanism is the result of this analysis.

2.5.2 Derivation of the Wave Equation with
Vortical Sources

. . . . . 21
In our discussion we will first derive the source term in Powell's form and
then discuss its physical implications. As before, we consider the fluid motions to

be isentropic. Powell makes use of the well-known vector identities:

12y 9ui Buk 8ui Buj Bui
\/<—u =u, = - - u, - =T - s v
2 i oxj axi Bxk k Bxi ij j

= @V u- () xu= (V) u-wxag (2.83)
and
P 5 9uj _ 3 / Suj aui 3 duk duj
Viu., - = —L )= - = — - - - (2.84)
i 9X ax . ox . 9%, Ix . IX I% . a¥
i i b i j k i k
or
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2

720 4 V(Ven) = + U x (Vxu)

The curl of the velocity, V x :, is the vorticity vector &. These relationships*

are used to transform the equations of continuity and momentum to

ap

> -+
re + (uVp + pV cu =

and

-

Ju

ou ., > , (1 2
R + pwxu) + V <2 pu )

The combinaticn of Equations (2.85) and (2.86) can be

as in Section 2.2 to obtain the wave equation for the

(2.85)

-Vp (2.86)

performed in the same manner

density as

+V e Q(GX3) -u % +¥

o at (2.87)

u2 2 u2> }
<p+o 7/ - <?O+ 7 Vp

This equation is an analog to Lighthill's equation where the divergence term

is identical to Lighthill's source term. The equation is exact except for the
g q P

neglect of the Stokes' stress tensor Tij’ but the above representation exposes the

influence of changes in vorticity on the radiated density fluctuations. The term
-
w X u incorporates the sound due to the stretching of vortex filaments by an imposed

The term u 9p/at is a contribution caused by local convection of density

2
The term V(p+pu /2)

velocity 3,
disturbances and it is generally second order since lu| << <,

includes both the hydrodynamic as well as the acoustic pressure. Inside the source
region it the flow is perfectly irrotational, i.e., =0 everywhere, the Bernoulli

equation for the hydrodynamic pressure 1is

*Both the vector and the tensor notations have been shown in order to effect
for the reader an easy transition from one notation to the other. In the following
we shall make liberal use of vector notation in order to compress expressions
dealing with the curl operation.
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2 3¢h
% + %— T constant (2.88)

+

where @h is the fluid potential. Thus,

and, since V2¢h = 0 only for irrotational flow, this term may be legitimately
neglected only when %= 0. Regarding the acoustic pressure, we note that when cg
>> u2/2 (as is found in most situations involving flow of low Mach number) the
acoustic pressure exactly balances cip. Therefore, Equation (2.87) can be now

written to include only the first-order terns;

2
\v p - — .__Zi = =7 ‘o(w)(u)-}-v <p—czp+p izl'—‘\)= (2.89)

to give the wave equation for the acoustic pressure. Equation (2.89) should be com-
pared to Equation (2.49). This equation is essent.ally that which was derived by
Powell and, in terms of exactness, it departs from Lighthill's in the neglect of the

viscous stresses, Tij’ and of terms for which u << ot

2.5.3 The Physical Significance of the
Vorticity Source

In order to appreciate the importance of the vorticity as a source of radiation,
Powell considered the generation of fluid disturbances by the motion of an isolated
ring. An equivalence is sought between changes in vorticity and changes in fluid
momentun which can be interpreted as dipole and quadrupuvle acoustic sources.

The well-known relationship for the incompressible fluid velocity :(;)

generated by a vortex filament is




ii
-+ +) o1 r erI(z) S O g; v (£> x dz( 2.90
u(x) = 4T r2 B 4m y r y) (2.90)

As shown in Figure 2.7 the vector from the source point to the field point is
T = x - ;; di(;) is an increment of vhe vortex filament of vorticity (note that

Gxdz = 0). By definition the circulation is

I = §> u o+ d¢ (2.91)
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Figure 2.7 - Application of Stokes' Theorem .
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where C' is a closed circuit in the fluid. As long as C' encircles a vortex fila-

ment, as shown in Figure 2.7, the circulation is nonzerc. Otherwise, it is

. identically zero. Stokes' theorem states that
g r =§S u - 4 (2.92)
.-' C'

= ﬁ n, + (Vxd) ds (2.93)
S(l)

(2.94)

ki
it
—
=
e +
€4
ja ¥
w
"
P =
€4
[« ¥
w

). where dSuj = an element in the surface enclosed by the circuit C'
;;w = the component cf the normal vector to this surface in the direction of

- ai (or of 5) S -:_:;
: oo
i §, = @ component of § projected in the plane that is perpendicular to the Y reasvanny
. vorticity wvector ® ‘*""-‘-‘{‘1
_'.:; We will assume that T is constant along the vortex filament -5{ Also, by Stokes' : 4-.._":'-‘1
theorem we have ‘ o
7 S
i - > 1 -+ T 1 J:[ N r o s-.—zw
= — = = L R A G—
ulx) = 73 f{)dl(y) *Vy (z) =& (ngx¥p) x 7, (7)as® ST
S o
w .
;d
;

» =21 a () P
an Jj (Vyxnz) x Vy . dS(y) (2.95) _0_ .
A
>

where SQ is circumscribed by the vortex filament and ;Q is the normal to the surface,

see Figure 2.8. Since
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i] Figure 2.8 - Geometry of Vortex Filament e
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Equation (2.95) becomes - -
‘]
> o l__ -+ . £ - i - . q L) -+ .
2 W) = ﬂ Vot (3) ase =, j -5, 0 ($)ase .96 ]
. 5, S, -
ji: If the distance to the observation point is large compared to the dimension of the _":
S vortex ring, Equation (2.96) becomes ;i__;;
ad b
S Ts }
- o> ]__ - .o ¢ A ‘
- U(X) = vX {4_” [nﬂ,] vx ( T > (2.97) - .
. R '
?,t where FSR is the strength of the vortex and ny is the average normal to tEe surface
; of area SQ. Equation (2.97) is now of the form of a potential gradient, u = Vx(¢),
:;f and so we recognize the term in brackets to be the far field potential due to a con- -
» centrated vortex filament. iﬁ

The important step in the analysis was Powell's recognition that the analog of

Equation (2.97) for a slightly compressible flow is

AW e
R L
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(n,I's,]
> - R .
ulx,t) = v {lm v - } (2.98)

where the term in brackets [ ] is now evaluated at the retarded time t - r/co.
Equation (2.98) holds as long as the wavelength of sound is much larger than the
vortex ring and it implies that the vortex streamlines in the slightly compressible
flow are fhe same as if the fluid were incompressible. This is an important notion
since it states that the flow field is established hydrodynamically and the sound is
a by product of the hydrodynamic motion.

The pressure disturbance in the far field is found by carrying out the indi-

cated operations, and noting that p, = Doc u

o
R QO pa anRTSi
Pa(x.t) = Zme I (2.99)
or’ at”

The far field velccity is nroportional to the time differential of the rate of

>
change of the vortex strength. Also, since the fluid momentum M associated with the
vortex ring is

M = Tn S
=P 1My

the velocity perturbation is also seen to be proportional to the time derivative of
the rate of change of fluid momentum in the direction of observation. The force

applied to the fluid by the motion of the vortex ring is related to the rate of

change of momentum by

Thus, Equation (2.99) can be rewritten as

-~ 1 .
Py (xt) = o0 [ (2.100)

HNPHL
.
Qo

14
| —




which is the same as Fquation (2.77). The radiated velocity is determined by the
rate of change of the force applied to the fluid by the vortex motion. This rela-
tionship will '.¢ considered extensively in Chapter 5; it is the fundamental relation-
ship for dipole sound radiation.

If the area of the votex ring S, remains constant, the strength changes with

£
the circulation so that the velocity perturbation is given by

+  n,etS 2.
u(x,t) = —t—.—z— —Q 3 Q‘ ['—a ;]
4mc r at”

In the alternative instance of a constant circulation ' yet changing area Sg
the velocity perturbation is proportional to BESi/QtZ. This change cs:r arise from
vortex~line stretching by flow as depicted in Figure 2,.8. The vortex line stretches
due to translation at velocity U so that the change in the enclosed vector area
N
"%
becomes

in the time interval &t is ;265? = (aét) x df. Thus, the Equation (2.99)

If we consider the vortex lines to exist throughout the region of flow and introduce

Equation (2.94) we find

> S
>+ r r 3 -+ - =+
u(x,t) = 7 3 [Gt ii J. (nULJ mdSw) uXdL]

-t T 3 - .
ekl [5?’]]] ) dv} (2.101)
o]
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since (nm-mdsw) U x df = (Uxw) n,oc dzdsu and because the af and u vectors are cojn-

cident.

the rate of vortex

This shows that the velocity perturbation 1s proportional to the change in

stretching by the fluid. The intensity is maximum in the plaie

> -

normal to the vector w x u, i.e,, normal to the surface enclosed by the vortex ring

of vorticity ;.
tion from a finite
vortex strength of

The integrand
terms of Equations

tion, given at the

complete physical explanation.

Powell gives the term

"vortex sound" to the far field sound radia-

region of vorticity since it emanates from changes in the net

the region.

in Equation (2.101) is also recognized as the first of the source
(2.87) and (2.89). This equivalence complements the interpreta-
end of Section 2.4.1, of the source term so that we now have a

The sound radiation from a localized region of tur-

bulent unsteadiness is caused by the stretching of vortex lines and the rate of

change of fluid potential associated with the dynamics of the region.

An important physical example of the generation of vortex sound is the Aeolian

tone ra. iated from

a circular cylinder in a cross flow.

in Figure 2.9 (dealt with in detail in Chapter 5) f{luid flows steadily past a

cylinder so that the directicn of fluid motion is perpendicular to the axis of the

IMAGE VORTEX

SYSTEM

&,
- ©  WAVE FRONTS OF
RADIATED
SOUND

CONVECTION VELOCITY
RELATIVE TQ
CYLINDER Y U

FIXED
CYLINDER

N
'''' ’ - CONVECTED SHED

VORTICES OF OPPOSITE
SIGN

Figure 2.9 - Diagram of Cylinder and its Vortex Systems in a Cross-Wind
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cylinder. Vortices are shed downstream of the cylinder with alternately varying
changes in sign., Since the clrculation of an element of tre fluid incident on the
cylinder is zero, the net circulation in the flow-cylinder system must remain zero
downstream of the cylinder. This requires that for every vortex formed in the fluid
an image vortex must be formed in the cylinder. The resulting vortex pair is com~
posed of two legs of a closed ring as shom in Figures 2.9 and 2.8b. In this manner
we can see that the perlodic formation of vortex pairs, one bound to the cylinder
and the other formed in the wake and convected downstream, results in a similarly
periodic clange in vortex strength and, therefore, sound radlated in a direction
normal to the plane of the vortex ring. This direction is also the perpendicular to
the plane formed by the flow vector and the axis of the cylinder. The magnitude of
the sound in this direction is proportional to the circulation (+ I') of the vortices
formed and to the square of the recipcocal of the temporal period of the vortex

formation., Another derivation of Equation (2.100) which pertains specifically to
this problem, will be discussed in Chapter 5.

2.5.4 The Effect of Solid Boundaries

Ve now turn our attention to the integral form of the wave equation analogous
to Equations (2,71) and (2.78), yet incorporating Powell's source tcrm. Combining

Equations (2.67) and (2.89) we obtain the acoustic pressure as

wmp (X, ¢) = m [p(mxu) ]_.£1L+ M' Clt {p I 2] av ()

r
i

.2 1 2
doc 8(--) dpoc ]
1l or 0 T 2 1 o -+
+H {c—? n [ S ] airual COS IR [—r } dsty)  (2.102)

where ¥ 1s the total surface enclosing both the source volume and the obhservation
point as in Figure 2.4a. Noting that 3r/dn = 8r/9yn = - ar/axn, using the divergence
theorem as in the beginning of Section 2.3.3 and in Equation (2.68), and using

Equation (2.86), it is a simple matier to write down the acoustic pressure as

30
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+ a—i- ” [p+ 7';_ Quz] 43¢ y J-J. [ ] ———Ldsf, ) (2.103)

The surface I may be interpreted to pertain to specific applications, e.g., as shown
in Figure 2.5. As Powellzl explains, Equation (2,103) gives the acoustic pressure
as the sum of four contributions:

1. A volume distribution of dipoles proportional to ® x u.

2

3 (p-oc§+ % pu2>

2. A volume distribution of nondirectional sources 2
at

3. A surface distribut.on of dipoles whose strength is proportional to the
Bernoulli pressure on the surface, p + 1/2 pu

4. A monopole distribution whose strength is proportional to the acceleration
of the surface normal to itself, Bun/Bt.

Furthermore, the surface-integral terms are equivalent to those in Equatioms (2.71)
and (2.78) (note being taken of the inviscid nature of the current problem), while
the volume distribution has been reexpressed. The second volume integral involves
quantities of order (u/co)2 and P(ch)-l vwhich can be safely ignored in favor of the
other terms for low Mach number flows, The pertinent nature of the Reynolds stress

distribution as involving a change in vortex strength is thus exposed.

2.6 REPRESENTATIONS IN THE FREQUENCY DOMAIN

When the integral relationships of this chapter are used for the solution of
specific physical problems it is of'. .~ convenient to invoke various types of harmonic
analyses, In this text the Fourier .ransform, applied for bothk time and space vari-
ables, will be used almost exclusive of other transforms when harmonic analysis is
necessary. We have already used a simplified form of Fourier analysis when we

specif ied time dependence to be of the form e—iwt in sections 2.1.2, 2.2, and 2.4.2.
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2.6.1 Helmholtz Integral Equation RN
We begin by deriving analogous forms of Equations (2.53) and (2.67) using the

i time Fourier transform. The Fourier transform V(w) of a variable v(t) is ;é
: © o
';: V(w) = -]2.—'”,“ e+iwt v(t) dt (2.104) E
g ! o .
and its inverse is
. (2 ?._1 -
v(t) =.f e-iwt V{w) dw (2.105) "f ? B
-0 )
.
> 2 - _.
Thus, since pa(x,t) =c. Dj(x,t), then the transform of the inhomogeneous wave equa- -
tion, Equation (2.53), is called the inhomogeneous reduced wave equation f'f
' Vo Ghw) + K2 p (V,w) = -5(¥,w) (2.106) o
I Pa Yy, ° pa y,w) = -0ly,w . ;,.._,,
where ko = m/c° is the magnitude of the acoustic wave number and 5(;,w) is the :;:
N Fourier transform of 0(;,t). The solutions of the homogeneous wave equation are of ﬁ?;
l the form :' ]
- +ik r o
- . o © o
. (- A e .
._ p,(y,w) = A= (2.107) o
: .
which are appropriate for propagating waves in free space. In fact, the function -
+ik 1 L
e © S
. g(r) = e (2.108) ?




"

}
¥
H

is called the "Free-Space Green Function." The selection nf +1 and -1 depends on
the invoking of the radiation or absorption condition of propagating waves (Section
2.2). For outward travelling waves, we select -i. Now, the retarded potential is

given by

T ~iwt +ikor
v <t— _) =J‘ e e Viw) dw (2.109)

Substituting inverse Fourier transform, Equation (2.109), into Equation (2.67) gives:

R 82;13(;,w) e+ikor N
o - [ w6
\Y
o

Eyiayj 4mr

+ik - +1ik r
e 0 A y,w) a0 R
+ J'J‘ 4TY on - pa(pr) ‘Z'F Tr_r‘“‘ ds (y) (2 . 110)
z

Here we have let Tij(;,w) be the Fourier transform of Tij(;,t), using the tilda and
the changed independent variable to denote the transform. Equation (2.110) is the
Helmholtz integral equation. It could have been detiveda’S from Equation (2.106)

by using the divergence theorem and the equation

72 g(|x-y|,w) + kig(ﬁ-;l,w) = -8(x-y) (2.111)
y

for the free-space Green function when Vi denotes the Laplacian operation with re-
spect to the variable ; only. Y
We see, regarding Equation (2.110) and Figure 2.4, that if % is a control

surface a distance R from a compact source region of volune Vo' then
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+ ‘
- m G [T L
- Py (x w) = ay dy lmr av(y) (2.112) i
' 1] )
- if
n RNEREAE
& / Bpa(R,w) R
: lim K+1k Rp, (R,w)4+R —2——} = 0 S
- o a r R
Recall that this last condition is just Sommerfeld's radiation condition (Section L
l 2.2). Equation (2.112) is the equivalent to Equation (2.57), but in the frequency 9
domain.
A more general use of the Helmholtz integral equation lies In situations for :
- which impedance boundaries or surfaces are present in the control vcolume. Tn these ]
situations the free-space Green function in Equation (2.108) is replaced by G(;,;,w) y. 7
which is a solution of .
i 2 > > 2 -+ =+ + >
! VS G(x,y,w) + k- G(x,y,w) = S(x~y) (2.113) —i
y -
In contrast to the free-space Grzen function, the function G(;,;,w) is determined .
for the geometry under consideration and subject to certain boundary conditionms.
- The Helmholtz integral equation 1is .
P, (x,w) = J:” ay ay G(x,y,w) dV(y) R
1 »
v R0 > 3G(X,y,w)
+IJ G(x,y,w) —n —pa(y,u)) —5k ds(y) (2.114) . -
S
, b
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where § is the surface of the boundary that 1s present, e.g., Sl + S0 in Figure 2.5,

The radiation condition has been invoked to eliminate the integral over the control tf>3;3;

surface, 52' Now, it pa(;,w) is known on the surface, then the imposition of the ’“;;*“'
boundary condition G(;,;,w) = 0 on S will put Equation (2.114) into a form involving
known functions. This boundary condition4 is known as the Dirichlet boundary con-
diction. Alternatively, if the normal gradient Bp (y w)/9n is known on S then the N
boundary condition GC(x y w)/n = 0 on S, known4 as the Newmann boundary condition, ji. i
puts Equation (2.114) into a form which may be evaluated. The potency of the method
is especially apparent if we consider the case of the rigid boundary. In this type
& problem the velocity normal to the surface u, 1is zero. Thus, Bpa(;,w)/an = 0 so that L
the imposition of a Newmann boundary condition reduces Equation (2.114) to the form . @
(y w) o, N ':; -
P, (x w) = .fjj. 3y13y G(x,v,w) dV(y) (2.1195) i'}:‘t
,..~
The Green function G(;,;,w) now accounts for both the impedance and the geometry of .
the boundary. ?:;"
The method was used to solve problems on aerodynamic noise by Ffowcs~Williams )
and Hall22 to determine the sound field from turbulence convected past a half plane.
Some other aerodynamic noise problems have been attacked in this manner by Howe,23 -
Chase,zl"25 Davies and Iﬂ‘fo‘.rcs-\alilliams,26 and Crighton and I-‘i:'ov.rcs-williams,27 see .,'...'};.,g
Chapter Y, _?:T
A simplified example of the use of the Green function for the Newmann bhoundary ;;g;
condition can be shown for the case of the plane boundary. A solution of Equation E}E;
(2.113) which is valid for the rigid plane boundary is given by ;; )
. e+ik°rl e+ikor2 iliz
G(x,y,w) = e + = (2.116) i;i?i
1 2 SR
.
where r% = (xl-x2)2 + (yl-y2)2 + (21-22)2 and rg = (xl--xz)2 + (yl-yz)2 + (zl+zz)2- L
The ranges r;, r, are the same as those shown for the primary and image source e
e
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system in Figure 2.2c and they correspond to the r,r' in Figure 2,6. The field point
is ; = (xl,yl,zl) and tne source point is ; = (xz’y7’22)' Also it can be easily

shown that on the surface 22 =0

36.(%,,) GeL,Y,wW | L
aZ2 z,=0 322 =0
2 22"

and for k z, << 1, Equation (2.116) reduces to the functional form of Equation

02
(2.36). GSubstitution of Equation (2.116) into Equation (2.115) yields
x j‘j." w) e- 0"V >
pa(X.w) = inayj 47Tl>7-?| dv(y) (2.117)
V, 4
°1

where integration now extends over both the physical source distribut: - .1 its
image distribution. The mechanics of such an integration would have . ~ount for

the symmetric and nonsymmetriz reflections of the Tij about Yy = 0, as discussed in
Section 2.4.4, Equation (2.117) is identical to Equation (2.81).

Other known functiouns G(;,;,w) for a wide variety of geometries have been given
in books by Morse and Feshbach,28 by Morse and Ingard,“ and Junger and Feit.5
Generally simple closed-form functions exist for circular cylinders, spheres, infi-
nite planes. Analytically more complicated functions also exist for slits, half

planes, and spheroidal bodies.

2.6.2 Generalized Transforms and Stochastic Variables
In Section 2.3.3 we utilized the correlation function of the stress tensor to

determine the time averaged acoustic intensity, Equation (2.61), far from a turbulent
region. The introduction of the correlation function was necessary because the
temporal and spatial variations of the velocity fluctuations are uncertain, yet
occurring within certain limits of probability. For example, the velocity at any

instant and location can be given by
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ui(;,t) = Ux) + ui(';!,c)

where U 1s the time averaged velocity and uy is the stochastic velocity fluctuation

with zero mean value, i.e.,

T/2
ui(?(,c) - l:Lm% J ui(I,t) dt = 1m%f“ ui(;,t) dx = 0 (2.118)
T Voo
Z1/2 v

where T is the time of averaging and V is the volume over which the velocity is in-
stantaneously sampled. Fluid fields for which the equivalency of Equation (2.118)

holds are said to be homogeneous. The time mean square velocity fluctuation is

+

@G +u,Gren?

2 <>
L
ug (x,t)

'Y
-

T/2
- lim% T¢ + ui(;,t))?' dt
> " Zr/2
— ——t
=% 4 ui x,t) (2.119)

If the fluid region 1s truely homogeneous, then

-

2+ t 2 b
Ui(X,t) uI(x,t) =

ol
(VN

also, note that the average over space of the fluctuating velocity at any instant in

time will also be zero in the homogeneous turbulent field. Ngtice now that we have
-»>
-—t —

introduced the vincula and to distinguish between time and space

averaging, respectively.
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We now consider some general representations of the turbulent field and its
resulting sound. More extensive analyses will be given in Chapter 3. Equation
(2.118) constitutes a boundedness on the integral of Ui(;'t) and it permits a
definition of a generalized Fourier tranaform29’30 which we will write as

o0

~ 1 +iwt -
ui(x,w) T J. e ui(x,t) dt (2.120a)

-0

and

o

ui(;,t) =.[ e ivt Gi(;,w) dw (2.120b)

-0

T .ace-time covariance of the velocity fluctuations is given by (see also

Batchelor,30 Lin,31 and Kinsman32)

e

4=
LS

1 -+
[Ui(;,t) Ui(;,t)] /2 R,y (y,;,T)
11

T
1 -+ -
= 1im 5= u,(x,t) u(y,t+1) dt
2T i
Too T

T L] o

= lim &= dt-[ g tiut i (x,0") dw'.[ e~ iw(t+1) i, 5w dw (2,121

~-T -00 .

where R (X,x,0) = R, 3,y,0) = 1 > R, (x,y,0) > R, (x,¥,7). We have
1% 11 171 11 .
replaced the physical velocity fluctuation by 1inverse transform of Gi(x,w) using

Equation (2.120b).
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The complicated integral can be cleared up by examining the behavior of

1/2 1(w-w")T/2_ ~i(w-w")T/2  sin (w-uw') %

1 1(w-wht _le =
TJ. & de = 7 71 (0-a")
-T/2

T )
7 (w-w')

As T increases, this function becomes more and more peaked near w = w' so that if

their integrals over all frequency are to be equal we can write

sin (w-w') g

lim 2 22T s(wmw') (2.122)
T T
T+ (U)-LL) ) —
2
The equivalence
- 1
S(w~w') = %J' RelCOUDLIF (2.123)

where 8(0) = 1 and 6(Q#0) = 0 is the delta function. Formally, it has the integral
definition

-]
f(QO) = J. £(Q) 6(9—90) dan
This relationship can also be established by virtue of the definition of the Fourier

transform and its inverse.

This equivalence converts Equation (2.121) tc the form

Zi0 G0 R G
ui(x,t) uy y,t U u YaX, T

¥4
[+.+] o0
. t - - - -
= 2nj J‘ ﬁ“;_“’l o~ lwt G (X,w0") ui(§,w) dwdw'

- -lwt 21~ 2 ~
—j' e {T i(x,m) ui(y,w) dw




This def:l.nes?'o-33 the ccvariance function as an inverse Fourier transform of a func-

tion which we will call the two-point cross spectral density of the velocity

fluctuation. We will write this function as

27 ~, -~ = 2, t 2.+ t > >
T uix,w ui(y,w)} = u (x,t) uily,t) ¢uiui(y.X.w) (2.124a)

in the limit as T»«, so that the space-time covariance R(;,;,T) and the two-point

cross spectral density are Fourier transform pairs:

. . -
l > > -iwT -+ > }’ -3
R(y,x,T) = e oy, x,w) dw (2.124b) RIS
- s
o
In Section 3.5 we will see how to accomplish these analytical manipulations without ;';i%
' 1
having to constantly carry the formal T+ limit, .
The acoustic pressure from a region of turbulence will be a stochastic variable :1
that is related to the turbulence through a Green function for the geometry involved. R
I Thus, the Fourier transform for the acoustic pressure in Equation (2.115) must be M

considered in the same generalized sense as we have also done for the velocity.

Therefore, the acoustic pressure spectral density at the field point x is given by

—t
2 ne 2an -> >
= —— * N
g P, ¢pp(x’m) T {pa(x,w) pa(x,w)}
. . s
where P, is the total mean square pressure and the integral of the spectral density »

over all frequency 1s normalized according to
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In the specific instance of radiated sound from a turbulent region, the pressure

spectral density is related to the cross spectral density of the source term,

22 > 22, =
PSR P il VIl Ut i M
T Y12 Y2 o T SR 37,97,

by an integral relationship that is analogous to the one for deterministic processes,
Equation (2.115),

Pe ¢, () = m : m Orp (V1 ¥pw) GX(X,¥,,w) G(X,¥,,6) dy,dy, (2.125)
Y \Y

Equation (2.125) is perfectly general, it is essentially the spectral representation
of the acoustic pressure and it 1is the spectral analog of Equation (2.61), in which
the Green function is the one for free space. (The formal equivalence can be appre-
ciated by the reader by making the necessary substitutions into either of Equations
(2.61) or (2.125).) The importance of Equation (2.125) lies in the fact that the
covariance or the cross spectral density of the turbulence are physically identifi-
able and measurable quantities, while the instantaneous quantity azuiujlayiayj is
not a practical physical quantity to work with because it is a random variable of
time and space. The value of the spectral representation is found in the fact that
it is often the acoustic intensities of specific frequencies, rather than the overall
intensity, that is of importance in many applications. There are many other forms of
Equation (2.125) that will be used in subsequent chapters, which involve some of the
alternative source functions. For example, rather than a cross spectrum of the
stress tensor as above, it may be more suitable to invoke cross spectra of any of the
other source terms appearing in Equation (2.74) whenever there are localized surface
forces induced on a body placed in the flow. Extensive use of Equation (2.125), or
of the methods to obtain it will be the underlying feature of the remainder of the
chapters, excepting perhaps Chapter 4.

We will, in fact, make liberal use of the stochastic representations of this

section in the remainder of this monograph. Most fluid dynamic processes which are
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unsteady are also turbulent. Their stochastic nature makes these or similar time-
(or space-) averaged quantities the only useful means of representing the properties
of the flow. Yet, as can be seen from a study of this chapter, the acoustic propaga-
tion characteristics are often deterministic. 1In these cases, far field acoustic
power is just a convolution integral lnvolving a measurable covariance or cross spec-
tral function and a geometrically influenced deterministic Green function, In the
case of acoustic reflection and refraction by local turbulent dencity and velocity
fluctuations even the propagation characteristics must be considered in a stochastic
sense.

Generalization of the stochastic representations to include hoth space and time
is simple especially when we are concerned with the far field acoustic spectrum.
Restricting our attention to one frequency, the Green function G(X,?,m) can be
separated into a product of separate functions of the source coordinate and the

field coordinate, i.e.,
-> -+ -> -
G(x,y,w) = Gx(x,u) Gy(y,m) (2.126)

as long as the field point is in the far field |x| >> |y| and ko|;|*w. We introduce

the spatial Fourier transform pair of the source Green function

& (k,w) = m 6. (3,0 Y g
y Yy
-0
and

- . - _L‘_— - . _iio; -
Cy(y.w) (25)3 J]] Cy(k,w) e dk (2.127a)

with a complex conjugate
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-+ -+ jj{-; -> ﬁ

Gr(y,w) = 3 J’J’ Bx(k,w) e dk (2.127b) ;
@m* 72 7

2 -+ - 2 — -
p ¢pp(x,w) = ]Gx(x,w)| f ko‘ dk
-00 -Q0 o
L
L3 4T,) |
-+ -+ e - .yl_ .yz ~ - -~ >
*
v \) .- -
. @
(2.128) 7
This integral expression for the far field sound spectrum can be simplified consider- EE
ably if the statistics of the turbulent source field are spatially homogeneous, i.e., - ;'
that fffffff“
- - _ - -> -+ - :
¢TT(yl,i2,w) = ¢TT(y2.y1.w) = ¢TT(y2-yl,u}) (2.129) '
-0
The cross spectral density of the source function is, in this case, a function only R

of the difference in the separation variables. Then, letting

— -> -
Y =Y +r a
and 1>:-.
d-» 4 -'
Yo T ¢
e
Equation (2.128) may be rewritten S
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oo [+ 4]
2 -+ > 2 > - ~ ~
P ¢pp(x,m) = |Gx(x,w)l .[ dk J. dg Gy(k,w) G;(K,m)
-00 -C0

® > T 1@y

1 . K7ty

x > J ¢TT('{,m) I g7 . 1 ; f e 1 d;l (2.130)
(2m) (2m)

-0 -—0

The integrals over ;l and X are analogous to Equation (2.123) and give

F L&Dy e (k) ey
- .y -] .y -
j e 1 43371 - Jﬁ e 1 dy, = 8(k-i) (2.131)
—) -0
where
. 3
(k=) = ] 6(ki—Ki)
i=1

It is to be noted that occasionally one is interested in the approximation of
a bounded source zone with characteristics of a much larger, effectively unbounded

one. In such cases note that

Li
11n, sin (k-K)i 7

Li L ﬂ(k-K)i

= 6(ki-ki) (2.132)

-1
L
finite spatial region always diminishes as the extent of the zone increases,

for all values of (k-'.<)t > L Thus we see that wave number overlap caused by a

Now, returning Lo the mainstream of the znalysis, the spatial Fourier transform

of the cross spectral density of the sources is called the 'wave number spectral

dengity"

o

o (K,w) = —L- Hj 6. (Z,w) e*°T af (2.133)
T (211)3 0O TT

[T
|




Equation (2.130) now reduces to the simple form

2 + nd 2 - .o~ > -
P ¢pp(x,w) = IGx(X.w)| ‘Uj' ¢ (K, w) icy(k,w)|2 dk (2.134)

Since the Integrals are shown to extend over the infinite domain of wave number and
physical it must be stipulated that all effects on the wave number spectrum of
spatial finiteness of the sources are included in the definition of ¢TT(§,w).
Equation (2.134) shows that an acoustic field can be regarded as a linear
system driven by a spatially and temporally random input. In this case, however,
the filtering 1s spatial rather than temporal and what Equation (2.134) gives is the
acoust ical respouse to a spatially steady state (homogeneous) input field. Equa-
tions (2,125) and (2.134) are therefore equivalent alternative expressions for the
radiated sound pressure, except that Equation (2.134) presupposes spatial homoge-
neity of the scource field. If the homogeneity assumption, Equation (2.129), were
to be introduced, then Equation (2.125) would give the autospectrum of the acoustic
pressure as a spatial convolution Integral which is analogous to the initial value
temporal response cf a linear filter. Although the integrals over infinite wave
nurber domains given in Equations (2.128), (2.130), and (2.134) are formally correct,
1t must be undersctood that the far field acoustic pressure is determined by the
wave number range |kf < ko. In most applications the Green function Gv(ﬁ,w) is
strongly peaked as the magnitude Iki approaches ko in the region 0 < | k] < ko.
Therefore, the integrals such as in Equation (2.139) are frequently dominated by
a regicn :h] N ko as shall be illustrated in some detail in the later Chapters 3
aud 6 through 10. Contributions from sources at wave numbers which are outside
| k

field pressures which decay exponentially with distance away from the source. Such

< ko do not radiate sound. Rather these disturbances result in so-called near

near field motion 1s inertial, and in the case of a source ccmprised of an oscillat-
ing body, acceunts for the added mass.

Equations (2.125) and (2.134) will be used in various forms throughout this
bock. Equation (2.125) 1s, in general, the less restrictive of the two because its

application is not limited by the condition c¢f spatial Homogeneity. These relations
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have direct application to jet noise (Chapter 3), Aeolian tone {Chapter 5), and

lifting surface noilse (Chapters 9 and 10). -They have two-dimensional analogies in

i flow-induced sound from shell-like structures (Chapters 6 and 8).

o
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2.7 APPENDIX A — DIPOLE RADIATION FROM THE HEAVING SPHERE:
EXACT AND ASYMPTOTICSOLUTIONS

The radiation from the heaving sphere in free-space will be reexamined from two

; aspects. First, we shall determine alternative expressions for the pressure field

- which are valid either far from or near to the sphere. Second, we shall write down
N a formal expression which i1s valid for all field points. 1In the first approach, our
: analysis will formalize the notions of the near and the far fields of radiating

l bodles, Liberal use of these concepts will be made in later chapters.

2.7.1 Asymptotic Formulas

Equation (2.28) can be rewritten in the form

~ 2, -
1 1 3 sin ¢ 9(rp) +.§_££El_ + (xp) = O (2.A135)
sin ¢ 2 3¢ 3¢ \2
(k r) a(k r,
o 0

b
. Using this equation we clarify the limits

1. kor >> 1 with a/r << 1 applying to the far field and

2. koa << 1 with a/r ~ 1 applying to the near field,
i where a is the radius of the sphere, Figure 2.2. For the far field solution, 1if we
: let
% -1 -2 -ikor
r rp ~ [AO+A1(kOr) +A2(kor) 4 e ] cos ¢ e (2.A136)

we rule out the existance of acoustical singularities at large values of kor.* In
limit of kor approaching infinity, both Equation (2.A136) and its solution, Equation
(2.A135%), approach the kor dependence for the monopole shown by Equations (2.22b)

and (2.24). We determine the coefficlents A by the substitution of Equation -
(2.A136) into (2.A135) which yields a relationship of the form

*The specialization of cos ¢ directivity provides a slight loss of generality,
but as we shall see in Section 2.7.2 of the appendix it is an unavoidable consequence
of the normal velocity being Un - UZ cos ¢ on the surface of the sphere.
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2
9 gzgoq + g(x) = Zgén)
oK K

vhere g(K) = g(kor) is the term in brackets in Equation (2.A136). The function on

the right vanishes in the far field for Kk = kor >> 1, leaving only the simple reduced

wave equation which has a solution characteristic of spherical spreading. Carrying
out the substitution and matching of the real and imaginary parts which are combina-

ticns of the coefficients An we find for the first three terms,

Al =1 (A2~Ao) (2.4A137)

The near field expansion can be examined by rewriting Equation (2A.135) in the
form

2, ~ ~
3 (rp) 2 ~ 1 1 2_ 3(rp) .
;;32—-+ (koa) (rp) + =in ¢-;5 3% (éin ¢ 3% ) 0 (2.A138)

where x = r/a is a stretched radial coordinate which allows for a separate examina-
tion of variations of distances on the order of the radius of the sphere and of
changes in acoustic wavelength relative to the radius of the sphere. In the long
wavelength limit, koa approaching zero, the term which is quadratic in (koa) may be
neglected. The general solution to the remaining differential equation is

rp = 2 {amxm+bmx-m} cos (2.A139)
m

which reduces to

2+a x2} cos ¢

p = {a_lx- 2
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as can be seen by substitution into Equation (2.A138). This solution must be bounded

for distances large compared to a, i.e., for x >> 1, so that we must have a, = 0.

Also the boundary condition on the sphere, FJ;'; -
1 9 Z
"o o -1wUz(w) cos ¢ :
o :
yields
2
- ]
. ) iwpoa lz o .
-1 2 ro
r 8
Thus, our near field pressure becomes
. -1 g
rp(r,¢) = a_j x = cos ¢ i
(2.A140)
--Lwp aZU cos ¢
rp(r,¢) » ——=
? X
and the far field pressure {combining Equations (2.A136) and (2.A137)) is o
rP(r,9) = (A +1(A,+A ) .<‘1+A2.<‘2+ ----- } cos ge ¥ (2.A141) Te.

To complete the solution we match the near field and far field solutions by
using a rudimentary and greatly simplified matching procedure. We do this (see
Reference 34 for a complete general examination of matching procedures and Reference s L
35 for application of those methods to acoustics) by expanding the far field solu-
tion in terms of the variables which are characteristic of the near field solution.

Reexpressing Equation (2.A141) in terms of the stretched variable x = r/a so that .
kr = k ax, we have f‘,'""
o ) i




o s 7 - P A A S 4
R R T IR S O

_ <A2-aAo> 5 4a, Ao) A,
rp ~ 5 (koax) +1 e + T (koax)+ 5
+iA (k ax)‘l+A (k ax)-z ------- cos ¢ (2.A142)
o' o 2 7o )
which is valid for koax << 1. We have used the small argument expansion for e+1x =
1+ ix - 1/2x2 + 1/6 x3 ----- . For koax << 1, the leading terms in the expression

for pressure amplitude are
£ ~ {-1a (k ax) 1A, (k_ax) 24 =m-=-<} cos 0
o'o VNN

However, comparison with Equation (2.A139) yields the first and second terms

-1
-iA_(ka)™" = a_; (2.4143)
and
A2 = 0
. Thus, the far field expression for the pressure amplitude is
|
rp(r,¢) ~ + 1 pc (k a)2 al cos ¢ [1-1(k r)-l] (2.A144) g
’ 27000 z o} s
) for ka << 1, ‘o
. This expression becomes equal to Equation (2.,Al40) for small values of kor. It ?
1s also equal to results that were obtained in Section 2.2. Note that taking the b
limit of small koa’ with a finite value of x, permitted the truncation of the wave ]
) equation to emphasize the inertial loading on the sphere. The second-order terms, N :
those involving higher powers in kor in Equation (2.A136), would be required for ;‘: uﬁ
’ ‘e
S
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situations in which koa > 1 and kor > 1. This simplified matching technique could
be extended to higher-order terms to accomplish this calculation. It could also bhe
expanded to include other angular functions and to verify the cos ¢ dependence. For
methods of pursuing such elaborations and extensions the reader is referred to

Reference 34,

o 2.7.2 Exact Solutions
An exact solution to Equation (2.28), or for that matter Equation (2.A135), has

been given by a number of authors, e.g., References 4, 5, and 13. We will, there-

fore, only outline the analysis. The pressure amplitude is written as

o

~ - (1)
p(r,¢) 2 A h (kor) Pm(cos $) (2.4145)
m=0

= h 6,37 (1
S vhere Pm(cos ®) 1is the m degree, order zero, Legendre polynomial,3 3 hm )(kor)
- is the spherical Hankel function of the third kind37 and the coefficient Am is to be
'f determined from the boundary condition. For our purposes, we need only to consider
i the first three degrees of the infinite set of Legendre functions,
& Po(coa $) = 1
;_ Pl(cos $) = cos ¢
' P.(cos ¢) = l-(3 cos3 o - 1)
! 2 2
. because all others contain higher powers of the cosine. Matching Equation (2.A145)
ft to the boundary condition results in all the coefficients Am being equal to zero
. except Al' This is because only Pl(cos ¢) contains a (cos ¢) function. Thus,
4 Equation (2.A145) becomes
& nD (ke r) e
iy plr,¢) = 1p ¢ U (w) cos ¢ (2.A146) L
S, 00z 9 1) ORI
] K [h1 (koa)] L g
L o ‘. 1
= R
)
< 111




The function h;l)(kor) and its first derivative have been tabulated by Abramowitz
o and Stegun.37 That Equation (2.A146) reduces to the functions already derived is
i seen by noting t:hat:5

el ik r
<o (1) _ -e
A lim h1 (kor) -
E kor+°° 0

and that
o 1im hfl)(kor) = -1 -—i——g
: k°r+0 (kor)

S-- and substituting these equations into Equation (2.Al46).

." We have only touched on tha mathematical techniques of determining this formal
solution of the wave equation, because an emphasis on the physical aspects is
desired. For a more complete study of these mathematical aspects, the reader is

a’ referred to the references quoted in this Appendix.
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CHAPTER 3
JETS, WHISTLES, AND OTHER SHEAR-FLOW NOISES

3.1 INTRODUCTION

Whether or not a moving fluid is stable or unstable to some applied stimulation,
for example an incident sound field, adjacent surface vibration, or buffeting from
upstream turbulence, has largely to do with the spatial gradient and curvature of
the mean velocity profile in the flow. A wide range of flow types are not stable
to applied disturbances; such as jets, wakes, and flow over cavities. Often the
time dependence of fluid motions in these types of flow is characterized by a
predominant frequency that is dependent on a characteristic average velocity and a
characteristic linear dimension of the flow region. As shown in the preceding
chapter (e.g., Equations (2.49) and (2.89)), sound is potentially produced whenever
there is a disturbance-filled fiuid region. Furthermore, as shown in Chapter 2,
the presence of surfaces complicates the sound field by providing not only acoustic
reflections but also modifications in the primary hydrodynamic flow field that is

responsible for the disturbance region. Therefore, in this chapter, we will

consider in a basic fashion the unstable characteristics of flow which are required
to create fluid disturbances, and relate those characteristics to the eventual
breakdown into both regular and random vortex structures. We will also introduce
many of the analytical and experimental techniques that are used when the flow
disturbances beccome irregular or turbulent.

As practical applications of the general theory of shear-layer disturbances, we

will develop rules for predicting the occurrence of various types of vortex induced
tones in holes, cavities, and obstructed jets. The part played by ambient turbulence
in the basic flow and the influence of Reynolds number on the vortex structures will

be shown. Finally, some fundamental concepts in the similarity principles that

govern noise from turbulent jets and some experimental approaches to validate those °
concepts will be introduced as a foundation to other flow types to be discussed in : :
the body of this monograph. f;%iij

The disturbances in wakes behind cylinders and hydrofoils are, by themselves, e

so important that they will be dealt with separately in later chapters.
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3.2 SHEAR-FLOW INSTABILITIES AND THE GENERATION OF VORTICITY

Unstable flows are generally those which have gradients of mean velocity; the ff:f .
classical types which have been extensively examined analytically and experimentally S
o
are illustrated in Figure 3.1, Profile (a) was the first one to be theoretically
Y2 +V2 ’ ' 7
U,(Yz) 5 U‘ (Yz) . V
s s — 7:-'.
-5 o i .
(a) (b)
) . e
)
‘
=54t
Uy =05 (1 +tanhy,) -
(c) (d) R
v2 BN
\ Y
5 U=1 —ay2 5 7
61
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]
(e) (f) =
Figure 3.1 - Classical Types of Shear Flow: (a) Discoatinucus; (b) Linear; .
®

2 -
(c) Hvperbolic Tangent; (<) Jet, sech™ v,; (e) Caussian Wake; and
L

(f) Blasius Laminar Foundary Laver
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examined by Helmholtz in 1868 (see Rayleighl or Lambz) who showed that the arrange-
ment is unstable to disturbances of any frequency or wavelength, In this instance,
the gradient of the wvelocity in Yy is singular at the interface y, = 0 and the

interface is therefore said to constitute a vortex sheet, i.e.,

8ul(y‘fz) _ Ul(y2=€) - Ul(Y2='E)

o = lim = w,8(y,)
3y2 €20 2¢e 3 2

showing that the vorticity, wy = aul/Byz, is zero everywhere, but on the surface

Yy = 0. 1In more realistic circumstances the interface between the two moving fluids
1s less well defined as in Illustrations (b) and (¢). The former case of a linear

3 = Ul/G inside the

region of |y2| < §. This case has been examined by Rayleigh™ and Esch3 while the

velocity profile provides a constant region of vorticity w
latter has been extengively examined by, e.g., Michalke,4-6 Browand,7 Esch,3 Sato,8
Schacle,9 and Tatsumi and Gotoh;10 the hyperbolic tangent profile has been experi-
mentally examined by Browand7 and It has practical application in the production of
cavity tones.** The jet profile (d) approximated by a hypesrbolic secant squared,
has been examined by Sato and Sakas11 and Sato,12 the wake (e), approximated by a
gaussian velocity profile has been examined by 3ato and Kurikil3 both analytically
and experimentally. Finally, the Blasius form of the boundary-layer mean velocity
profile has been exhaustively examined analytically and experimentally; extensive
surveys include those of Lin,14 Betchov and Criminale,l5 and Schlichting.16 We

shall reserve further comments on boundary-layer waves and stability for Chapter 7.

The traditional analyses of flow stability begin with an assumption that a
small-magnitude disturbance 1is present in the flow and we are interested in the

growth of that disturbance in time or space as it moves along with the remainder of

the fluid. Thus, the total fluid velocity (mean plus fluctuating) is written in a !
two-dimensional mean flow field ag*** RN
*A complete listing of references is given on page 219. ‘ 7:

*x'he definition of & 1s such that d3

u (é)/dy3 = 0, i.e., that the curvature
1 2
is a maximum.

***These problems are generally set in two-dimensional mean flow. Then,
according to Squires' theorem, the most unstable disturbance waves are those whose .
wave propagation directions are aligned with the flow direction. ]
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U= T (y) + Uly,,y,.0) (3.1)

where the disturbance velocity K(yz,t) vanishes as yo > ¥ © in an unbounded medium
and simply as Yo 7 ® in a boundary layer. Now it 1s generally assumed further* that

the disturbances may be written as

3(yl,y2.t) - u(yz) e 1 (3.2)

where the real wave number ¢ is related to the frequency at which waves travel

passed a fixed point of observation at the wave speed Cr’
w
i c (3.3)

where Cr is the real part of the complex velocity

C = Cr + 1Ci
Thus described, the disturbance amplitude is modeled to grow exponentially in time

at a rate

!:(Yz'y1)| aC.t Tt N
—_— = e =~ e
uty,) |

so that the least stable disturbances are those with the largest positive value of
Ci'
In an alternate formulation, the wave 1s assumed to grow exponentially in

space, 1i.e., instead of Equation (3,2) we have

- 5 1(ay,-wt)
U(yz,yl,t) = uly,) e

*See also Chapters 5 and 7.
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where a is complex (a=ar+iai) and w 1s real. The two points of view are not
identical, as pointed out by Gastet,l7 but only roughly equivalent as long as

Ii Ci << Cr or a, <. Then the near equivalencies hold:

nl (9]
)-A.

(a,] = - [a
spatial r

temporal
(e ] = {a)
T spatial temporal
;: In this text we shall generally refer to temporal growth rates, although for shear

flows the equivalency may break down due to similar values of CR and CI'
When Equations (3.1) and (3.2) are substituted into Equations (2.1) (with q=0)

and (2.44), and all terms that include products of disturbance amplitudes are

ignored in relation to others, the resulting equations retain only the linear first

order terms. It is called the Orr-Sommerfeld equation:
N o "
i (U(y,)-c] [¢"-a"¢] - U" ¢

‘TR (01 -2a%9"+a’e) = 0 (3.4)

for small disturbances in an incompressible shear flow of a mean velocity distribu-
tion Ul(yz). In this equation we have expressed the fluctuating vertical velocity
uz(yl,yz,t) in terms of a fluctuating potential ¢(y2) of the linearized disturbance;

i.e., from Equation (3.2)

ia(yl—ct)
uz(ylv}'zvt) = UZ(YZ) e

which may be used to introduce the potential function

1u(y1-ct)
uy(yghy,,t) = - 10d(y,) e (3.5)
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The wave speed C and the wave number o are assumed to be independent of both Yy and
Yoo However, the relationship between Cr and Ci will depend on the shape of Ul(yz)
and on the Reynolds number

For a given type of flow, there is a critical value of R6 above which C, 1is positive

i
and the disturbances grow. For the free shear flow types (c) through (e) this

critical value can be as low as 30 (see also Figure 3.15), while for the Blasius
layer bounded by the rigid wall it is of order 2500. Thus in relation to the wall

layer, the free shear layer is less stable. Furthermore, when R5 >> (RG) then

crit’

the dependence of C, on Reynolds number diminishes while the dependence of Ci on

i

wave number o remains dominant. This independence of C, on Reynolds number generally

i
pertains to the growth rates shown in Figure 3.2 for all the free shear layers

0.26

0.20 (d, A}

0.16 . -
S -—— ~
Ef \~\
2 N i
0.10 \\
(o)
0.06 -

ab

FURTHER DESIGNATION:
A « ANTISYMMETRIC JET INSTABILITY
§ = SYMMETRIC JET INSTABILITY

Figure 3.2 - Theoretical Growth Rates Based on Temporal
Instabilities in the S$hear Layers of Figure 3.1
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illustrated in Figure 3.1, The relative instabilities of disturbances in the various

.
shear layers at Reynolds numbers well above the critical value is thus quantified, -
Profile (a) 1is unstable to waves of all wavelengths, while the remainder of profiles
are unstable to restricted ranges of wave number, generally greater than zero and BRDGTE
. less than 26-1. ;“flfk'
' The large instability associated with the jets and wakes is caused by the pair i"_'f
of inflection points on either half of the shear layer which makes these flow types R
very sensitive to acoustic and hydrodynamic stimulus. Furthermore, the character-
I jstic length scale of the wavy motion is dependent on the shape of the velocity . -
profile, as illustrated and as discussed later in Section 3.4.1. ..
The jet is capable of two degrees of freedom, both of which have been observed
in experimental environments. The least stable mode is the wavy pattern diagrammed )
in ¥igure 3,3a, while the more stable (symmetric) mode is diagrammed in Figure 3.3b; ;1r%
@
- A P
U«'(Vz) 1 01(Y2’ ' .
L
___m:_:_’—__
D /"
| \ >
Figure 3.3a - Antisymmetric Jet Mode, Early Stage :.:g
for Laminar Jets, § = D e
I LR ’
D — . ‘
Figure 3.3b - Symmetric Jet Mode, Early Stage .':
for Laminar Jets, 6 = D -
’
Figure 3,3¢c - Symmetric Jet Mode with Plug ¥low, & < D,
Later Stage for Laminar Jets
Figure 3.3 ~ Illustrations of Jet Modes %_:[2
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both modes can often be reinforced by sound.lz Jet instabilities can also involve
dynamics of thin annular shear layers when the efflux contains a central region for
which the mean velocity is congtant, Figure 3,3c. In these cases, an annular shear
layer of thickness § undergoes instabilities, much like those of single free shear
layers. The waves are of shorter length relative to the diameter of the jet than
the waves shown in Figures 3.3a and 3.3b however, and the characteristic length
scale of the waves 18 § rather than D. In all cases of axisymmetric jets, the
growing waves, as shown in the excellent photographs of Brownl8 and later by Becker

and Maasaro,19 begin to "crest'" as sketched in Figure 3.3c¢ causing a necking-down.

In subsequent stages of development the necked-down regions separate the successive
ballooned-out portions forming a street of rings or "puffs.' Each of these puffs is
a ring vortex. In the asymmetric mode, the later development results in a spiral
vortex. The mode of instability determines the initial spatial scale for the
vortices formed irn later disturbances. This shall be seen more clearly below.

The development of a vortex structure from a particular mode of instability is v s
an important concept in the generation of flow noise. It implies that a relationship
ultimately exists between a flow type and the amount of noise produced. This
relationship is made possible by the dependence of the sound pressure on unsteady

vorticity as expressed in Equation (2.89). The less stable a type of flow, the more

likely it 1s that the generation of vortices is possible. However, a formal mathe-
matical connection between the mode of linear first-order instability of the type

expressed in Figure 3.2 and a vortex structure has been limited to only idealized Lo
gshear-layer types. These shear layers consist of one or more parallel vortex sheets r?v;%;¥4
of the type (a) in Figure 3.1. 1In this idealization, the physical shear layer is A

concentrated into sheets. Rosenhead'szo calculation for the single layer, Figure

3.4, shows the gradual transition from a wave-like motion that involves a sheet of
vorticity that is initially independent of % into a discrete set of point vortices
as time increases. Each wave steepens at the downstream side of a crest to
ultimately form a single vortex., The character of flow changes from a crested

sinusoid at tU/A = 0.30 to a vortex at tU/A = 0.35. The far field disturbance

caused by the redistribution of vorticity is given by Equations (2.99) or (2.101)
and 1t is maximum when the local acceleration of momentum due to the redistribution

of vorticity with time maximizes; this occurs 1in the interval between tU/A = 0.30 to
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Figure 3.4 - Shear Layer Represented by a Set of Point Vortices21
(The time TO is the periodic time U/2%. The maximum

intensity of the rotating sound field is also shown,
corresponding points in the two diagrams being
indicated.)

§.35. The dependence of the sound on time 1is also illustrated in Figure 3.4, taken

from Reference 21. To quantify the fllustration somewhat we combine Equaticns

(2.92) and (2.99) to find the acoustic particle velocity in the radial direction
(per unit length normal to the page) as

-
. P, 42 |x-y, |
Pale®) = e 7 | W0t - ) dy)
o at o

whera 0 1s the angle between the Y1 direction and the field location. When the flow
lines begin to roll back on one another, the instantaneous spatial distribution cf

vorticity changes rapidly even though the total vorticity and circulation in the
fluid remains constant.

Therefore, the phases of the induced motion of the fluid




particles change with the development of the vortices so that the above integral is
not instantaneously zero, but is time-varying giving the double derivative shown in
Figure 3.4, The most noilse is generated at the moment when the change of this
circulation distribution with time is greatest as illustrated. Other shear-layer

motions have been calculated by Michalke‘"6

for the hyperbolic tangent profile and
they show similar circulation regions, although far-field acoustic disturbances have
not been calculated for such motions.

Deflections of streamlines, similar to those calculated by Rosenhead, have been
calculated on a computer for a pair of parallel vortex sheets by Abernathy and
Kronauer22 and by Boldman, Brinich and Goldstein.23 In the case of two vortex sheets
each wavelength results in the formation of two concentrations of vorticity of

opposite sign, see Chapter 9.

3.3 FREE SHEAR LAYER AND CAVITY RESONANCE

An important application of the concept of flow instability occurs with the
passage of flow past a slot in a wall and the occurrence of separation-jnduced vi-
bration in gate valves.24 In these situations (Figure 3.5) the flow external to the
slot may consist of a thin laminar boundary layer or a possibly thicker (relative to
the opening dimension) turbulent boundary layer. Each of these situations, it turns
out,21 has a somewhat different relationship governing the disturbance frequency,
speed, and cavity dimension.

In the case of a laminar boundary layer, in which the thickness of the layer §
is less than the streamwise dimension of the opening b, the passage of the fluid
beyond the upstream edge into the opening resembles the development of the classical
free-shear layer.25 This layer is well described by the hypervolic tangent
profilea’6’7 (Figure 3.1lc) and it is theoretically least stable to disturbance wave

numbers (Figure 3.2) of magnitude
o 8§ = 0.42 (3.6)

vhere a is given by Equation (3.3). For the hyperbolic tangent velocity profile,

the momentum thickness, given by

[

o

-
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Figure 3.5a - Laminar Boundary Layer
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Figure 3.5b - Turbulent Boundary Layer

Figure 3.5 - Idealizations of Flow Past Cavities which are Coupled
to External Boundary Layers by Slots or Orifices

U U

= _1 ——i r

0 J T 1 U d)z (3.7)
o © o

where UO is the local freestream velocity, is identically equal to &/2. Theoretical-
ly, the wave speed is equal to the mean velocity at the inflection in the velocity

profile, i.e. where dzU(yz)/dyg is maximum,

N
c_ = > ] (3.8)
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so that Equation (3.6) gives the dimensionless frequency, or Strouhal number* at
vhich the disturbances are propagated or convected downstream from the upstream
edge as

%9-= 0.017 (3.9)
o
This is also the frequency at which the disturbances encounter the downstream edge.
Now, the motion of this shear layer has associated with it a transverse
velocity which is, in the approximation of linear disturbances, nearly sinuous
across the opening. At the upstream edge, the velocity transverse to the flat
surface is zero so that separation is avoided. At the downstream edge of the

apecture the transverse velocity magnitude in the shear layer will be approximated
by

cab/C_
uy(y1=b,y,) = d,(y,) e sin (ab+d)

where Cr and C, are based on the average mean velocity profile found in the opening.

The mean strea;wise velocity in the opening U will combine with this transverse
velocity to give a local small angle of attack to the edge of approximately

N o= uz(yl=b, yz)/U. If the edge is sharp, separation of flow can occur leading to
the formation of additional unsteady vorticity at the edge at a frequency given by
Equation (3.8). For more blunt edges, the alternate influx and efflux of fluid
from the cavity at this location will set up synchronous motions within and these
will, in turn, influence the initial conditions at the upstream origin of the shear
laver, 1In either case a condition for maximum transverse velocity at the down-

stream edge of the cavity is that sin (ab+$) is unity. This requires that

ab+¢=2m ’¢~) forn =1,2...... (3.10)

*A Strouhal number is a dimensionless frequencv of a fluid perturbation which
is formed with a length scale of the flow and the flow velocity. It is so named
in honor of V. Strouhal who first studied the vortex shedding from cylinders, as
discussed in Chapter 5.
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where ¢ is an arbitrary phase angle that accounts for the possibility of a plhase lag
between the encounter of the disturbance with the edge and the response of the shear
to this encounter, and where the plus or minus sign allows for motions either into
or out of the orifice. Since & = 2i7/A, where )\ is a representative wavelengtl, of

the instabijl ity mode across the opening, we have alterpnatively

>l
Fy

n+ - %? (3.11)

The possible relacticnships between the wavelength and the phase that can be deduced

from Equaticn (3.3) are

%3 ;i (n+ % - %;) for n = 1,2 (3.12a)
or
S 1 _
- 5 (n— 7 - 2n) forn=1,2.... (3.12b)

where, now, Cr is a hydrodynamiz phase velocity averaged across the opening.
Equation (3.12b) with ¢ = 0 most generally applies to a shear layer at the mouth of
an enclosure.

The representation of the disturbance frequencies in this manner has been
suggested on similar grounds by Dunham26 who proposed the existence of selected
modes corresponding to integer numbers of vortices entrapped within the orifice.

It was Rossiter27 who proposed a relationship similar to Equation (3.12b) with ¢ = O
and withn - /4. A velocity at the downstream edge into the cavity will provide an
increased pressure in the cavity that will exert an upward stimulus on the leading
edge. This upward disturbance will be exerted instantaneously when the cavity is
small,*

Another rationalization proposed by King, Doyle, and Og].e29 and later extended

by Martin, Naudascher, and Padmanabhan30 and by Rockwell31 concerns the integrated

*A similar condition of reinforcement was found to apply to a round jet passing
through a sealed enclosure.28 It was found that fL/UJ = (n-O,ZS-fL/Co) Uc/UJ where

Uc ~ 0.6U,, n=1,2..... , and L is the length of the enclosure.

~
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disturbance across the opening. Following Bilanin and Covert32 the vertical dis- fifui:f

placement of the shear layer across the cavity 52 is given by the proportionality

Ciayl/Cr
62(y1,t) « 60 e cos (ayl-mt) (3.13)

80 that the instantaneous volume change per unit width imposed on the interior is

b
¢V = J. 6,(y;»t) dyy (3.14) Do 2

(o]

B

This volume must be absorbed in the elasticity of either the fluid or the cavity ;
- structure, but the important point is that a negative volume change will cause a ;'rigig
positive pressure. This positive pressure reinforces a positjve valuve of 1
deflection at the origin of the shear layer, 62(0,t). Integration of Equation :
{3.14) using Equation (3.13) gives the volume change explicitly in terins of the :
ﬁi parameters Ci’ Cr’ and a. Further, the condition that (abCi/Cr) > 1 provides'a ;Q;;;;é
. simple relationship juét as Equation (3.12) with ¢ = 0 and n - T/4. Rockwelljl has oo
. treated the relationships more exactly, replacing a y, by integrated values across L
the opening. This procedure accounts for the fact that, for long cavities,
1 For example, in Equation (3.12), the
wave speed Cr is a function of distance from the leading edge of the opening.

ﬁi particularly, the shear layer changes with v
}
f Equations (3.9) and (3.12) provide alternate nondimensionalizations of the fre-

quencies of disturbances in the opening in terms of the size of the opening and the
velocity of the external fluid. The first definition, Equation (3.9), is based on .
stability conditions, while the second, Equation (3.12), is required by geometric -
constraints. In reality, the disturbances are neither exclusively propagating nor
always representative of standing modes.

Measurexzents of the frequencies of cavity tones have been made for a variety
of external turbulent boundary layers. The measurements in Figure 3.6a show a

general decrease in Strouhal number as the boundary layer thickness increases in

relation to the streamwise dimension of the opening. The values reported by DeMetz
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Figure 3.6 - Representarions of Cavity Tone Frequencies
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and Farabeezs were obtained on both circular cpenings and rectangular slots in air:
Dunham'326 cesults were obtained in alr and water media with slotted copenings. The
two tones shown by DeMetz and Farabee,25 Dunham,26 East,33 and HartingtonBA can be
explained from the flow-visualizations of Dunham. These frequencies corresnond to
the entrainment into the cavity mouth of either one or two vortices in the cavity;
the vortices originating from the rapid breakdown of th~ shear-layer instabilities
downstream of the upstream lip. The convectinn velocity of thazse vortices across
the mouth as reported by DeMetz_aqd Farabee was approximately 0.33 Uo. Each of the
modes of oscillation, then can be predicted from Equation (3.12) with Cr/U0 = 0.33
and ¢ = 0. The horizontal linc.. in Figure 2.4a show the various modes for n + 1/4
which generally bracket the observed Strouhal f{requencies and which represent
either one or two standing waves or vortices in the opening. The measured results
of Hellexr and 8115335 and of Heller, Holmes, and Covert36 were obtained with very
long cavities and appear to correspond to a higher rode of oscillation. ‘The uncer-
tainty in selection of +1/4 that is apparent in Figure 3.6a is additionally caused
bv the fact that the actual value of Cr and is variation with &/b is unknown.
Recent discussion of this question may be found in rvef. 143.

When the external boundary layer was laminar, DeMetz and ¥Farabee reported
Strouhal numbers that take on a mcre continuous rathner than the discrete behavior
observed with external turbulent flow. 1In the laminar flow case the tone frequencv
increased continuously with velocity according to a form that is similar to Equation

(3.9), i.e., with

which is determined by the cbkscrved value of Cr = .56 UO. The limited reinforce-
ment that could be observed was evident only at the n=1 mode of Equation (3.120).
Thus far, we nave been concerned only with the shear-laver dynamics in the
opening witheut consivering the influence of the cavity volume behind the aperture.
The general agreement among investigators io the reported values of Strouhal nunber
attest to the first-order independence of fb/U_ on the cavitv shape. For rectangular
Ne-shaped slors, Rthembabacgiu (veported by Rockwell3l) reports a slight increase in
fb/UU 3¢ the width exceeds the depth of the slot. tardin and Martin37 have exawnined
thecretically the radiation properticecs of (hese type cavities ir terms of their

25
entrainred vortices. Measurements of DeMerz and Farabee were made with the
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openings of cylindrically-shaped Helmholtz resonators with the center of the hole
at the axis of the cavity. Relatively large pressure amplitudes were measured in
the cavity at coincidence of an aperture resonance and a volume resonance of the
cavity or any of its harmonics. The limiting maximum amplitude of pressure at the
bottom of the cylindrical cavity occurring at the cavity resonance frequencies

appears to be limited by

1/2
p2
_(_:..a.! < ]_
qO
where
1 2
9% =3 P Yo

At disturbance frequencies unequal to the cavity resonance frequen:y, the cavity
pressures can be as low as 10_3 g

The pressure in the cavity can be related to the far field acoustic pressure.
When the dimensior of the cavity is smaller than an atoustic wavelength then, using

the notation of Figure 3.7, the piston-like motion in the opening causes a sound

pressure
-
o ()
PARTICLE MOTION ACTS )
AS A BAFFLED PISTON
1 9P
ug= — bt 0
o, J Po %2
DI AR raE | A 2T ‘
Yp

SANANNNARRANANL

NANNANNNNNNN

pt:av
L

Figure 3.7 - Geometry of Radiation Problem Invclving a Kesonating
Cavity Coupled to an Unbounded Acoustic Fluid Medium

N
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when koa << 1 and the wall is essentially an infinite plane. This result ls easily

derivable from Equations (2.114) and (2.116) for the otherwise source-free region

(Tij=0) external to the rigid plane. For this classical situation the Green

function is (Equation (2.116))

1kor
> > e
G(x,y,w) = 5
since r,=r,=r, and
lim g% =0
yz*O 2
Therefore, when ¥, = o,
BPa
— = iwp u
d 2 o

only in the small opening and is zero on the surface otherwise.
(2.114) gives the result, Equation (3.15),

Depending on the size of the cavity,
up by either of two asymptotic forms. In

gas, the pressure change for a fractional

dp:—

If the cavity is small compared to a wavelength, the &V = ﬂazup

Then Equation
directly.

the pressure in the cavity is related to
either case, if the medium is an ideal
change in a unit volume is given by

2 &y
o

PCo v (3.15%)

[o]

and V = V S0
cav

Equation (3.15) gives (6V=w6V where w is the resonance frequency of the cavity),
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Use is made of the Helmholtz frequency (given below) and we assume that the hole
radius is much larger than the length (depth) of the hole that connects the inner

and outer fluid. The alternative expression can be written for a cavity whose
dimension exceeds an acoustic wavelength. Then the unit volume, for example, for ?’"5:

an organ pipe of radius ap,

V=) Ta mem

I .

where Ao is the wavelength of sound. The pressure fluctuation in the cavity is f :
o i

*

and we find

{0 agl A

P (3.18)

[P gyl

where AC is the area of the cavity. This relationship, previocusly derived by Elder38
for organ pipe excitation, shows an omnidirectional sound field with a sound pressure

level which 1s inversely proportional to the sound speed. Thus, the gourd pressure

has a monopole-like directivity, but a dipole-like wave number dependence. The

factor (pcavA) represents the time rate of change of the furce exerted on the -~

external fluid by the pressure in the cavity. Equation (3.18), therefore, includes .

the same parameters as Equation (2.77) for the true dipole with the exception of the -;

directivity factor. Howe39 and Elder40 have given more extensive treatments to the .

flovw excited Helmholtz resonator and other resonators. -
The elastic character of the cavity structure has received little attention,

however, in the case of rigid walled cavities with fluild compressibility governing
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the cavity stiffness. Relationships for the frequency have been given by Raleigh.1

1,41

The classical Helmholtz resonance frequency can be found in numerous tests, For

circular openings

LoORRES L LT

CO Il 32 H2
E=m Vv T (3.19)

radius of the opening

where a
V = volume of the cavity
L = length of the opening
E AR = end correction approximately equal to l.b64a
' This can be generalized to openings of other dimensions by replacing ﬂaz by the area
of the opening S, and AR by (ns)%/Z. Dunham26 and later Covert,42 Ingard and

43 38,40

Dean, and Elder, have considered some general impedance characteristics of

cavities and how these characteristics influence coupling of the cavity and shear-

layer dynamics. Miles and WatsonAA measured the flow-excited pressures of acoustic f iﬁ.';;
modes in a nearly cylindrical cavity with its axis set perpendicular to the flow

direction and slotted along its length.

3.4 SELF-EXCITATION OF LAMINAR JETS
3.4.1 Dimensionless Frequencies of Tonal Disturbances

The disturbances that occur in circular jets are dependent on the character

of the mean velocity profile of the efflux, and, therefore, gomewhat on the type of
nozzle used. It should be emphasized that the dependence of the jet tone frequency
on efflux velocity will depend on the shape of the velocity profile at efflux. For
short, potential-flow nozzles (a) in Figure 3.8, the efflux contains a modestly-

sized potential core with an annular shear layer so that 28/D << 1, where § is the

shear-layer thickness illustrated in Figure 3.3c. When the nozzle is made many

diameters longer, the flow in the tube is fully sheared so that velocity profiles
with shapes generally similar to those shown in Figure 3.1d occur (in these profiles
the shear layer incorporates most of a half-diameter). These two extremes, § < D N :
and 8 = D provide alternative dependence of Strouhal number on Reynolds number as

shall be described below. The efflux will be laminar for Reynolds numbers (UOD/v)

less than 1400 when the inlet to the nozzle is well formed to avoid separation of

flow inside the nozzle. For jets ensuing from long square-edged orifices such as (c), @
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NOZZLE TYPE Rolonir REFERENCE

' (a) )
BECKER AND MASSARO4S
. SHORT RADIUS 1400 CROW AND CHAMPAGNE‘s
X _J L D BROWAND AND LAUFER7
: L<20
| () " o
SATO AND SAKAO S
------ LONG NOZZLE ~1000 SATO'2 co ]
7~ u>20| CHANAUD AND POwEeLLS? ]
l {c} "... P—
L——l SQUARE- ]
° EDGED 600 ANDERSON®4-60 R
'&—] ORIFICE KURZWEGT2 B
AR
{d) L) L
. b et
KNIFE- 50 &
BEAVERS AND WILSON SRS
EDGED 500 40 R
h ORIFICE JOHANSEN B
: Rp) = REYNOLDS NUMBER FOR WHICH VORTICES BEGIN e
| CRIT TO FORM IN THE JET FLOW. AMPLIFIED SINUOUS e
DISTURBANCES OCCUR AT LOWER REYNOLDS o
: NUMBERS
. Figure 3.8 - Illustrations of Nozzles and Orifices that Produce Jet Tones 3;§§ﬁ

the efflux is laminar only for RD < 600 because vortices caused by separation of

flow are generated at the inlet for larger Reynolds numbers. Finally, in the case :?23:;

of knife-edged orifices, the jets are disturbance-sensitive at Reynolds numbers .

greater than 500 because of the rather thin shear layer in the efflux. The refer- o
- ences cited in Figure 3.8 are those for which extensive flow visualizations and

quantitative measurements vwere obtained over a wide range of Reynolds number. The

critical Reynolds numbers cited are the minimum values for which.growing sinuous
disturbances give way to clearly-defined vortex structures. This critical value of o ___
Reynoids number is not well defined since 1t is often influenced by the presence of -

extraneous disturbances and its identification also depends on experimental detail

and on the manner of observation. Jets are disturbance-sensitive at Reynoulds numbers j;{-’*

- that are as low as 100. ' 3
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Visualizations of large-scale vortical structures in circular jets have been
- made by numerous experimenters for the last 40 years or so, see ref 143. The photo-
graphs of Becker and M.assay:o['5 which cover a wide range of Reynolds numbers are
shown in Figure 3.9. Their efflux was laminar at least until moderate values of RD
and the vortex structures are clearly evident.

The frequencies of disturbances in this case are determined by the thickness
of the annular shear layer and are typical of cases for which § < D/2. The shear-
layer, therefore, is thought of as two parallel hyperbolic tangent profiles so that

the unstable wave numbers of the jet correspond to
a 6 = constant
Now for an initially laminar jet, resulting from a laminar boundary-layer on the

wall of the nozzle, the shear-layer thickness will depend on Reynolds number ap-

proximately* as

6600 2000 > 10000

Figure 3.9 - Smoke Jets from Laminar Flow Exiting an ASME

Short-Radilus Circular Nozzle (By Becker and MassaroAS)
(Numbers refer to approximate Reynolds numbers)

*See Chapter 7.
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Since we can write

2m _ 2nf _ 2nf

U i eTe v
la}
[ &9}

where U, is the efflux velocity of the jet, the Strouhal number for these

B J
- naturally-growing jet instabilities can be written as

o)

D
——— = g (R)
3 1'D

(3.20)

The constant of proportionality appears to range from 0,012 to 0.0195 (Michalke and
Schade)l‘6 as shown in Figure 3.10. Trends are shown as well as the isolated ob-
servations of Browand and Laufer('7 and of Crow and Champagne.['8 This behavior with
- Reynolds number is apparently not reported at RD greater than 20,000 or 30,000.

l Strouhal numbers observed for other types of round jets are alsc shown in
Figure 3.10, Values of SD for zgnes of knife edge orifices are con;gant with RD.
Flow visualizations of Johansen {(6=D/2) and of Beavers and Wilson show that the
o responsible jet modes are axisymmetric. See also ref 143.

I For two-dimensional jets with shear layers that include most of the width w,
- measurements of Sato and Sakao11 show freauencies of antisymmetric modes given by

Sw = 0,14 for 2000 < Rw < 10,000, while for low Reynolds number* they found

- R T S
' L T
R

. R 4

-5
fw.s = (.7x07) R
U w w
J .
Frequencies of axisymmetric modes12 followed Sw = 0,23 for 1500 < Rw < 8000; while E,fﬁii
= at values of R_on the order of 3 x lOA, S, on the order of 1,25 was repoited. In i T
the range of Reynolds numbers less than 104, the oscillations of both jet modes were R
: accurately described by the rheory of hydrodvnamic stability based on profile (d)
- of Figure 3.1.
*Based on the mean centerline velocity at the jet-exit. QT,;
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INSTABILITIES IN LAMINAR JETE VORTEX STRUCTURES IN TURBULENT
KN|FE.EDG[ oa".ci M&mﬂn
O JOHANSEN (1920} ORIFICE INSIDE PIPE EROM POTENTIAL FLOW NOZZLES
Z727, REAVERS/WILSON (1970} ORIFICE @ LAU/FISHER (1976) ELUCIDATED FROM
AT PIPE OPENING TURBULENCE BY WAVE EOUCTOR
POTENTIAL FLOW NOZZLE_HOLE TONE CRO:?‘::G"E o
CHANAUD/ROWELL (1086) “S.B;s ICALLY-FORCED INSTABILITY
REGION OF TONES D FAEQUE £5 OF £r
NCi “"PUFFS” CAUSED
~== BECKER/MASSARQ (1988) BY 4 INSTABILITY WAVES AT
ASME NOZZLE 138 CORTRACTOR X./0> 12
RATIO) TRENO OF TONES !
BROWAND/LAUFER (1976)
T INSTABILITY WAVES AT X, < 0.50
# FREQUENCIES OF PAIRED VORTICES
AT X/0> 3
26 T IITYYYI A\ T rvr!WTI T .7—'-"'""1— -t T ¥ T YTVF
2,‘ — 4 —
&
22 k LAMINAR EFFLUX FROM =
20 6’.\ @) JET MODE SHOWN IN
o S FIGURE 33(1C) n
1.8 r— Q ~
&
16 ! —
L 14 k -
TURBULENT JET
12 - REGIME .
1.0 | -
[(R: N of -
62
ORDERLY LAU/FISHER/FUCHS
08 - & o ? STRUCTURE e Z -
* x % 4
0.4 b= h/D > 6
-
~ ‘E 00 O
0.2 el I N W | T S ST
102 103 104 108
RD N = g

AXISYMMETRIC
VORTEX “PUFFS”
IN TURBULENCE

Figure 3.10 - Strouhal Numbers for Vortex Formation in Circular Jets
with Axisymmetric Disturbances

The hole tones observed by Chanaud and Powell51 are bounded between the
Strouhal numbers being either constant or proportional to Rtlz. These tones are
reinforced by placing a second orifice opposite the efflux, as shown in Figure 3.1la.
Separation of flow and the subsequent formation of vortices at the downstream knife
edge cause disturbances which feed back and reinforce the axisymmetric-mode instabil-
ities of the primary efflux., Although the frequencies of tones will depend on the

ratio of orifice spacing to diameter /D in a manner to be examined subsequently,

J’
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jd—-h
Figure 3.,1la - Hole-Tone, Involving Axisymmetric Modes and ?; e
2 -
Causing Omnidirectional Radiation Observed6 for
h/DJ = 2.0, 2.5, and 3.0
-—— 2 = 2 CECNENS
/’/ \\«cos 0 . .
/ \
/ \
| \
\ /
\ A
X——LF—A—0+‘—1—¢+47$—Q44L$(” /
- C o’
UJ —-\M- - N - 4
A D- Uzo
l Y
D Y h ]
/- 7'
P
-
Figure 3.11b ~ Edge-Tone, Involvirg Antisymmetric Modes and .
Causing Dipole Directionality, Observed70f0r 3<h/D< 30
(See Section 3.4.2)
Figure 3.11 - Hole-Tone and Edge-Tone Geometries ; ’,>
B
the tones are possible only because of the available range of wavelengths for jet ‘;};;
instabilities to occur (Figure 3.2). Thus, the region enclosed within the branches ]'fl .
T W,
in Figure 3.10 describes the available Strouhal numbers of amplification. .9 __

As Reynolds numbers exceed 104, larger, clearly defined growing waves are less
apparent and axisymmetric vortex structures begin to dominate the jet dynamics. In

the measurements of Crow and Champagne,48 wave~-like disturbances initiated at the -ff-:if;

lip of the jet coalesce as they propagate downstream forming longer waves. After

14v
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two stages of coalescence, the wave-like disturbances breakdown to vortices (or
"puffs'"). Strouhal numbers for the formation of waves and of vortices downstream

of the nozzle (yl>(l-2)DJ) are both shown. The Strouhal number for vortex formation
was on the order of 0.3; at this frequency the jet could be acoustically driven to
larger-magnitude axisymmetric disturbances. Observations of Browand and Laufer
disclosed a similar breakdown of wave-like dynamics into vortex-pairing. In both
cases, the observed Strouhal number of vortex formation was 0.5, At still larger
values of RD measurements by Lau, Fisher, and Fuch552 of the frequency spectra of
velocity and pressure fluctuations in the potential core were peaked about fD/UJ ~
0.5 to 0.6. This frequency was later confirmed as related to a regular pattern of
large vortices by the use of signal-conditioning techniques by Lau and Fisher.

The fluctuations sensed in the potential core are impressed by these axisymmetric
vortices in the annular mixing layer. In a recent reviewl 3 of some early sound
measurements of Powell, it is shown that high Reynolds number tones may be generated
by separating flow nozzles. Strouhal frequencies of these tones are roughly 0.45

at Reynolds numbers ranging from 5 x lO5 to 9 x 106. Also some measurements by

Quickl44 and Hol45 disclose tones emanated by subsonic wall jets at high Reynolds
numbers with Strouhal numbers of order 0.38. These tones are clearly seen in photo-
graphs to be related to the motion of large vortices of the same form as reported

by Crcw and Champagne.

Tonal disturbances have also been observed cmanating from square-edged orifice
plates, (c¢) of Figure 3.8 by Anderson.séw60 Strouhal numbers based on the orifice
diameter and efflux velocity are shown in Figure 3.12 together with a schematic of
the experimental arrangement used. The sloped lines show that the numbers are

functions of the ratio of thickness to diameter. For each parameter

-

s =1t

the values of SD generally range from 0.4 to 1.0. This range corresponds roughly

to the observed range of numbers observed for free laminar jets in Figure 3.10.

The limit of t/DJ = 0 corresponds to the knife edge orifices used by Beavers and _": 
Wilson and Johansen. Parametric dependence of SD on t/D will be discussed at the

end of the next subsection.
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Figure 3.12 - Tone Frequencies for Square-Edge Orifice Plates
Terminating a Pipe, from Anderson, Compared with SD for

Knife-Edged Orifices from Johansen49 and Beavers

and Wilson63

3.4.2 Hole, Ring, and Edge Tones

The general sensitivity of jets to external stimulation by sound, vibration,
and by reflected hydrodynamic and acoustic disturbances is recognized as the primary
cause of the many varieties of musical tones observed over the years. It is
interesting to note the variety of commonplace observations of such instabilities
afforded by acoustically excited flames (Tyndall61 and Rayleighl), bird calls and
whistling tea kettles (Rayleig'nl and Chanaud and Powell62), human whistles (Wilson,

54-60
a

Beavcrs, DeCosler, Holger, and Regenfussb3), Pfeifentone (pipe tone), nd a

. . . 1 -
variety of musical instruments” (also, e.g., References 64-67 are some of the more




recent and include interesting bibliographies). The fundamental feature of all
these tones is that the jet is an oscillating system, with its available continuum
of "resonance" frequencies, becomes dynamically coupled to another mechanical system.
Figure 3.1l shows two of the most important generic jet oscillators.

The hole tone, previously discussed, is generated when a plate with a sharp-
edged ovifice is placed coaxially with a circular jet. Rayleigh1 discusses in great
detail tihe aspects of construction of this oscillator which is the source of bird
calls, tea kettle whistles, and human whistling. Axisymmetric disturbances are
caused at the hole which reinforce the initiating disturbances at the efflux. Sound
radigticn results rrom the pulsating efflux at the second plate. In the experiments
oI Chanaud and Powell,j the second plate was larger than the wavelength of the
sound emarated so0 that the radiation was omnidirectional. The ring toneSl works on
the same principle, however, the hwle is replaced by a coaxial ring. Toroidal
vortices shed from the ring cause alternating forces on the ring. These dipoles
radiate in the direction of the jet axis. The edge tone, (b) of Figure 3.11
involves the interaction of the asymmetric modes of a jet with a rigid edge. The
to and fro oscillation of the jet causes an alternating force on the edge. It
generally occurs with two dimensional jets, but it can occur with square circular
jets. This force has a reaction at the jet efflux.

The edge tone, which is typical of self-excited jet tones, has been given
ccnsideratle attention in receut vears because of its clear manifestation of the
relationship between jet stability and geometric constraint. The relationship
between the frequency of the toune and geometry that 1s generally accepted today has
been given by Curle68 and by POwell.69 The accepted mechanism of edge tones as

given belew was first elucidated by Powell.69’/0

The coupling between the edge and
the efflux comes about at the generation of a vortex at the edge. This generation
occurs when there is a disturbance velocity perpendicular to the edge causing
separation and a vortex. As the jet undulates, the transverse velocity (and,
therefore, the vortex strongth) changes sign. At separation, as a vortex (a) is
formed at the edge, a disturbancz at the nozzle occurs at (b) which reinforces

the direction of deflection. The example of the edge tone carries with it many
aspects which are common tc all self-sustained tonal {luid-structure interactions,

As depicted in Figure 3.13, the shear laver undergoes a spatial amplification of

disturbances which are subsequently incident on the edge. Thre interaction of the

edge with the incident flow results in the generation of anc -t disturbance,
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Figure 3.13 - Necessary Ingreaients in the Feedback Loop Common to
all Self-Sustained Tonal Vibration or Sound Radiation;
Characteristic of Many Fluid-Resonator Interactions

of ten manifested in the production of vorticity. These secondary disturbances
occur only because of the presence of the surface in the flow stream and they must
be transmitted back to the origin of the initial flow-instabilitv, Reinforcement
of this instability is essential for the self-sustained tone and it, therefore,
requires the establishment of a distinct phase relationship between the initiating
disturbance and the interaction disturbance. The mechanics of transmission of this
feedback is waricd, depending cn the structure geometry and the type of flew., 1In
the case of the edge tene, the feedback was fluid-bcerne resulting in the formation
of lip vorticity at the jet efflux, while in the case of the cavity it was a mode

of recirculation of rflow entrained beneath the shear flow. The feedbacwk uf hole

and ring tones is similar to that of the edge tone, but involving svmmetric jet _
modes.,  Flow over cvlinders and hvdrofeoils, Chapters 5 and 9. results in the forma- 7 d
ticn of a4 vortex strect in the wake. The induced forces on the shedding body can
cause that body to vibrare resulting in a structural transmission of a disturbance
back to the point of flow separation on the bodv. Thus, all tiese self-excitation

phenomena must heve the elements of a shear laver which is unstable to stimulation, . e

Sy et e

a fluid-structure interaction, and a feedback pathi, Disruption of any one of these

elemeats will break the lcop and reduce the intensite of the tone. Insofar as

the disturbances in the jet are sinucus, the transverse velocity at the edge

will be =nuch a@s to reinforce the initial direction of efflux disturbance every . @




1/4 wavelength into a cycle. The geometric coustraint on reinforcewment is,

therefore, deduced {rom Figure 3.1llb as

>

for h=1,2,.... (3.21)

o where A is the wavelength of hydrodynamic jet disturbances, which is similar to the
relationship derived for cavity-shear-laver interaction (Equation (3.11)). 1Ip the
event that h is not small compared to an acoustic wavelength, a phase angle must be

included in Equation (3.21). A Strouhal number can then be defined as

:i C
BE () (3.22)
3 J L
i; where Cr/UJ is the average disturbance wave speed from the jet exit to the wedge. é—;5*3*§
This wave speed wiil depend on the details of the jet efflux and the ratic W/D; it " . f
it is roughly limited by70 0.3 < Cr/UJ < 0.5. rfi*?
To determine the frequency-speed relationships for a given type of jet, the ) ;
ii geometric requirements for the tone given by Equation (3.22) must match the —
conditions for stability. As an example, Figure 3.2 shows that the range of wave
numbers -f unstable modes 15 0 < ad < 2 with the least stable being amé = 0.8, The
) length scale ¢ is approximately D/3, as indicated by the two-dimensional experiments
ii of Sato,l2 so0 the wavelengths of the unstable modes are crudely determined by the
o condition
A3 D
‘t
'3 when D is the slit height shown in Yigure 3-)J1b. The least stable mode occurs at
fi (A)least = 2.5D
] stable
ii although the numerical values will vary somewhat from case-to-case. Since
r
o o __
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these stability requirements will restrict the allowable tones to within the
approximate limit

0 <+ < 0,5 (3.23)

J

and

£ (E) (1) @)

J J

although in specific instances these limits will be sorewshat governed by Reynolds
number, nozzle geometry, and the spacing L/D.68-70 N .e 3.14 shows the Strouhal
numbers observed by Brown]l for a two-dimensional jet of width D. These results are

. . 70
generally in agreement with values reported by Powell & at a Reynolds number of 300,

0.15 |— B
0.10 |~ n
0.08 7]
0.06 |- 7

U 004 |- n

Yy
0.02 EQUATION (3.24)

CT=UJ/2
1
0.01 . . . L
3 4 6 810 20 30 40 60 80 100

h/D
Figure 3.14 - Strouhal Numbers for the First Four ‘tages of

Brown's72 Ildge Tone




although Powell's results disclose a signif icant dependence -on Reynolds number,

The important aspect of Figure 3.14, aside from the range of absolute values of S
quoted, is the confirmation of the n + 1/4 relationship among various edge tone
stages that depend on the Reynolds number and h/D. Powell quotes Strouhal numbers
anywhere from 0.0l to 0.3 for 100 < RD < 2400; this depeﬂdence on Reynolds numter is
{llustrated in Figure 3.15 with the curve of neutral stability of the two-dimensional
jet. The cross-hatched region corresponds to the upper and lower limits of validity

of Equation (3.24) which replace the limits in Equation (3.23). There is apparently

100¢ T T
L ANGE OF NEUTRAL NEUTRALSTABILITY INDICATED ]
L STABILITY (C,~0) ' )
INDICATED BY o
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Figure 3.15 - Stability Diagram of the Antisymmetric Mode,
for Two-Dimensional Laminar Jets (see Fig. 3. 3a)
Showing the Region of Edge Jone Activity

Ubserved by POWcll7O
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values of RD) for which edge tones will exist.

a region RD < ~ 30 for which no tones exist because the jet is stable, and an upper
region RD > 2500 beyond which the jet 1s turbulent, There is aiso apparently a

ninimum value62 of L/D between 2.5 and 4.5 (with the larger value required at low

The unsteady force exerted on the edge by the jet has been shown by Powe1170 to

have an amplitude bounded by

20 2 40
2 = = —
|F| g PUIL3D = 5= 44D _ (3.25)
where L3 is the width and D is the thickness of the jet. This upper limit was Z‘.,;h
deduced from measurements in alr of the sound pressure radiated from laboratory .
edge tones which showed that the force is actually a function of both L/D and RD'
The relationship between the force and the sound pressure is deduced from Equatiomn i
(2.77), as long as L3, D, and h are all less than the wavelength of sound. Letting ]‘“4**
f£.(t) = |F| e *F
i
Equation (2.77) gives S —
®
ik r BN
_ ~iw cos 6 o R
p (r,w) = —— o — IF| e (3.26)
°
L
where w = 2tf, and 8 = 1/2 coincides with the vectorial direction of jet flow. This T
limit given Ly Equation (3.25) has been supported70by kinematic considerations which e
take into account the strengths of vortices formed at the edge and their influence :{:
on the unsteady transverse momentum of the jet. Therefore, this upper bound is ;"
expected to be generallv applicable. Both the sound pressure and the force were -
simultaneously measured by Powell70 and found to obey Equation (3.26) in magnitude
and directivity. This represents one of the earliest unambiguous confirmations of
Curle's theory. ° .

62 .
The hole tore of Chanaud and Powell (Figures 3.10 and 3.1la) can now be
interpreted. For h/D > (h/D)crit’ the tone was emitted at one or more Strouhal
numbers contained within the cross-hatched zone of Figure 3.10 in the region

900 <« RD < 2500. For a given value h/D, the Strouhal number was constant over a
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range of RD and it would change to a second stage at some critical value of RD'
For example, at h/D = 3, SD = 0.5 for 1350 < RD < 1900, changing to SD = 0.65 at
RD = 1900 and continuing at this value until RD = 2500. When the Reynolds number

is reduced by reducing speed, this value of SD was maintained down to RD = 1400 when

TN I

SD reverted to ~0.5. This type of hysteretic behavior is commonly observed in self-

sustained fluid oscillations.

. 1‘1 o
. ’
. ’

The behavior of the Strouhal numbers observed by Anderson, shown in Figure 3.12,
may also be interpreted in the above terms. Flow in sharp-edged orifices observed
by Kurzweg72 disclosed a train of axisymmetric ring vortices. Parallel to Equations
(3.11) and (3.20), we write this condition as

t = nA )
where A = vortex spacing .
S
t = thickness of the orifice plate iv. B
n = integral number of vortices in the orifice RN
Letting
%A = Q = constant

where UJ is the velocity of the orificial flow, so that

S = it .0 forn>1 e
t U Z
J S
describes the Strouhal numbers for the various stages of tones. If we let the -..,,-ﬂﬂ

allowable range of SD for the jet to be between 0.2 < SD < 1 (as suggested by

Figure 3.10) at the appropriate value of RD' then the dependence of stages on d/t is tjﬁvfwjn

given by

0.2 < S, = (%) (8) <1

which corresponds to the diagonal lines shown in Figure 3,12 with the indicated

values of St'
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3.5 ASUMMARY OF STATISTICAL DESCRIPTIONS OF TURBULENCE

3.5.1 General Comments

We have seen that in the case of jets and all other flows, the disturbances
become disordered, or random, at large values of Reynolds number. 1In order to
conveniently deal with such disordered flows, it has been necessary to look toward
statistical representations which usefully characterize the average, or expected,
behavior of certain properties of the flow. These properties generally include
fluctuating velocities in the turbulent region, fluctuating pressures, and density
fluctuations. When radiated sound is the result of a random, or turbulent, process,
then the far field sound pressure will be a temporary random variable. Therefore,
in order to apply the deterministic relationships derived in Chapter 2 to realistic
noise-producing flows, techniques have been developed for relating the statistics of
flow fields to statistics of radiated sound. An example of the use of a deterministic
Green function for sound production from a field of random (in time and spatial dis-
tribution) sources has already been given in Equations (2.125) and (2.133). 1In this
section we will extend our analysis to cover alternative statistical formulations
and apply them, in an elementary way, to the production of sound from turbulent jets.

The foundations of the modern statistical approaches to turbulence measurement
are probably found in Taylor's series of papers on the statistics of isotropic
turbulence73 and on the spectrum of turbulence.74 In these, the interrelationships
between time and space through eddy convection were first realized, and methods of
extracting measures of the largest and smallest eddies through correlation were
outlined. 1In the forty years since, the importance of these statistical measures
has become well-recognized. Electronic instrumentation has also become more so-
phisticated allowing observations of identifiable turbulence events through the
merits of signal conditioning; interpretations of correlations have, therefore,
recently matured, leading to more elaborate hypotheses of turbulence structure which
relate to the production and maintenance of turbulence in virtually all forms of
turbulent shear layers; jets, wakes, and boundary layers. The most extensive treat-
ments of stochastic representations of many types of flows are those of Batchelor,75
Hinze,76 Townsend,77 and Lumley.78 The reader is referred to these sources for
rigorous derivations and theorems of mathematical validity, Our discussions will

deal with review and applications.
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Noise and vibration are caused by fluidic and structural reactions to the
contiguous turbulent field. 1In Chapter 2 linear cause and effect deterministic
relationships were derived for the radiation process and in Chapter 6 similar
relationships will be derived for structural response as well. In either case the
input is stochastic, the transfer function is postulated as linear, so that the
output of the linear system is also stochastic, The fundamentals in the treatment
of these systems have been developed in communication theory (see for example
Reference 79), with subsequent development80 of sampling criteria, frequency-time
relationships, and nonstationarity. Treatises on the application of these
techniques to physical systems have been developed for the generation of water

wave581 and the vibration of structures by random disturbances.82-84

3.5.2 Correlation Functions of Random Variables

In the formal treatment of random phenomena, the variable in question, for

example, a vector component of velocity or a pressure, has a certain probability of

attaining a value. Giving the symbol u' to the random property and the symbol P(u')

to its probability of occurrence, then if the disturbance is to occur at all we have

[+ 2]

J‘ P(u') du = 1 (3.27)

-0

i,e., there is certainty that u will have some value between plus infinity and minus

infinity. The average of u', or the expectation of u, is defined as
e~}

J' u' P(u') du'

- 00

E(u")

[]
et

Equation (3.28) is also called the first moment of P(u). In the hydroacoustic sense,

Equation (3.28) just defines the mean velocity, or in the case of pressures, the
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static pressure of the random quantity. A third property of the probability is the
mean square, '

oo
E(u'z) = J. u'2 P(u') du'
-0
.yl (3.29)
and the variance is defined as
1 '2 [} 2
Var(u') = E(u'") - (E(u")) (3.30)

In fluid mechanical applications, the manipulations of relationships are
simplified by treating the random variable as a variation about the mean. This
permits us to decouplie the mean and turbulent motions, finding first the mean, or
steady, component of velocity or pressure and then deduce the behavior of the random
component to varying degrees of precision. In this way, the random motion 1is viewed

as superimposed on the mean flow. Thus, 1if we have been defining our random variable
as

u'=U+u

with a probability density of u given by P(u), then it is easy to apply Equatioms
(3.27) through (3.30) to see that

E(u) = 0
and
2

E(uz) u

Var(uz)

I}

which are simpler relationships to deal with,
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To apply these notions to the problem of describing real turbulence quantities

which are random in time and space, let

u = u(;,t)

where ; is the space variable and t is time. The joint expectation of u at locations
75,82

;1 and ;2 and times t, and t, is a generalization of Equation (3.29)

1 2

- -»
Elu(y,,t)) u(¥y,t)] = <u(y ) u(y,,c)>

= J u(y;5t)) u(y,,ty) Plulyy,e))) .
S N
X P(u(y,»t,)) dulyy.t)) duy,,c,) (3.31)

The brackets <> will henceforth denote the taking of an ensemble average in the
formal sense. If the functions P(u(;,t)) are independent of spatial position, then

Batchelor calls u(;,t) a spatially homogeneous random variable. The ensemble

- -
average <u(y1,t) u(yz,t)> is called a covariance or a correlation function. It is

independent of the origin of ;,, but it is dependent on the relative separation of
i

+ ->
Y and Yo- *lternatively, when P(u} and, therefore, the ensemble average, is

independent of the time, but dependent on time difference, T = t -t then u is

271

temporally homogeneous or temporally stationary.

Toe carry out the integration in Equation (3.31) in practice, u(yl,tl) and : '.” i
u(yz,tz) would have to be sampled in a large number of experiments and then the
integration performed over the complete ensemble of all possible values. This being
impractical we seek simpler alternative approaches in which the formal operation of
Equation (3.31) 1is replaced by a time or a space average. That is, we define the

-

temporai average




u(yl,tl) u(yz,tz)“ = u(yl.t) u(yz,t+r)“

- T/2
ﬁ; = lim % u(y;,t) u(yz,t+T) de (3.32)
T+
o ~T/2
- and the spatial average
B >
B -+ -+ y - - y
U(yl,tl) U(y2,t2) = U(Yl’tl) U(y1+r,t2)
1 - »> > >
= lim‘v '[ u(y,tl) u(y1+r,t2) dy (3.33)
Voo
g v
L
:j' In order to carry out this procedure. When
' t
<uju, > 2w, (3.34)
<ulu2 > = uluz: (3.35)

the process is said to be ergodic; there are certain formal requirements for
ergodicity that are described in References 79 through 82,
It will be assumed in this monograph that Equation (3.34) holds, unless it is

stipulated otnerwise. This assumption is typical of the fluid dynamics of turbu-

lence. The relationship of Equation (3.35), however, does not generally hold for
all types of flow. Specifically, the disturbances in developing jets, wakes, and
transitional boundary layers do not satisfy spatial homogeneity. Fully developed .'-_’R

turbulent boundary layers also do not strictly satisfy Equation (3.34), however,

they are generally assumed to do so. This assumption is required in order to
develop theorems for the description of the response of contiguous structures,

Chapters 6 and 7, in terms of boundary layer properties. Even though many flows do
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not formally satisfy Equation (3.35), their correlation volumes are often small

compared to the extent of the developing flow so that making the assumption leads to

accurate predictions.

3.5.3 Frequency and Wave Number Spectra

In this section we will generalize the stochastic representations of Section
2.6.2 into time and thus space dimensions. In the case of the time variable we have
already dealt with the frequency auto- and cross-spectral densities. Since u(?,t) is

a stationary random variable, then the Fourier transform of Equation (2.105)

- 1 +1
u(y,w) = 77 gt wt u(?,t) dt

-0

is also a stationary random variable, Using this definition, we have derived the

cross-spectral density of u at ;l and ;2 in Section 2.6.2 to be

[ -> x>
t : 2mu(y,,w) uly,,w) 7 _
J. Lim [ 1 222 1 et g, (3.36)

> >
u(y,,t) U(yz.tH) = Teo T

-0

t
The cross spectral density is defined as the Fourier transform of u(;l,t) u(;z,t+T) s

i.e., define

[¢]
— t
> > 1 > - iwTt
= = -1)
¢ (15795 W) ZHJ' uly;,t) uly,,t=1) e dt (3.37)
-0
where uy = u(;l,t) etc., with an inverse
> = - > > -fwt
u(y,,t) uly,,t+1) = f 4>uu(yl,y2,w) e dw (3.38)
-0
therefore, by identity
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2ma(y),w) Uk (¥,,0")
T

> >
0, (VrYyw) 6(w-w’) = Lim (3.39)

T

which is independent of T.
This derivation could have proceeded along simpler lines if we had just taken

the ensemble average: 75,81

- ->
<u(yl,t) u(yz,t+T)> =

oo foo)
- \' -
.[ J et (75, U0 W (E,,w> de' e dw (3.40)
where
[o o)
‘|
<exp (1 (w-w')t> = f LW G o S (ww") (3.41)

The equivalence of Equations (3.38) and (3.40) requires the rross-spectral density

to be given by

oo

-> ' .
¢y Ty Y@ = J M Q@ u@,e) d (3.42)

-—00

If the cross spectral density is to be inderendent of time t, then this requires

the equivalence,

(¥ ),w) UXFy,w)> T4 (F],Y,,6) Slw-w") (3.43)

Equations (3.39) and (3.43) are equivalent ways of formally relating the generalized

Fourier transform of a random variable to the cross-spectral density.
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For spatially homogeneous flow fields, the correlation functions for positions
;l and ;2 may be considered independeui cf reference location. Accordingly, just as

in the case of Equation (2.129), ¢uu(§l,j2,u} deperds only on the separation vector,

i.e.,
¢uu(yl’y2’w) = ®uu(y2-yl’w)

In the following chapters the multidimensional space-time Fourier transform
will be used. This is defined as

u(k ...kn,m) =

o oo (0]

-i[(k,y,+ ...k y )-wt]
—l-—lgj dy, J' dynj de u(y,t) e 171 nn

-0 -00

where n varies from 1 to 3 space dimensions, The relationship equivalent to

Equation {3.39) for spatially-homogeneous fields requiring both space and time

averaging is (for kiLi*m)

Cuu K eeek 0) 6(wmw") G(kl-ki) é(kn—k;) z
%‘?Z—n%ﬁul(kl...kn,w) uk(kp.ok L) (3.44)
or
¢uu(k1...kn,w) S(w-w") 6(k1-ki) .o d(kn-ké) =
<ul(kl...kn,u;) uﬁ(ki"'kr'l"”')) (3.45)

]...kl,w) has already been called the
. 1

wave number frequency spectral density of the disturbance u.

rather than Equation (3.43). The function ¢uu(k

157

M adun Jcandirhe i Sfah arht o2 e e el it SR otk e i ot S sk ut Sh s

IPUPY RPN




S i AL MO

B e B e e e Rt T T S

For spatially and temporally stationary variables

2.7
-2

Frol
— N

>
The autospectrum @(w), the cross-spectrum $(r,«) and the wave number frequency

-
spectrum ¢ (k,w) are related to correlation functicns. These relationships which
form the cornerstone of hydroacoustics will be used extensively throughcut this

monograph. The temporal autocorrelation is

<u(;.t) u(;,t+r)> = <u2> Ruu(r}

(3.46)
so that the autospectrum function is
P (w) ® ,
oL T e () an (3.47)
2 2m uu
<y > o

The variable u could represent any combination of physical variables, pressure,
velocity, acceleration, displacement, etc.

The cross-spectral density and the wave number spectrum are related to the
space—time correlation of two variables a and b

- + - 2., z2,> = 1/2 ~r ,
<a(y,t) b(y+r,t+1)> = [<a”(y) > b" (y+r)>] Rab(r,T) {3.48)
If the field is spatially homogeneous the
2 > 2 .- ;
<a” (y+r,t)> = <a"(y,t)> (3.49)
and the cross-spectral density is, by Equation (3.37)
@ (;,u) * . -
b=l MR (D ar (3.50)
2 2 1/1_ il ab
[<a”™> <b™>] -0

i S
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For a nonhomogeneous field, Equation (3.49) does not hold and accordingly the

cross correlation is not a function of tne separation only, rather it is, in

gereral, a function of the ; and ; +7 variables separately. Cccasionally, for fdv’i-A
simplicity, the nonhomogeneity is handled by retaining separate dependence on _): and _ .
; + 1 in the mean square variables and retaining Rab(;,;+;,'r) as a functilon only of
e - :-.‘: R
r and T, i.e., Rab(r,I). _M T
The n-dimensional wave number spectrum is e .
T twt-(k,r ...k -
¢ (k,,. k ,u) = 1 e we-( Lrl nrn) L
ab> " 1’"" "' n? _\n+l e
(2w) —oo = ,..
i 1/2 N
x [<al()> P> B (E,D
. e
X dx:l d):n dT (3.51)
where n = 1,2, or 3 for n-dimensional * and where, again, we have dropped the mean- )
square values for simplicity. The convention used in this monograph places the —’“=.-“-*-
mean flow vector along the (1) axis with the lateral direction along the (3) axis R
or in the tangential direction for cylindrical flows, dU/dy3 = (O generally, The
cross stream, where usually Ul varies to produce shear (i.e., dUl/dyz#O), is given )
either the (2) axis or the radial direction. It is especially in the y, or r ) ' A
direction that statistical homogeneity does not hold in a shear flow. Then N
Equation (3.51) becomes
Fr 1wtk -k,ry) 1/2 -
wt-k,T,~k,T Y
& (kyykyy @y, ) = —= e 11303 a2 () ><b (548> e
ab- 1'73 2772 3 .
(2m) —5 e
Rab(rl’rB’T’yZ’yZ) X drldr30T e

This convention denotes the correlation function as homogeneous in Yy ¥3» and

nonhomogeneous as (yz,yé) = ()’2,yz+r2).
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The correlation functions used in this monograph will always have the

normalizations implied by Equations (3.46) or (3.48). Therefore, by definition

->
lim R , (r,T) = R . (0,71) = R
;+O ab ab

ab(r) (3.52)

and

lim R(1) = R(0) = 1.0 (3.53)
1+0

In general they shall have the property

Rab((),()) > Rah(r,r)

Spectral density functions will be no.:alized as atove sco that

2 2 1/2 ; > >
[<a“> <p">) = | do dk ¢ab(k,m) (3.54)
and

> > X
¢ab(m) = J N dk ¢ab(k,w) {3.55)

all k

Occasionally, throughout the text normalized spectrum functions will be used so that
the integral Equation (3.54) will bYe unity instead of the product . { rout mean

squares. In such cases. the lower case symbol ¢ rather than ¢ will be used.

3.6 FUNDAMENTALS OF NOISE FROM SUBSONIC TURBULENT JETS
3.6.1 Formal Analytical Relationships for Source Convection

In this sectlon we will discuss some of the well-known characteristics of noise
from cold subsonic turbulent jets. Explanations of those properties in terms of the
gtotistical parameters of the turbulence structure will also be given. Noise from
developing jets, being quadrupole ir natur , is not geuerally a dominant source at
the very low Mich numbers that are typical of hydroacoustic problems., We will

cotnsider this type of nolse because of 1ts historical importance, 1t belng a
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prime-mover for Lighthil’'s work, and because it provides an excellent example of
the marriage of general hydrcacoustic theory and the classical problems of describing
the stochastic properties of turbulent flow. The problems of theoretically de-
scribing jet noise, even of subsonic jets, go far beyond the simple dimensional
analysis that was offered in Section 2.3.3. The reader will find more extensive
discussions of>jet noise given by Goldstein85 as well as a recent review of the
subject by Powell.21 As a practical circumstance, jet noise can be an hydroacoustic
problem when the efflux is turbulent or when it contains density gradients (as with
two-phase fluids). In these cases, the noise may be monopole or dipole rather than
quadrupole.

The treatment of Section 2.3.3 considered only the most rudimentary aspects of
shear-flow noise, overlooking the real problems of source-convection, developing
flow, and the correlation volume of physical eddies. That analysic also overlooked
the essential spatial matching of the sound field with the disturbanzc field and the
effect of source convectlon on the sound power radiated.* To exemin ., £ effects of
mean convection of the sources in a medium at rest; begin by considering again
Equation (2.60) in light of the preceding descriptors of random variables. Define

the generalized four-dimansional Fourier transform of the stress tensor T (;,t), as

i3

o > >
> . , e +1(key~-ut 3>
Tij(y,t) = J]]g lij(&,m) e (key ) d7k dw
-

where the transformed variable is distinguished fr .m the real variable by noting its

independent variables. Therefore, we have

a"-'ri.(y’,n

m_/‘/‘ -+
-+ i(kev-u 3
e || | I A S PR S
at .

*An additional modification to the theory that will not be considered here 1s
the refraction of the emirted sound by the enshrouding shear layer. This convection
of the sound by the mean flow, distinct from the convection of the sovurces, affects

the directivity of the sound at angles that are not perpendicular to the jets

. 46,87
ari Y Generally, the results obtained in this scetion will be valid near broad-
wide adiation at low ' « number,

Jin})




and the value of this variable at the retarded time 1is written as

2 - @©

3 T, . (y,t) T iwr/c

— 5= ”ﬁ g B SV e 0 g
at

The radiated far field sound pressure is given by substituting Equation (3.57) into

Equation (2.60) to obtain (with pa(z,t) = ci(p(;,t)-po))

(x,t) =
Patiet) = . et
d B
@ <« { /,
X, X, e wr/c
SR S . ” . { H o T, (Fw) eFYTUR) 0 GRaw Y (3.58)
4w 2 2 ij
cr T ~ v e
o - )
dl',_‘
summat ion over all combinations of i,j is assuned. Integration over ; extends over . n'f;
the turbulence volume, Equation (3.58) expresses the sound pressure in terms of the R
spatial transform of the sources and it can be used to identify the manner in which T
the sources cause the sound. A similar methodology has been used by Ffowcs ;if
8 8 e
Williams 8 and by Crighton,. 9 Equation (3.58) can be further manipulated when the ’f
source location vector ;0 is decomposed into a component Y, along the range vector 4 “Q
and components in the plane normal to F, see Figure 3.16. Therefore, -
> _ > > T
T=r -V,
where ¥o is some reference range. The phases of exponentlals in Equation (3.57) can
then be rearranged to be (k0=w/co) ° 7
PR =
v. y ‘wFo =
: »

-
cy o+ kor (ko)
n n 0o r oo r

where
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Figure 3.16 - Geometry of Convecting Sources in a Jet

Using the ensemble average, the mean-square acoustic pressure 1is derived using the
methods of Section 2.6.2 and invoking Equation (3.44) with Tij(;’t) replacing the

variable u. The mean-~square sound pressure is, therefore,

(3.59)
o . © _ -i(k -k )y —1(k ,"): )y .
) —‘—J—— “j-" dkduw J‘([ ujb éijky (k,b)) [ r o r e n .1 dJ):

. <}

where tne volume VJ is the entire jet flow over which Ti‘(y,t) is nonzero and tte
summat fon 1s assumed over all {jké combinatione. ‘fhe wave nunbes spectrum ¢1jkn(k,m)
X

is formally defined as

cdatata'ita Al A atizal

s




> _ -1(§°;-mt) x : g C
ka = . ’ . ) T .
¢1jk9.( w) (217)4 J‘J'-” e TiJ (y,t) rlJ (y+r,t+1t) drd (3.60)

it is only approximately independent of ;l and since T is unequal to zero only

ij
inside the region of turbulence, VJ, so the integral only formally extends to * .

ié Equation (3.59) is in the same form as Equation (2.133) and represents one of those
circumstances where the wave number spectrum must be evaluated in approximate forms.
The integration over ; is carried out in the same fashion as in Equation (3.41) and

yields a product of delta functions, i.e.

e ik -k )y - _-¥) ~r( i(k-k_cos &) |y] o,
Jjj o r o re n°n ¢§=Jjje o ﬁy

-0 -0

(2m)° 8 (k=k_ cos )

or

3 - " (3.61)
(2m7 8k =k ) 8k )

2 2 2
which 1s equivalent to IGy(.lz,w)l2 in Equation (2.133), where k= = ko + kn and

kr = k/cos ¢ 1s the trace wave number in the direction of the observer. If the
ii wave number spectrum i1s replaced by a value averaged over the source region, then

Equations (3.59) and (3.61) give an autospectrum of the sound pressure

X, X, X, X
- 4 2y .
0 G0 =t ( Ll X Q) W' (V) By Gk ) G.62)
P r r ®

2, -+
where <p " (x) > = ¢p(x,w) dw defines the autospectrum, and the vinculum over the

."'» - -
- o0 ] .
: . .

speztrum function symbolizes the volume average. We shall see that the wave number

spectrum ¢ijk2(i+0,m) is interpreted (e.g., Equations (3.107) and (3.109)) as a
L correlation volume of the turbulence. Summation still extends over all combinatlons .
i" 1,1, k, L. -
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To include the influence of rectilinear mean convection of the sources on the
radiated sound, we note that the Fourier transform introduced in Equation (3.56) is
relative to a fixed frame of reference. To compensate for the mean motion of the
sources, the fixed coordinate ; moving with eddy field, '

S =3 -Te
v, =¥ - U,

and the source term in the moving frame is denoted by Tij (;o,t). Therefore, ',':'_'V'.'_',:.:

y.t) = T (-0 t)
Ty (y,t) = 13 (y-U_t )
|
and the generalized Feourier transform is . ‘5
® > - . ] - .‘—z_é
T, (Kw) = —— HH T (3,0 e Lkey-wt) 4oqy S TN
3 2m J/ J 3 }
! . _ -'_—*_ AP ——rra Ay
! — T, (- t,t) e HE YO g .8
4 ij c T
‘ (2m) e
1 . . -i(koyo-[w-(kouc)]t) . e i
= T,.(y ,t) ¢ dy dt Y
Y ij o 0
(2n) e
T, (K,w-U -k

R § Sl ) :
.-

The wave number frequency spectrum is then given by

o ) = b el D) L
17k (o) = €500 (Kyw-U, . e

where cp”m(i{,w) is the spectrum determined in the frame moving with the eddy. The

spectrum of radiated sound then becomes (with U %=vu_ % =U k_ cos 0 and M =U /c ) '-:"_“
c S ¢ ¢ o -
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wp(x,w) ~ 5 7 2 ( r4 ) (i [VJ ¢ijk2(kr kO,Q) j] (3.63) Tf,f_.,{.‘,?-;:
Cc

1677 ¢ r cos 8)4 o
L9
where { = w(l-MC cos 8) accounts for a frequency shift due to source convection in
the direction of the observer, and the time~averaged acoustic intensity is
¥ X, X X .
I(x) = 1 1 1] k2 {(1-M cos 6)-5 .
5 2 4 c .
167" ¢ ¢ x r -
oo _
[ bi ». .
4>
J Q = ) df . 64
bt \J J. Q ¢ijk2(kr kO,F) < (3.64)
s o)
3.6.2 Measured Characteristics of Jet Noise .8
These formulas show that the radiated sound will be caused by the stress tensor ’
at all wave numbers whose component in the radial direction equals ko. The mean-
square sound intensity in a frequency band Aw which 1s proportional to the center
irequency of the band, i.e., Olw « w will depend on the jet parameters as
o 0%
I(x,w,0w) = 3 =7 D(&,0) (3.65)
¢ (1-M_ cos 6)7r
o c
where
4 ¢ ) Qo
c X.X.X, X, \' N ¢, .,k ,8) d0 Py
D<“E?2’O>=Z 7 Aki'_;_" T TR o
J / 1jks 14 D .- g c U.D SN
ol m J
where the term in brackets has been summed over all combinations of ijk{ and it j; N

depends only on frequency and angle €, Equation (3.65) is the fundamental similarity

90,91

formula of jet noise which was first derived by Lighthill although re~derivations

of the relationships can be found in a number of other places. The presence of the
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factor (1-11c cos 6)_5 was derived by Ffowcs Williams,88 but a similar type dependence
had been derived earlier by Lighthill.92 In the summation for D(QD/UJ,G) each of the
products of the various veloclty disturbances will give somewhat different direc-
tivities through the different direction cosines, xi/r. We shall touch on some of
these aspects later, but for the present we will assume that the combined directivity
of the composite turbulent structure is omnidirectional, so that D(Q,6) is just in-
fluenced by the Doppler shifct, i.e., D(w(l-—MC cos G)D/UJ)). Therefore, the primary
angular dependence of the overall far field sound intensity is brought on by

(1~MC cos 8)-5 which shows an augmentation for 6 < w/2 relative to the intensity at

8 > ©f2. This behavior of enhanced sound in the direction of eddy convection has
been confirmed by a number of experimenters, e.g., References 93 through 99 using
subsonic jets. At large values of Mach number, the sound near the jet axis, 6 < m/4,
is reduced relative to the theory. This behavior is now believed to be due in part

. 21,96,100
to refraction.
91,93

It is interesting to note that in some of the earlier
measurements some high-frequency backward-directed sound was measured and this
was attributed to the existence of preferred quadrupole radiation from the highly
sheared mixing region. The subsequent measurements, Reference 94 and later
references, indicate that this backward radiation was an artifact of experimental

arrangement. Figure 3.17 shows, in confirmation with Equation (3.64) that the

10
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Figure 3.17 - Angular Dependence of Far Field Sound Pressure Level at
Various Jet Mach Numbers
(From Reference 97)
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angular dependence is a function of Mach number. Furthermore, Equation (3.64)

yields,92 for the total radiated acoustic power,

R
]

27 m
J. .[ I(x,8) (r sin 6d¢) rd6
o o

™
= — f (1-M_ cos )™ sin 6d6
cTp ¢
c' o o
2,8.2
so that the radiated power is
piugn 1+ M L
B o=l PR (.66
o0 (l-ﬂc) ‘";;;wj-:
.. 9
il 1
where the function F(RD’MC) includes the dependence on Reynolds number and Mach ) _
number of the summed and integrated wave number spectrum in Equation (3.64). Figure i};ﬂzf,r‘

3.18 shows the total power nondimensionalized on pOUBDZ, as a function of the exit
Mach number, noo oS

This presentation represents the relative increase of acoustic power compared to jet

power as the Mach number increases, and it is a classical result. Furthermore, the

data indicate that F(RD,MC) is a nearly constant value between 0.3 x 10‘4 and 7i;;-“7"\
1.2 x 167%. S
S
- .9 -
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The inset of Figure 3.18 shows the cne~third-octave power spectrum nondimen- "
sionalized on the overall power as a function of reduced frequency fD/Co. The peak -9

in the far field intensity spectrum at any angle will change in frequency such thnat

the peak will occur at constant values of (fD/U)(l-—MC cos £) when € > 7/4, however,




at angles near the jet axis Lush96 shows anomolously low values of noise at fre-
quencies large enough that refraction is important. The noise power spectrum,
therefore, has a peak frequency that depends on D/co; the constancy of the dimension-
less frequency of the peak in the power spectrum, first observed by Fitzpatrick and
Lee,101 is now well known. At 9 = 7/2, the dependence of the sound pressure or
intensity spectrum, Equations (:.63) and (3.65), on MC decreases and the spectrum

becomes a function of fD/UJ as shown in Figure 3.19.
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STROUHAL NUMBER, fD/U, = wD/U, (1/27)
Figure 3.19 - iormalized Sound Pressure Level Spectra at Microphone Angle

of 90 Degrees for 15.2-Centimeter-Diameter Potential Flow Nozzle
(Adapted from Reference 97)

Measurements of the spatial correlation of far field sound pressure were made

102,103 , . .
Around a circle in the azimuthal plane (normal to the jet

by Maestrello,
axis) the spatial correlation depends on angle & (see Figure 3.17 for &) and for
microphones on opposite sides of the jet (¢=7) the correlation coefficient is small
and negative for 6 > n/4. This behavior was interpreted by Maestrello as indicating
radiation from a distribution of sources which are uncorrelated around the axis of
the jet. For smaller angles to the jet axis, & < =/4, the correlations on opposite

sides were of positive values and larger than 0.3, suggesting the existence of effec-

tive sources with considerable axisymmetry.
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One attempt to predict both the speed-dependence and the directional character-
o istics (that were neglected above) has been undertaken by Ribnerloo’ma’lo5
E corporating many of the ideas initially used by Proudman,lo6 and Jones.107 The
approach has also found wide spread use In predicting boundary layer pressure, see

Chapter 7. The sound field is determined by integrating the fourth derivative, with

respect to time delay, of the space-time correlation of Tij over the entire source

=
'l volume. This operation is completely analogous to the integration performed in
f Equation (3.59), giving as in Equation (2.61)

!

;

i@y = 2 L (BN ’ Eﬁ~»<T' (G, 0) T'. (345, t40)> % (3.67)
poix 2 42 _ od g '

In Ribner's analysis, the various terms of the stress tensor are approximated by
assuming that the turbulence is locally isotropic. Then, writing the instantaneous

Reynolds stress

v = v - -
Tij(y,t) Tij(>,t) Tij(>")

for coid, low velocity jets,

Ribner has

B - - > 2 - > > > > >
KTij(y,t) Ty dr,e)> = o] <uy(y,t) uj(y,t) uk(y+r,t+T) uk(y+r,t+T)>
whicn is a fourth-order correlation function of the velecities. Since the velocity

consists of a mean plus fluctuating component, the correlation tensor contains a set

of terms invelving the mean velocity and second-order correlations; e.g.,
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. . 5 > > > > - ‘
<Ty,0yt) T, (rHE, t40)> = U () Up (y#r) <u,(y,t) u, (y+r, e41)> T

S > > - - &> B -+ > -»> > . ®
+ <u (y,0) uy(y,t) ug (ydr, t4T) u, (y4r, e41)> - <u (y,t) u, (y,t)><u, (y+r, o) L

> - A,
uz(y+r,t)> S el

e
The first term®™ Ribner calls the "shear noise,” while the second two he calls "self- -

noise." The shear noise he finds to be directional in the direction of the jet,
while the self-noise he found to be nearly omnidirectional. Specifically, ignoring

the multiplicative convective amplification (1-Mc cos 0), = e

B(cosae + coszﬁ)

R}
<pi(x,t1> ~ A+ 3

where A represents the self-noise for which elemental contributions combine to yield
omnidirectional sound, and the B-term represents the shear noise which results from
the combination of two quadrupoles. Ribner reduces fourth order correlations tu the
second order correlations by assuming that the statistical variations of the turbu- .
lence are describahle as Gaussian probability density functions. Thus, the relative
orders of magnitude of A and B are established as being nearly equal. This approxi-
mation had been previously used by Proudman (see Chapter 2), and it is common in _
similar analyses of boundary layer pressure (sec¢ Section 7.3.6). o
Another approach used by Michalke and Fuchslo8 modifies the Lighthill source fu5f7f5f
term, Equations (2.49) and (2.50) so that it contains terms that involve only the .5_fpf;i?
local temporal variations of fluctuating pressure and spatial gradients of the mean
velocity. The relavionship is linearized and predicts only what Ribner called the
shear noise. The pressure fluctuations in the jet are then expanded in terms of
circumferential harmonics with stochastic coefficients which could be evaluated if%‘}lfiﬂ
statistically using pressure correlations in the jet. Results so far show that only
low orders of circumferential variation, including axisymmetric, are indicated by the

108,109 ..

correlations. A full application of the correlation measurements to the

theory has not yet been made.

*he alternative names turbulence-mean shear interaction and turbulence-
turbulence interaction have also been used. See page 693.




3.6.3 Some Qualities of Jet Noise Deduced from Flow Structure

3.6.3.1 Properties of the Mean Shear Term. As a basis for discussing some of the

more fundamental features of the coupling of turbulence and sound we adopt Ribner'slo4

simplification that the magnitude of shear noise is qualitatively representative of
the total noise level as described in the last section, and so take the contribution
due to the <Til(§,t) Til(;+;,t+1)> correlation as showing typical behavior of the
jet noise sources. The source can be written
2
o

<T! (F,8) T!. (4T, t4T > = 4p°U% <u (F,0) u, (G4E,t+T)> (3.68)
11y 11 ’ R A 17 y

where Ul(;) and Ul(;+;) arc taken as equal to Ul' Therefore, the wave number

spectrum is

(K,w)

2.2
apoLl

> >
¢ L e ET=UT) ey u, (G4T,e4T)> dTdT (3.69a)
1111 (ZH)A 1 1

ApiUi ¢11(K,w;§) (3.69b)

The correlation <u,u’> is a two-point space-time covariance of the axial component

171
of velocity fluctuations. We will define a correlation function as

t

> ->+ -
ul(),t) ul() r,t+7)

2 7> > 1/2
ul (v, ) u, (y+r,t)

g -
Rll(r,r) =

= Rll(rl’rr’rG’T) (3.70)

which could depend on the datum ;. Below, we relate the correlation function and
its transform to measured properties of jet turbulence.

Extensive measurements of the correlation function Rll(r],1), with the sensors
displaced in the streamwise direction, were made by Fisher and Davies,110 Bradshaw,
Ferris,. and Jchuson,lll Davies, Fisher and Barratt,l12 and Kolpin.ll3 The measure-
ments of Eradshaw, Ferris, and Johnson include autospectra of velocity fluctuations,
and Fisher and Davies and Kolpin provide narrowband correlations from which cross

spectral densities can be deduced.
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3.6.3.2 Measured Characteristics of Jet Noise and Taylor Hypothesls. Some of the

important properties of jets at RD greater than 105 are shown in Figure 3.20.
Within four to six diameters, the jet develops in an annular shear flow that
surrounds the so-called potential core. The core region has a mean velocity that
is independent of radius and is, therefore, relatively disturbance free except for
an unsteadiness that is imposed by a large-scale vortex structure in the annular
mixing zone, as shown by Lau, Fisher, and Fuchs,52 and by Ko and Davies.114 The
maximum turbulence intensities in the mixing zone measured by Davies, Fisher, and
Barratt112 are shown in the lower part of Figure 3.20. The radial distribution of

the turbulence in this region satisfies the similarity rule,
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Figure 3.20 - Development of Jet Turbulence and
Mean Velocity of Free Jets
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-2
l ( - )
— = f (3.71)
21/2 1 ¥y

where £(0) = 1, and the mean velocity in the mixing region Ul(r,yl) behaves accord-

: 112,113
ing to

, D
Ul(r,yl) r- 5
S TE -0} 5 (3.72)
J 1

These similarity functions reflect the fact that the length scale of the shear layer
increases linearly with distance from the nozzle exit. This linear increase continues
into the fully developed region downstream of yl/D = 4 tc 5. 1In the fully developed
region the inner extremity of the aunular shear layer has merged and, although the

mean velocity 1is still maximum on r =

0, it decreases linearly with Yy According
115,116

to Forstall and Shapiro, the center line velocity is given by

U (y))
St (3.73)
J N
where
(yyd
LE . (o) (3.74)
Replacing the two similarity forms, Equations (3.71) and (3.72), in the fully
developed region, Hinze76 and Townsend77 give, for the mean velocity,
1
Eliglill = £, -—1%~—3—_ (3.75)
% 1T e

where (yl)C is a constant measure of the effective datum of the jet and for the

turbulent velocity
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1 r A
=g, {—— (3.76)
v 2 <yl+(yl)c )

where &) is maximum near to or just off the center line of the jet. Forstall and

115,116

Shapiro give an alternative functional dependence in terms of a variable jet

radius rJ(yl)

u (r,y,)
_l_U 1° ‘) (;_%__7\ (3.77)
¢ 171
where rj(yl) is determined by
UCr.,yy) 1
— = £, =5 (3.78)
¢
and {t depends on y, as
2r, (y,) y
- (‘( 5 ) (3-79)
I17¢

(yl)C being the length of the potential core given by Equatien (3.73). These
geometric factors are all {liustrated in Figure 3.20.

As shown by Equaticns (3,.59) and (3.68) the mean-square sound pressure will
depend on the space-time covariance of the source tensor, which, by Equations (3.68)
and (3.69b), can be crudely represented in terms of the two-point space-time
statistics of the velocity fluctuations.

Space-time correlations of the axial velocity fluctuations in the mixing zone
obtaincd by Fisher and Davicsllo arc shown in Figure 3.21. These correlations,
obtained as a function of time delay for fixed anemometer probe separations, show
maxima at 2 combination of r and T that are shown in the lower part of the figure.

An envelope can be drawn through the correlation values at these points that can be

described in terms of the original correlation
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Rll(rl,r) = Rll(rl-UCT,T) (3.80)

to give the maximum correlation as

Rm(T) = R,,(r

11 =UCT,T) (3.81)

1

This relationship between Iy and 1, therefore, defines a convection velocity

‘ UC * 0.6 UJ of the disturbances as they move downstream from the nozzle. Rm(T) is
[ . 112 . )

called a moving axis correlation because the covariance is interpreted as a

correlation in a frame of reference moving with the average speed of the eddy field.

—nY

The deviation of Rm(l) from unity 1s caused by combination of turbulent mixing, in
which eddies stretch and entrain fluid from the outer undisturbed environment, and

by viscous decay of smaller eddies as thev are convected by the mean flow,

Danga

->
The autospectrum, :ll(u;y), can be interpreted in terms of the energyv spectrum

of various sized convected eddies. Thus, starting with the temporal autocorrelation
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Lo o]

1 iw 2
ll((u,y) ZTTJ. et (r =0,1T) dt (3.82)

~00

if we assume that the turbulence is convected without any loss of correlation, i.e.,

that Rm(T) = 1, then the correlation coefficient is written in the special form

(r

Rip(rp =R

11(rl-UCT) (3.83)

where Rll(rl-UCT) is unity for all r, satisfying r = Uct. This condition of con-

1
vection is called "Taylors' Hypothesis" of frozen convection.73’74 Then we can
write the autogpectrum (with r=0) as
W2 .
N L Y1 l(w/UC)\UCT)
Qll(w,y) x ET-G— Rll(UCT) d(UCT) (3.84)
If, now, a wave number spectrum is defined as
b, (koY) = et o2 R, (r,,720) d (3.85)
111" T 7n 1 11t 1 :
-0
o o) —‘k r .
1 s b ) .
T .[ e vy Rll(rl) dt1 (3.86)

the approximation given by Equation (3.83) allows us to write
U b (w,y) = 3, (k,y 87
c ‘Vll(‘u,y) o ”11( l,}’) (3' )

and the wave number is dependent on frequency as
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The autospectrum in Figure 3.22 represents an approximate spectrum of disturb-

N ances of varying wavelength as can be seen by the equivalence
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where Uc ~ 0.6 UJ and Al is an effective eddy wavelength so that

ryl 0.6 Yy

The autvspectrum discloses then, that most of the mean-square turbulence intensity,

given by the integral

ui(;) = J. ®ll(m;;) dw (3.89)

is determined by eddies with effective wavelengths that are less than the axial
distance Y- An integral length scale, or macroscale, of the convected eddies,

defined by an integral of the broadband spatial correlation,

«Q

= J~ Rll(ri,T=O) dri (3.90a)
o

has been related to the autospectrum in the case of the streamwise, Ty direction as

A ¢, (k)
Loy a2 (3.900)
kl+0 u2
1
or nearly equivalently
A ¢1q (W, y)
== 1wy (3.90¢)
‘ w>0 u2
1
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only to the extent that Rm(T) can be considered as near unity. We shall see below

that this equivalenre is not generally valid. The nondimensionalized spectra in

Figure 3.22 show that the integral scale is approximated by

y
1
Al ~ T [UC . Z—T-T‘lg . (0.5)"

[ -

Al ~ 0.1 Y1

Measurements of Al at Reynolds numbers near lOS by Davies, Fisher, and Barratt

and by Laurencell7 also give

Al ~ 0.13 Y1

for D < yl < 6D, independently of radial location from the centerline.
117

A radial integral scale, given by Laurence, is
Ar ~ 0.05 Yy
where
o0
A = R(0,r_,0,0;y) d
“r_ (.fr’,,y rr
o

107 . . . .
Integral scales were measured by Jones in a rectangular jet using frequency-

filtered signals. With the 1,2,3 directions pertaining to the flow, vertical, a

width directions respectively, he found for broadband (unfiltered) velocities

> A3 = 0.014 (yl+h) and Al = 0,04 (yl+h) where h is the height of the exit,

fy
filtered signals he again found Az(w) = AB(m), but that all ﬁi/y decreased as

1
wyl/UJ increased, although the decrease was not as rapid as (wyl/UJ)—l.
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3.6.3.3 Methods of Approximating the Wave Number Spectrum. Referring to Equation

(3.62) it is seen that the required quantity is an integral over the volume of the
jet of the wave number spectrum that is evaluated at k= kr = ko» where kr is in the
direction of the field point. To realize the implications of this particular value
of ¢ijk£(i’u) in light of the above discussion, we shall write dovn the complete
expression of the wave number spectrum, Equation (3.60), using the representative
mean-shear term, Equations (3.68) and (3.69b), and employing the alternate

functional definition of correlation variables, Equation (3.80) to give

> > 220 2o 1 -1 (Ko T-w)
¢llll(k,w,y) = 4p U (y) u () (%)4 ffffe

-0

>
X Rll(rl—UCa,rr,ra;T)drldI
29 4.7 » 1 —i(klnl+kn-rn) i(m-kUC)T
= 4p UT (ydul(y) e e
o 1 1 4
(24) iy
x Rll(nl,rn,1) drdt (3.91)

where ;n =T Ty and where ny = rl-UhT. If we approximate the correlation function
as the product of a spatial correlation moving with the eddy field (R?l(nl,;n)) and

a correlation as the eddy field is convected Rm(r), then

- S -
Y = - 2
Rll(nl,rn,r) Rll(Jl,rn) Rm(T) (3.92)
whicli still satisfies the condition stated by Equation (3.74) and veduces to Equa-

>
tion (3.83) when RH(T) = 1 and r, 0. This gives a wave number frequency spectrum

that is also separable

. - 2 2 >
¢ vv) = 405U : 4 (u=k.U
b (K = 4ptUT () 4y () 3 (umkgU D) (3.93)

where
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® ( ) -+
11 .1 ~iker s > 2+

J]i[e Rll(nl,rn) dnld ro (3.94)
u

2 i (2'rr)3
1 L

and Ril(;) = Ril(rl,¥n) is a spatial correlation function deifined as

S ,» _ > i
Rll(r) = Rll(r“t.—O) t-

The function ¢m(w—Uckl) is just the Fourier transform of Rm(T) where the transform 377’311

variable is w—Uck It shall be called the moving axis spectrum, and it may be

1’ =
determined from data such as the envelope shown in Figure 3.21. When the eddy field 3
is convected in a frozen pattern as with Taylors' hypothesis i.e., when Rm(r) =1,

then ¢m(m-UCkl) is nonzero only at w = Uckl’ i.e.,
= kri,
¢m(w~Uckl) 6(w-UCk1) (3.935) 4

where §(w) is the delta function. However, if, as illustrated, Rm(T) has the shape

of an exponential decay,

-9

-iTi/El n;?

R (1) = e (3.96) o

m n

e

then the Fourier transform of Rm(T) in Equation (3.91) yields a moving axis spectrum -

7 iU k)T
¢ (w) = L J. e el R (1) dt

27
—00 — -
B
T 1 S
¢ (W) = — > (3.97) R
fe) B )
1+ (w~UCkl) 67 i ,:.u

This function is peaked at frequencies w = Uckl’ but at wave numbers which are very

much less than L;-/UC it is finite-valued; at high frequencies w GT > 1 the spectrum




will depend on time scale as (BT)-I. This means that high-frequency, low wave
number fluctuations increase as the eddy decay time in the moving axis coordinate
system decreases.

The additional wave number spectrum appearing in Equatlon (3.93) is

S =i(k.m,+k T
1 [JJ’ ~iCkyn +koor)
e
o

s - >
q
am? Ry (nyery) dnydry (3.98)

o), (K) =

1f the correlation function is also presumed to be separable as the product of the
separate spatial correlation in each of the axial, radial, and tangential directions

then (with n1=r1-bct)

s > -

or further,

s - .
Rll(nl.rn) = Rll(nl) Rllkrr) Rll(re) (3.100)

Note that when T = 0, Rll(nl) reduces to the spatial correlation function Rll(rl)
introduced above, see Equation (5.85). Various forms of these correlation functions
have been used for various needs. A typical functional form that is used is simply,
€.8.,y

""I' |/;’l\,

r i
Rll(rr) = e

where Ai is the integral correlation leagth, Equation (3.90a), for separation

distances in the i direction so that the wave number spectrum is

Ai 1
o, (k) =" —F—""—— (3.101)
WU ™oy enn?
1 1
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The separable representation, Equation (3.92), does not imply the same
separability of the cross spectrum. The cross-spectral density Qll(;,m;;) is

related to the correlation by

oo

A z _\._t - 1_ in _-:2— T - * 2 ~
Qll(r’“’)) o .[ e uy Rll(rl—LcL,rn,r,y) dt
--c
which is rewritcen in a separable form
e <]
- - 1 iwt 2 s T e
¢ll(r,w,y) el e u) Rll(x1 LCT.rn) Rm(T) dt
-0
letting ' = T - rl/UC,
2
u iw -, /U ) r
x g .—'. .._l * ] C s e 1|_f -1 l -t Y
wll(r,u,y) oy .[ e Rll(uclj,xn) Rm <L + Uc )dt (3.102)
-0

The moving axis correlation is the same as the one above, and the correlation

Ril(UCT',;n) is a spatial correlation in a frame of reference moving with the eddy
field. It too is the same as the one introduced in Equation (3.92), but now the r,
variation is expressed as a time delay. Using the separation of variables shown in
Equation (3.100), the cross-spectral density of Equation (3.102) can be written in

the form

N R iuu'rl/UC N
¢ll(r,w;y) = e Rn(rn)
:5 ® i(s/U YU 1! r
11 e’ e . v, 1 '
x 77 UC J. e Rll(UCT ) Rm <T + UC> d(Ucr )
-0
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which does not have the exact form of Equation (3.99). Note, however, that except
for Rm(T‘+rl/UC), the integral in this equation is the same as that in Equation
(3.85), therefore, to the extent that Rm(T'+r1/UC) varies slowly with its argument
compared to the variation of Rll(UcT') with Ucr', the influence of the two corre-
lation functions in the integral can be approximated as multiplicative. So, if the
time-scales of the two correlations are very different as can be deduced by comparing

their shapes in Figure 3.21, the cross spectrum can be written in the separable form

iwrl/U

¢11(r,w;y) = e ¢ll(w) Rn(rn) ¢m(rl,w) (3.103)

where
a = url/Uc

is the phase of the cross spectrum expressed in terms of a convection velocity UC.
Recalling Equation (3.80), ¢]l(m) has replaced the wave number spectrum Qll(w/Uc) UC
The function ¢m(r1,m) shows the decorrelation of the component of frequency w of the
cddy field as it moves past the fixed reference frame over a distance r., and the

1
phase factor wrl/UC expresses the propagation of the component as a wave. At r

1= 0

¢m(0,m) = 1, Measurements of Qll(r,m;y) from which @m(rl,m) may be deduced in jets
-

are sparce, although there are a restricted number of measurements of ¢ll(rl,m;y)

which are shown in Figure 3.23. The magnitude of the cross spectrum has been

normalized on the autospectrum,

|¢ll(r1,w;y)l

> - ¢m(rl’w)
¢ll(m,y)
The weasurements have been made by Joneslo7 in a rectangular jet. Those measurements
by Kolpin113 and by Fisher and Daviesllo in a round jet cover a range of frequencies
and streamwise separations in the mixing zone, and they show clearly that the cross-
spectral density with streamwise separation is a function of the variable wrl/UJ.
Furthermore, the convection velocities, determined from the filtered velocity

signals over a range of frequencles, vary from 0.45 U, to 0.7 U, for the respective

J J

frequency range of fD/UJ from 2.08 to 0.52. The measurements shown in Figure 3.23

are the only ones known, and they hardly give a complete picture of the structure of
the jet turbulence as a function of frequency. What is shown is that the components
lose thelr identity when uur]/l"| 9, {.¢., for ¢m(rl,w) = 0.1, this number cor-

responds to
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L when UC ~ 0.6 UJ. This result has the alternate interpretation that eddies lose ’ 6 o

L - e

their identities after they are convected distances comparable with 2.5 times the

eddy size, o

q The wave number spectrum included in Equation .5.69) now can be written with e
! Equation (3.103) as f :..1:i'
[ o
’ b (K,wy) = & (W) ———’”j‘ it 100 R () ¢ (r,,w) d°f (3.104)
mnr l (27) mn’ Ym 1’ ’




which can be written as the product of three spectra
K,wiy) = k U
o (Kwiy) = & W) ¢ (K)o (“1 Uc> (3.105)

where the subscripts match the wave number spectra with the respective correlation

functions. Equations (3.93) and (3.105) show equivalent representations for nearly

frozen convection and near kl = w/Uc. Since ¢ll(§) can be written in the separable
-5

form ¢ll(kl) ¢n(kn), then

- w_
$pp(ky) 0 (kU ) = &y (W) o <k1‘ UC>

The wave number spectrum as a function of k., has 1its maxinum near kl = Lu/Uc and it

falls to a lower limit that is equivalent ti the product of integral scales at low
wave numbers. If the eddies were convected without change, then ¢11(K=0’w;;) would
be identically zero by virtue of the delta function approximation on ¢m(k1—w/UC).
Figure 3.24 shows contours of ¢ll(§,w) in the kl, w plane for Kn = 0, the relative
spectrum levels shown here are intended only to show the relationship of ¢11(K,w) to
the wave number kl = ko of acoustic propagation and the importance of the integral
length scales. For approximating Equations (3.63) through (3.65) in terms of
turbulence dynamics, it 1s necessary to evaluate ¢ll(k=kr=ko,w;;), where kr is the
trace wave number ir the direction of the observer and, fcr subsonic jets ko << w/UC.
Regardless of what the orientation ot the observer is relative to the jet, if

kO <« Zﬂ/Ai, where Ai is any of the turbulence integral scales, then the integration

becomes quite simple. In fact, from Equation (3.304)

o o« " N

6. . (W)

[0 > 217 > 11 e 2 S

11 (kl'ko« R "”’y> S5 U R (rdiry

c i (ZTT)3 ) o :f:j‘_i
» )
iwr, /U ST
x e 1 0C ¢ (r,,wdr (3.106) S
m 19 1 . X --,'..
. ]
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ArAB

(n)3 Alm(w) (3.107)

~ ¢ll(w)

or incorporating the limit at small kl of the moving axis spectrum

ArAe
< @) 52 1 o (kl- E‘) (3.108)

k1=ko+0

The quantity 8 ArAeAlm(w) is a frequency-dependent correlation volume* of the

turbulence,

>
XIn the same vein, an area integral of a correlation functlon R(r) yields a
correlation area, say ilm(w) Aj where ij is perpendicular to A]m
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Equation (3.106) shows that the value of ¢11(E’m) at low wave numbers depends f;ifﬁiw
not only on the radial and tangential integral scales of the eddies, but also on ;;;n;;
the rate of decorrelation of the eddy field as it moves with the jet exhaust. AR

This means that for subsonic jets, noise can only be produced when the eddies

experience a change. Eddies convected in a frozen pattern at speeds UC << Co cannot

radiate sound regardlegs of how large they are. The most typically considered modes

of change are vortex pairing and spatial growth as the vorticity propagates away from

the nozzle; such modes and their acoustical implications have been examined by

Ffowes Williams and Kempton.118 See also Section 3.6.3.5. )
The Alm(m) in Equation (3.107) is a frequency dependent correlation length in N

the streamwise direction that is determined from the cross-spectral density. This

is determined approximately v integrating

o]
iwe, /U =~a, |wr /U |
w _ 1 1" "¢ 1 1" ¢
Am(m) = 7 1lim ¢m kll- 1—_1_> =3 J. e e drl
k.0 c,
1 -0
where the exponential function is shown in Figure 3.23 with 0.2 < oy < 0.3, Evalu- E;AQ‘“
ation gives ST
)
R
A (W) = _;_w_
oy + 1

which shows a trend of decreasing integral scales at high frequencies. The wave

number spectrum becomes of the dimensionless form

= d -> -
¢ll(k=0,m;y) 1 (Y UC Ar Ae @y R
T Tov.~ T T3\t vo\TT O A (3.109) :
o ‘”yl) 5 w7\ NS WA LS Rt .
1\v; /71 R

This equation gives the asymptotic limit to the low wave number spectrum. Jone«'

measurements of ¢m(wrl/Uc) in the potential core of a rectangular jet showea that
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at a given frequency, oy decreases as ¥y increases, i.e., that the correlation

length at a given frequency increases with Yy- His measurements can be approximated

as

from which, we approximate

. -1/2
WYy
o, ~ 1.6 (-r——>

In the orthogonal direction, using the collective results of Jones,107 Kolpin,1

and Fisher and Davis,llO we set

13

Ar = AG ~ Y

and if o > 1 the variation of spectral density with distance from the jet becomes,

2.5
d. . (k=0,w;y) _ -1/2 ty
11 . (99> <—1> (3.110)
wy U D
» < 1>D3 J
11\ T,
which 1f o < 1
=32y, 1.5
. (Ei-> (-- (3.111)
U, D

The function shows that as the flow develops, the correlation volume of the eddies

increases, but there 1s some latitude indicated in the rate of increase. Jones

made use of this frequency-dependent correlation volume in Equation (3.62) to
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correctly predict the shape of the autospectrum of noise measured by Mollo- ?:lﬁffﬂf

A B . o
Christensen, Kelpin, and Martucce1119 over the frequency range of approximately
0.4 < w D/UJ < 13,
3.6.3.4 The General Frequency Dependence of the Noise. The method of estimating f
the characteristics of the noise from these statistical qualities of the turbulence 5:_u
will now be illustrated for a simple case. Simpie laws of similitude of jet noise B

that are based on a hypothesis that the sources of noise are due to local motions

of the eddies in the jet have been given by Powell.ll9 The analysis can be easily

reproduced from the above relationships by invoking certain of the measured e
characteristics of the jet flow. Equations (3.63) and (3.69b), and a modification e
of Equation (3.109) which implies simply that* Am(w) ~ Yy gives the dependence of

the autospectrum of the sound on fluid parameters as

1 2.2 s 371 wy, .
¢p(r,w) ~ 77 " Pl “._“-w Y1 ‘:Tj—; d)ll(u_] )] dA; dy, (3.112) Rl

cr
0 vol

where dAJ is the elemental cross-sectional area of the jet and where the integral
length scales Ar’ Ae, Am(m) are each assumed to be proportional to Yy» (i.e., replace
the 2.5 power in Equation (3.110) by 3). Now, from Figure 3.22 most of the turbulent

energy is confined to the dimensionless frequency range

Wy, A

Alm—]) < 2m (3.113) S

U SO

J . "- ---.‘

The jet mechanics fall into two classifications depending on Y1 being either less 5":7

than or greater than 4D, as shown in Figure 3.20. Therefore, in integrating over Yi» ,M:f,ff

these separate regions must be considered. Also at a given frequency w, the region -{}Vf

By, over which the turbulence energy density is large, is defined by Equation ;;f:ﬁ
(3.113), and this region is located at ":"“
®

*This analysis, however, is insensitive to the dependence of Am(w) on y, ::;ﬁ

selected because of the simple dimensional similitude that 1s established among w, :jw;

y;» Uj» and the intensity of the turbulence. ‘ )
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o yl N
o

Consider, too, the sound pressure level measured in a frequency band Aw which is

proportional to w so that the mean-square pressure pi is proportional tc uxbp(r,w).

. From Equation (3.114) the contribution from the mixing region (yl <4D> will be

generally high frequency while that from the fully developed region (yl >4D) will
1:.-': control the low frequency sound. Therefore,

l. TFor y1 < 4D, the following situation arises.

s The shear flow occupies an annular region of area,

- J m
;: the intensity goes as,
: and tue dimensionless spectrum as
' A (:YI> 1 (%) - ot

then the radiated sound pressure behaves as

| e
PP I I

L 2.2 wy wy
2 (r w) - OOUJ . w4 ¢ lo ._i 3 . D) . Ay
P b 4 2 11\"U v, 1 1 1
cor J J o] o
2 .7 wy
- %% te) 2
o 4G 2w\u, /"
. c r J
. o
) 2,8 S
- pU 2 -1 T
2 oJD wD D
. p (r,w) ~ Rl <U—> R g—- > 1 (3.115a) e Tl
. c, T J J 9
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since -2 = (2= 2. constant
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J
i 2. For Y1 > 4D, the following situation arises.
o
»\f{ The jet spreads with its characteristic velocity being UC. Now
N ,
n Uc 7
2
- Ay ~Ep oM
2 _ e
2 2 2 1>
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so that the source location is
Y% S
ST o ‘
o - |
. L)

Then the integral becomes
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which, upon regrouping, becomes

2..8.2
— c-UTDh 2
p?'(r,w) ~ —%—(Uﬂ\ . (G—D < % (3.115b)
Cr J/ J
o
since
2
wYy 51
o wD [¢]
—U— ~ ij— T ~ constant
¢ J

Equations (3.115) are the two classical similarity formulae, and they are shown in

Figure 3.19 to roughly correspond to the extreme frequency ranges of the measured

21,119

sound pressure levels. The analysis suggested that the low and high frequency

pressures are strongly dependent on the turbulence in the developed jet and mixing-
layer regions, respectively, and that the midranee frequencies are determined by the
flow at the end of the potential core region. Tne Equations (3.115) also show the

simple U§
(Equation (3.65)) from the requirement of simple similarity of the sources being

dependent on wD/UJ and pinDS. Other similar simple arguments concerning the

120

dependence of the noisc that had emerged earlier in this section

effective source-location had been given by Dyer. In ignoring refraction across
the moving-quiescent fluid interface, the above analysis applies only to broadside
radiation, © = 90°.

Although we have set the frame work for a more elaborate synthesis of the noise
in terms of the statistics of the Reynolds stresses, we have stopped short of that
analysis because of the labor required to accomplish it. Reference to the work of

100,104
Ribner

and Zelanzy121 by the interested reader will give the details of such analyses.

(summarized by Goldstein)85 and the more recent work, e.g., of Moon

The similarity arguments given above have shown the importance of the mixing
reglon in determining the intensity spectrum levels at high frequencies, and,
therefore, the dominance of the mixing region gynamics of the overall prwer. Recent
measurements of sound using a directional microphone in the fa ' field b+ Grosche,
Jones, and Wilhold122 indicated that the effective source distribution lies near the
end of the mixing region. The problem in interpreting such intensity measurements

with directional recelvers is that one first assumes that a simple localized
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convected source model truely describes the physical process then he deduces the
distribution of average source strength. The noise 1s actually an integrated
resultant of the effects of a distribution of sources, and there may be many possible

distributions giving rise to a given far field intensity.123 However, it has been

found useful to deduce the distribution of apparent sources and additional ffg;;]
124-126 | e been developed to do so. : ?‘iﬂ
127,128 . ‘o

for deducing sound source locations ..

schemes
A different approach by Maestrello

utilizes the correlations of pressure gradients near, but outside, the jet. The

sound pressure, at a distant point in space, is uniquely given by an integral, over

a surface surrounding the jet, of the normal gradient of the pressure on that sur-

face multiplied by the Neumann-Green function for that surface. Since the ambient @

fluid is isolated from the jet by this surface, and since the ambient fluid is

source-free, the correlation between far field and (directional) near field pressure

gradients signifies a cause-effect relationship between an effective source and

resulting noise. Maestre110127 reports that the maximum source density results ;.

from a region at Y~ 9D, which is downstream of the mixing zone.

3.6.3.5 The Role of Axisymmetric Disturbances in Jet Noise. A major shortcoming

exists in full reliance of turbulence measurements such as shown in Figures 3.21 and :..
3.23 to evaluate Equation (3.64) particularly for subsonic jets. That is, behavidr

of the wave number spectrum for k ~ ko << Lu/Uc cannot be elucidated from the meas-

urements of turbulence. More contemporary research has therefore taken a different

tack, that is, to interconnect the various events which take place in the develop-

ment of subsonic jet structure and noise. The visualization of axisymmetric eddies

in jets by Crow and Champagz,nez’8 and Browand and Laufer47 allows the clear qualita-

tive identification of the responsibility of these eddies in the development of
disturbances. Furthermore, these eddies can be ultimately traced to the modes of d
axisymmetric instability, as can be deduced from the early studies of shear

et
Layersi0r22:23

previously discussed in Section 3.2 (Figures 3.3 and 3.9). The
existence of instability waves at high Reynolds number, although deduced bv Crow
and Champagne, has been analytically confirmed by Crighton and Caster129 using [
stability thecry. Furthermore, a connection between the existence of forced shear
layer instability and radiated sound was identified in the experiments of MoorelBO
and Bechert and Pfizenmaierl31 although it had been earlier suggested by Mollo-

Christensen.95 In Moore's experiment, the circular jet shear layer was driven by a
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loud speaker inside the plenum chamber of the nozzle. Pressure and velocity waves
propagating along the centerline from the nozzle were seen to amplify when the
frequencies of those waves were confined to a restricted range that coincided with
the range of unstable axisymmetric mode frequencies of the undisturbed jet. These
waves were determined by visualization to modulate the vortex formation and pairing
in the mixing region. With high-level excitation of the jet, the magnitude of
induced disturbances at the driving frequencies did not increase in proportion to
the excitation level, but rather the broadband centerline pressure and velocity
levels were increased somewhat by the excitation. The broadband far field sound
pressure was also increased when driving the jet with a root mean square pressure of
only 0.08 percent of the dynamic pressure of the centerline (1/2 poUi). The results
were interpreted to show that in the formation of ordered vorticity from the
spatially growing shear layer vibration, undisturbed fluid entrainment by the large
eddies lead to increased turbulence that apparently increases the magnitude of the
pouiuj acoustic sources. As shown in Equation (3.108), the wave motion of the

shear layer itself cannot radiate sound unless the value of 82/3t2 (pou ) is large

u
17
-+

enough in the wave number range of |k|=k0; i.e., unless this second time derivative
is correlated over regions which are comparable to ano. It remains to be seen

46,47,132,133

whether, under conditions of vortex pairing, the time and space scales

in subsonic jets match the acoustic wave number. That these motions may be plausibly
considered 35134_136 radiators in supersonic jets is well-founded since their wave
speeds Uc exceed the speed of sound, but this is a class of flow which is well-

beyond the scope of hydroacoustics.

3.7 NOISE FROM UNSTEADY MASS INJECTION

This section will deal with certain general characteristics of noise that
result from a jet efflux that is either turbulent or bubbly. The latter case has
to do with unsteady two-phase motions (liquid and gas) although the complete subject
will be examined in Chapter 4. Unsteadiness of exiting flow brings about a Ug or Ug
speed dependence depending on the mechanism and this dependence contrasts sharply
with the classical U? dependence that is known for the developing free-jet. o
Furthermore, in the case of two-ph.:se turbulent jets, one would also expect a UJ
speed dependence, but amplified by a factor which is the fourth power of the ratio
of the speed of sound in the acoustic medium to the speed of sound in the two-phase

jet.
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3.7.1 Sound from Efflux Inhomogeneities

Wheni an inhomogeneous fluid is exhausted into a homogeneous medium, as
illustrated in Figure 3.25, sound can be created as a result of volume velocity
fluctuations induced at the orifice and turbulence in the ensuing two-phase jet.
The topic of the unsteady orifice flow was given attention by Ffowcs Williams and

Gordon137 and Ffowcs william5138 who examined the noise from low speed turbulence

exhaust. Ffowcs Williamsl38 deduced a UA speed dependence for this noise, but the
result is now superseded by a later paper (Ffowes Williams and Howe)139 which treats
the matter in more detail. Apparently, in the earlier paper, the compressibility of

the fluid in the nozzle was overlooked.

— —— -—
— ~

\ UNSTEADY /

\ EFFLUX, up /

™~ ~_ _— ~~CONTROL VOLUME
-—

S— e
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Tigure 3.25 - CGeometry cf the Problem of Unsteady Efflux into
an Unbounded Medium, D << )O
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That result applies to the case of the unsteady pumping of an incompressible

fluid from an enclosed plenum into a free space. In this case the pipe length from

B - . a4 .

the pump to the exit must be shorter than an acoustic wavelength. There is then a

? time varying rate of volume injection q, so that the far field sound pressure from
© the (unbuffled nozzle) is (Equation (2.27))
i po[q]t—r/Co
| Pl =
; Now, [q] = wvuAn
a where w, = pulsation frequency of the pump

u = amplitude of the velocity fluctuation at the nozzle

An = nozzle area
i The pulsation frequency w, will be proportional to the shaft speed Q; the velocity
) fluctuation will also increase in proportion to QD (where D is pump diameter) with

the proportionality dependent on the pump type. Accordingly, for a given pump the
E mean-square sound pressure should increase as
i — 4
| s
r

i which is the fourth power of shaft speed.

: We shall now consider cases in which compressibility enters the solution. The

i' noise produced due to Tij
the first case, consider the noise produced by a density inhomogeneity in the efflux.

in the jet will be discussed in the next subsection. In

i This will be modeled as a slug, shown generally in Figure 3.25 and in detail in i o :
Figure 3.26, which passes through a nozzle into the outer fluid. The length of the o
fluid slug, the length of the nozzle, and the diameter of the discharge nozzle will

be considered small compared to an acoustic wavelength. This problem was treated

in general fashion by Ffowcs Williams and Howe,l39 but here we will offer a few i 7!*i7:

physical arguments (retrospectively) in order to illustrate the fundamentals.

T STy T S

e
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Figure 3.26 - Slug Passing through a Nozzle

The average flow through the nozzle 1s essentially one-dimensional and

wl.,/(:S < 1. The noise comes from two sources, The first occurs as each of the slug

interfaces A and E are ejected; a pressure surge occurs in the nozzle that is equal

to the change in dynamic pressure (due to the different densities).
surge induces a piston-like particle motion across the orifice.
to a volume change in the slug as 1t passes through the pressure field of th

traction. The sound fvom the first source is derived from the one-dimensional

momentum Equation (2.2) integrated across each interface:

so the integral across interface A 1is

i
t
[y

ﬂﬁ dx, = PS'CJ 2
"TATT] 2 A

and across interface B it 1is

e Y1 s 2
.fpusdxl - 5 bB
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That result applies to the case of the unsteady pumping of an incompressible
fluid from an enclosed plenum into a free space. In this case the pipe length from
the pump to the exit must be shorter than an acoustic wavelength. There is then a
time varying rate of volume injection q, so that the far field sound pressure from
the (unbaffled nozzle) is (Equation (2.27))

po[q]t-r/C
R

p(r,t) = e

Now, [ﬁ] = u)vuAh

where w, = pulsation frequency of the pump
u = amplitude of the velocity fluctuation at the nozzle
A_ = nozzle area
n

The pulsation frequency w, will be proportional to the shaft speed {; the velocity
fluctuation will also increase in proportion to D (where D is pump diameter) with
the proportionality dependent on the pump type. Accordingly, for a given pump the

mean-square sound pressure should increase as

NI:OL\
>

2 2
P~ Py

a]

which is the fourth power of shaft speed.
We shall now consider cases in which compressibility enters the solution. The

noilse produced due to T in the jet will be discussed in the next subsection. In

the first case, consideijthe nolise produced by a density inhomogeneity in the efflux.
This will be modeled as a slug, shown generally in Figure 3.25 and in detail in
Figure 3.26, which passes through a nozzle into the outer fluid. The length of the
fluid slug, the length of the nozzle, and the diameter of the discharge nozzle will
be considered small compared to an acoustic wavelength. This problem was treated

in general fashion by Ffowcs Williams and Howe,139 but here we will offer a few

physical arguments (retrospectively) in order to illustrate the fundamentals.




v. o 2
X, t) = s o fU\"143 . _
Pradm(x,t) = o (Cs> 5 {at ®, PB)il (3.119)

where the brackets denote evaluation at the retarded time. This radiation is
monopole-like owing to its direct dependence on the pulsation of the volume VS.

The two components Pr and P however, depend on speeds of sound in such

?
adm radd

a way that the dipole component overwhelms the monopole component whenever

U (Cs> :
— = >> 1
CJ ]

or, when

Cs U
T >> T (3.120)
J J

This 1is generally the case unless speed of sound in the slug is very low and the
discharge velocity is very large.

One such instance could occur if the slug is a bubbly slurry in an otherwise
homogeneous jet liquid. In this case (see Chapter 4) the speed of sound in the slug
could be quite small relative to CJ.
Note that the two contributions to the radiation have different dependences on

speed. Letting

where the change in pressure coefficient is nondimensional, we find

-AO ul

} po_-p 3
0 s J u 2
radd ~ 8arl DJ ( 0. ><_C_ > ()JCJ (3.121)

p

while
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v p 4

s ofU 2

P ~ —”'<-—> p.C (3.122)
radm 8ﬂrL2 ps CJ I

Therefore, the dipole sound power increases as U6 while the monopole sound power

increases as U8, reflecting the inequality of Equation (3.120) that the monopole

source 1s essentially a high-speed source.

Referring again to radiation caused by a bubbly slurry, and considering now the
dipole component only, we write the density of the slug in terms of the jet liquid

density pJ, the gas density pg, and the volume fraction of gas 8. The density is

Py = Bpg + (1-B) Py

Therefore, in Equation (3.108)

Ps=P; i B(og-og) N
Py Py

if og << pJ. The radiated sound pressure can now be written

- ) 3
pradd - -S-Tf_rl.i.. B p_j(g_T> pJC.ZI (3.123)
The sound pressure will increase linearly with the volume fraction and as velocity
cubed. Lengthening the nozzle (increasing L) reduces the noise. For a given
volumetric flow rate (AOU) the sound pressure Increases as the orifice area is
decreased as A;Z.

Proceeding as above we can also examine the turbulent efflux of a single-phase
compressible fluid. The average velocity-induced pressure fluctuation across the
orifice, pJuoU, drives the fluid in the free field. This causes an acoustic particle
velocity in the pipe orifice given by Equatien (3.117),

u - pJuoU u u_
p pJCJ oC
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so that the radiated sound pressure in the free space is

pA
i - 20 (4
: Prad drr T p
Pofo U,
i 4mr o Al 0 .
where we have replaced 3/3t by U/Al’ Al being the integral scale of the turbulence f:'
in the axial direction. Since u, ~ U we can write f;ﬁ
I 5
A 3 :
s 2 (U
Prad ~ Zmeh, Po%s (CI > (3.124) "
1 J )
6 9
which shows the sound power increasing as U . o
Other problems of this sort have been examined by Ffowcs Williams and Howe139
who treated the effluxes consisting of occaslonal slugs of fluid with density varying
I from the main fluid, Whitfield and Howelao who considered noises from volumetric ;;_;;;
0
pulsations of bubbles passing from the nozzle into an ambient pressure field (see SrTerT

also Chapter 4), and Plett and Summerfeld141 who considered the density and velocity SR

inhomogeneities analogous to the above.

3.7.2 Inhomogeneities in the Free Turbulent Field '
Another problem related to two-phase jets has been treated by Crighton and ';}i
Ffowcs w1lliam5142 and by Crighton.89 Basically, the analysis considers a bubbly fffi
turbulent region of gas concentration f which is surrounded by the ambient fluid with Ei "
. properties po, Co. In the absence of any nat mass injection or forces on the fluid, %:]*T.
the appropriate form of the stress tensor becomesl42 lfff,f
_ Ty (1-B) D+ (p=Chp) 6,y + 1, (3.125) .

f Instead of Equation (2.50) where p is the dilatational pressure fluctuation in the

turbulent two-phase medium. Equation (2.59) is wrictten as
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2 [T,.]
>yl 3 | "
pa(x,t) T 4m axi8xj J]]. r aviy)

X T,.) 5
= 11” __i 2 J’J.J.—%L av(y) (3.126)
which become580
- 1 13 2 >
p_(X,t) = ——f”[p-oc ] 4v(y) (3.127)
a &ﬂCz r 8:2 °

Adiabatic pressure fluctuations in the two-phase region are related to density

fluctuations in that region by &p = C2 Sp so that the time-varying part of the inte-

2

grand then Equation (3.127) becomes 6p - C (Gp/C ). When the external fluid is

water and the bubbly region contains gas, Cm < C0 then becomes

2 -
Qlé av (y) (3.128)
dt

—
s
El Mlo )

Now 1f disturbances in the region are characterized by velocity u, then the pressure
is given by p ~ pu2 ~ Py u2 and 9/0t ~ u/f, where % is the macroscale of the dis-
turbance. Therefore, with the elemental volume of the disturbance &v ~ C
(3.127) gives

, Equation

c £ C
> o] 0 4
p(x,t)~‘< 3 ) — Ju (3.129)
m
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by the factor Cglci > 1. Also, the field has an omnidirectional radiation rather

than being of a typical quadrupole nature, as seen in comparing Equations (3.126)

' and (3.127).
* Finally, it should be noted that the speed of sound in a mixture is given by

l C = _Rbi
3yl

where w, 1s the resonance frequency of the bubbles of radius Rb(seeEquation(A.ZO)).

Thz enhancement of radiated noise intensity brought about by the factor
(CD/Cm)A, as pointed out by Crighton89 will be as much as 50 dB over that of single-
phase jets for concentratlons 8 on the order of 1 percent. This and the previous
) analysis of unsteady mass flux suggest important hydroacoustical sources for which
- experimental confirmation 1s totally lacking.

L]
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3.8 APPENDIX A — MEASUREMENT OF CROSS SPECTRAL DENSITIES
WITH FILTERED SIGNALS

In Section 3.5.3 we examined the theoretical properties of the cross spectral
density as a Fourier transform of the space-time correlation. Now we examiae the
operational requirements for obtaining this function in experiments. Extensive dis-

79 and Bendat and Piersol.80

cussions of this subject are given by Lee
Consider two sensors giving electric signals in response to velocity, pressure,
or acceleration fluctuations., The physical and electronic arrangements are shown in

Figure 3.A27, for the case of disturbances convected past two probes as would be the

vqft) vz(n

Figure 3.A27a - Physical Arrangement

vqit) H(f) |

y, [772
T dt— v1(L46) vylt+ 7,A0)

T/2

Vzm | H(f) T

Figure 3.A27b - Electronic Arrangement

sin Aft/2
AfY/2

IHf)1 o5
—1 | ~ &t s

. _ S

t 0 1 g

fq -
FREQUENCY TIME DU

DOMAIN DOMAIN B i

Figure 3.A27c - Ideuslized Filter Function L]

Figure 3.A27 - Diagram of Physical Arrangement and Electronic Components '_-' R
ol M

and Functions which are Used 1in Measurements of RPN

Cross Spectral Densities :'_, i

. ]
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case in a turbulence measurement. The electrical signals are passed through matched
electronic filters, which pass energy only within the frequency range fl + Af/2.
For simplicity, the filter function H(f) is assumed to be rectangular in shape so
that the temporal response of the filter is given to the right of Figure 3.A27c.
One filtered signal 1is delayed a time T after it is filtered.

The steady-state voltage leaving the filter is given as

t
v(t,Af) = j V(tl) h(t-tl) dtl

-C0

(3.A128)

i.e., the output of the filter at t depends on the information entering the filter
for all time preceeding t. Rearranging Equation (3.A128),

o2

v(t,Af) = j h(tz) v(t2+t) dt2

(o]
or we can write
=)

v(t,Af) = f g(tz) h(tz) v(t2+t) dcz

o0

(3.A129)

where g(tz) = 0 for t2 < 0. Now, introducing the generalized Fourier transforms of

h(t) and v(t) wc can write

)

1 "
g(tz) h(tZ) = 5 |’ H(w") e

{17

-{w''t
2 dus"

-{w'(t
V(in') e

e U1

+t)

2 d(AJ'

v(t2+t) -
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o so that (by Equation (2.123))

> * . ~i(w"tw') t
" 2 ~iw' "
v(t,Af) = J‘ dt, f dw J. dw' e P t(—-——;’ﬂ) V{w') Hw™)

—0

‘ - f duw" Jm dw S ') e 1t vty Hew")

i& oo -0

a = ) e H(w) V(W) d(w) (3.A130)
;- The frequency f is related to w by w = 2uf,

Now, the delayed filtered voltage can be written

1 . L
v(t+i,0f) = J MY Bt V') du! (3.4131) o SR

and the time-averaged product of the voltages becomes

. i T/2
v (e, AE) v, (64T, Af) = v, (6,A8) v, (e41,4f) dt R
-T/2 .
‘o ‘
(e ¥} 129 " ‘V :7 ]‘
. W
- J' dw J’ do' H*(w) H(w') VA (w) V(w') AL, - "
®
1/ R
o _'}: J e-i(w-w Jt de
-1/2 :lj'-':',
°
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In limit as T + = we invoke Equation (2.122) so that

=)

vy (£, 0F) v, (t+T,8f) = J‘ ]H(m)|2 {%iz-%ﬂ Vi (w) Vv, (w) et

~00

“T 4w (3.A132)

Recalling, now, Equation (3.42), we can rewrite this result in the form of the

cross spectral density of the voltages, i.e,, we now have

«@

! iwt 2 -
vl(t,Af) v2(t+T,Af) = J e ¢v1v2(u\) [H(w) |© dw (3.A133) -. -

- 00

where ¢ (w) has both amplitude and phase.
Viva

To complete the analysis we show the relationship between the analytical filter T ‘e

function H(w), that is defined over ~ ® < u < o, and the physical function H(f), R

that is defined over 0 < f < «, Returning to Equation (3.A129), we note that

® 1wt
H{w) = I g(tz) h(tz) e dt2

. : .
1oe, - .
A R
However, since _ .

* ~imt2 IR

H(-w) = h(t,) e dt, R
© . e

and since h(t2) - h(-t?), we have the two-sided transform pair
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v o]

1mt2
H(w) + H(-w) = J‘ h(tz) e dt

-0

2

and

a0

h(t,) = %; J. [H(w)+H(~w) ) eVt g

-0

Note that H{(-w) = H*(w), i.e., is the complex conjugate of H(w).

one-~sided filter function

a0

H(E) J- h(t2) cos 2TTft2 dt2
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which is the one-half of the complete transform of h(t); and so
HOE) = 3 (H(wm2n6)+H (~w=-2n5)]
is a real function, having no imaginary part, and, therefore,

|i1(f)|2 = lRe(H(w=2nf))[2

Now, we define the <

for 0 < f < e
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= |H(uw=2mE) |2 (3.A134)
Using Equation (3.Al133) we can determine the autospectrum of the voltage as
«w

vy (£,06) v (t,0f) = -[ o (w) [H(w) |? dw (3.4135)

-

If we agsume that the width of the filter, Aw = 2nAf, is narrow compared to the

order of variation of ¢vv(w), then Equation (3.A135) gives (since ¢(w)=¢(-w))

viee,80) = ¢ (@ (a@ * + |He-w|?) o

2 ¢ (w=2mf) |H(f)|2 (21Af)

Therefore, the autospectral density is found by

vi(t+Af)
¢  (w=27f) = lim ————(— (3.A136)
vv AE~0O 4m Af

where we have let [H(f)l2 = 1 inside the pass band of the filter. The physical

spectrum, say va(f) can be written as

2 2
= < < @
vi(e,86) = G (f) [H(F)|© Af  for O < f
so that measured spectrum is related to the autospectral density by

G,v(f) = 41 ¢Vv(w=2nf) (3.A137)

\

The cross spectral density of vl(t) and vz(t) can be obtained from Equation

(3.A133) as

L A




[ ]

v,V

iwor ~ion
vl(t,Af) vz(t+T,Af) = [év (wo) e + ¢ . 2(-u)o) e

x |H(w )

Letting
io(w)
¢ (W= |o, (W] e
V1ve V1va
with
a(w) = - a(w) (3.A138a)
and
fe (] = |o (~w) | (3.A138b)
Vl\’2 V1V2
then
vl(t,Af) vz(t+T,Af) = |¢Ulv2(u0=2ﬁfo)| cos(2nfqr+a) (3.A139)
= C(1,Af)

is the narrowband crose cerrelation in terms of the cross spectral density. The

various components of the cross spectral density can be found {rom this function as

~1
= = = ¢ O =27 o~ ) 2
C (1 2f0> + l.vlvz(u,O 27f0)| sin o (3.A140a)

auad




L]
e

C(1=0) = |¢vlvz(mo=21rfo)| cos a (3.A140b)

3 from which the amplitude and phase may be determined.

Modern laboratory instrumentation allows a direct measure of the cross spectral
density in which a Fourier transform is obtained over a limited interval in which
l h(t) 1s replaced by a window in which the signal is s.mpled. The transform,
i Equation (3.A130), is then obtained directly and the spectrum functions are obtained
? from Vl(w) and Vz(m).
. Two symmetry properties for the cross spectral density and the filter response
F function were cited above, Equations (3.A134), (3,Al38a), and (3.A138b). These
E
{

properties arise from the behavior of the cross correlation, as illustrated in
Figure 3.A28. letting the cross correlation of the signals be Rlz(T), then the
cross spectral density is

i vl

fae)

. 1 iwt ]
wlz(w) 57 J~ e Rlz(T) dt
-0
1f Rlz is symmetric about 1 = 0, i.e.,
Ry, (1) = Rn(-r)
°
then o
b (w) = % R,, (1) cos wT d1 B
12 ki 12 ®
° T
which 18 a real function., However, if the correlation function is symmetric about a ?1;521.
time delay T = T, for example, e
-9

R(T) = R(1-T) (3.4141)

then, letting 1' = 1 - 1
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A temporally symmetric signal, then, has a real spectrum function and conversely a fﬁ};ffff

nonsymmetric (about 1=0) signal correlation has a complex spectrum function. There -
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are many general cases in which the symmetry condition may not hold, in which case
the phase versus frequency line wiil be curved, and the amplitude will not neces-
sarily be symmetric about * w.

We have seen in Section 3.6 (as we shall see further) that space-time cor-
relations of turbulence generally appear as in Figure 3.A28b. Therefore, a time
delay T = r/Uc (see the top of Figure 3.A27) occurs. The phase of the resulting
cross spectral density is, then, of the form mr/UC.

Extension of the definitions introduced in section 1.4.2 is now appropriate.
Just as the pressure spectral density G(f) is defined by equation 1.101 so a power

spectral density n(f) may be defined as
p =f n(f) df (3.A142)

for n(f) defined as a one-sided function (f20) or as

r =J- mT(w) dw (3.A143)

-0

vhen defined as a two-sided function. The one-third cctave band power spectrum

used in Figure 3.18 is defined as

>4

P(f) =J n{f) |H(f)|2 df
(o]
= n(f) Af
= n(f) [0.233] ¢ (3.A144)
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Finally a two-sided intensity spectral density is defined as .

I =f I(w) du S -~ (3.A144)

and similarly as a one~sided spectral density. .
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CHAPTER 4
TWO-PHASE FLOW NOISE
4.1 INTRODUCTION
4.1.1 General Concepts

This chapter will be concerned with the acoustics of bubbly mixtures, cavitation
noise, and ncise asscciated with the formation and splitting of bubbles. It will,
therefore, be concerned with the wide range of monopole noilse sources often occurring
in hydroacoustic applications as well as with the problems of noise propagation in
fluid media in which there may be considerable concentrations of suspended gas
bubbles. Another class of two-phase flow-noise that will not be addressed and which
occurs in solid-gas suspensions (e.g., dusty gas) 1s dipole-like and due to the
interactions between the particles and the gas. This noise production is inefficient
compared to that in liquid-gas mixtures but still potentially greater than the noise
of free jets of single phase. A general theory of noise from unbounded multiple-
phase fluid media, in which there are no bubble or particulate formations or in-
jection, has been given by Crighton and Ffowcs—Williams,l* as previously described in
Section 3.7. In cases of free bubbly mixtures not adjacent to a solid body, noise is
considerably augmented over single-phase shear flow noise when the bubbles split or
coalesce, or when cavitation occurs.

A common feature of all the phenomena discussed in this chapter is that motions
and subsequent sound production of a bubble (or a population of bubbles) are produced
when the bubbles are subjected to a pressure field. The motions of the suspended
bubbles which are initially spherical in shape are essentially volume pulsations,
accounting for the monopole nature of the noise., Essentially, fluctuations in
pressure on the liquid side of the bubble wall about an initial equilibrium value
account for the motions. It shall be shown (Section 4,2.1) that suitably small
pressure fluctuations initiate volumetric fluctuations which resemble a linear
single-degree-of -freedom oscillator. It is this linear motion which controls
classical behavier of sound propagation in bubbly media (Section 4.2.2). At larger
amplitudes of pressure fluctuation which persist for a sufficiently long time,
exceeding a natural period of oscillation, nonlinear behavior of the bubble dominates
the motion and the bubbles may grow and collapse explosively (Section 4.2.3), thus

producing cavitation.

*A complete listing of references is given on page 431.
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Diffusion of gas either into or out of the bubble also may account for bubble

growth or disappearance, but the extent of growth by this means will depend on the

i concentration of dissolved gas in the liquid, the type and amount of gas in the
bubble and the time scale of the pressure fluctuations. The volume accelerations
that are assoclated with this motion are so small that no appreciable noise 1is
produced by them, The significance of diffusion for our purposes, therefore, is

! that bubbles are permitted to grow to a large enough size that under subsequent

undulations of environmental pressure, nonlinear explosive behavior may occur,
A study of the explosive behavior of bubbles, or cavitation, its onset, and

the noise produced, will occupy the core of this chapter (Sections 4.3 and 4.4). In

ii a crude sense, cavitation will occur when the pressure in the 1iquid surrounding a ainn——
nucleus becomes equal to (or less than) the vapor pressure of the liquid for an -
appropriate length of time. A cavitation site, or nucleus, is really a small gas
or vapor-filled bubble or interstice in a solid particle that is convected with the

- moving liquid into and througnh a low pressure zone. Cavitation occurs as the ;;zéé;
smailer bubble grows to many times its initial size. When the pressure surrounding ;,l
the cavitation bubble subsequently increases, the conditions will favor the collapse
of the large bubble implosively. This event causes most of the noise that is pro-

I duced in the cavitation process. Therefore, there are four important subjrcts which ,,__..h..

must be understood in order to explain the onset and behavior of hydrodynami:c cavi-
tation: conditions favoring explusive growth (Sections 4.2.3 and 4.2.4), the

parameters which control the maximum sizes of cavitation ‘ovbbles and their wubie-

i' quent collapse (Section 4.2.5), a purtrayal of bubble dynamics in terms of hydro-
dynamic variables (Section 4.3), and a relationship between the stages of bubbLle
- motion and the spectrum of cavitation noise (Section 4.4).

One may think of cavitation as the production of a "hole'" in the liquid which
collapses once the conditions favoring its creation are released. The energy
released during collapse 1is considerable,* and most of the ernergy is stored imn su e
- whatever compressible gas is in the bubble and in the elastic deformations of the
:; adjacent liquid and any contiguous solid surfaces;, only a small fraction, on the
o order of 1 percent or 0.1 percent, is converted into sound. The cavitation is,

.

therefore, not only capable of producing noise, but also it causes damage to

- *As a numerical illustration of this point, a bubble, 1 cm in radius filled
with water vapor and collapsing in an ambient pressure of 1 atm w{ll gencrate an
average of approximately 460 watts over the 1 ms time interval of its collapse,
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hydraulic structures; this damage has been termed "erosion." It 1is, in fact, this
latter problem of cavitation erosion that has dominated the literature on applied
cavitation research with comparatively little attention given to cavitation noise.
However, 1in recent years, attention has also been given tn the acoustics of cavi-
tation as applied, for example, to the detection of potentially-damaging cavitation
in pumps and reactor components as well as to the problem of improving habitability
in crewvcpaces over propellers in merchant ships. Cavitation can alsoc occur near
high—powvered acoustic sources, with a consequent reduction in the radiation
efficiency of the source as well as possible damage to the active surface of the
transducer .,

In the cagse of cavitation which arises near acoustic scurces, called ''acoustic"
or ""ultrasonic" cavitation, when the local rarefaction pressure becomes less than a
critdical pressure, the inciplent cevitation will consist of small bubbles that grow
in the liquid, gradually becoming visible without microscopic aid. This critical
pressure, as we will see in Section 4.2, is often comparable to, although not
necessarily equal to, the liquid vapor pressure and it will depend on the nature of
the impurities which may exist in the Liquid, It is now generally recognized that
in order for cavitation to occur, these impurities, or nuclei must exist, They
congist of small suspended bubbles in some combination with particulate matter which
has not been fully wetted by the water, These latter impurities contain entrapped
gas and are often called "hydrophobic' particles. When the liquid has a large
concentration of dissolved gas that i{s in equilibrium with suspended bubbles, the
gas will slowly diffuse jnto the bubbles from the liquid fhase under the influence
of an undulating pressure field., 7This cavitation {s called "gascous cavitation.,"

Because inciplent ultrasonic cavitation involves the response of a nucleation
site to a prescribed and deterministic pressure ficld, the prediction of its
occurrence comes down to assessing the population of nucled or, alternatively, the
tensile strength of a given sample of liquid. Conscquently, a large body of
literature in the area of ultrasonic cavitation dcals with the assessment of liquid
tensile strengths and other aspects of nucleation, FPure water, without suspended or
dissolved gas or suspendea particulate matter, will not cavitate until the
rarefaction or tenafle pressure is large; the maximum tenpile strungth observed for
pure water is oo the order of -280 atm.':'3 This pressure fo far below that which {u

achievable with hydrodynamic pressurc fluctuations.
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Since cavitation is an undesirable hydroacoustic phenomenon, a major portion

of published work has dealt with
its "inception.'" The conditions
more difficult to define because
liquid motions as well as in the

flow around bodies at low values

the prediction of the onset of 1its occurrence or
which favor incipient hydrodynamic cavitation are

of the complexities which exist in both the unsteady
distribution of cavitation nuclei. 1In the laminar

of Reynolds number, the incipient cavitation in

liquid, which has a large number of suspended bubble nuclei, has a rather straight-

forward and classical behavior (see Section 4,3). When the hydrodynamics becomes
turbulent, so that random hydrodynamically-induced rarefaction pressures may occur,
then the inception can become more controlled by the viscous flow properties than by
the population of nucleativun sites, In these cases it is difficult both to scale-up
prototype model performance a3 well as to repeat cavitation inception measurements
on the same model in different laboratory facilities. Viscous effects in the
boundary or shear flow may depend on such scale effects as free-stream turbulence,
surface smoothness, and Reynolds number, etc., It is, therefore, frequently difficult
to achieve exact dynamical similitude in all details of cavitation model testing in
g0 far as the evaluation of incipient conditions 1s concerned. The acoustical
problem is gimilarly difficult to quantify, because the motions, both of individuul
bubbles and of the aggregate, depend on the conditions which favor inception.
Therefore, the problem of noise generation cannot be considered separately from the
hydromechanics of inception.

In this chapter we shall be concerned, therefore, with the dynamical properties
of single bubbles 1in liquids (Section 4.2), as well as with the propagation of sound
ip fluids with suspended bubble populations. From the dynamical behavior of single
bubbles, a set of rules will emerge which may then be used to develop a format in
which conditions for inception may be quantified in terms of hydrodynamic variables
(Scction 4,3), The dynamics of the single bubble will also be used to formulate an
ideulized frequency spectrum of acoustic energy, and thie will be compared to
Finally, the

Related texts which

muasured nolee {rom jets, hydrofoils, and propellers (Section 4.4).
noise from bubble splitting will be discussed (Section 4.5).
cover, in depth, the subjects of cavitation inception, dynamics, and damage include

4
the review article by l-‘lynn2 and the monographs by Knapp, Daily, and Hammitt,

[ A
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4.1.2 The Cavitation Index and Cavitation Similitude

The general elementary cavitation problem is illustrated in Figure 4.1, which
shows a hydrofoil shape and its surface pressure distribution, Ps. The surface
pressure is related to the tangential velocity in the flow near the surface, US by
Bernoulli's equation for steady flow

REGION OF
CAVITATION

SUCTION SIDE

P y———— ———
> = - s T
e —— PRESSURE SIDE

SUCTION
~ == == PRESSURE

SURFACE PRESSURE, Ps

REGION OF
CAVITATION

Figure 4.1 - A Cavitating Hydrofoil, its Surface Pressure
Distribution, and its Region of Cavitation

1 2 _ 1 2
P ¥ 2 poU°° " Ps + 2 poUs (4.1)
so that a pressure coefficlent C_ may be defined
Ps - P US 2
I“p——‘uz—= CP =1 -(E;) (4.2)
2 "o o

where P_ and U  are the upstream ambient pressure and velocity, respectively. The
increased velocity on the curved part of the hydrofoil causes the surface pressure

| to be less than the ambient pressure. Cavitation will occur when the pressure in
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the liquid, which will be lowest near the surface, is rarefied down to some critical
pressure, for example to the vapor pressure PV.* Thus, when the minimum pressure on

the hydrofoil is less than Pv’ cavitation will occur

(®) <@
S min v

or

1 2
P, 2 (C) (3 ou2) +® (4.3)

min

An incipient condition will occur when the equality exists because this
condition will mark the cavitation threshold. Therefore, the cavitation index is

introduced as

P, - P,
K= ii——ai— (4.4)
2 Do @©

to express the relationship between pressure and velocity that determines similarity.

According to our inequality, Equation (4.3), cavitation will occur when

*The critical pressure will be equal to Pv vhen the free-stream contains cavi-~

tation nuclei of lO.-3 cm radius or larger, and the flow over the hydrofoil is
laminar.

234

PRI PRl LN IS s N

N
-—
'@ /
. -4
.
I T i=moerod
e

- o e e e
L _DPEPORPATARRY
! ' ‘Y




The threshold or incipient condition will exist when

K = =C (4.5)
i pmin

In more complicated geometries, e.g., a pump or a propeller, the parameters of

the undisturbed flow into the cavitating surface may not be known or they may not bte

of engineering interest. In these cases steady flow exists but there may be a

velocity—-dependent pressure difference, the reference pressure, P and P__ for the

ref
surface; 1i.e.,

[Ty PSP

P = P + AP . @
ref i SIS

Furthermore, rather than the resultant velocity (resultant tip velocity in the case

of the propeller) a reference velocity Uref is often used so that a parameter "*-.—-*"“’
Preg = Py
Vo m——_.
K 7 U2 (4.6)
2 Po ref

is appropriate. This parameter is related to the previously defined index by

K' = K<_‘Uw \2+ 1 ap. .
‘rel / Epuu;ef
As long as dynamical similitude exists between one scale size and the next, so that 'f;l;
fixed proportionalities between U_ and Uref and between AP and 1/2 poU2 are main- Tt o
tained, then K' is a dimensionless cavitation number which will describe relative
cavitation performance. As previously discussed, when K' is less than some thresh-
old value, e.g., Ki, then cavitation will occur in the system. In this latter usage, o

-——

K' is a parameter which is a measure of the relative cavitation performance of oue
machine to the next. Nomographs are given in Appendix 4.C for computing cavitation jiﬁﬂaﬁvj

indices for propellers.
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Complications occur when it is desired to satisfy simultaneously viscous and

cavitation similitude. 1In this instance it is ideally necessary to maintain equal

m Reynolds and cavitation numbers, 1i.e.,

o (- (8, .

and

P-PV P-PV
K = T 5 = I——UZ (4.8)
2 po M 2 po

If the ratio of full-size to model size is 5 > 1, then Equation (4.7) requires that

the velocity of the model test must be in proportion to the full-scale as

if both phenomena are examined in water at nearly equal temperatures then \)N = \)5.

The pressure required in the model test is, therefore,

2
.(L.Ey_)lq = U_M = Sz
(P-P) U

V'S s

If the scale factor is § = 10, then Ur‘ = 10 Us and (P-Pv)M = 100 (P—PV)S. This

. 1
L, high pressure may be well outside the operating range of the facility. A common

practice 1is to forego viscous similarity and let U, = US so that the model test is

M
conducted at a low Reynolds number,

R

s

w|—

Ry =

This procedure allows the hydrostatic pressures in both scales to be equal and,

therefore, within the limits of facilities.
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An additional complication arises in propeller testing when it is desired to
operate the propulsor in the wake of a surface ship.s-lo In this case one may wish
to simulate the change in hydrostatic head exerted on the propeller blades as they

rotate, This requires that the ratio

2
PV

OOgH

be held constant, where H is the depth of submergence and U is proportional to the
propeller tip speed (mnD). This scaling, known as Froude scaling, 1s represented

by the constant number (called the Froude number)

U

F = ——— (4.9)
1/2

T (g) /

so that it is required to have

1

w1

US S1/2

as well as the condition of Equation (4.8). This gives, for the hydrostatic

pressure,

(®-P)_ S

but now th: Reynolds number is even further reduced

Unfortunately, the dynamics of the boundary layers (and other aspects of

viscous fiow) on the body in its noncavitating state are, as we shall see in




Section 4.3, intimately connected with the inception and type of cavitation.
Therefore, the differences in scale size and Reynolds number bring to bear certain
"scale effects' which relate to deviations in exact viscous flow simulation and
which are only now being understood. Some of the early discrepancies in model
testing have been reviewed in this regard by Holl and Wislicenusll and Holl12 un-
fortunately at the time of those reviews few good explanations could be offered for

the discrepancies.

4.2 BASIC EQUATIONS OF BUBBLE DYNAMICS

In this section we consider the conditions that are necessary for the mainte-
nance of small-amplitude bubble vibrations, quasi-static bubble equilibrium,
necessary conditions for nonlinear bubble motions leading to cavitation, and the

effects of bubble gas and liquid compressibility in the collapse of cavities.

4.2.1 Linear Bubble Motions

The dynamics of bubbles in a liquid responding to an imposed pressure have been
considered with varying degrees of complexity. The first and simplest analysis is
that of Rayleigh,l3 later elaborated by Plesset14 and by Neppiras and Noltingk,ls’16
in which the liquid surrounding a spherical bubble is incompressible. In Rayleigh's
analysis, the medium inside the bubble is liquid vapor so that the internal pres-

15,16

sure is constant. Plesset14 and Neppiras and Noltingk allowed the internal

pressure to be also determined by insoluble gas as well as by surface tension.

1 1
Later Houghton ’ introduced viscosity, Blue18 calculated and Howkins19 measured

resonance frequencies of a bubble attached to a wall, Shima20 examined effects of
liquid-phase compressibility finding them small for periodic oscillations in water, -.3;22{;3
and Strasberg21 examined the resonance of nonspherical bubbles. Figure 4.2 shows ' o
the relevant geometry. The pressure difference across a segment of the bubble wall, L
is balanced by the surface tension forces. Using the notation of Figure 4.2b, this
instantaneous force balance is

(Pi-P(Rb’t)) R2R L§AD = [SRléé] A + [SRZLG] A8

1

where S is the surface tension for which the units are force per unit length and

v

e
A
e
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Figure 4.2a - Spherical Bubble in an Figure 4.2b - Thin Film Segment
Unbounded Liquid

Figure 4.2 - Force Diagrams for a Spherical Bubble

where R1 and R2 are the (possibly different) radii of curvature in the orthogonal
directions. For the spherical bubble, R1 = Rz = R so that the condition necessary
for equilibrium is (R is the instantaneous radius and Ro is the equilibrium, or

rest, radius of the bubble)

258

Pi - P(R,t) = Y (4.10)

In the general case, the internal pressure in the bubble is the sum of partial
pressures of the vapor pressure Pv and the total equilibrium partial pressure of
dissolved gas Pg irn the liquid. During the bubble motion, this gas is compressed
or expanded so that the partial pressure varics with the bubble radius. Typically,
the ideal gas law is assumed in order to simplify the thermodynamic properties of
the enclosed gas and so to provide a simple cquation of state. The dependence of

pressure on volume is then given by the simple relationship

239

Tt e e T T e e et e e e e

! hestend

e R P

t
3. - -, '




é-.'. PN NN YRR WAL N

where the variables subscripted "o" apply to the iritial state. For adiabatic

motions (no heat transfer from the gas to the liquid), v 1is the ratio of the specific

heat at constant pressure to that at constant volume (y=1.4), for isothermal con-~

traction y = 1. Plesset and Hsieh22
linear oscillations of bubbles finding that
oscillation frequencies which are less than
for oscillation frequencies which are above

The equilibrium pressure at the bubble

P(R,t) =P +P
v 86
Spherically-symmetric motions in the liquid

o o + u
o DO r

have subsequently analyzed periodic forced

the motions are 1sothermal for
the resonance frequency and adiabatic
resonance.

wall when the radius is R is then given by

3y

R
o 2S /
(R_> - (4.11)

are governed by Equation (2.2),

aur Jp

ou ar

For the incompressible motion we let the radial velocity be the gradient of a

potential,
Yr T ?r¢
so that

and integrating along a stream tube from r = R to a distant point r, for r > R

o)

PN RN




2B R 4 2 (70017 - 19,017 < - PR-R@E, 0]
o

For incompressible motions, Chapter 2 gives the spherically-symmetric potential

.2
é(r)=-5§—

so that an equation for the bubble wall velocity is

. -~
w2 ? - B pn) (4.12) S
° o i
where r 1s now selected so that r > R. Equations (4.11) and (4.12) may be combined Q:;' ‘ 1
because the pressure balance of Equation (4.11) across the wall may be taken to apply . ‘
for any value of R. The pressure P(r) may be considered as a time-varying hydro-
dynamic driving pressure.

Equation (4.12) is the basic equation for incompressible liquid motion adjacent r;;~“—;
to a bubbie and it is accurate to within an order of R/Co’ where C_ 1is the speed of Tufif?f
sound in the liquid. When the local hydrodynamic pressure F(r) decreases, the e
bubble wall accelerates outward. For small oscillations, the term quadratic in R ;%};:;
is small, but for a critically small value of P(r,t) this term, which is always ;ig.;;;a
positive, controls the bubble growth and will dominate the linear acceleration term. kfjf o

Several useful alternate forms of Equation (4.12) may be derived which cast ﬁ.j{ﬁ
the oscillations of bubble volume in terms of an applied perturbation pressure that ' f}i
is superimposed on a static equilibrium pressure. The response of the bubble .
volume can be found by substitution of f'!' R

T e
Y .

where V is the volume velocity of the bubble, into Equation (4,12) which gives the

alternative relationship




[ N\

T.—r T e g -

2
8] " N ’
2y - ——9< v ) = P(R) - P(r,t) (4.13)

4TR 2 lmR2

The in :antaneous volume will oscillacte about its equilibrium value Vs under the
influence of the driving pressure P(r,t) which oscillates about a static value that
determines the cquilibrium state of the * "ble. Thus, let this static pressure be

P_ so that
o
P(r,t) = Po + p(r,t) (4.14)

Replacing the pressure on the liquid side of the bubble wall by Equation (4.11) and
noting that the equilibrium pressure of gas in the bubble of equilibrium radius Ro
is, by Equation (4.10),

v

wro
)
lav]

pgo = PO(RO) +

o}

Introducing the local static ambient pressure,

25
Pgo Po + Ro - Pv (4.15)
we find
U 2 \
Po v lo( v L lp o - 28 (V_o\
4R 2 4R v o R \Y /
o o
—(P-ﬁé—P>=I’~IKnU
v R I8
9]
= -p(z,t) (4.16)
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which is an alternative form to both Equations (4.12) and (4.14). For small

oscillations, we use the first term of a Taylor's seriles

v \Y -
P (;ﬁ1> -pP - %T‘P V=Y ) (4.17) -
8o &o o & ° o
.9
and assume that the bubbles are large enough that the changes in surface-tension j-ﬂfj
contribution can be ignored. Equation (4.12) reduces to the linearized form :Eﬂtj
derived by Strasberg23 ?'ﬁl
e
P R
Py . Y g, s
=V = o .-
R Vv (YY) p(r,t) (4.18) S
o o R
.o
To determine the resonance frequency assume free simple harmonic motion at a R
frequency Wy such that the volume fluctuations are given by
—iwot
V-V =ve .
o B
The frequency of free motion satisfies T
i
YP .v _..'..
. p 8 L
2 o o L.
- = 4.1 L
Yo <’””" >+ v ° (419 S
o o R
..
Using Equation (4.15), the equilibrium gas pressure can be replaced by the components ’f:f
involving the equilibrium static pressure and the surface tension so that the S
resonance frequency 1s 73;;
..

1/2

o 0

. o 13y _ 4
w R = [p (P°+ZS/RO Pv)] (4.20)

(o}




At atmospheric pressure, large-enough bubbles, and vy = 1,4, Equation (4.20) yields

foRo = 330 cm/sec (4,21)

This result was first derived by Minnaert;24 it can also be found in the subsequent

15,16

analyses by Neppiras and Noltingk. Resonance frequencies of the fundamental

breathing modes of nonspherical bubbles also closely follow Equation (4.20), as
shown by Strasberg.zl Figure 4,3 is a graph of Equation (4.22).

In Equation (4.18) the term multiplying the volumetric acceleration represents
+r= added mass of the contiguous liquid so that the first term is the inertially- é"’““;““
contr.lled motion. The second term represents the compressibility of gas inside o B
.ue bubble which dominates the motion for nressure oscillations that have a frequency
much less than the resonance frequency. At resonance, the bubble motions are con- -
trolled by dissipation which may be included by introducing a loss factor into é’;”';!;é
Equation (4.18) so that the linear ouscillatiors are given by :

o s o vt

s o .2
TR 1v+l|u)0v+uuov] = -p(r,t) (4.22)
o .

where v = V - Vo' This equation has been derived by Devin,25 and uged by

Strasberg23 and more recently by Whitfield and Howe.26 The damping of hubbles at ) )
high frequencies (10 kHz or greater) has been given substantial attention, an ex- :iibmfft

tensive review of that work has been given by Flynn.2 In the hydroacoustic range,

Devin25 has found that thermal and radiation damping control the damping over

appropriate frequency ranges, Figure 4.4 shows some measured loss factors together :

with the individual damping contributions. The radiation and thermal losses o o

control the total damping as summarized next. a
The thermal loss factor 1is given by the approximate formula (valid for

?_S/RPO<1)
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The radiation loss factor can be found by expanding Equations (2.24) and (2.26)
to £ind the pressure on the bubble surface for small koRo (for small amplitude

oscillations R is imperceptibly different from Ro)

-iwpos -1
p(RO’t) = _WR—O- (l-ikORO) e

wt (4.25)

The first term is the familiar inertial pressure; the second term is dissipative and
it represents an acoustic resistance to the bubble wall motion by the liquid. Now
the pressure given by Equation (4.12) may be compared with Equation (4.22) to dis-

close a radiation loss factor which is

(4.26)

n ,=[—2 (4.27)

(4.28)

showing that the radiation loss factor 1is independent of frequency.

The total loss factor 1is found from the sum of the contributions,

*Using the ideal gas law for adiabatic vclume changes Pg, i.e., Pg @ (pg)v .
(constant), which leads to dP /dp = c2 =vyP /p .
g & g g g

o
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The frequency spectrum of linear bubble motions can be determined from Equation

(4.22), by Fourier transformation as

DOV(w)

4—HR°— (wo—wz-inwwo) = -p(r,w) (4.29)

where V(w) is the Fourier transform of the volume pulsation. The spectral density

of volume fluctuation can be found from methods of Section 3.5.3 as

0, (W) = ?r—: (V (W) V(W)
2 2
16 7 R
= ¢pp(w) — [(wcz)-uuz)2 + nz w w(z)] -1
Q0

where Tb is the lifetime of the bubble oscillation which is on the order (r‘u,uo)"1 and

¢ (w) is the spectral density of pressure fluctuations that drive the bubble.

4.2.2 Sound Propagation in Bubbly Liquids

The theory of linear bubble motions has been used to describe the steady state
propagation and absorption of sound waves in bubbly mixtures. The bubbles increase
both the compressibility and the absorption of the two-phase fluid. We shall assume
that the sizes of the bubbles are much smaller than an acoustic wavelength and that
the bubbles are homogeneously dispersed throughout the liquid phase. The concen-
tration of gas, in terms of the volume of gas per volume of liquid, shall be

designated as B so that the density of the mixture is given by

oy = ogz‘s + po(l—B) (4.30)

where Dg is the density of the gas phase and P is the density of the liquid phase.
Because, for air and water mixtures, po/pg = 800 (at standard temperature and
pressure), the density of the mixture is nearly identically o

The speed of sound in the mixture at an angular frequency w is related to a

complex wave number km through a complex wave speed Cm
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kK = 2
m ¢
m
(4.31)
N = (k) o+ 10k)
: r i
i. The propagation characteristics are given by
. ) ei(kmr-wt) :
P P, R
(4.32) R

- e .. e
. I? e .

. where r Is a distance referred to some origin inside the mixture and km gives rise ';*‘ﬂ"
b i et

to attenuation of the sound pressure. 1In order to determine the wave speed in the

o

mixture, we calculate a resultant compressibility of the liquid-gas mixture. To
this end note that the total volume reduction 8V to a region of the mixture* result-

ing from a pressure disturbance &p is the sum of the individual compressions of the 3ql_

—
o]
o
L

liquid and gas phases, (SV2 and GVg, respectively,

v = (SVQ + &V (4.33)
g

In turn, évg is the total gas compression, which for the ith component bubble can be

written down by using Cqu.tion (4.29),

hﬂRi T;iﬁfv
-— (8P) B
v ) = 2 R
& 4 wz + in ww_ - wz e
o o AR
.9

where ER is the resonance frequency of the bubble of radius Ri so that the fractional

volume change 1is an integral over the entire distribution of bubble radii,

*The size of this mixture needs only to include a uniform distribution of [
bubbles. o
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g &v =

_8.__1 ¢r 4mRn(R) dR (4.34)
EI v p 2 2

) o w o wo LL)O

- [(C‘) -1-in LT]

The integrand contains the distribution of radii in the form of the number of the
bubbles of radius K per unit volume of liquid in an incremental range of radii,
The total volumetric concentration of gas suspended (not dissolved) in the liquid

is just

[eo]

e-j g—nRBn(R) dr (4.35)
o]

[ am

[ sa
o

The compressibility of the mixture is given by

& _ __ép
v

(4.36)

P C2
m m

2
where l/Dmcm is the "compressibility," and Cm is the associated speed of sound in

the mixture./ A combination of Equaticns (4,33) through (4.36) gives

1/2 * 1/2 A
Y . e
- k= <_‘“> K2(1-8) + J 47Rn(R) 4R 4.37)
. m o o 2
K o w W
- © (—2 -1> -in =2
- W w
I .
F: as the complex acoustic wave number in the mixture.

This relationship has been derived by Carstensen and Foldy27 (who also derived

reflection and transmission coefficients for bubble screens), by Meyer and
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Skudrzyk,28 and more recently by Hsieh and Plesset29 who showed that Cm is an
isothermal sound speed for values of £ of practical interest. Experimental con-
firmation of Equation (4.37) has been provided by Meyer and Skudrzyk,28 and by Fox,
Curley, and Larson30 using measurements of acoustic transmission through bubble
screens, aad by Silberman31 using acoustic transmissions down a wave tube. The
measurements are difficult to interpret in terms of the theory because of un-
certainties in the screen thickness, bubble size distribution, and bubble damping as

the early measurements of Carstensen and Foldy will attest. Figure 4.5, from the

(3

T PHASE SPEED - T T T T T T T T T 71
3000 } R {A) PHASE SPEED sk & (8) ABSORPTION
; ' .
\)
- AF -
£ 25} -
8
3 -
o ]
'— —
o Lk i .
0 60 120 180 240 300 360 0 60 120 180 240 300 360
F(kHz) f(kHz2)
Figure 4.5a - Phase Speed Figure 4,5b - Absorption

Figure 4.5 - Phase Speed and Absorption in a Bubbly Liquid Containing Radii
0.06 to 0.24 Millimeter Diameter (R=0.12 mm, oR/R=1/3)

(Points are results of measurements; lines computed from Equation (4.40)
using measured distribution (——) and idealized distribution (---) with
-4
R=0.12 millimeters, Nn=0.5, and 3=2x10 cubic centimeter per cubic
centimeter., From Fox et a1.30) For the definitions of f; and fa

see the discussion follewing Egquation (4.43). ¢ = w/(km)r
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measurement program of Fox, Curley, and Larson,3o shows phase velocity and
attenuation measurements in a bubble cloud-field that was narrowly distributed
between radii of 0.06 and 0.24 mm with an average of 0.12 mm., The transmission loss . ’.

(TL) over a distance r is determined from the ratioc of pressures at distances x and
¥ + r using Equation (4.32), i.e.,

s
TL = 20 log 1R*)]| SR
[P (o) | L

8.69 (km)ir (4.38)

The lines of Figure 4.5 represent alternative theoretical estimates derived
from Equation (4.37) for a narrow distribution of bubble sizes and for a large ‘
distribution of bubble radii. For a narrow radius distribution, such that the range »

of radii AR satisfies AR/R < n, Equation (4.37) becomes

D, ()
o) )

using the eguivalence between wRO and YPo/po given by Equation (4.20) in the case of

[o™
(S}
)

O

(4.39)

™ |
2
=
O
g N0 N

neglipible effects of surface tension. For such a distribution, all bubbles are
resonant at frequency w and so all participate equally in the dynamics of the
ned jum.

An alternate relationship may be derived when the bubble radii extend over a e
broad range iR. There is, at any frequency of excitation, a broad population of
vibrating bubbles of which only some motions are resonant but others are stiffness
or mass-controlled. If we let the bubble sizes be distributed about an average e
radius R with an associated resonance frequency 50, we can denote the bubble ) ,--‘

distribution as a function of the differential radius

n(R) = n(r-ﬁ)




In Equation (4.37) the integration over R includes the variable resonance frequency
that is a function of radius through ' 7 '

1/2

OE
)
"
N
w
DESD
© I
N
\_/
n
O

For convenience, therefore, we normalize the radius on the fixed frequency w and the

factor C so that we may write (with x=wR/C and ;¥Q§/C=mlzg)

Equation (4.37) becomes, accordingly

N

0

p0

1o
1-8 p
m

2
poco _ 4 =3 .< x3n(x—x) dx

2 . fR
1_8 o C
( )

ElOEI

=1+ (4.40)

oxwax

>3
|
o (=xT)-inx
The integrand contains the n(x-x) which we assume to be strongly peaked around X=X
with a bandwidth equal to twice the standard deviation of bubble sizes OR/E, and the
bubble admittance which is strongly peaked around x=1 with a bandwidth equal to n.
As long as % is sufficiently removed from unity, i.e., as long as the peak of n(x-x)
is sufficiently removed from the peak in the admittance, there are a negligible
number of bubbles that are resonant at the excitation frequency. Equation (4.40)
takes the form of Equation (4.39), but with the resonance frequency and loss factor

replaced by average values, i.e.,

=
©

5 (4.41)
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This equation is valid for, e.g., }m/ﬂ%~l| > ZvR/E where g is the standard

deviation of bubble radii about the average R. This egquation also holds for all
frequencies when the bubble vedii are navrowly distributed, i.e., when oR/i <o,

When the bubble radii are widely distributed so that the range of available
sizcs is larger than N ﬁ, vet still concentrated sbout a mean, it is still possible
to 'decouple" the function n{(R) from the admittance function when motion is near

resonance. We do thiz in the context of a crude assumption that the radii are

normally distributed* about a radius R with a variance Og»

i.e.,

. —. 2
Ay =t | BB
(2w)

OR 2 G

— 1, R>0 (4.42)
R

where N is the total number of bubbles. The real part of the admittance function,

involving 1 - (m/wo), passes through zero at w = 4 , but it also has peaks slightly

[v]
above and below W These peaks occur at w mo (lin/zle/2
2
1/"/3:1], respectively. Below w = w, the real admittance rapidly

¥

) with magnitudes on the
order of +[2
approaches unity, while above resonance it approaches zero. Therefore, as long

as n << OR/R the real part of the integral in Equation (4.40) is approximated simply
by an integral over U < x < 1 of n(x-x}. The contributions from the oppositely-

1/2

signed peaks at w (141/2(2 )) contribute only
g P o VT

4 . an
dx ;X—‘-;I

which is negligible. The imaginary part of the integral is strongly peaked at

R and only those bubbles that are resonant at the driving frequency contribute

to the dissipation. The integral then becomes, close to resonance, (w = wo)

*A more legitimate assumption would have been a Kayleigh distribution for whichn

°p = 0.52 R. See also Section 4.2.4.3, paragraph b, Equation (4.42) approximates
the distribution generated in Reference 30 with OR ~ 0.3 R.
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2w = ;= \(; \)2
T ¢} R R
+1 (T’Z-) (u1> (O )exp —(21/2 o ) uJo -l) ] (4.43)
R

for | G f)-11 < cR/(zkz/'-‘:)l/2

, n << GR/ﬁ; and R2/(23§) >> 1. The second term in
Equation (4.43), involving (wo/m-l), arises from an approximation to the error
function, erf(x) ~ X.

Equations (4.41) and (4.43) have many general features in common. As . passes
througllzr from below, the real admittance first adds, then subtracts from the
liquid admittance. There is a frequency in each case, w = w, at which the real part
of the admittance of the bubbles cancels the compressibility of the water so that
ki is identically imaginary. Both at this frequency and at resonance, the average
admittance of the bubbles is such that the sound is greatly absorbed, i.e., the
transmission loss is high. The behavior of the mixtures at these and other fre-
quencies is summarized in Table 4.1 for both narrow and broad distributions of
bubble radii and without any reference to a particular bubble distribution. Below
the critical frequencies ;Q and w all mixtures behave similarly and the transmis-
sion loss is reduced. The medium is controlled by the total stiffness of the sus-
pended gas, while at very high frequencies the bubbles are dynamically stiff and
oscillate as small rigid spheres in response to the sound. Since their radii are
much less than an acoustic wavelength, the propagatior. approaches that of the liquid
medium. At the resonance frequency, absorption is large, the propagation velocity is
relatively low and in bubble distributions the standard deviation of radius re-
places the damping. At the frequency, u, (calied "anti-resonance' by Junger32) the
wave speed increases, Tor narrowly-distributed radii, the speed of sound increases
as damping decreases, bul the increase would be somewhat reduced as the distribution
is made broader. The relationships in Table 4.1 closely agree with measured

propagation characteristics. Figure 4.5 illustrates measurements and calculations

mage by Fox, Curley, and Larson.30 Calculated wave parameters used a value for the
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loss factor of 0.5, which is now considered excessive in light of the more recent
measurements shown in Figure 4.4. Fquation (4.43) cannot be used to calculate the S
propagation at wa/zo because, at this frequency, the approximations leading to
Equation (4.43) are not valid. Note also that near w, and w, the analog of the loss
factor in the distributed medium replaces (1/n) by (w/2) (R/R) (dB/dR), from which
comes the expression for c at w = W in the second column of Table 4.1.
Transmission losses in bubbly media have been used to detarmine bubble popu-
lations (Section 4.2.4.3). In those cases either of two expressions may be used.
For a narrow range of bubble sizes, such that GR/E < n the transmission loss depends
on the value of the bubble damping

(4.44)

rofTe

— = 8,69
’ ne_c
g 8

withn = 0.1. For a broad bubble distribution, the transmission only depends on

concentration gradient di3/dR rather than the loss factor explicitly so that

1/2 S

r

2
o
= 8.69 4 iR >
g

P c

g

for CR/T( >n. both th save speeds and the transmission losses are shown for
selected bubble media in Figure 4.6; they serve as examples of the limits given in
Table 4.1.

The acoustics of bubbly mixtures is important in modifying - und propagation _
near the ocean surface, especial’ly for und.---ter acr 'scic testing and experi- . ’
mentat ion, In water tunnels without resor,: ., for example, ~fter continucd
operation with a cavitating body, the free gas content can increase appreclably.

At lower frequencics than the bubble resonance, relatively small volumetric R
concentrations of gas can appreciably reduce the sound speed In the fluid. 1he ;." ¢
consequence of this reductlorn will be fncreased Mach numbers of moving bodics that

are fmmersed in the two-phase fluid., 1t L8 quite possible that surface motions that

are subsonte in purce water could become supersonic so that the wave-bearing qualities

of the fluid will be altered relat!ve to the characterlstic Length and veloclty of
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the test body. Shock waves could also be formed which would make it necessary to
bring into analysis thermodyunamic properties of the two-phase fluid.

Some more cxtensive treatments of two-phase media along these lines have been
given by Plesset33 in connection with the stability and thermcdynamics of single
spherical bubbles, some further general acoustic characteristics have been examined
by Crighton and Ffowcs~w1lliams,1 and propagation of shock waves in such liquids
34 Whitum.35
analytical treatments of the continuum mechanics ot bubbly fluids have been given by
Zwick,37-39 lsay and Roentel“o'“1 (who consider the uffects of the compressibility
on the lifting characteristics of hydrofoils), and Wullm“2 (who studied wave

hag been considered by van Wijngaarden, and Benjamln.36 Extensive

motions in bubbly mixtures).

4.2.) Theoretical Cavitation Thresholds, Nonlinear Osclllations of
Spherical Bubbles

4,2,3,1 The Onvet nf Nonlinear Oscillations. When an harmonic perturbation pressure

is of such a miagnitude that the velocity-squared term in the bubble equation
(Fquations (4.,12) and (4,15)) 4u importont, the bubble molions ceaso to bo sinuous
and take on 4 more complicated time history, Figure 4.7 illustratos this behavior

- -
13K
’ﬂ a
e 0.7 DRIVING PRESSURE
SHOUWN ABOVE -
.2 pith/P,, ~ 4
Wq
L.

“o  (Apy-R,) MULTIPLIED BY 100
| L o]

2—— L 207, e, = 0.6, -~
|

0.0 ] 1
0 01 0.2 0.3

RADIUS (WHECRONS)

L

TIME {(u wo)

Vigure 4,7 - Radius-Time Curves for Forced Oucillutions of a Gan Bubble
) - Ny ]
(NotLes KU"U,H'IU ' Lentinetors, w“"lc..'l'l() 1 Heo : (v.8 l()ﬁ Hz) .
Curves () and (-=~) yrom Neppdras aad Nultlngk,\)

Curve () from Solumon and l’lgnuut'd (n=0).,)
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for a variety of amplitudes of driving pressure and a varlety of rvesonance fre-
quencies of the bubhlea, The figure illustrates the theoretical behavior that the
linear or nonlincar motions of a bubble depend both on the amplitude of the preasure
oscillation and on its frequency relative to the linear resonance frequency of the
bubble, For rather large pressure oscillations, e.g., four times the ambient
equilibriun pressurc Po. simple hurmonlc motion of the bubble will not exist, I1f
the frequency of oscillation is below the resonance frequency, the bubbtle will grow
und then rapidly collapse, this behavior is characteristic of cavitation. For
larger frequencies the motion will coneist of & superposition of two harmonics, one
at the reaonance frequency and the other at the driving frequency. For small
pressure amplitudes the motion is nearly simple harmonic, as shown. The amplitude
of the pressure fluctuations responsible for the cavitation 1s such that the
preswure applied to the bubble actually becomes negative so that a tenslon is placed
on the bubble causing the large rate of expansion necessary for cavitation. There
i, in fact, a critical valuc of P (e.g., Por that will be determined later) for
which cavitation is to be expected, The implication made by the heavy and dashed
lines in the lower portion of Flgure 4.7 is that the excitation pressure must be
spplicd for 4 time long enough to permit the necessary bubble growth and that thia
time must be neasured Ln terms of the characterdstic period of resonant owcillatlon,
At froequencies which ure smull enough relative to tha resonance frequency, un
adequate cricevion for determining the critical pressure can be determined by

conwidering the svatic cquilibrium of the bubble.

4,2,3.2 The Critical Pressure for Vaporous Cavitation. The critical pressure for

44
cavitation, based on 4 theory of statfc equilibrium was {irst determined by Blake,
[l
and recently extended by Akulichev, 3 This condition can he written in terms of the
difference 4n statle pressure at the bubble wall P(R) and the ficld pressure Pir),

nee Figure 4,2, Then, using Equationr (¢,10) and (4.,11),

R
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Note that because static conditions (w<<wo) are being examined, the volume velocity
(0) and volume acceleration (V) are neglected. The static equilibrium will exist
at a critical radius when, for a further increase in radius, the pressure difference

will decrease, This condition for equilibrium is (see also van der Walle)q6

d(ap) ~ o

dR |R=R
c

or

3y
3yp R
ge|_o =
2 (R ) (4.47)
[y [«

) |N
0O v

where Rc {s the critical bubble radius. To relate this condition to a corresponding
critical pressure, we combine Equations (4,10) and (4.47) to find the partial

pressure of gas in the bubble when it reaches its critical radius

28 25
p =P (r)y+—-P = (4.48a)
8. c RC v 3YRC
go the critical value of the hydrodynamic pressure at r > R 1is
- 3y-1\ 4S
P(r) - P (—Y—ZY ) Ern (4.48b)

Subst {tuting kquation (4.48) into Equation (4.46) to eliminate Rc yields the critical
pressurc required for the cavitarion of a bubble with radius RO in an initial

umbicnt pressurc of Pu(r)

) 1 = ZS -1-—- -
R T [3»,' 1]

[

25y 21D ras ] IPERYACIERD
- (i) [ 3‘«7'] SNVICTEY ["J”-"v* r']

Q [¢]

(4.49)
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Equation (4.49) shows that for cavitation to occur, i.e., for instability to exist,

the critical pressure outside thé bubble must become less than the vapor pressure.

The relationship also shows that as Ro decreases, this critical pressure must be

more negative. In other words, the tensile strength of the liquid increases as the

size of suspended bubbles decreases.
2,43 -280 atm.

served™’ is P_ =
shown by the dashed line in the lower part of Figure 4.7,

The limiting tensile strengh so far ob-
Furthermore when cavitation occurs, as in the example
any gas in the original
bubble will be expanded into a volume many times larger than in the original
bubble. In such cases, because the partial pressure of gas is then greatly ex-

ceeded by the vapor pressure of liquid, the cavitation is called vaporous. Equation

(4.49) 1s shown in Figure 4.8 (taken from Strasberg)47 for the case of isothermal

expansions (y=1) at an initial pressure of Po(r) = 1 atm; the expression becomes*

U 2R
po Rad o
= SURFACE TENSION PRESSURE, K = 1.0
@ 9.2 10 10.0 20.0
[¥F )
g ' ! e e
a ~— “GASEOUS _ &
= // DIFFUSION __ com -1 = 06— == 5 -
= / EQUATION — — £
’—
VAPOROUS

o
g / 7 CAVITATION w &

; /7 EQUATION {4.50) S =
&« / EQUATION (4.98) @ K
> / & =
2 / . 3
w / a

& q X
2 =

g / :

e 2 / | { -

S 2x100 1079 1073 192

R, BUBBLE RADIUS {em)
(FROM REF 47)

Figure 4.8 - Critical Pressure at P

= ] Atmosphere and Critical Pressure

Cvefficlent at K = 1 for Vaporous Cavitation,
Critical Pressure for CGaseous Diffusion at PC

Solid Line {(-).
= 1 Atmosphere,

I = 1 Atmosphere, Broken Line (---).

sat

*A dimensionless representation of Equation (4.50) is also shown; this repre-

gentation will be discussed in Section 4,3.1.2.

2672




3/2

W|$

2
= -1/2
= 3 _ 28
P (r)-P_ = _( i [Po(r) P+ :l

(o}

(4.50)

For bubble radii of 10-3 cm and smaller, the cavitation threshold will be at in-

creasingly negative pressures. Although Equation (4.50) shows a formal dependence

of Pc(r) on Po(r). the dependence 1s effectively negligible because of the

dominance by the surface tension.

The thresholds of nonlinear motions and cavitation for periodic excitation

pressures were evaluated numerically by Solomon and Pl«esset[‘3 through a reworking of

Equations (4.12) and (4.16) using the normalization

R
E=x
(o]

They found, using Equation (4.15) that

P P
RR + > (R)2 = —% g3V - g3V, B q73Voply
=72 2= 2= IR

poRo PoRo Yo o

P, P(R,t)

+ -
poRo e} R2
(o2 e]

Following Equation (4.14) and letting

p(R,t} = Po + P, sin (wt+1)

the equations of motion become

. . PP L p
RR + 2 ()2 & -2 ¥ g73Vopy + 25 @7k7h) = —C- sin (wtdw)
RR+7 R 7 R 3 (R R o R
i R (: R 0o
o 0 [o e
26

(4.51)

. .,4
R
.". ‘
’er’w
"- 4' - -
A £
DY 4
AR .
,' ..‘
. '1

i J




oy Radius-time curves, similar to those in Figure 4.7, were calculated for w/wr = 0,011,

0.04, and 0.069. The first-order transient behavior of the bubbles was also deduced

in a linearized sense by letting
Y R(t) = 1 + e(t)
.g so that Equation (4.51) can be linearized by neglecting (é)2 relative to €, to give

an approximate formula for the forced oscillation subject to the conditions €(0) = 0
and é(O) = 0; 1i.e.,

1
L Tyt
R © =~ 021 = e 2o sin w t-sin wt (4.52)
o} P (w™-w") UJ(;) °
o
2 where |w/w | > 1 w_, n is the loss factor of the bubble, and
LI o! 0
PO-PV -
c, = S
1 0 R2 1
oo

The forced oscillations will persist after the initial resonant disturbance decays.

The curve in Figure 4.7 for w = Zwo is misleading in this regard because bubble

damping had not been included in either Neppiras and Noltingk's or Solemon and
Plesset's analyses. If bubble damping had been included, the resonant motion would .:;:,;
have persisted over roughly 1/7mn natural periods. As the amplitude of the excitation .
pressure increases so that the critical pressure is reached, the damped transient

‘ ' motion is replaced by the unstable transient of cavitation.

o In this region of large~amplitude motion such that the r term dominates the f

term, the bubble radius linearly increases with time, as shown by the dashed line

in Figure 4.7 for t less than 0.1 psec. In this case, Equation (4.51) (and Equation
(4.12) as well) suggests that,

1/2

1/2 jP (P _-p_ )
R ~ c(z) (J—p°—-°—) for wt < T (4.53)
[
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i,e., the bubble radius will be proportional to the square root of the difference

between the vapor and external pressure when the latter is smaller. The limit wt < T
: determines the length of time that the pressure fluctuation is negative, i.e., that
the pressure difference Pv - P0 - P, sin (wt+7) is positive. The maximum radius will

3 then be determined by the time t = ﬂw—l, so that

1/2
I -1 Pv_(Po-po) !

’ R} =~ 2.6w —_— (4.54) -
, 1 o) _
- ° A

Equation (4.54) demonstrates that the maximum bubble radius is independent of the . l;;
l initial radius, a result first determined analytically by Neppiras and Noltingk.16 N
% Linear dependence of the bubble radius with time has been observed for motions in SRR
i hydrodyramic cavitation, see, e.g., Arndt and Ippen.l'8 7
. Figure 4.9 summarizes the results of calculations using the complete bubble e
y o e e e
; Equation (4.51) made by Neppiras and Noltingk16 (designated N&N) and by Solomon and ., @
; Plesset43 (designated S&P) in a form that 1s consistent with the above analyses, The ;_f
: solid lines represent the steady-state first-order linear bubble amplitude given by l'i
& Equation (4.29), rewritten as :7.;
-9 ]
1/2 q o
(po > 3
(Ry-R ) w 3P “.55) 1
. 1/2 W, 2 )
(%) 1-(1—) -in %
R 0 “o
o
and the contrasting transient nonlinear cavitation amplitude which is (see Equation RN
- - 1
(4.54)) -0
1
m(RM-R ) po—Po /2
S s 2.6 (4.56) :
1/2 P,
(E’.) Y
©° L
.9
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Figure 4.9 - Amplification Factor for Sinusoidally Excited Bubbles Shown
as a Function of Frequency, w/w , for Different Pressure Amplitudes,

AP = [p| =0

The calculated points, connected by dashed lines, are normalized on the ambient PO;
for fractional values of po/Po' e,g., at PO = 1 atm, the minimum pressure is greater
than the vapor pressure of water at any instant in the pressure cvcle. For pressure
amplitudes such that Pv - Po + Po > 0 the limiting value of Equation (4.56) roughly
applies. On the other hand, for small ratios of pO/Po, g0 that Pv - Fo + Py <0
the admittance Equation (4.53) closely agrees with the more exact numerical calcu-
lations. For po/Po = 1 it 1is seen that the threshold between linear and nonlinear
motions depends on frequency, with the cutoff {or linear oscillation being

w - 0.01 W For oscillations above the resonance frequency, only ecne point has
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been calculated, and though the motion appears not to be cavitation-like (Figure
4.7), the computed amplitude exceeds that which would be estimated using the linear ]
theory by about a factor of three. Cavitation thresholds in oscillating pressure 'i
fields will be independent of frequency and given by Equations (4.49) and (4.50) as {:i-};}
long as the frequency of oscillation is much less than the bubble resonance."9 At 1‘Jff*§
high frequencies, w > W the Inertial terms of Equations (4.12) and (4.16) become i~1;;{i
dominant, then the threshold pressure is given by the r- ‘irement that the pressure e
around the bubble must be less than the vapor pressure. However, as shown by

Equation (4.54), as the frequency increases the pressure difference that is necessary

to generate a bubble of a given size will also increase.*50

4.2,3.3 The Importance of Diffusion. Diffusion can be important in both ultra-

sonically and hydrodynamically induced cavitation. When the growth of a bubble is
determined by the diffusion of dissolved gas into the bubble from the surrounding
liquid, then the cavitation is called "gaseous cavitation' and is not explosive as
in the case of the vaporous cavitation discussed in the preceeding section. The time
scales of bubble growth by diffusion exceed by orders of magnitude the time scales
for vaporous cavitation. Diffusion can play a part in vaporous cavitation; a bubble
nucleus which is too small to grow explosively may slowly grow because of diffusion X}
of gas into the bubble until the radius increases to the critical radius given by
Equation (4.48b) for the ambient pressure in question. Once having grown to the
critical radius, it will explosively cavitate. Also, quite often some types of

I hydrodynamic cavitation, for example, sheets which are bound to the surface, leave a ® u‘
cloud of microbubbles that disappear downstream slowly tecause of the amount of gas
captured in the collapsed bubbles. 1In this cavitaticn the maintenance of a steady
sheet cavity provides a continuous liquid-gas interface across which vapor may _
continuously pass and downstream of which (the end of the cavity) the gas-vapor- ‘
filled bubbles may be continuously ejected.

Theoretical studies of diffusion in cavitation have dealt with four phenomena:

a bubble in a quiescent liquid which is either supersaturated (so the bubble will

46,51

grow) or undersaturated (so the bubble will dissolve), a bubble that is fixed e

(as Londed to a surface) while being scrubbed by a moving liquid in which case it

*An analysis by GuLh)O has indicated that large-amplitude nonlincar growth does

not. occur for negative relative pressures, A » 1 when w ~ 1.6 w, - 1.




grows by 'convective diffusion,">2'53 a bubble in an otherwise quiescent liquid that

is excited with an oscillating pressure (as for example generated by an acoustic
transponder) in which case it grows by a process cailed '"rectified dif-
b, 47 56=60

fusion, and finally a bubble that expands in a liquid as by vaporous

cavitation during which a small quantity of gas is diffused into the l:mbble.()l
These processes all rely on the fact that gas will come out of solution whenever
the partial pressure of gas in the bubble, Pg’ is less than the equilibrium pressure

of dissolved gas in the solution, i.e., whenever

and by Henry's law the partial pressure of the gas in equilibrium with the dis-

solved gas concentration is

P = Ha«x

3

: . 7 . .
where H is llenry's law constant (at 25 C, U = 5.4 x 10" mm Hg/mole fraction for air
and water) and g is the mole fraction of dissolved gas.* A condition for static

equilibrium in which the bubble neither grows nor dissolves is
P -Pp = fP - = (4.57)

where fPsat replaces the partial pressure of gas in the bubble, Pg, and f is the
percent of the saturation concentration 0ﬂ/"'s, or C/CS, at the bubble wall repre-
sented by Pg, i.e., Pg/Psat = u/“s = f. A liquid-gas solution may locally beccme
either under— or oversaturated when the ambient pressurc is either increased or
decreased relative to the equilibrium (saturation) pressure.

Theory and computation by Epstein and PlessetSl and van der Wa]le,A6 for the
diffusion of gas into a small bubble in a quiescent liquid rhat is supersaturated

with air at atmospheric pressure, show that the process is slow. For example, a

bubble of 10~3 em in water which is 25 percent supersaturated (f=1.25) takes 466

.

*When the pressure of air above water is one atm, =_ = 1.5 » 10 7 wole/mole.
o>

3 1
> 3
This equilibrium, or saturation concentration on a volume basis is C = 0.019 ¢n lew™.
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seconds to grow to 10 times its initial radius. Conversely, in water that is only
50 percent of saturation (f=0.5), a bubble of the same siz2 should take 5 seconds
t to dissolve. The equation for the dissolving radius of a bubble in an undersaturated

(f<1) or oversaturated (f>1) solution is

20 e (£-1)\]}2
s s

R e —=s__~ .t (4.58)
R 2
c, R

Felo

equilibrium mass concentration of gas dissolved in the
liquid at saturation (mass of dissolvad gas per unit
volume of liquid)

where ¢
s

]

b

E D_ = diffusion coefficient (2x10 cm” /sec)
{ f = fraction of saturation, and

ﬁg = density of gas in the bubble

For the supersaturated solution, £ > 1 and the bubble will grow, Conversely, a

practical effect of diffusion is that bubbles in suspension in an undersaturated

liquid (f<1) will naturally dissolve. The implication of this theoretical ob-
. servation is that cavitation nuclei can only be present in settled liquid if they
F’ are somehow stabilized. Speculations on the subject of nucleus stabilization are e e
discussed in Section 4.2.4.2.

In the Epstein-Plesset theory, only the tirst term on the left hand side of the

ﬁ general dimensionless diffusion equation

is retained. 1n this equation the +' and gradient operators have becen non-

o]
7 dimensionalized on the time scale Ré/Ds, where RO is the initial radius of the
& bubble, and of the space scale R . The veloclity v' is nondimensionalized ou a

o
A liguid translation velocity U. Then U = 0 only in a quiescent liquid or in one in

[
2 oa it

which the bubble nucleus convects with the liguid. When liquid passes by a bubble

.

v

n e
'

with relative velocity U, the convective ¢ffer~ts are important. When the

i
1 o
o b
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dimensionless number URO/DS, called the Peclet number, is substantially larger than
unity, then convective diffusion 1s important. Approximate solutions of the
diffusion equation with oC/ot' ignored in preference to the convection term have
been provided by Parkin and Kermeeu52 and by van Wijngaarden.53 The radius-time
rclationship for convective diffusion growth of a bubble in liquid of gas concen-

. . . 53 )
tration ¢ given by van Wijngaarden™  may be approximated by the formula

5—->3/2 L URO DSCS(f-l) ‘5o
(R -ty 172 (4.59)
) T o R
: 2

wlro

The ratio of times required for a bubble growth to the ratio R/Ro by means of con-
vective diffusion, versus the time required to grow to the same size ratio by

quiescent diffusion is given by Equations (4.58) and (4.59). This ratio is given by

X

. . 1/2 D +1/2
convection (
\

= 1.7 3) (UE )

L .
no convection o]

it decreases with an increase in velocity, and it increases as the radius increases.
For bubble radii RO on the order of 10_4 cm in water and R = lORO with U = 10 m/sec,
this ratic of times is only 0.0076. By Equation (4.58) 36 seconds are required for
a bubblc¢ to grow from 10-4 cm to lO-3 cm; by convective diffusion this time would be
reduced to only 0.27 sec. This reduction in time is sufficient to make convective
diffusion important in hvdrodynamic problems.

Jubbles will also come out of solution under the influence of an applied
pressure oscillation (as applied by an underwater transducer) when the liquid phase
contains dissolved air in cither saturated or undersaturated concentrations by a
process of rectified diffusion. Hsieh and Plesset54 and Eller and Flynn55 and
Hllcrr have provided Lhevrelical analyses of this process. The times that are
requited for significant bubble growth are much longer (minutes) than those required
by convective diffusion sc that this mechanism of growth is less important in

hydroaroustics than in ultrasonics. In undersaturated solutions, where bubbles have

a natural tendency to dissolve when undisturbed, the amplitude of pressure
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fluctuation imust exceed some threshold value which depends on the dissolved gas

-ﬂ content and the frequency. Threshold pressure fluctuation amplitudes that are liff
! required for the onset of rectified diffusion have been measured by Strasbergf7’36’57 e
with calculations given by StrasbergS7 based on the diffusion theory of Hsieh and IR
o Plesset which give excellent agreement with measurement. Earlier calculations by A
7 Bla‘.\-ul':+ and by Pode58 are based on a more approximate theory than Hsieh and '
E Plesset's and underestimate the diffusion threshold pressure by a factor of 10.

- Reviews of the subject have been given by Fl;,'nrl2 and by Beyer.6 Rates of bubble

. growth calculated from the theory of static diffusion seem to underestimate observed

rates. iHere exact theory which includes self-induced convective effects (called o
ll acoust Le streaming) seems to account for the obscrved greater rates.59’60 ‘i
In general, as the size of the bubble radius decreases below 10—4 cm, the ;f
tensile strength in the liquid ar room temperature increases, so that vaporous cavi-
tation can occur only at very low pressures, unless the liquid has a large population
;i of stabilized hydrophobic solids. In settled water which may have a large content .
. ol dissolved gas, but still a population of bubble nuclei which are smaller than
B 107" ¢uimibbles, microbubbles can be made larger by diffusion. Such growth occurs
. Tor 2 time until bubble radii are large enough that vaporous cavitation can occur.
/, P

- ; - 47 . , .
This sequence ot events was suggested by Strasberg as an explanation of the part -

which could be plaved by diffusion in the cavitation process. The bubble of radius .

Ri may be subjected to a local pressure which is greater than the critical pressure L

o P that is required for vaporous cavitation. The bubble will then grow from Ri to -
C

R (Fqguation (4.48b)) in a time which is dependent upon the depree of lncal satura- -

C

tion o1 ras in the liquid and the tyvpe of diffusion (static, convective, rectified)

- thaet tares place,  As the bubbles enter the rarified region of a lifting surface the

Joeat derree o saturation mayv be relatively high and the time required Tor noderate

e prowth by dilffasion nav be shorter than the hyvdrodvnamic time scales of the flow, -
With sach prowth, the larper bubbles mav be readied for vaporous cavitation as they

o are convected furthber inte rarefaction zenes that are below the critical pressure.
This bBehbavior is more likely on Jarge bodies than small,

] Gas can alse be dirvfused inte bubbles undergoing vaperous cavitation in liquids
wilh hiich content dissolved jpas.  Reiationships for estimating the macs of was dif - -
Piacd dote noniidscar]y cxpandin,, cavitics in vaporous-—type cavitation have beon .

61

P islavskii, The nmass intreduced into the bubble expanding for g

derived by Bog

q time t under a rarefaction Pv -V is
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where Cg is the concentration of dissolved gas in the liquid (mass/volume) and D, is
the diffusion coefficient. Using Equation (4.53), the first and dominant term

reverts to

/2 t1/2 D1/2 c R2

m = % (5?-.)l :
where t is the length of time that the bubble resides in the rarefaction region.
To find the partial pressure of the gas in the expanded bubble, the ideal gas law

glves

RT
m e

g MW,

%

b

n

where T, is the absolute temperature and M.W. is the molecular weight of the gas.
The partial proessure of the gas diffused into the bubble during its expansion is

then

P 1/2
g .6 (D) = .. (4.60)

Pstp (smyY/Z 0 Ry s

where C ig the equilibrium volume concentration of dissolved gas at the standard
&

pressure PSTD'

4.2.4 Effects of Gas Content and Nuclei Distribution

4.2.4.1 Cavitation Thresholds in Real Fluids, Influence of Gas Content. A useful,

yvet somewhat artificial, distinction to be made regarding the experimental evalu-
ation of cavitation thresheolds is between measurements made ultrasonically in still

water and hvdroacoustically in moving water. Physically, of course, there shculd be
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no real distinction, for the dynamical equations for the bubbles are common to hoth
measurement types. The distinction lies in the circumstances which determine the
mode of bubble excitation and, therefore, the mode of measurement. Ultrasonic
measurements in still water (reviewed in some detail by Flynn2 and Knapp, Paily, znd
Hammitt)A generally are conducted with liquids in which only the smallest bubbles
will remain after standing.62 These bubbles, being small, will permit the water to
have a rather high tensile strength. In contrast, during hydroacoustic wezsurements,
tests are conducted in moving water passing over a body,62 a venturi :ube,61 or an
optical viewing region. In these facilities there mav be a :reatzr concentration of
available nucleation sites due to continual agitation and possitle replenishment
from the water supply. Furthermore, hvdrodynamic thresholds are very much dependent
on the hydrodynamic specifics of the noncavitating flow as wiil Le discussed in
Section 4.3.

An example of one of the earlv measurements of cavitation thresholds in a
moving liquid was made by Ctumpéj with natural sea and fresh water, the results of
which are shown in Figure 4.10. The thresholds were derermined by lowering the
pressure in the throat of a venturi and observing visually the initial occurrence of
cavitation on the wall as water was drawn from either a water tunnel or the sea.
When the total gas content {expressed as a fraction of the valu¢ at saturation) in-
creases, the critical pressure increases to approximately the vapor precessure as
shown by the bands in the figure. For comparison, horizontal lines denote expected
critical pressures to be expected from the vaporous cavitation of bubbles with
selected radii. The curved dotted line and the point from Strasberg apply to
rectified diffusion and they are included to contrast the results for vaporous
cavitation., A general increase in the threstiold PC - Pv is shown as the gas content
(free plus dissolved) was increased; furthermore, the threshold pressures for
cavitation in sea water were obéerved to be somewhat larger than those observed in
the laboratory at the corresponding gas content, In the laboratory, however, the
water could have been degassed somewhat while the seawater could not be similarly
processed thus admitting the possibility of some larger bubbles being present to
provide sites of gaseous cavitation. It is now appreciated that certain particulate

matter as well as small bubbles can serve as wucleation sites for cavitation.
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Figure 4.10 - Measured Thresholds for Vapcrous and Gaseous Cavitation
as a Function of Total Gas Content 1
" The most widely used device for measuring total gas conteat is the van Slyke , ]
. _ ®
blood gas apparatus. This instrument measures the total volume of gas extracted T
.'.‘1
from a volume of liquid. The gas content is then reported as the volume of gas 2
.
dies- lved (as well as suspended as undissolved microbubbles) in the sample. |
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4.2.4,2 Stabilized Cavitatioun Nuclei., Modern theories of nucleation have been

. . 2, , 4 7
reviewed extensively by Flynn, Knapp, Daily, and Hammitt, and Pernik, therefore,
a comprehenrive review of theose theories will not be given,

In add.tion tu nucleation sites provided by suspended microbubbles, other

nucleus-tvpes are hypothesized to exist. One type, suggested by Fox and Herzfeld,6q

consists of a microbubble whose interface is stabilized by an organic skin. This
type was suspected to remain in the liquid for some time after settling, thus
accounting for the stabilization of cavitation thresholds with time following the
preparation of a water sample, The idea, however, was later criticized by
Hurzfcldﬁ) who speculated that these nuclei should dissolve when the static pressure
is increased beyond some limit thus crushing the skin. The measurements by
T

S:rasbergq' indicated, however, a —ontinued increase in tensile strength with in-
creased pressur.zacion. Recently, renewed interest in the existence of stabilization
by surface films has been showa by van der ,‘-Ieulen.6

The second type of nucleation site consists of solid particles or of pores in
the surfaces of bodies which are not completely wetted (called hydrophobic particles)

and, therefore, contain amounts of trapped air. The importance of these nuclei was

- 67,68 ) .
positulated originally by Harvey '’ and th2y have been given closer attention by
56 , 69 Vs . 70
Scrasberg and mere recently by Apfel and Yilmaz, Hammitt, and Keller, The

suggested importance of particulate matter followed the experimental observation
that the critical pressures of degassed water never reached the values comparable
with the cexpected tensile strength of water. In the case of Galloway's (ultrasonic)
cxperimcnt,/l for example, the expected reduction of cavitation threshold with a
decrease in gas content occurred only until the liguid was 5 percent saturated. For
further degassing, the threshold pressure did not become more negative. Furthermore,
there was observed a dependence cof an ultrasonic threshold on static pressure
history by Strasbcr547 as earlier by Harvey et al.67 The threshold became more
negative as the scatic pressure was increased and then reduced to its original
value, Finally, the addition of wetting agents has been observed to increase the
ultrasonic cavitation threshold markedly. An extensive review article on the
subicets of surface films and wetting has been prepared by Bernd.72 This behavior,
i.e., a relarive independence of cavitation threshold on aging at rest and a modest

dependence on histery of the static pressure, is not as clearly documented in the

hvdredynamics literature.
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Theoretically, the solid particles may act as nuclei because of trapped gas in
the pores which is not accessible for solution, but remains available as a cavi-
. . 6 . s
tat.ion site. Apfel ? has cxamined interfacial statility of such trapped gas using

the idecalized models illustratel .n Figure 4.,11. 1In case (a) the wetting angle =, 1is

pO
WATER a<a
DEGASSED

STAGE /

/
03

SOLID
a P, +P,

23

p Tp°
[+
T INCIPIENT (\’5,\‘/
a

N Y STAGE ? ’

/
Figure 4,1la - Large Crevice Figure 4.11b - Small Crevice

Figure 4.11 - Nucleation from Gas Trapped in a Crevice, Showing
Interfacial Geometries in Crevices Larger and
Smaller Than a Critical Value

such that the interface is deep enough in the well so that when placed under tension
PC, the arc remains inside. In this case the radius of curvature of the bubble
segment is not dependent on the size of the well, but rather on the surface chemistry
of the liquid-solid-gas system. Alternatively, in case (b), the well is small

enough so that the size of the bubble in tension is controlled by the radius of the
opening a s before the bubble breaks awav. The condition for equilibrium derived by

Apfel is of the form
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where R' is the radius cf curvature of the convex bubble. The factor Yo <1 (not
the adiabatic constant) accounts for the fact that when the cavitating pressure is
pulsating, the gas pressurc in the bubble cannot reach the equilibrium pressure if
diffusion of gas into the bubble lags the bubble growth. Tlor static equilibrium

Yo 1. The distinction between large and small crevices lies in the position of
the interface. A critical size of the crevice that distinguishes demarking between
"large'" and "'small" wells is one in which the equilibrium position in the degassed
state is at the corner with a wetting angle = - In illustration (a), as the size of
the bubble increases, moving the interface outward, &a remains constant until the
corner is reached, With further increase in the size of the bubhle, the interface
remains engaged with the corner, as in (b), but the contact angle = becomes less

t han 03 because the opening of the crevice will not permit further rise of the
interface level. In the large crevice, R' is a function of both the geometry of
the crevice and the surface tension, while in the case of small crevices R' is
proportional to the radius eof the crevice a. The condition for equilibrium then

becomes
Pc = -APO + (A+yo) Ps + Pv (large crevice) (4.61)

where A depends on the angles “eo “a’ and the included angle of the opening 2., and

P =-P +YyP +P -
o O S v

c (small crevice) (4.62)

2
R
where R' is proportional te a, to perhaps one-fifth of the actual radius of the
nucleus. The distinction between the crevice sizes leads to rather different
dependence of the critical pressure on the gas content (Ps)' The threshold of large
crevices is controlled by A (which can belo as large as four or five) and it depends
upon surface tension only indirectly whereas for small crevices PC will bLe dominated

70

. . . . . . . g, B9

by the surface tensicn pressure. Keeping in mind the possibility 7’ that

R' ~a - 1/5 < nucleus radius, the surface tension term could involve microscale
O

radii so that the tension cf water containing suspended particles could be rather

large.
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4.2.4.3 Measurements of Nucleus Distributions. The preceeding discussions have

shown the importance of establishing the sizes of available cavitation nuclei in
determining cavitation thresholds above and beyond the necessity of quantifying gas
content. In recent years various direct and indirect methods have been developed
to determine what range of nucleus radii exists in water from various sources.
Morgan73 has reviewed the various methods of assessing air contents and nuclei
distributions with regard to instrumentation and tolerances. Before examining the
specif ic methods we will consider the representations used in reporting nucleus
distributions.

The total population of nuclei is regarded as a random variable which is
distributed over a range of radii. As in Section 4.2.2 let n(R) be the number of
nuclei per unit volume of liquid per unit radius so that the total number N of

nuclei (bubbles, particles, etc.) is

N = J- n(R) dR (4.63)

We further defiue the number of particles in the size range SR with an average

radius R as

g

N(R,&R) = n(R) AR (4.64)

-

This variable has been reported by Strasherg,47 Medwin,74’7s Peterson,76”7 Gates
and Acosta,78 Keller,79 and Arndt and Keller.80 It has been indirectly deduced
from cavitation threshold pressures by Messino, Sette, and Wanderligh,71 and by
Ill'n, Levkovskii, and Chalov.81 The probability of finding a nucleus of radius R

in the size range LK is then

n(R) .
v OK (4.65)

PN(R’ l‘lR) =

82,83
The probability has been reported by Schiebe., ™’

Figure 4.12 modified from Gates and Acosta,70 summarizes the observed values

of n(R) frem a number of sources. Generally there is a quantitative increase in
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Figure 4.12 - Nuclei Distributions from Various Sources (Compiled by Gates
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In addition te using the distribution function n(R) in some cavitation noise
model ing (see Section 4.3), it has been used also in analyvtical descriptions of the
8§5-37

dynamics of bubble clouds under the influcnce of ultrasonic agitation.

Theve are fundumentally three means of evaluating the number distribution of

nuclei.

402040300 Eveat Counting.  Jne means of assessing nucleus concentrations is to
determine cavitation thresholds directly by applying gradually reduced pressures to
a sample of water and noting the number of cavitation events that occur. As the
test-gection pressure is reduced, the initial event is caused by the largest
nuvicues, K, tor example, cavitated by a threshold pressure Pt. As P is reduced

i
below Ft, the nuaber of cavitatien events will be incrcased as nuclei smaller than
Rm frcome destabilized.  in this way one can quantify the number of events N{(p)
whivh occur at a presasure p less than P[. The method first was usced by Messino,
Sette, and Wandvrligh/ using an ultrasonic source in quiescent distilled water.
subsequently, the method was adopted by 111'n, Levkovskii, and Chalov,gl and
) 63
8 ['lll':]p

(Figure 4.190), however, they used a venturi to gencrate the low pressure, the

water being tap water supplied from a settling tank. Using the relationship between

the critical radius and critical preceanre (Equation

~~

4,48b) with

=1
[

+ W P R o
. ne vaeil

bl

doeduced rhe radius distribution, between 10—7 and 10 ° m, that accounted for the
obscrved variation of N(P). Although the method directly detcrmines pressure
thresholds for cavitation sites, it only indirectly relates the pressure information
to nucleus size distribution. It gives no informaction about the physical nature of
the cavitation sites, whether they are free bubbles or hydrophobic particulate
mdaller. Brockvtt88 has also used event counting to set a criterion for incipient

hyvdrodynamic cavitation.

4.2.4.3.2 Acoustic Absorprion of Resonant (Gas Bubbles. This method uses the theory

ot lincar bubble motions, Section 4.2.2, to relate the absorption of acoustic tone

Lursts to bubble populaticn. A fairly comprehensive review of this technique has
. o 84, - . ar .
heen given by Gavrilov. The first use of the method was by Strasbergy wvho related

t he absorption of noise (in the frequency range 15- to 550-kilz) in a reverberant
chambur to the volumelric concentration of bubbles using the second of the ab-

sorption cquations in Teble 4.1, lle reperted volumetric concentrations (STP) on the

231




Lo

r
[}

3 it

z 10 ith the bubble range 0.6 X 107> cm to 2.4 x 107> cm. Equation (4.20) =

- ordec of 10

'
e

'
.

was used to determine the resonance frequencies of the bubble radii. Absorption

3

"
ol

. 8 : .
techniques were later used by the St. Anthony Falls group in their water-

|

tunnel facility. They used the imaginary part of the full Equation (4.37) to relate

'
-

absorption in a narrow frequency band (with frequencias in the range 10 to 60 kHz)
to the bubble population. The method amounts to the use of the first of the ab-
‘ sorption reclations in Table 4.1. Bubble diameters from 10‘.5 m to 10-4 m were

; . . : . -8
detected in this manner in volumetric concentrations greater than 3 x 10 . The

-'r
Y

- numerical results were then reduced to form a probability distribution function

s e ALt

pr(r,ﬁr) which gave the fraction of bubbles of radius r in a size range Ar. The

V
i
L

N

l distribution roughly followed a Rayleigh distribution with a mean radius of about ;"

) -5 . . i . ) . Sl
2 - 10 m. Their program also included measurements of hydrodvnamic cavitation in RN

which the cavitation appeared as a sequence of identifiable bubbles traveling through
the minimum pressure point of the nose of a bedy of revelution. Moderately good .
¢ agreement was found between the observed rate of cavitation events, and the rate -~,i
7 that was predicted from the measured bubble distributions and Equation (4.50) for .
the critical pressure, Schiebe and Killen83 conclude, however, that their method
was too insensitive to detect commonly-occurring bubble distributions (B<3X10—8) in

! water-tunnel facilities, furthermore, they report difficulty in resolving bubble ]
. , ac :

4,75 . ,
! with improved apparatus, used the measured

, . .7
sizes.  Recently, however, Medwin,
acoustic absorption Equation (4.44) at sea to determine the seasonal variations and

depth dependence bubble distributions in coastal waters. Essentially he used

~ absorption formulas in Table 4.1 with n = 0.1; the method gives concentrations as .
low as [+ - 10—11 and bubble radii as small as 20 u.m. :2}
The use of acoustic absorption (it is also possible to measure the reduction of
sound specd in bubbly mixtures) to deduce nucleus populations is direct because it
- defines the radii of the available bubbles and gas filled interstices. Regarding e
the latter it probably doces not give reliable measurements of the sizes of hydro- :';
phobic particulate nuclei since the resonance frequencies of those bubbles may not

necessarily follow the exact form of Equaticn (4.20). The method has the distinct

advantage of requiring only a modest instrumentation complexity. . @
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4.2,4.3.3 Optical Measurements. This technique has recently become popular and
acceptable as the laser optics technology has been developed. The methods use both
holograyhv, which permits a discrimination between solid particulate matter and
bubbles, ard light scattering (which does not permit such discrimination). Optical
holography Las been used by Peterson76’77 and by Gates and Acosta,78 while light
scattering ha: been used by Yilmaz, Hammitt, and Keller,7o Keller,79 and Arndt and
Kellnr.ao This technique gives an accurate distribution cf foreign matter in liquids
from which cavitation thresholds could be deduced. However, Peterson76 has published
the only simultaneous observations of nuclei and cavitation inception, but corre-
spondences between observed light scatterers and cavitation have yet to be made.
Indecd there appears to be a contrasting view which discounts particulate matter

as being of only cccasional importance in favor of suspended microbubbles as primary

hydrodynamic nucleation sites.

4.2.5 The Collapse of Cavitation Bubbles
4.2.5.1 sSpherical Bubbles. The time histories of bubble radii shown in Figure 4.7

show that when nonlinear bubble growth occurs (dashed line), a second of stage
motion, the collapse, occurs when the rarefaction is replaced by compression. This
latter stage 1s of short duration. Because the wall acceleration is large during
collapse, it is reasonable to conclude (and it is indeed so) that the collapsing
motion will contribute heavily to sound production. Therefore, we shall examine
this aspect of the dynamics closely to establish what the important controlling
variables are at various frequency ranges in the cavitation-noise spectrum. We shall
see that at the termination of the collapse phase, the motion will be influenced by
the presence of any gas in the bubble and the properties of that gas. This gas be-
comes important when the radius of the bubble becomes very small because the
compressed gas fills the bubble. Also, the compressibility of the liquid (or two
phasc fluid) surrounding the bubble will become important 1f the wall velocity of
the bubble wall becomes comparable to the speed of sound in that fluid.

The dynamics of collapse was first examined by Besant in 1859,89 but the first
theoretical treatment of the problem, upon which much modern thinking is funda-
mentally based, is due to Rayleigh.l3 The press': - inside the bubble was considered
to be constant, therefore, Rayleigh's problem would apply to the physical circum-

stances of vapor-filled bubbles only. The pressure difference in Equation (4.12),
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neglecting the surface tension pressure, is P, - P(r) where now P(r) is supposed to
be much larger than the vapor pressure so that the bubble will collapse. Rewriting

the left-hand side of Equation (4.12), we find, equivalently

(ROR%) = Y (4.66)

which may be rearranged to

QW&
—~~
P

T

4 (2 g3
i%) = ip -P(r)] 5 (3 ®’) (4.67)

under the assumption that PV - P(r) is invariant over the time scale of collapse.

Further, assume the initial condition

R=0and R = RM at t = 0

to find

3
. . Ry
(R)? =§£ [-—"] (4.68)

where AP = Pv - P(r), is the wall velocity of the bubble. Note that as the bubble
radius becomes small, in Equation (4.68) the magnitude of R will become infinite.
The velocity, however, becomes limited by the compression of any small amount of
gas trapped in the collapsing cavity, the presence of which was ignored in this
simple analysis.

Even though the wall velocity becomes infinite in the Rayleigh model of
constant pressure difference, the time it takes fur the bubble to collapse can be

determined., The reciprocal of Equation (4.68) gives the radius-time relationship
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2 (-~P) 3 3 1/2 *
R (RM-R )

[T L

- which is integrated over the interval 0 < R < R“1 giving the time for complete col-

lapse as

5 1/2 s
Co= g o N
(.= 0.915 R <P(r)-P\_) (4.70)

tr 1,7

-
[
-

In spite of its simplicity, Ravleigh's equation gives an excellent repre-
sentation of the gross characteristics of single bubble cavitation dynamics. :
- Plessetla has measured the cavitation characteristics at the nose of a body of o
revolution in a high-speed water tunnel. Using high-speed moticn pictures (more
than 20 thousand frames per sccond) he was able to trace the trajectory of a cavi-
tation bubble as it passed through the region of minimum pressure on the body.
l Figure 4,14 shows representative bubble histories together with the matching local
hydrodynamic pressure. The solid lines represent t.e bubble history computed from
the simple Equation (4.66). To do this, P(r) is considered to be the local hydro-

dyvnamic pressure in the reference frame of the bubble, Thus, if Ph(s) is the local

pressure on the body where s denotes distance from the leading edge stagnation

Raa! @

point, and the bubble was convected at a speed UC, then o

P(r,t) = Ph(Uct)

¢ A
: A similar investigation had been conducted earlier by Knapp and Hollander,90 T;Q
- who measured five rebounds of the bubble following the initial collapse, as ;;3

fllustrated in Figure 4.15, Alternate rebounds are shown above and below the datum.
The multiple rebounds are suspected to be strongly influenced by the stored energy
in the bubble as a result of the compression of gas in the collapse phases, The
cellapse radius versus time was well approximated by the Rayleigh bubble equation

which can be scen in the figure,
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Rayleigh determined that associated with the large values of R in the final
collapse, the induced precssures in the adjacent liquid at a distance from the center
of the bubble of about 1.59R could match the compressibility of the liquid itself.
Furthermore, he considered the possible limiting effects of the entrained gas using
a calculation of the compression work on the gas; by considering, i.e., that the
change in potential energy from the inltiation of collapse to radius R is converted
into the total kinetic energy of the entrained water plus the work done in com-
pressing the gas in the bubble. Accordingly, he found that a limiting radius d4id
exist for which the velocity of the bubble wall could be retarded to R = 0.

Subsequent ref inements of the tleory have accounted for the compressibility of

the liquidgl_lo2 to various degrees of approximation; these efforts have been

4,6,7

surveyed elsewhcre, The most complete calculations of bubble collapse and

rebound for cases involving gas-filled and empty bubbles in compressible and in-
compressible liquids are probably those of Hickling,ga-loo samples of which are shown

in Figures 4.16 and 4.17. The effect of compressibility is to reduce the wall

102 W—TIY_I_IT]‘ '\:‘Iilﬁlll T lll!lllT T 17T TT7it
=|o® Poo ™ 1 ATMOS
= EMPTY CAVITY v 14
10 = '~ INCOMPRESS!IBLE == .;
'\ KIRKWOOD-BETHE
- EXACT - — N

N

HUBBLE WALL MACH NUMBER
-
o
L -

‘E‘ ,BUBBLE RADIUS
Rm

Figure 4.16 - The Bubble Wall Mach Number as a Function of
the Bubble Radius for Decreasing Gas Content
{The gas content is cetermined by its initial pres-
sure Pg in atmespheres. The index y has the value 1.4 and
0
the ambient pressure P = P(r) is one atmosphere. From

Hickling and Plesset.gg)
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Figure 4.17 - Computed Pressure Histories fov :as and Vapor “ .
Bubbles in Compressible Water (P_ = P(r)) T

(Time t is measured from the instant of collapse §=O; :

the time scale i _ 1s the collapse time, the pressures :.' :.'.:

are relative to the hydrostatic pressure, From Hickling .

and Plesset.gg) ¢
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Mach number, but all empty bubbles, i.e., those for which the internal pressure is
constant, have unlimited R at zero radius. The introduction of gas, even in small
quantities, limits the collapse and the thermodvnamic characteristic of the gas and
influences the final limiting radius more than does the hydrostatic pressure. In
Figure 4.17 is shown, in sequence, the radial variation of pressures at various
instants shortly before and after collapse. The positive values denote times after
the minimum radius occurs. In the collapse phase, maximum pressures occur at a
distance r ~ R from the bubble wall, in the rebound phase, a compression wave
develops and propagates outward with 1/r attenuation.

The effect of gas in bubbles collapsing in an incompressible liquid was first
determined by Neppiras and Noltingkls whose result can be derived by modifying

Equation (4.66) to include adiabatic gas behavior of the type in Equation (4.46)

d_, 3e2 _ d (2.3
T (ROR) = [P -P(r)] (JR)

P v
+,_°(Y_°.> dav
27 \Y dt

where the radius function on the right has been replaced by the bubble volume to

simplify notation. Now since

g v _d v
dt dt

-Y+1

and introducing the initial conditions as before, we find for the wall velocity

n, (3)

3
—_— _1 o e —————— o -
R (P(r)-PV) (=1)

-]
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Equation (4.71) has also been derived by Guth,lo3 and used in this form by

IA
KhorOShele to calculate the limiting minimum radius Rh/RW’ which is determined by
the condition R = 0. In the limit as Rm/R,‘1 also approaches zero, Equation (4.,71)

reduces to the asymptotic result for the minimum radius in an incompressible liquid,

1/3(y-1)

1 Pg
o] .
_ [Y—~l b(r)] (4.72)

Finally, in the contrasting limit of isothermal gas compression, y = 1, the

715"

equivalent form ot Equation (4.71) is identical to that of Rayleigh

it C 3 L) e [0 W (@) e

0
The minimum radius corresponding to R =0 is, for small Rm/RM,

P

R

m
M exp [-(P(r)-P ) /3P ] (4.74)
RM v g0

Figure 4,18 summarizes the variation of the minimum radius with the gas

pressure Pg , using these equations as well as the general trends given by Hickling's
0

analysis, Pairs of curves (1 and 2) and (3 and 4) from Figure 4.18 illustrate the
difference between the assumption of incompressible and compressible fluids for
either the adiabatic or the isothermal gas compressions. The asymptotic dependence
shown by curve 4, given by Lquation (4.74), is not physically realizable since by
because, from Equation (4.73), (}'()2 is singular in limit as R approaches zero.

This singularity is removed by allowing less heat traansfer (y¥1l) in which case
Equation (4.71) applies. It is to be noted that at large values of hydrostatic
pressure, fluid compressibility influences collapse only slightly more than at 1
atm. Although the minimum bubble radius is dramatically influenced

the presence

’

4
of gas, Khoroshevlo has shown lcss than 1.0 percent increasz2 in the collapse time
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Figure 4.18 - Minimum Bubble Radius for Collapsing Bubbles for which
R=0

(Rayleigh model assumes incompressible liquid, Hickling and
Plesset assume compressible liquid.)

compared with the incompressible value of Equation (4.70) for values of Pg/P(r) less

than 0.1. The minimum bubble radius is furthermore dependent upon both the

presence of gas and the liquid compressibility, especially for small gas pressures.
ln Section 4.4 we will see that the details of the bubble collapse determine

much of the sound radiated by cavitation bubbles. Therefore, we shall determine

approximate analytical expressions for the time depcndence of the bubble metior near

collapse. Near R - Rm s &r; the equation of motion (Equations (4.12) and (4.40))

reduced to
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as long as R = 0 and (Pg )(RM/RN)}" >> P, and S/R_. This is the differential equa-
[¢]

tion of a parabola with a minimum at R

i . Thus, near 7
C C

T -t
( 'i > (4.75)
[od

Equation (4.75) is expected to hold only in the immediate vicinity of the collapse.

Figure 4.19 shows Equation (4.75) compared to points calculated by Hickling and

R/Ry,

NUMERICAL RESULTS?®
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P].esset.99 Also shown in Rayleigh's result obtained by Knapp and Hollander90 bv
integrating Equation (4.69), numerically, Now, the radius in this region is e
related to a time constant (SU):_., Tl
R=0 oA
R-R_ -t z e
._i_' = o (4.76)
m T R=0 1
Ve
\.‘n
which determines a rebound parabola at the final stage of collapse, and which will v
be seen to determine the very high-frequency noise. This time constant is fft:?
o
2
3‘:‘*‘2\ l/‘- ‘." ‘
Y/ })( R .
SO%o = e |7\ 4.77 .
= c g }\M (4. ) '
o -
L
In Figure 4,19 it is apparent that Rayleigh's equation gives a reasonably accurate
result for the radius for times that are less than T~ (ST)I.R:O‘
A radius-time relationship can be derived for empty (Pg =0) bubbles for times -
\ ’ 4
o e - _ .
. 2 )
somewhat earlier than t = I‘C, but still for which RN/R >> 1, yet (R)™ >> RR, using A

Equation (4.68) which reduces to

3 (
(R)? = - § '?’(?) (4.78) 0
o

This equation is integrated from some R and t to R = 0 at ¢t 1 to give

c o
<
. R 2/5 0.4 o
— -~ a (1 -t) (4.79)
e R €
(] i
- where T
9
L
=
| . -
- -l
P -
q " ]
294

I

O o

L
.

' - . . . - . . - - - -
e et e ettt e S it bt o e o o o Sk e b e s h A e A En AmEmtntl




e,

Sy 13

PREP 2 S o

* 4 & e

o)

i)
[N
] o

5 1/2
_ 5 12/[0.915
=313 <—_T__> (4 .80)
c
therefore,
- 0.4
R ) ¢ -
.=~ - 1.3 — (4.81)
hM ( lc )

This relaticnship clesely approximites the complete Ravleigh sclution near collapse
due Lo the neplected acceleration terms. The inset of Figure 4.19 shows the meas-
ured tubble collapse by Knapplo5 and Knapp and Hollander90 with both the numerically-
caleulated radius and Fguation (4.81). Unfortunately, the details of collapse are
ot easily ebserved because of the short time scales involved and because of the
small value of Tt for which Fanavrion (4.75) can held. The radial velocity wmust
cdecredase from nearlwy sonic (Figpure 4.16) to zero at the final stage of collapse.
Therefore, these results yvield only rough approximations with which estimations ot
the effect of gas on the sound will be estimated in Section 4.4,

Although the large velocities of the bubble wall relztive to the acoustic sound
velocity occurring at the final stage of collapse had been recognized by Rayleigh,
it was not uatil the early 1950's that numerical calculations of the compressibility
cffects were undertaken.

When the bubble wall velocity approaches the speed of sound in the liquid,
shock waves are formed which modify the time history of the pressure wave formed in
the liquid near the bubble. To get an idea of when this occurs, relative to the
¢xpected time for complete collapse, we resort again to Lhe incompressible liquid

mod el.
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To find the acceleration of the bubble wall, at any frime for a gas-filled
bubble in an incompressible liquid substitute Equations (4.11) and (4.71) into
Equation (4.12) to give

P -
P(r) + PR g R, 30-1)
R=— vV My O y <_;_ (4.82)
o R4 (P(r)-P )(y-1) R
The maximum velocity occurs when R = O at which time the radius is
L pGo-p, | 130D
RN) R e (4.83)
R / R=0 v P
Eo

where the term Pg /P(r) has been neglected compared to unity. Thus, Equation (4.82)

o
shows that the limiting radius at which R is maximum is zero for Pg = 0 and for
o)
isotneimal compression, ¥y = 1. Now, to dectermine what the maximum wall) velocity is,
we just substitute Equation (4.83) into Equation (4.71)
1/2

. p(r)-p y\ 12 . p(ry-p P/ YD

R \ 2 {y-1 y-1 v ,

R f—V —(— 3 ¥ P2 4. 84)

“o ) max t C2 3 i Y P

. "O o go

Lquation (4.84), illustrated in TFigure 4.20 for two values of hydrostatic
pressure, poorly predicts wall velocity for the small gas pressures which should
exist in vaporous cavitation. As the gas pressure is reduced to zero, the in-
compressible theory predicts an infinite radial velocity and there is a square-root
dependence on the static pressure which 1s only given in the complete theory at
moderately large yas pressures. Nonetheless, continuing to use the simple theory,
the maximum wall velocity occurs at the radius given by Equation (4.84) for which

the corresponding time interval privr to collapse,
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S
(dt ) =1 -l
¢ p=0 c R=0 =
is given from Equation (4.81), ,-:'_';
5/2
. 1/3(y-1 .
(6t Pg /3Gy-1)
R::O ( ‘ 1) ) i ','_'_'.
—_— 2\ : 4.8 SN
- L2\“ 3 5 (4.85) .
c
This time interval is longer than the previous one (6'{)}'<=O given by Equatilon (4.77) : j::-‘
by the ratio i
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(§1) .
RO ) 5 (15/6Gv-D] (43172, (4.86)
(D0 -

~ 2 for Y = 4/3 to 1.4

=0 for vy =1

simply because é = 0 occurs before R = 0, i.e., the time of maximum wall velocity
occurs just before or at the time of minimum radius. Note that the ratio of these
times is not dependent upon the gas pressure, rather only on the ratio of specific
heats Y. Referring again to Figure 4,20, we cee, however, that Hickling and
Plesset's analyses for the gas-filled bubble in a compressible liquid suggest that
the incompressible theory is not valid for gas pressures that are less than one-
hundredth of the static ambieut pressure, Furthermotre, for rarified bubbles, the
maximum radial velocity in a compressible liquid is apparently independent of the
hydrostatic pressure, but still becomes virtually unbounded as the bubble becomes

/,
94,95 theories (shown in

emptied of compressible gas, as Gilmore's92 and Mellon's
Figure 4.16) will also attest. Therefore, for this time interval, for which R - SR
on bubbles with little compressible gas, the compressibility of the liquid must
dominate the collapse dynamics.

The pressure pulse that is formed in the liquid in this time segment has been
determined by Fitzpatrick and Strasberglo6 using results of calculations by
Mellon.95 Discussion of these points will be taken up in Section 4.4.1,2.

A rough estimate of the time interval before collapse for which the liquid-
compressibility should influence the wall velocity can be made by using the results
of the preceeding section. Following Fitzpatrick107 we postulate that liquid
compressibility should become important when I‘{/c0 is finite, for example, greater

than 0.1. For empty bubbles, using Equations (4,78) and (4.81), this criterion can

be shown to correspond to a bubble radius

-2/3 iiﬂ

1/3
L E P(r)_;z (4.87)

RM nc
O 0

1/2 R

P(r) L

-4 <_ 2)
2 C B
o 0 .
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which agrees with Fitzpatrick'leBresult. The corresponding time before collapse is

§1 5/6
—= . 0.9<P(‘%) y3/3 (4.88)
c DOCO
5/6
P(r)
. 40< Cz)
po )
where M = ﬁ/c . This time interval is a factor of three earlier than that derived

by Fitzpatrick107 partly because of the tendency of Equation (4.8l) to underestimate
the bubble radius. Fitzpatricklo7 used a different analytical function for R(t)
than that used here. The radii which are indicated by Equation (4.87) for
P(r) = lO6 dynes/cm2 and 107 dynes/cm2 are 0.15 RM and 0.31 RM’ respectively.
Figure 4.18, emphasizes the effect of compressibility, showing that the deviation of
the compressible and incompressible theories for the minimum bubble radii occurs for
minimum sizes that are less than (O.I)RM, and Figure 4.20 shows that the maximum
wall velocity 1s considerably below that predicted by the incompressible theory when
R > O.lco.

We shall see 1n Section 4.4 that the peak value of an acoustlc pulse will be
proportional to the peak value of V. At the times close to coTplete collapse the
volume acceleration is controlled by the wall velocity, i.e., V = 2 R (é)z.

Accordingly, for p /P(r) < lO_2 as shown 1in Figure 4.20, the peak value of the
&
[o]
sound pulse will be controlled by the compressibility of the liquid. Thus, as we

shall see, the formation of weak shock waves are expected to occur in the vicinity
of the collapsing bubble. These waves will be controlled, first, by liquid
compressibility and, second by static pressure. The maximum velocity of the bubble
wall will be reached at t = TC-(61)§=0, and this time will mark a cessation of shock
formation. Later, but immediately before collapse at t > Tc - (6T)é=0, the bubble
motion will be limited by the enclosed gas pressure and it will be a time of

relatively large values of wall deceleration.
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4.2.5.2 Other Influences on Bubble Collapse.

4.2.5.2.1 Liquid Viscosity. Recent theoretical analysis by Kuznetsov and
Shchekin,lo8 Levkovskii,lo9 and by Avenesov and Kuznetsovllo have shown liquid
viscosity to have a relatively unimportant influence on bubble collapse. Only when
the bulk viscosity of the liquid btecomes many thousands of times larger than that
of water does the-rebound of small collapsing bubbles become influenced.110 For

values of a Reynolds number

1/2

it

[¢]

R, (P(r))
o\ 4

Rb = 4

<2 /6 (1- % we)

where

w 2S
e RMP(r)
chkovskiilo9 deduces that
R
— W <« R as R~+0
RM e b

in an incompressible liquid. For larger values of Rb than the critical, the

clarsical results of the last subsection apply.

4,2,5,2.2 Nonspherical Bubbles. Measurements of collapsing spark-induced bubbles

in a virtually unbounded liquid show a3 maintenance of spherlcity, e.g., sce

Harriscn,lll and Lauterborn.le’113 However, bubbles collapsing in an hydrodynamic
! _1
pressure gradient, e.g,, in a venLurill%l15 on a hydrofoil,ll6 118 on or near a
112,119,120 112,113,121,122 chow a

solid wall, or within a radius of another bubble,
marked departure from spherical symmetry. Spark bubbles collapsing near boundaries
can form a small jet toward the boundary (widely considered as responsible for cavi-

tation damagce), while bubbles collapsing in the streamwlse gradient of a hydrofoil
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X ) ‘ 116-118 e
- assunie the shape of a prolate spheroid whose axis 1s perpendicular to the e
. - .t
- direction of the pressure gradient. These bubbles can collapse asymmetricallyll6 118 “ae
il or be disintegrated by the liquid flow separating over them.lu’l18 In a venturi, ;i]

bubtles have been observed to take the shape of an oblate spheroid with minor axis SRR

in the direction of the gradient. In the final stage of collapse,109 these bubbles -ff

AL

VTR
’
L

can form toroidal shapes. Rebounding bubbles may also appear as clouds of micro-

bubbles rather than single bubbles, e.g., References 116-118. B
Theoretical analyses by Plesset and Mitche11123 have shown that expanding :2%

cavities will remain essentially spherical as long as the initial deformation 1is B

small compared to the initial radius. Collapsing cavities are less stable, the in-

1/4 _,.,

when the attached bubble is initially a prolate hemispherold (with major axis

stability growing as R whether or not surface tension is included in the a
7 analyses. Later analyses by Shima and Nakajima,lza for nonhemispherical bubbles -
:ﬁ attached to a wall, showed that collapse times are closely approximated by E:
é: Rayleigh's formula using a mean bubble radius. This similarity had been demonstrated i{
;; earlier, however, by Plesset. > The analysis of Shima and Nakajima124 showed that ‘;]

perpendicular to the wall) it deforms into an oblate hemispheroid and subsequently '?f
1

forms a jet impinging on the wall. The numerical analysis by Shima 25 for ‘

initially-spherical bubbles collapsing near a solid surface, showed that when the .

bubble center is initially within three radii from the surface, the center of the

"-.';.""
]
-—

bubble moves toward the surface in such a way that the bubble wall nearest the

surface moves only slightly. The analysis of Levkovskiilz6 has shownt that wlien the {f

TR ) R

Cla

distance tfrom the surface to the bubble center is only one initial radius, i.e., o
the bubble nearly touches the wall, the collapse time differs from Equation (4.70) :
by no more than 20 percent. This result is important from the aspect of noise pro- :?;
duction, because it suggests that the frequency content of noise (f~l/TC) for a N
given bubble volume will not be too sensitive to the geometry of the collapsing o

bubble. We shall see in Sectilon 4.4.1.1 that for frequencies that are less than T

FERY

l/IC, the cavitation noise spectrum depends on the overall growth of the bubbles.

At higher frequencies the noilse 1is controlled by the details of collapse. There-

L 2NN IO I
] '

e fore, this noise mayv be influenced by departures of the collapsing and rebounding }
bubbles from spherical symmetry, and by the formation of bubble clouds in the

o collapse and rebound phases.
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4.3 HYDRODYNAMIC CAVITATION INCEPTION

The inception of cavitation is important from the point of view of acoustics jf
because once cavitation bLegins, the noise level increases rapidly as the cavitation
develops. Therefore, it is important to predict with fair precision the occurrence
cf cavitation as pressure decreases or as velocity increases. The level of cavi- =
tatlon noise shall be shown in the next section to depend upon the value of the

cavitation inreption index.

4.3.1 General Equiliprium Theory

4.3.1.1 Outline of Scale Effects. The use of Equation (4.5) to predict cavitation L

inception, and the direct application of the classical theory of bubble dynamics to
predict hydrodynamically induced bubble motions has only been successful in certain -
types of flows. Often real flows deviate from the ideal because of viscous and
boundary influences as well as the population of free-stream versus surface nuclei.
Two conditions favoring the classical cavitation inception occurring when

K = (-CP)min together with the growth and collapse of spherical bubbles, as in
Sections 4.2.3 and 4.2.5, are: nonseparated boundary layer flow over the body, and
an abundance of free-stream bubble nuclei (occurring generally at moderate-to-large
gas contents)., Such conditions have existed in the traveling-bubble observations of
Plesset,14 Figure 4.14, and others by Knapp and Hollander90 (see Figure 4.15),

Parkin,ll6 and Blake et al.l”’l)'8 Departures of cavitating flows from this ideal '

11,116 N

"

behavior have been termed ''scale'" effects.
An example of measured indices for the inception of cavitation on an effectively
two-dimensional kydrofoil, that does not apparently display scale effects, is found
in the work of Daily,127 shown in Figure 4.21. The observed values of Ki are shown
to be only slightly less than the (—Cp)min determined in a wind tunnel, with the U
discrepancy less at small angles of attack than at large angles. Large scale effects S
were apparent for the indices measured on 12 percent Joukowski hydrofoils by Parkin116 e
and shown in Figure 4.22. The indices increase markedly with an increase in
Reynolds number and a decrease in size. 1In all cases the index 1increases from
substantially less than (—Cp)mi to approximately that value. 1In both cases the

n
nucleus population was densely composed of small spherical bubbles.

302

. - R . o . . . DI R - . L .- LT W e oo e
- - o ) - ) . A L anhi T Y T R N P P N R PR e



CAVITATION NUMBER FOR START

Figure

X 10
[+ 4
w
g
S
F
2
o &6
[
«
=
> 4
<
1}
s
wz
a
o
2 90

L

-

T

AS PREDICTED FROM

WIND TUNNEL PRESSURE

DISTRIBUTION DATA
NACA REPORT 5863

LI L

1

(NORMAL LOW PRESSURE)

- , -
CAVITATION ON LOWER /
\(NORMAL HIGH PRESSURE) / -
\ SIDE OF HYDROFOIL /
\\ Z~” CAVITATION ON TOP
\ e
N SIDE OF HYDROFOIL
A i - 1 1 - 1 I
-8 -4 0 4 8 12 16

ANGLE OF ATTACK, a (deg)

Figure 4.21 - Values of Ki at which Cavitation Begins

OF CAVITATION, K,

versus Angle of Attack, NACA 4412, Camber: 0.04C
(From Daily127)
0.7 [T T 1 ] <Y ™17 T
i O CHORD, ¢ = 2in, |
0.6}~ A A O CHORD, ¢ = 4 in.
ﬁ O CHORD, ¢ = 3 in.
a4 (-Cp) =054
05— A 8 A min 0 _
5 a 0 l
A O
04|~ A _
ﬁjA X g _o- 8
03 & A 00 n
L4 Laiadn { O O L a4 g4
: 1.0 2.0 5.0 10 x 10°

REYNOLDS NUMBER

4,22 - Cavitation Number

Reynolds i umber Rc for the Joukovski Hydrofoils,

Ky

303

Visual Inceprion (From Parkiu

116
)

for Incipiert Cavitation versus the

.t
f

,.
‘ll‘

PN A |
..

L R
i

g

R
.

- e m———
P )
. .

~
LI
'

.



A AV

Behavior of cavitatiou on hydrofoils 1s now generally thought to be related to
some combination of viscous scale effects (through influences of both laminar
separation and surface roughness) and local differences in nucleus distribution
(which influence the location of possible initial cavitation). Laminar boundary
layer separation, which occurred at all values of Rc in Figure 4.22, is often

assoclated with a reduction in Ki, while surface roughness increases K Local

nucleus concentration, which also influences inception, may depend on iucleus slze
relative to a flow length scale (see Figures 4.5l and 4.52) as well as on the nature
of turbulent mixing in the flow., Although the interrelationships of these scale
effects are not well understood, only recently has attention been given to sy.temati-
cally recording the condition of noncavitating flow on the body, the background
turbulence in the faciiity, the water quality, and the surface condition and material,

Scale effects, which lead to various types of surface cavitation, have been
obscrved on the same body in different facilities, as shown in Figure 4.23. These
clasgical photographs were published first by Lindgren and Johnnson128 and show the
results of a "round robin" series of experiments that was sponsored by the Inter-
national Towing Tank Conference. It is now believed (sce Section 4.3.2.7) that these
differences in cavitation-type are due to a combination of differences in facility
turbulence (which influences laminar boundary layers) and bubble nuclei. The
appearances of cavitation fall into three classes; traveling bubble which is favored
by large concentrations of bubble nuclei and high turbulence levels in the facility;
sheet cavitation which is favored by low turbulence levels and moderatce to louw
concentrations of gas nuclei; and bound bubble cavitation which is favored by low
turbulence levels and moderate to low concentrations of gas nuclef bound but poorly
wetted or hydrophobic surfaces (large concentration of surface nuclei). The location
of thesc bubbles 18 stabllized by an cquilibrium between surface tension and the
local steady pressure gradient,48 Even though there exists a large body of literature
published prior to 1965, {t is difficult to use many of those experimental findings
in current compllations of measured cavitation inceptlon, because one or more of the
experimental conditions that are now regarded as Important may not have been reported
in the previous work,

Three-dimensional hydrofoils and propeller blades have tip vortex cavitation,

in additjon to theye various formes of surface cavitation. This cavitation is causcd
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. 128
(From Lindpren and Jobngson )

by Lhe relatlvely Jow pressures that exist in the vortex cores and fts inception
will depend on both the 1ift produced and the Meynolds number (houndary laver) o
the surface flow on the hydrofoll,  Free shear layers, wakes, and jets, will also
cavitate, wirlle the fncdiptent fades depends vpon the cleentation of oddles entrained

in the tlow,
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4.3.1.2 Hydrodynamical Excitation of Bubble Nuclei., Compared to ultrasonic

cavitation, hydrodynamic cavitation nas the additional complication that the
pressures surrounding the cavitation nuclei are s function of the flow Reynolids
number and of the details of the flow. Therefore, it is, in general, necessary to
have a priori understanding of these details prior to a rcliable prediction of in-
ception. Although some type of relationship between incepticn and viscous {low has
been recognized for many years, a full comprehension of it is only ncw being
realized.

Hathematically, the relationship between the turbulent field and the dynamics
of the bubble nuclel entrained by it is set by the equations of tubble dynanics
(Equations (4,11) and (4.12)) simultaneously with the momentum Equation (2.44).
Because our interest in this section lies with incipient cavitation, the fluid
mechanics that excite the bubbles may be considered as single phase and virtually
incompressible (unless, of course, the concentration of free gas is rather lairge).
We proceed now to glve a gencral idea of the magnitudes of these pressure fluctu-~
ations in various types of flow. Superimposed on the mean flow are turbulant
velocities so that the velocity and pressure in the nomenfum and continuity

cqualions may Le replaced by

g - - ~p R P d

u' (y,t) = U(y) + ugy, t (5.89)
and the pressure driving the bubble, replacing P(r) an Equation (4.12). as

p'(y,t) = P(§) + piv,1) £4.90)

The fluctuating variables J(y,t) and p(;,t) have zer. mean b2cause they are
perturbat fons about the time-averaged local mean velocity ﬁ(;, and locas sratic
pPrussure, P(;). The fluctuating veloclty and pressure pooscrs the statistical
properties outlined in Scctlon 3.5, The various qualities of pressure fluctuations
on the wall bencath the turbulent Loundary layer arce examined in Chapter 7. For use
in the next scction, we will summarize the known magnitudes of pressure ilurtuations

in some shear {lows.
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Batchelor, essentially following the procedures of Section 7.3, has theo-
retically determined that the root-miean-square pressure in an isotropic turbuient

field is given by

ﬂllz _—
p2 ~ C.58 Co u2 (4.91)

9
where u = ug is the turbulence intensity. Measurements of p“ have been made in a

12
turbuient jet, the most recent being those of Armstrong 0 which showed

'fil/z —

p £1.5p u (4.92)

wvhere U, is the velocitry fluctuation in ths mixing zone of the shear layer, which is

1 )

2 valu< that is ccmparable to trat found by others.ljl Because the maximum

I 2

up = 0.026 T, Armstrong's result gives
— /9

52

P—0 - 0.08 (4.93)
- o
2 o

Miasurement:s of p(yi.L} in turtulent boundary layers are not available, but on the

tall (see Chapters 7) the root-rean-usquare pressures are bounded bty

—51/2

p T (2 to 4) T (4.94)

whrre i is the wall shear coeffficient. That these pressures are of the same order
w

21 wdaNilude as those observed in the jet, cau be seen by noting that typically near

— /2
L
cmeoth 0¢ rough walls UI have a1 range (see Chapter 7) from two to three times
. 12 . .
Vi /u(, . Thevefore, at the wall, the root-mean-pressure is
w Y
i
[
E'.
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iﬁ —1/2 — N
N P = (0.5 to &) o ul (4.95)
r
?f Recent calculations by Meechan and Tavis132 have shown that pressures in the tﬁ
: '.: boundary layer may be 40 percent greater than those at the wall making the co- ":f-
s efficient on T, 28 large as 5.6. —
-4
‘ The relationships of Equations (4.91), (4.92), and (4.94) apply to the root-
o mean-square pressure, however, locally the pressure may be made smaller than this “
:-‘- value and a bubble nucleus entrained by a low-pressure region in the flow is ex- "
. pected to reside in it for times that are at least as long as the life-time of the —
l eddy. Thus, in a general way, the local pressure may be written as a coefficient “
:Ti which includes the local mean PS(;), and fluctuating pressure, and the free-stream .
i.- reference velocity U, i.e.,
K . . . 4
PLY) *+p(3,0) = B, . . .96 o
— =C_(y) + 1-C_) C (y,t) .
o2 p) * p) p
2 Yo'w
l ~ < . : -
- where C (y,t) is a local time-varying pressure coefficient defined in terms of local
p S
e velocity U_ as N
:';' -> ;-‘::-
o ~ ot
& (Fory = B8 o
= P -11 ¢! U2 4
P‘.T 2 "o's 5
K This pressure coefficient will have a probability of occurrence with positive or : :'_j
negative values about a czero mean. Negative values will cause earlier cavitation ::‘-'_._'
K because of the resulting lower pressures. _._!
- The pressure excitation, P(y) + p(y,t) in Equation (4.12) for the bubble motion R
can now be replaced by Equation (4.96), and the bubble radius can be nondi-
- mensionalized on a length scale of the body L, to give a normalized equation of .:Z:‘-
q motion for a bubble in a hydrodynamic pressure field; using Equation (4.96) _!
P 3y
2 R
Ry (Ry' _ 3 [(Ry' . 4s Bo ( 0> c ) C
23Ry - 22 = - K - - + — - (1-C) C_(t)y (4.97
. (L) (L) 2 [(L)] K- - ——2+*7T 2 \X (1-C) € (1) )
R s RU — o U
‘ 2 o ® - ,!
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The representation (R/L)' denotes a derivative with respect to the reduced time
variable
U

a>

The lLubble motion must be viewed in the Lagrangian frame, i.e., moving with the
fluid, so that thc coordinate ; must be replaced by the time varying variable 6't
and the time dependence of the pressure is determined both by the translation of
bubbles through the low static pressure zone and the superimposed random pressure
moving with the bubbles. Equation (4.97) is therefore analogous to the Equaticn

(4.16) with the quantity

o |

. "" r _:. - _"... - _¥'.
’U“;L’p(l t) + (1 Cp(L ) LP(L t,t)]

replacing the excitation pressure. The combination of terms on the right-hand side
of the equation da2termines a critical radius and pressure which are analogous to
those of ultrasonics. A critical pressure cocfficient for static divergence of an

empty nucleus (Pg =O> is, from Equation (4.50), therefore,
LBy

-1/
45 3/2 2 43 1/2

[R+(C )} . = - [—— K+ (4.98)
p’lcrit LR U2 271/2 o R U2
0o Q0 > 0o 0o x®

where RO is the radius of the bubble nucleus upstream of the body where PS = P_ and
U_=1L_. The critical radius at the pressure coefficient Cp is given by
—5 - k- () (4.99)
3R p U P
co ™

Equation (4.98) has the same graphical representation as shown in Figure 4.8, how-
ever, K, Cp’ and ﬁOROUi/AS replace the dimensional variables used earlier. Al-
though the above relationships apply to bubbhle nuclei, one may further envision
alternative relationships which pertain to trapped gas in crevices of hyvdrophobic
and surface nuclei which are analogous to those developed by Harvey (or Apfel, see

Equation (4.62)).
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Equation (4.98) may be used to state a general static equilibrium theorem that

has been used extensively in cavitation research over the years. Static equilibrium
requires that K = R = 0, therefore, Equations (4.98) and (4.99) give the inception
indxx for the flow as being equal to the minimum value of the sum of pressure

coefficients, i.e.,

g ~
K, ={-(C) - + 7 - (1-Cp) Cp(t) min (4.100)

This simple relationship superimposes the collective effects of surface tension and
dissolved gas that determine bubble response as well as deviations from the ideal

potential flow which are represented by instantaneously nonzero values of Cp(t).

4.3.1.3 7The Influence of Dissolved Air on Cavitation Inception. Just as in

ultrasonically-induced cavitation, the presence of dissolved gas in hydrodynamic
facilitics can diffuse out of solution causing gaseous cavitation if the local
pressure is low enough to cause local supersaturation. The process could also in-
elode the cctified diffusion if an undulating pressure field remains in progress

133,134 has considered the gaseous cavitation

ter a suitable length of time. Holl
from vhis point of view. The equilibrium Equation (4.57), applies directly to this

casce, which llolli rewrote as

p =1 -2 4 ay

where Po= equilibrium pressure
[N

H = Henrv's law constant

= dissolved alr content

o o . S
1 PHO f P, 1in Equation (4.57)

The static cequilibrium condition for the onset of gaseous diffusion may be written

in dimensionless form as
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4
K< (-C) , = S .8 . (4.101)
- prmin U2R 1 o u2
0O ® 0 2 @

These equations express the fact that when the local hydrodvnamic pressure P(;)
falls below Pe’ the bubble will begin to expand and the partial pressure of gas in
the bubble will be less than the equilibrium pressure of the dissolved gas in the
ambient liquid and the bubble will continue to grow. This is because the liquid is
locally supersaturated. The process will be slow, unless it 1is accelerated by
convective diffusion, Section 4.2.3.3, with f in the equations determined by the
local rarefaction pressure P(y), the (larger) upstream ambient pressure P_, and the

upstream concentration f such that the local concentration is

For large enough bubbles that the surface tension pressure may be neglected,

the limiting cavitation index for gaseous cavitation will occur when

K < K. = -(C) =

. Poin ¥ T2 (4.102)
2

.
o Us

Iioll133 has compared this equation to measured desinence indices on small hydrofoils
with the result® shown in Figure 4.24. The upper curve applies to stable spots of
cavitation which remained as small attached, clear bubbles on the surface, while the
lower curve appeared as a less stable steady state of cavitation along the span of
the hvdrofoil. The spots were apparently located at small nonuniformities in the
surface, and that they were due to gaseous cavitation is confirmed by the agreement
of Equaticn (4.10z) with measurced indices. The spots were also apparent on the NACA

section, only at angles of attack above a critical value beyond which leading-~edge

laminar separation would be expected. The implication of these experiments is

*Desinent cavitation indices Kd are obtained by increasing amblent pressure and

noting the censation of cavitation, while incipient cavitation indices Ki are noted

by reducing pressure and noting the onset of cavitation. For Ki < K, see Reference
135, the difference diminishes as Reynolds number increases.
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Figure 4.24 - Two Tvpes of Cavitation on a 5-Tnch NACA 16012 Hydrecfoil

(From Holll33)

three-fold: it confirms the validity of Equation (4,102) for gaseous cavitation, it
demonstrates the possible importance of viscous flow (especially flow separation
which provides necessary time for diffusion to occur) as influenced by angle of
attack, and it demonstrates the importance of surface condition in determining

certain types of inception.

4,3,1.4 Bubble Growth in Turbulent Flow. As shown by Equation (4.96) unsteadiness

superimposed on the mean flow causes a locally f[luctuating pressure coefficient.
This effect 1s 1llustrated in Flgure %.25 which shows the static pressure on or
immediately above the surface and a superimposed fluctuating pressure field. The
vapor pressure 1s shown to be less than the minimum statlic pressure so that without
turhulence vaporous cavitation wculd not occur, but because of the fluctuating pres-
sures microbubbles entrained by the boundary layer on the hydrofoll will cavitate.

As illustrated, the pressure 1s represented as spatially varying over the surface,
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) however, to a bubble convected by the mean flow, this pressure may be regarded as N fi
( ~—q
' imposed on the bubble as it passes over the surface. Let us suppose that a nucleus }Hi}
' happens to be attached to a fluid element at an instant at which the pressure drops E:?f
: beneath Pcrit’ for example, at location A, This region of low pressure is convected f;f:
ML R
. downst.ream through the varying static pressure region, so that the bubble will grow e
' until roughly at position B, when the static pressure will be zreat enough that the ff
underpressure caused by the eddy will no longer be sufficient to maintain local j;jf
‘ T
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rarefaction and the bubble will collapse. Alternatively, because the eddy lifetime
is finite as it is convected and buffeted by the surrounding flow, the local pressure
will rise as the eddy decays and, accordingly, the bubble will collapse. In parallel
with the case of ultrasonically induced cavitation it can be sald that there must be
a certain amplification factor and time scale appropriate to the bubbles and that is
analogous to Figure 4.9. This function for the radius of the cavitating bubble,

RM may be of the form

= 01/2 - f T?""ER— (4.103)
9lCp ! °© P

o]

[e}

where w_1is the resonance frequency of the nucleus Ro’ and w is the frequency of the

fluctuating pressure qCp(t) in a frame of reference moving with the eddy. The
specific theories of unsteady local convection in turbulent shear flows have been
developed in Chapter 3 with more extensive development in Chapter 7, but for now
let us say simply that the unsteady counvection causes a buffetting of the bubble by
the neighboring flow giving rise to the fluctuating part of Equation (4.96). The
predominant frequency of such a buffetting will be roughly

d (4.104)

-=1/2
where N 1s a macroscale of the turbulent flow, and u. is the root-mean-sguare of

the fluctuating convection velocity which 1is on the same order of magnitude as the

turbulence intensity. Almost always
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therefore, for a large-enough pressure fluctuation, cavitation is certain to occur

with a growth time which is on the order of

Combination with the foregoing Equation (4.103) and the recollection that (Equa- o
. ~ —’2- ?‘:.'_’.
tions 4.91-4.95) quCp[ ~ nou suggests that the size of turbulence-induced cavita- :¥x$
tion bubbles will be limited by the turbulence scale, i.e., using Equation 4.53 ;FE
-

By ~ 0

Another related point of view, that is suggested by observations of incipient L;;i
cavitation in turbulent boundary layers by Arndt and Ippen48 (Section 4.3.2.6), is ;fjg

that bubbles cavitate in the cores of eddies convected in the boundary layer. The .

life time of such eddies T, is on the order of &/U_, where § is the boundary layer

thickness so that by Equation 4.53 S
. 4
o 1/2 -
2) 1C_(t)] / AN
~ = .105
RM Te 9, (3, 5 (4.105) PR
0 -. .~-~‘<
i
q
fate
In the case of the bubble nuclei, the incipient index, based on the condition 3;3L
of static stability for the threshold of vaporous cavitation, will be {f;ﬁ
foa
+ - (1= : o< [K+ 4.106 "
Ko+ Cp = (1=C) fe (] < [K+C )y (4.106) =
where [K+CP]Crit is given by Equation (4.93); see Figure 4.8. Note that for large f?ﬂf
enough bubbles for which K >> ZS/quo and for negligible dissolved gas, Equations e
, L
(4.106) and (4.100) are equivalent because |K+C = 0. —

pjcrit
in Section 4.3.2, the use of Equation (4.106) will be illustrated for various

tyvpes of turbulent flows. The effect of the turbulence will be to increase the

315




incipient index above the value that would be predicted simply on the basis of
potential flow theory. Equation (4.106) implies that dynamical similarity between
two geometrically similar, yet differently sized, test bodies must be established in
terms of the turbulent flow before cavisation similarity can be established, In the
context of the above, this means that ]CP|/CP must be similar as well as Cp‘ A
normalized on some geometric scale of the body, and available cavitation nuclei with

sizes greater than the critical radius for growth.

4.3.2 Examples of Cavitation Inception of Turbulent Flows

In this section we will summarize the characteristics of some practical turbu-
lent and vortical flows for which the cavitation inception index will differ
markedly from the classical equivalence between Ki and (-cp)min’ Equation (4.5). A
rationale will be pEesented for each flow-type that will give a specification of an

effective valuu of Cp(t), for example, Cp for use in either Equation (4.100) (or
eff
(4.101)) or (4.106). Therefore, a general stability criterion for vaporous cavi-

tation inception will be

] + [K+C ) (4.187)

Li = [-Cp-(l—Cp) [Cp(t)eff ain p’crit

crit’ shown in Figure 4.8, is zero for large enough values of nucleus

radius. For gaseous cavitation, the equilibrlium condition is of the general form

where [K+Cp]

«H 48
= (- - ( + - .108
Ki ( Cp) + (1 Cp)[Cp\t)]eff 1 3 2 (4.108)
=2 U p U'R .
2 o o * 0o lmin
In the above equation { }min indicates that inception will occur on the body at any

point at which the total pressure coefficient is minimum, not necessarily at which

(-Cp)min oCccurs.

4.3.2.1 Vortex Cavitation. The pressure in the core of a vortex of strength [ is

less than the ambient pressure, therefore, a flow that has some vorticity may

provide earlier cavitation than nonvortical flows. The simplest way fto represent a

C .
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vortex is to postulate a "solid" rotating core of radius r, and angular frequency £,

as illustrated in Figure 4.26. This is the so-called Rankine vortex. The circu- L
lation and & are related through e

2m O
r= f U.rd6 r >r
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Figure 4.26 - Schematic of the Velocity and Pressure Fileld 'F;f'
of a Rankine Vortex e
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Equation (4.71) gives the radial pressure gradient in terms of UG’

2
.2
r

{
+
O |-
w|
2|

where P + P as r + ©. The integration gives the pressure coefficient at the center

1 g

of the vortex as

P - P(r) r 2
; 1.2 " % T2 <Eﬁafir'> (4.109)
| 7 Pola ¢

where the normalizing velocity U_ represents the mean velocity of potential field
7 that 1is superimposed on the vortex. The inception index appropriate to this class of
| flow is from Equation (4.101)

. 2
| «y
Ki w2 (an 5 ) + 5 (4.110)
c &« i

The probability of gaseous cavitation occurring in this type of flow 1is comparatively
large because of the persistence of the vortex downstream and the large volume of
liquid entrained in its pressure field. Dissolved gas will diffuse out of solution
and gradually fill the vortex.

McCormickl36 has systematically examined the cavitation of a tip vortex for the
case of low enough dissolved gas content that the second term of Equation (4.110)

was negligible., Using cantilever hydrofoils, the observed inception indices,

Figure 4.27, were found to increase with angle of attack; the increase of load with
i angle of attack caused an associated increase in ['. The core radius r, vas postu=-
N lated as A/2, where & is the thickness of the boundary layer on the hydrofoil; & in-
' creaser with load (l1ift) and decreases with Reynolds number. TFor a given lift
! coef ficient, McCormick's result has been interpreted, e.g., Noordzijl37 and
? Arndt,l3l’138 as showing a scaling relationship
; Ki * & RO‘A (4.111)
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Figure 4,27 - Critical Cavitation Index versus Angle of Attack for Elliptic “i
and Delta Wings for Tip Vortex Cavitation .
(From bicCormickl36) ;'.;‘_.'_".
:'_:'::'.
the power on R partly resulting from the dependence of the boundary layer thickness “
on R, f.e.,, 0 ~ R*l/s. In Figure 4.27 the smaller values of Ki for the delta wing f_ !
compared to those for the elliptical section are due to the smaller tip loading on ,;'_‘—.':.'-
the delta wing. Correspondingly, the more highly loaded rectangular wing tips used .,:'_ :.-"
by McCormick had higher values of Ki than did the elliptical wings at the same angle _-ﬁ
of attack, Noor:dzijl37 hae recently applied McCormick's results to propellers ) “4
approximating the dependence on angle of attack = and R as S
[ _j_-.
K, = o7 RO (4.112) o
- i‘
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139,140 has applied Equation (4.110) to the prediction

Subsequent work by Billet
of cavitation inceptlon of a vortex tralling from the hub of a rotor. The
measurements,139 show an Increase of Ki with additional vorticity induced by up-
gstream turning vanes as well as the influcnce of gas content as indicated by

Equation (4.108).

4,3.2.2 Periodic Vortex Streets. The vortex street shed from the trailing edges of

lifring surfaces and bluff boudies (see also Chapters 5 and 9) have been observed to
cavitate, e.g., References 116 and 141; but the only systematic study of the phenom-
enon is that of Young and Holl.142 The experiments of Young and Holl, however, were
mostly of well-developed cavitation such that K/Ki < 0.3. 1Incipient cavitation
indices were observed to be between 3 for a wedge angle of 15 deg and 6 with a wedge
angle of 6 deg. In the otservation made by Parkin,116 the vortex street was ob-
served to cavitate at indices K < 0.8, and Reynolds number based on chord of about
106, although a specific v~lue of inception was not reported. The order of magnitude
of Ki to that expecicd in various instances m2y be estimated from data on wake
circulations summarized in Chapter 9. For example, a 0.5 caliber section* with a
squared-off blunt traeiling edge sheds a street of vortices whose individual peak

strengths scale as

}Eeak 0.6
25Ut T

(for a vortex core radius equal to about one-fourth the base height). Using
Equation (4.110), this suggests Ki ~ 0.7 + (-Cp)v, where (Cp)v is the static

pressure at the vortex formation zone. The C is probably of the same order as the
v

vase pressure coefficient - -1.5, making Ki ~ 2, The larger indices observed by

Young and Holl for large wedge angles were perhaps caused by combined influences of

stronger vortices in the wake plus a low static base pressure which would cause a

greater relative rarcfactlion zone at the point of vortex formation. Therefore, we

approximate

2
. . . ‘peak
o - ) R b

Ky = 0y * 2 (z-.uurc)

*A flat plate with clrcular leading edge.
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131,138

4.3.2.3 Sharp-Edged Disk. Arndt has shown

1/2

K. = 0.44 + 0.0036 R
i D

(4.113)

where RD is the Reynolds number based on the diameter of the disk D. This formula
was derived using Equation (4.107), appropriately adjusted to account for a vortex

structure superimposed on the mean flow:

- 2 o
K, = -(C) . +2 (————7—> O
i p min 2ﬂr0boo !

The minimum pressure coefficient occurs at thc "leeward™ side of the disk. According

to Kermeen, McGraw, and Parkin143 -(Cp)min = 0.44. Arndt131’14a assumed laminar flow ::;:
on the 'windward" side of the disk to determine a rate of steady shedding of circu- :_:!
lation, dI'/dt, from the edge. The shed vorticity was assumed to roll into toroidal -f??%
vortices in the wake, at a frequency £ D/U_ ~ 10. The amplitude of the circulation i:ﬁj
In cach vortex is then given by S
e

)

I‘=3—£§—S -i

The vortex radius r, Arndt related to the thickness of the laminar boundary layer on

the face of the disk. Arndt's semiempirical Equation (4.113) agreed closely with
143 5

exper imental data of Kermeen, McGraw, and Parkin. For RD > 2%x107, Ki = 2,
4.3,2.4 Orifice Plates. Numachi, Yamabe, and Obal[.5 have conducted a comprehensive - ;’
series of measurements which were directed at establishing the effect of cavitation 3;;3
on orifice coefficients. Results have shown Ki ~ 2.5 based on the pressure at the 't??
downstream (corner) tap and the average velocity through the orifice. The orifice Eﬁj;
A diameter to pipe diameter ratio was between 0.224 and 0.633 with RD ~ 4 - 25 x 104. Trr!
% In the case of flow-nozzles and sharp orifice plates with flange taps, Bell (dis- )
3 cussor to Numachi et al.las) reported Ko~ 1 to 1.6.
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4.3.2.5 Free Jets. Cavitation in turbulent jets occurs in the free shear layer,
which, as discussed in Chapter 3, has turbulence intensities on the order of 0.16 UJ
at distances Yy < 8D. Measurements of Rouse, quoted by Knapp et al.,A show
Ki ~ 0.55 to 0.70.

Using Equation (4.99) the expected cavitation inception index would be on the
order of

K, = {-Cp(t)}min

under a hypothesis that pg ~ 0. The minimum value of the unsteady pressure co-
(o]
efficient that is required tc induce cavitation would be some multiple, for example,

m, of the root-mean-square value. Thus, from Equation (7.70) we may write

2

Yy

Ki > 3m I;
J

= 0.08m

Assuming that the turbulent pressures have a Gaussian distribution about the mean,

there will be a small probability (actually 0.0013) that there are pressure
1/2
fluctuations less than -3p and form = 3

This value is approximately 1/2 the measured value just cited, but it is nearly
equal to the value that is inferred from noise measurements of Jorgensen.m6 This
suggests that pressure fluctuations are as much or more than three times the root-
mean-square value and occurring infrequently.

Recently Arndt131 has found an empirical relationship bhetween Ki and the

Reynolds stress, u,u in the shear layer. Hypothesing the proportionality

1
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for free shear flows, he found that measured indices collapse on the curve

1
,_J
[e)
c c
[ SV S L]

for jets4 and wake5143 (in which the free-stream velocity U replaces the jet efflux

velocity UJ), as shown in Figure 4.28.

1.0 T T |
QO SMOOTH, DAILY, AND JOHNSON {1956)
0 SAWTEETH, ARNDT, AND IPPEN (1968)
BOUNDARY SAND, MESSENGER (1968) /]
LAYER SAND, HUBER (1969}
WIRE SCREEN, BECHTEL (1971)
0.3} —
5 K;+ C, = 16 C,
—
w0
—
0. -
JET A ROUSE (1953)
WAKE 4 KERMEEN ET AL. (1955)
A BEST FIT CURVE
0.03 J - l
1 3 10 30 100
1000 C,

Figure 4,28 - Compilation138 of Incipient Cavitation Indices for a Variety of
Turbulent Shear Flows. Indices are a Function of an Effective
Shear Coefficient:

c. =1/ l»p U2 - Boundary
f w 2 "o w®
Layers
-UlU
= -— - Jets, Wakes, C = o
2
u’ P
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4.3.2.6 Cavitation in a Turbulent Boundary Layer. Incilpient bubble cavitation was

observed in the boundary layers of flat surfaces by Daily and Johnson147

48,148 i
? on rough walls. On smooth walls Daily and Johnson observed

and later
by Arndt and Ippen

that bubble nuclel were distributed throughout the boundary layer, with most at
about y/é = 0,6, where § is the bLoundary layer thickness, The location of
incipient cavitation, however, appeared to be distributed about y/¢ = 0.25, with
none occurring at the wall where the rms turbulence intensity is largest. This led
to the hypothesis that the inception was related to the presence of large vortical
eddies into the cores of which bubbles become trapped. A similar observation was
made later in rough wall boundary layers in the same, or similar, facility by Arndt

48,148

and Ippen who also observed incipient cavitation at y/¢ - 0.6, but the largest

density of nuclei was near the wall y << &, In both sets of experiments the total

. 147
gas content in the water was high; supersaturated in the case of Daily and Johnson

(so that both vaporous and gaseous cavitation were observed depending on the initial

48,148 , . 131

has subsequently fecund the cavitation inception can be displayed as in Figure 4.28

bubble size) and 80 percent saturated in the case of Arndt and Ippen.

which summarizes the results within the context of the definition of Equation (4.100)
or (4.107). 1f the boundary layer is turbulent at the minimum pressure point, and

there is an ample concentration of free bubble nuclei, then

K, = (-c ) + |c (&)
1 pmin P

where the € (t) 1is the local deviation of pressure from the static value at the wall

(—C )caused by the turbulence. As in Equation (4.94), this fluctuating co-
min

¢fficient has a maximum value,

[C (t)] a C -~ 5.6 Cf
p eff prms
whure
T
Ce =1 2
7 Pt
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which 1s a general proportionality to Cf. Therefore, adopting

C(t)] « C >« C
[ P eff P f

the inception condition determined by Arndt for smooth and rough-wall boundary

layers becomes, therefore,

4 . - + R :

Ky C, 16 C. (4.114) :

min .
indicating that {C_(t)] ~ 2 to 3 {C] . Figure 4.28 shows that bubble cavi- R
P eff p rms o
tation in shear layers appears to behave in a nearly universal way where either Cf b Y

Lo

or -uluz/UJ expresses the effective strengths of the pressure fluctuations. Note P
that for Caussian pressure statistics there is a probability of 0.0013 that ; ﬁ

pressures occur less than 3 Prms’

Other observations made by Arndt and Ippen were the cavitation bubble histories
two of which are shown in Figure 4.29. The linear increase of vradius with time -
suggests that during this portion of the life time, the bubble behaves in the hd_‘d
appropriate form of Equation (4.97),

. /o _ 1/2
(8)- ) (5

l ‘;'-_' f:f‘:_::'j'_f‘,

where -Cp(t) is nearly constant for a length of time tg. The value of tg, shown 1in

.
. 'v‘
' .“. . . D Fl
PRCIEIN ’ALA_!L.

Figure 4.29 corresponds roughly to a dimensionless time, using parameters of the L

-

flow, of ;f
t ¢ AL

Eii ~ 1 —

1t is shown later in Section 7.2 (Figure 7.12) that the time o it takes for an eddy

to decay to l/e of its initial value (as measured by velocity fluctuations normal
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Figure 4,29 - Typical Bubble Growth Observation in a Turbulent
Boundary Layer,&8 kg = Roughness Height,

§* = Displacement Thickness

to the wall) is approximately Teé/Um ~ 1, Thus, the hypothesis leading to

Equation (4.105) that incipient cavitation in shear-flow turbulence is Jue to
bubble nuclei swept into strong vortices convected with the mean flow appears to be
somewhat supported,

An alternative earlier relationship for cavitation incepcion scaling in
boundary layers has been given by OshLma,149 which is based on the hypothesis that
the maximum size to which a bubble grows is proportional to the displacement 7
thickness (see Section 7.2) of the bLuundary layer. Thus L in Equation (4.97) be-
comes, instead, a boundary-layer thickness. This yields a condition of gimilitude

of static equilibrium that requires

144 R
48
_K_cp_ 5 + 5 <~9> RZm = constant
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The exponent on Reynolds number is determined by the properties of the boundary

layer displacement thickness, 6%, which behaves as

8* Rm

L L

For turbulent boundary layers m ~ 0.2, therefore, Oshima's rule reduces to
0.4
[-K-Cp] = constant (4.116)

in cases of small gas concentration and small surface tension pressures, Oshima's
hypothesis is based on the observation of Daily and Johnson]‘(‘7 that nucleating

bubbles near the wall grow to a size about equal to a boundary layer displacement
thickness. However, contradictory evidence now seems prevalent in the literature.

In other casesla’ll6

it Js known that Equation (4.53) applies (with the pressures
being determined from the static pressure distribution) for bubbles growing near the
point of minimum pressure where the growth time is determined by convection velocity

of bubble and the chordwise length of the rarefied zone. Also, we have already

cited Arndt's later observations of bubble growth in turbulent boundary layers which
suggest that the maximum bubble size 1is not proportional to the displacement thick-
ness., Figure 4.29 shows, for example, that the larger bubble radius was observed on
the less rough wall with the smaller value of 6%, Although this evidence is not
conclusive, it does indicate that Oshima's relationship may not be universally
applicatle. Finally, agreement between Equation (4.116) and the measurement of
Kermeen et al.lq3 was shown to be reasonably good by Oshima. However, it is now be-
lieved that thosec measurements were influenced by laminar separation rather than
turbulent flow. Nevertheless for that flow type, the thickness of the separation
zone controls the bubble size and that thickness also decreases as R™™, Therefore,
an analytical model analogous to Equatlon (4.115) may well apply to those cases in-

volving separation.

4.,3,2.7 Scparating Laminar Boundary Layers. The preceeding examples of incipient

cavitation have all dealt with the types that are frequently described as "traveling
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bubble" cavitation. We now address sheet cavitation that occurs on surfaces be-
neath boundary layers which are laminar or that are transitional between laminar
and turbulent. The boundary layers of this type occur at thin leading edges of
lifting surfaces and generally occur at low-to-moderate Reynolds number. They are

sensitive to Reynolds number,150 wettability and roughness of the surface of the

body,66’151-154 free-stream turbulence,78’155

vibration of the surface, and possibly
acoustic noise in the environment. On the other hand, fully turbulent boundary
layers occurring at generally larger Reynolds number for the same body shape are not
nearly so sensitive to these stimuli. Historically, it has often been observed, in
scale-model testing, that discrepancies exist between measurements of cavitation
inception and the appearance of cavitation on the same model in various facilities
and between geometrically similar bodies of different size, (recall Figure 4.23).
However, a recognition of any relationship between the condition of noncavitating
viscous flow and cavitation inception did not really come about until relatively
recently. This is in spite of one of the most well known of the early observations

4
by Kermeen et al.,143 that the dynamics of incipient cavities was influenced by the

noncavitating fluid dynamics. The incipien cavitation observed, was then reckoned to

have been caused in a laminar-~to-turbulent transition zone, and the maximum bubble
slze was believed to have been determined by the displacement thickness of the

boundary layer. More recently, observatlons have been made of the separated flow on

the same shape of body as well as of the corresponding incipient cavitation by Arakeri

156 78,155 66,151,152

and Acosta, Gates, and van der Meulen. The situation that occurs
beneath a limited region of separated flow ("short-bubble'") at a leading edge 1s as
schematically illustrated in Figure 4.30, drawn with the aid of van der Meulen's
photographs. Downstream of the point of minimum pressure, Figure 4.30a, the laminar
flow separates if the flow Reynolds number is less than the critical value for which

the boundary layer becomes turbulent upstream of (—Cp)m The separation bubble

that would occur is illustrated as a dividing streamlin:nintersecting the body at
"s." The free shear layer is laminar for a distance Ls, but becomes unsteady due to
hydrodynamic instabilities (see Chapter 3). In this region of transition, the flow
is irregular and the fluctuating surface pressures in the region have been observed
to be as much as three times more intense than those that would be measured down-

157,158

stream in the fully developed boundary layer. Also, the incipient bubble
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Figure 4.30a - Separated Flow Pattern, Noncavitating Flow
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Figure 4.30b - Incipient Cavitation, K = Ki = 0.6
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Figure 4.30c - Advancing Cavitation, K = 0.59
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Figure 4.30d - Advancing Cavitation, K = 0.56

Figure 4.30 -- Progression of Cavitation from Incipient Bubbles to Sheet

4 c
observed near the walléb’1 3,152,156 not in the stream, which suggests that the

fluctuating pressures are locally most intense at the wall rather than in the

than in the stream. (Recall that this is in contrast to the observations made by

turbulent boundary layers where the incipient bubbles appear away from the wall.)
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Once the bubbles form in the transitional zone, they grow to a critical size, of

j iy

approximately the height of the shear layer then they migrate slowly upst:ream159

against the flow, Figure 4.30b. Some become entrained by the free shear layer and

a

iy

are subsequently expelled into the free-stream. With further reduction of K from the
incipient value, thé smaller bubbles coalesce as they move upstream forming a
distinct leading edge of a larger cavity with a clear-surface leading edge and a
"foamy" irregular trailing edge, Figures 4.30c and 4.30d. This cavity extends N
laterally along, or around, the body like a strip, e.g., Figure 4.23, numbers 5 and
9. The cavitation develops further as the cavitation index is reduced so that the
leading "'edge'" of the cavity moves as far forward as point S, while the trailing
"edge" continues to progress downstream. This type of cavitation was also observed -
on an oscillating hydrofoil by Shen and Peterson;158 the oscillations in angle of

attack bringing about a temporal variation in the extent of the disordered region of

the cavitation zone.

The hydrodynamic conditions favoring cavitation inception downstream rather than -~
at the minimum pressure point will include both low static pressure and low dynamic

pressure so that

[—C +]C _(t)] < =C
pt P min pmin

where C_ is the static pressure coefficient downstream of separation and near the S
t

point of breakdown of the laminar shear layer. For a more extensive separation V o
zone, the recirculating flow of separation occupiles a major fraction of the body

length (or chord), the outer streamlines adjust to the presence of the separation :
zone and the minimum pressure coefficient becomes larger than that occurring in i
fully attached (or potential) flow. An example of this can be seen in the next -
chapter, in Figure 5,11. 1In this case, as shown by Alexander160 and Casey,161 the o

cavitation is delayed, i.e.,

(-c ) >1<i:-(c )
pmin non- Pmin sep

sep -
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Returning to the case of '"short-bubble' separation, Equation (4.106) gives the

incipient index as, approximately,

Ip(t) |
K, ~ - +——28F 5 (¢}

4.117
i P, q - p min ( )

for large~enough bubble nuclei.

A quantitative correspondence between [p(t)]eff in Equation (4.117) and the

large amplitude hydrodynamic pressures in the reattachment zone has, so far, not
been obtained in spite of a systematic series of wind and water-tunnel measurements

"
by Huang and Santelli.16° Their work led to a near equality between Ki and C in

—1/2 Pe
spite of a relatively large value of p /q in their experiment. It is quite

possible that the delicate sensitivity of laminar flow to the many envirommental in-
fluences listed at the beginning of this section prevented the existence of strict
flow similarity in the wind- ard water-tunnel experiments used. Gates and Acosta

have examined these types of flcw sensitivities in a systematic way.78’155

4.3,2.8 1Isolated Roughness Elements. Tsolated elements which protrude into the

boundary layer cause local flow separation and attendant low pressures. These
protrusions serve as cavitation sites especially if they occur at locations near the
point of minimum pressure on the body, the locally-low pressures they induce may be
regarded as perturbations on the potential flow static pressure distribution. The
effect has been extensively evaluated by Holl,163 Bohn,l6a and Arndt et al.165

The local perturbation pressure will depend upon the local velocity incident cn
the protrusion which is a function of the height of the protrusion k , relative to
the local height of the boundary layer §. The velocity U will also depend on the
local free-stream velocity just outside the boundary layer Us, that also determines

the local static pressure. The absolute low pressure, which occurs on the leeward

side of the protrusion, will then be of the form

p . P -%p % (Ef_ EB) (4.118)
2 %osp\ v 86
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:; where US is the mean velocity at the outer edge of the boundary layer and cp is a f;
: function of both the local Reynolds number U&/v and the ratio kg/é. These factors

:g account for the fact that the perturbation pressure will depend upon the relationship

between veloclity profile in the boundary layer and the size of the roughness. -

Bohn,164 however, has also included the shape factor of the boundary layer as an 3

additional parameter, but with little improvement in the resulting correlatiin. The

local pressure coefficient is, from Equation (4,118),

i. P~ P, _ U55 }:g)
1 2 =C = (l-Cp) cP ~ ' 3T
= U
2 o w
' which is equivalent to our
-c_- (- )[E (t)] :
P P p el f .
a il
. Therefore, the condition for vaporous cavitation inception will be from Equation N,
-1 o]
: - s
] K, = ¢{-C_+ (1-C) [C (t)} } (4.119) N
K i P P P 3
eff .
R min ey
where US = U (l—Cp) and where [K+Cp]crit is taken as zero for simplicity. Equation
j (4.119) for isolated elements, contrasts with Equation (4.113) for distributed
roughness.
Values for Ep shown in Figure 4.31 were empirically determined. It is seen
) that the points fall into classes which depend upon the shape of the body.
'..
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FLOW DATA
SYMROI.] {RREGULARITY DIMENSIONS SOURCE a h ¢
—t
A TRIANGLES TWO HOLL. 1960 [ 0361 | 0.196 | 0.152 %hg
9
=L, = 0178
(o] CIRCULAR ARCS TWO HOLL. 1960 | 0.344 | 0.267 |0.041 P
——th h=05d
A HEMISPHERES THREE BENSON 0439 | 0.298 |0.0108 —-| d
1966 l
h
® CONES THREE BENSON 0832 | 0451 |0.00328 —J hg =d
1966 d
4
O ° | cvunoers THREE | BENSON [ 0737 | 0550 Jooon7 | F Tng -4
1966 —al—
u SLOTS TWO BOHN 1972 | 0041 | 0510 |0.000314 b«
—
—lnl—
1 L
FROM NACA 16-012
HYDROFOIL
10 |-TESTS f -
(HOLL) &f /
% s dP
:Q
Q 010} —
/FROM NACA 16-012
HYDROFOIL TESTS
(BOHN)
.
b 0.01 1 1 I
& .0 10 100 1000 10,000
L . 6
()" ()
‘»’ 5 Sy
4 , 165
‘ Figure 4.31 - Limited Cavitation Number for Isolated Irregularities
: Ccrnarison of Figures 4.28 and 4.31 will show that the incipient index will be more
« greaily increased for isolated three-dimensional protrusions than for continuous
: rougaresses of either a random or geometric pattern.
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4.4 HYDRODYNAMIC CAVITATION NOISE
4.4.1 Theoretical Spectrum of Single-Bubble Cavitation Noise

4.4.1.1 General Dependence on Stages of Bubble History. In dealing with cavitation

noise, we are really concerned with noise resulting from the time variation of voids
in the liquid. Since there are volume changes, the noise resulting is monopole
governed by Equation (2.20) which is rewritten here for the sound pressure far from

the bubble r >~ R, where R is the radius of the bubble,*

o v(t—i-\
o co/
Py(r,t) = —Fp——— (4.120)

Figure 4.15 illustrates the volume history of a hydrodynamically induced cavitation
bubble and it can be deduced from this that the volume acceleration will be largest
at times when the radial velocity changes direction, i.e., at the times of the
minimum radius. Figure 4.32 illustrates this dependence, using the volume history
of the type observed by Knapp and Hollauder.go The maximum sound pressure 1is
attained in a time interval of less than TC/Z that is centered on the instant of
collapse. Tue peak sound pressure would be expected to depend on the time scale T
which, by Equation (4.70), depends upon the relative hydrostatic pressure P(r) - PV

and the maximum bubble radius. Equation (4.120) can then be made dimensionless on

22 v
P (r— t—) ? <_3)
’
@ RM Tc r _ M
) Ry ) 2
(5]
‘e
or
. 1/2 . 1/2\\"
ol e ) el ()
b D v
a\Ry 7 Ry 12l _ Ry \F(r) / (4.121)
P(r) R B 3 :
Ry
*Equation (4.120) could also be written directly from Equation (4.13) by letting
r replace R << r, then P(R) - P(r,t) represente the acoustic fluctuating pressure

far from the bubble wall.
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Sound Pressure and Volume of a Single Cavitating Bubble

with Two Rebounds. Also Shown are Characteristic Times
Appropriate for Equations (4.7C), (4.77), and (4.85).

where the notation f"

It is assumed that Pv
local static pressure

In the frequency

indicates differentiation with respect to the reduced time

) 1/2
t <_“0_>
Ry \P(1)

<< P(r). 1In the following, P(r) = PO is taken as a counstant
where the bubble collapses.

domain, the Fourier transform (Equation (2.27)) of the

acoustic pressure is given by

FLRIMIN, S A i e e I e

B g L UL WAL BN L v S W s
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et

-

e

P iko(r-a)
p,(r,0) = Z:—r V(w) e (4.122)

where (Equation (2.105),

2

. 2
Vi) = - J. elnt dv(E) 4
de”

2 7
= - g’; J et y(t) dr (4.123)
-0

The auto spectrum 0f the sound pressure is quadratically related to pa(r,m) by

Equation (3.39), and

" ] \J.E‘ = 8 YY) ,. )
o vpa(r. ) Sp(r, ) (4.124)

where ©  1is the duration of the pulse shown in Figure 4.32.

tollowing Equation (4.120) these spectrum functions can be rewritten in a pair of

dimensionless forms that will be used interchangeablv. Letting

o 1/2
= L 4.125;
e RM (Po‘) “ )

the alternative nondimensional spectrum functions are

9

§ (r,uw) ¢~ ~ N

5 B, (~ , Wl ) (4.126)
) c

and

2
e (I,'.u) r° - )
L Y ) (4.127)
3/2 1/2,3  “palR ¢
P W R\ hal
o o] i

.
&l

and these are related by
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Fitzpatrick and Strasberglo6 were the first to determine the frequency spectrum
of the radiated sound from a cavitating bubble. Using an illustrative pressure-time
history very much like thar shown in Figure 4.32, but with peak pressure pulses taken
equally for all three collapses, they were able to perform the necessary Fourler
transforms. The resulting sound spectrum is shown in Figure 4.33. We will, in the
following discussion, identify certain portions of the bubble history which con-
tcibute to corresponding frequency ranges.

To perform the calculation, some elements of the time history of the bubble

volume may be segmented into a sequence of time intervals of duration ATn, i.e.,

»
P .
“
i A
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viry = E v () u(t,’ i ) (4.128) .
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- where the unit function u(t,ATn) is unity only within the interval [t-tnl < ATn and
Ay

< zero otherwise, The function vn(t) is a power-law expression used to approximate
;E the bubble motion in the irterval ATn. Appendix A illustrates this calculation.

f{ Bagically, if vn(t) is of the form

‘ v (t) = a (-t )™ £t (4.129)
li n n n n )

: = ¢ t <t

| n

:

; ‘Then, as loug as wmn > 1, as derived in the appendix,

anr(m+l) Atnw>
V (w) = - , > 1 (4.130)
n 2ﬁ(1w)m+1 2

H
i
i
.
i
i
N
-

t. :
: :

-
e

We will ncw consider the specific frequency ranges in Figure 4.31 that are
;r commensurate with the various events in the bubble history highlighte. in igures

é' 4,15, 4.19 and 4.32 and derived ia Section 4.2.5,

e
L..L}.é

.

W ]
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P
At ot s’ maa r  min

2 1. low frequencies: Wi, <3, wi, <1
. X

In this caee, Equation (4.123) gives only
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0 Sp(r,w) z (4.131)

(a1

2nT

(73

where Vo= J. V(L) dt = 1.3V,Ic and v1 iz the volume of the bubble before coilapse.
1

M
i)
(] L ~ctor 1.3 46 Indicated by the V(L) shown in Figure 4.32.
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2. Frequency of maximum

intensity, w(8t. ). << Wt

¢"R=0

< U)Tg

In this case, the details of collapse are unimportant and the initial bubble

life can be approximated by

=T\ 7
V{(t) = V_ cos (T )E
c
for -1 <t -1 < T,
C c
Thus,
Vo cos wTC
V(w) = =
2
3) - @
(2 c
so that,
2 2
S (ry,w) r cos wl
Réﬁ P 18 c /E) 2 @ )2
Mo o \2 wTC

where 1
r
n

are collapse times of successive vebounds,

> -iw[21c-(n—l)Tn_

1)

(4.132)

Because of the phase factor in

the rebound contribution, there can be certain interferences at some {requencies in

the vicinity of the maximum spectrum level at t _w ~ 1.

Figure 4.33 shows an ex-

ample of the influence of three equal rebounds on the spectrum, as calculated by

Fitzpatrick and Straslmr;,r.lU6
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multiplied by 1.25 so that it would agree numerically with Rayleigh's result, to

yield

and,

- s cies: wr. > w(é L] > wr >
3. Moderate frequencies Wt , b(éTc)R=O W, 1

- This frequency range is limited by the segment of the collapse phase which is
- controlled by the constant bubble wall velocity as considered in Section 4.2.5. 1In {T!

this range we combine the approximate function Equation (4.130) with Equation (4.81),

in the form of Equation (4.127)

el

O

2V 1 5 s

W(w) | = e v
(2 (ﬁic)l/s ;

2 e
S (r,u) r . e

Iy 2 _n N St
—-2—4——-—— > F (ilj-TC) /_/5 (4.1._5.5) -

v D
RMLO’O

; 4. MNigh frequencies controlled by noncondensible gas: i;ﬁ
| i, v w81 g o> L, ety > 1 _a
In this case, Equations (4.75) and (4,130) yield -

L
<
=1
~~
N

and

‘e

Mo o

S (r,u) r2

R
P L5006 > 105<- -"’)
R, P Ry

2

:‘_\__C<R_m>( ‘e ) 720 .
160 RM (éTc)ﬁzo (o )7 N

[

_ v
> (i )y 10 (4.134)
C ‘,..'

for u:('f—'lc) 2> 1
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E:: This time constant is given by Equation (4.77), Equation (4.134) shows a rapid ;:
ifj decrease of the spectrum level with frequency and represents the existence of an ;ﬁ
:5 upper frequency limit on the spectrum. This band-limiting is an indicator that an Eg
,;f upper frequency limit ensures that the spectrum represents an acoustic pulse of Fi
- finite energy. A rough numerical estimate of (éTc)§=0 for a partial pressure of gas Ef
— in the bubble at maximum radius of Pg /P(x) ~ 10_3, using the values of Rm/R,‘1 from :i
Tigure 4.18 (y=1.4), is © . ~
= 2
:t; (érk;- =6 x 103 '::
II c’R=0 s
H

This means that when wl,o° 6G00, the sound spectrum will be band-limited. E
® 4.4,1.2 Influence of Compressibility of the Liquid. Equation (4.120) for the sound e
' pressure is valid cnly as long as the linear acoustic approximation applies (see 35
Chapter 2). This requires that the acoustic particle velocity u, is less than the :?
speed of sound in the liquid. However, as Figure 4.20 shows, the maximum wall :ff
II velocity will be comparable to the sonic velocity for relatively modest partial :i
N pressures of gas in the cavity. 1In the linear acoustic theory of Chapter 2, the 223
_j acoustic pressure function r -* p, was propagated at speed Co' Following upon the ;;
discussion in Section 4.2.5, recall that when the particle velocities become nearly e
iz sonic, the acoustic pressure is propagated at speed Co +tu As the collapse :E
' progresses and the wall velocity increases, the resultant velocity C0 + u_, accord- ;i;
’ ingly increases. This means that higher-velocity later waves propagate faster than gﬁ
the earlier ones. As the waves propagate, the wave front steepens with the result S;

e illustrated in Figure 4.34. The timc derivative of the acoustic potential 3; is i
f shown for an empty bubble as a furnction of retarded time for three field points as i<_
well as at the wall of the bubble, If thc wall velocity were entirely subsonic, the Tf;

@ would be identical to pa/uO and pressure pulses at each field point would coincide :‘
] with the pulse at r = R. As the wave develops, the motions induced at the final _e
. instant of collapse overtake those radiated just earlier resulting in a truncated hii
) saw-tooth pulse, The dotted lines illustrate how the original pulse would have been
] curled back on itself, if that were physically possible, because of the advanced ;:3
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as the pulse propagates. To construct this diagram Fitzpatrick and Strasberg

i ¥

i C, (t—t ) —r

. Figure 4.34 - Pressure and Shocks Radiated by a Vapor Cavity .Ef

; Collapsing in a Compressible Liquid e

I (Values according to Mellen,95 curves from Fitzpatrick and ".‘
Strasberg106) &ﬂi

P
} arrival times of the faster pulse peak. The reduction in the pulse height continues §
)

used calculations by Mellen95 in which the particle paths were determined as a
function of time and distance from the bubble.

The effect that this truncation of the pulse has on the noise spectrum can be

(] deduced from the transform of a ramp function of amplitude P, and temporal width

(8t ). Thus
s

. -
AR NN ]

D
P PPy

(clr.)s

=
[
3

o

' P(w) = 5> Jf e Bt ))
(o]

.

,

PR I ]
»-' I A N
- P A AN

i

. it .
SN
e tatata it a "4

25

4

L LR P

-p (4t ) iw(dt )
, = "—52 [l-e S (iw(dt )-1)]
i 2ﬁ(m6ts) s

!
S
<
@
.
B




e =2 | R 7RI T e EEEARA ey T e R s e e LT W e & . a0 ke W .Y T a2 BA TR T e o

The corresponding spectrum function at high frequencies will behave as

2

0
— w(STs) >1 (4.135)

(wéts)

S(r,t) =

According to Figure 4.34, GTS depends upon the distance from the bubble; at

large distances it appears that

(ét)s c
=g
RM P(r) 1/3
C2
po'o
which corresponds, approximately, to
(ét)s rP(r) >/6
. ] (4.136)
T [ 2
c o c
o0

Recall an alternative result had been discussed previously in Section 4.2, Equation
(4.88), which suggests that the numerical coefficient (9 or 40) is really just a
"ball-park' value. Adopting the value in Equation (4.136), the spectral form given

by Equation (4.135) is expected to occur at frequencies

C2
wt_ > l po °
c 9 LP(r)

2

In Figure 4.32 several lines are drawn which correspond to FoCy = 20,000 atmospheres

5/6

for pure water and to other values of speeds of sound corresponding to bubbly
mixtures of the indicated volumetric concentrations B. Equations (4.31) and (4.39)
(Table 4.1) were used to calculate the speed of sound. It can be seen that moderate

concentrations of free bubbles can influence dramatically the high frequency spectrum
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levels. In water-tunnel facilities volumetric concentrations of £ < 10 may
be expected in undersaturated water. As far as the cavitation noise spectrum is
concerned, the liquid is essentially pure water.

Experimental evidence of the existence of shock waves has been reviewed by both
Fitzpatrick and Strasberglo6 and by Ellis.120 Generally the shecks had been
observed and associated with spherical collapses of spark-induced bubbles, however,
Ellis has also observed shock formation from nonsymmetrical bubbles collapsing on a
surface, and from groups of bubbles, Such observations have not been made in
hydrodynarically-induced cavitation, however. Evidence of the w-2 behavior in the
acoustic spectrum has been deduced by Iiarrisonll1 who observed on an oscilloscope
wave traces of the time history of pressure pulses from hydrodynamically-induced
cavitation in a venturi. Wave forms with the shape
-t/

p(t) = P,

were observed and these have the temporal correlation

p(t)p(e+7) = p_ A (4.137)
which gives the autospectral density
P2 «
¢ () =32 (4.138)
pa T ()

where « = fts is given by Fquation (4.136).

4.4.2 Simple Rules of Similitude
The spectral character of real cavitation noise is only criidely approximated by
the theoretical spectrum of single-bubble noise. One of the earliest measurements

to show this is that of Mellen,166 whose result is reproduced in Figure 4.35. The

cavitation was generated with a cylindrical rod rotated transversely to its axis;
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Figure 4.35 - Sound Spectrum of Cavitation Noise Generated by a
Rotating Rod 2 Inches Long, 1/1i6-Inch Diameter Rotated at

4300 Revolutions per Minute

(From Mellenl66)

cavitation was generated at the tips of the rod. The important characteristics of

the ideal noise model are borne out; maximum level at moderate frequencies with

/4
nearly the f' on the low-frequency side. The multiple peaks are probably due to

reflections. At hich frequencies the spectrum falls off roughly as f-2

has been made to rceduce the measured 1 Hz band levels to the form of the spectrum

function. The band level is converted to spectrum level by

P (f, Jf) ~ 2¢ (r,u.l) O
pa
2 8 {r,s) Aw
- —_r
3.
345
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and Aw = 27mAf, The bubble life-time T, 1is unknown, but assumed to be equal to 3TC.
The maximum bubble radius was observed to roughly 0.05 cm. Comparison of the
dimensionless spectral density with the ideal function in Figure 4.33 will show
that the measurement is only roughly represented by the ideal function. Perhaps
the discrepancy is partly due to the extensive distribution of bubble sizes that
probably exist instead of a single bubble as assumed for the ideal noise spectrum,
Also, the real bubbles collapse in an environment that is subject to a variation in
the local static pressure field of the tips of the rod.

The important fact to be recognized from the shape of the spectrum measured by
Mellen is that although the acoustic energy spectrum is broadband, as predicted by
the theory, the exact shape is only roughly approximated by the ideal spectrum.
This discrepancy is not quantifiably understcod, but it is probably partly due to
the many hydrodynamic influences that can bear on bubble formation and collapse.

It is nonetheless useful to examine physical noise spectra within the format of the
nondimensionalization, because such a format will give a rationale for scaling

noise measured on models up to prototype. It will also give a means of estimating
changes in noise to be associated with design changes from one gener.lly-similar flow
system to another.

The most simple format for scaling is that recently proposed by Strasberg167
(although also used by Khoroshev168) which is predicated on the assumption that the
size of the cavitation region scales linearly with the dimension of the body L, at
the same ratio of the cavitation index to the cavitation inceptidn index. Then a

characteristic time scale, analogous to the collapse time of a cavitation bubble, is

T =1L <

where P_ is a convenientiy described ambient static pressure. The size scale of the

1/2
> (4.139)

"U‘ ©
g jo

cavitation zone is a function of K/Ki and probably of Reynolds number, i.e.,

L =Lf(K , RL> (4.140)
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Returning attention to the equation for the linear acoustic sound field, we can write

the sound pressure, Equation (4.120), in terms of scaled variables:

P (e (kL w)
i

In the frequency domain this representation has a corresponding spectral density of
the general form similar to Equation (4.127):

-1

5 /2 5 5 (/2
r ‘ _O - 2 L 4 . ._0 4
“ (Z ’ “) <L (P ) ) - Pac(t) ‘-“(“’L(Pm> g Ki’RL> (4.142)

o]

The sound pressure level measured in a frequency band 4w, p2 (w,w) will then be

1/2

2 o) 1/2 p )
o (P
) LAu)I,(F;> } & Qd,<Pm> VKK R (4.143)

Z,K/Ki,RL) is a dimensionless function that is dependent on the

p(w, ) = P2

ol

_ 1
where ¢(wL(p_/P) /

tvpe of cavitation and it implies similarity based on equal values of K/Ki as well
as equal values of K and Ki.

The scaling implied by Equations (4.141), (4.142), and (4.143) does not provide
for differences in cavitation inception indices, indeed it assumes that they are
the same in both model and full scale. It is understood, however, that the types of
cavitation must be the same in both scales. It also does not account for different
liquid compressibilities in the two scales, compressibility differences may in-
fluence the high frequency part of the spectrum, and the peak is the sound pressurc
pulse. These relationships were successfully used by Strasberg to scale the noise

from tip vortex cavitation of propellerslb7 (see Figures 4.47 and 4.48).

169,170 __

replaces Equations

An alternative approach which has a relatively large acceptance

/7,
which has been effectively used tu scale propeller noise,163’l(H

(4.139) and (4.140) by
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. 1/2
h o]
: t = 1k}/2 /P—°> (4.144)
I oo
L

- (§) 72
i and

L= L £(&,R) (4.145)

This leads to the scaling relationship for the pressure level in narrowbands

. b2 " 5 (172 172
po (w, i) = ?5—";—/5(%) [(Aw) L<P—°> }q; WLk 2 <P—°> K, R, (4.146)

[=o) o

AT Y WFau)

Equation (4.145) was first used by Levkovsk11121 to apply to the case of equal

hydrostatic pressures P_, in model and full-scale. 1If, in addition, the model

l measurements are made at the same index as exist in full-scale, then Equation (4.146)
' reduces to Equation (4.143). The point is, however, that it is implicitly under-

5 stood that the cavitation inception index K, will be the same for both scales.

Equations (4.143) and (4.146), although funitionally similar in the coefficients of
! §, differ in fundamentals as expressed in the different functional dependence of ¢
in each case. The difference between Equation (4.143) and Equation (4.146) is in
the distinction between (K/Ki)—similarity in the former case and Ki—similarity in
the latter case.

A means of introducing both the cavitation inception index and the cavitation

LA A N

index and, therefore, possibly adjusting for dissimilarity in Ki’ borrows from the

theory of single bubble dynamics. The characteristic size of the cavitating region
will depend upon a length scale of the body and the difference between the local

! static pressure in the cavitating region and the vapor pressure. Analogous to

1l

o I

fquation (4.53), the cavitation length scale will be

/2

Tt
s

7 _ _en L
] LC =L (Ki K)
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the time scale will increase with the size of the bubbles and the static pressure,

so that

1/2

) o172 (% >
T =1 (ki-K) (P—

8

The mean-square pressure in a frequency band will behave as

— 2 [ (A L(l(i—K)l/2

200ty = p2 (L _ i
p°(w,bw) = P (r 7 (R ~K) (4.147)

)

D

u,‘L(Ki-K)l/2
¢f- SV Ki’RL/
()
o

This is essentially the representation used by Blake et al.ll7’118

seen to effectively describe noise radiated by cavitating hydrofoils. If cavitation

similarity exists then

(K) = (K)

model full

and

K mode1 = Kilgy1
in which case Equation (4.147) will reduce to Equation (4.143). The spectrum
l/?'/(P /e )I/Z,RL) will be a function of the geometry of the
o 218

body, the Reynolds number, and the reduced frequency as indicated. It could,

function ¢(wL(Ki-K)

therefore, be possible for ¢ to be additionally dependent on Ki since Ki depends on

RL.
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A very different approach to cavitation noise scaling was suggested by DeBruyn

~and TenWolde.9 They hypothesized that similarity is maintained by a fixed pro-

portionality between the total acoustic cnergy radiated and the potential energy
contained in the bubble-iiquid system when the bubbles have their maximum raditi.
Accordingly, they hyparhesize that the acoustic nower is proportional to the time

rate of change of the potential energy P.L.

' d
VE; ¢ dt (?'E')
This converts to
2 2
p, r (47) 5
2"« 2(2awd)e,
pcC Tt \3 ™ =
0 ©

where T is a time constant of the bubbly system so that they hypothesize

2_
r1

3
pocoRM Pm

Pl
[V ]

= constant (4.148)

The time constant was taken as the rotation rate of a propeller, but in the same way

it could just as well be taken as a length scale of the cavitating body L divided by

1/2

a velocity scale (Pm/po). Further, they assume that

so that,

—— 1/°
2 , 20 2

Pa r 2 poCo

R <7-> P = constant (4.149)
N c 2 N o
oo POc
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The form of Equation (4.149) brings in the requirement, additional to K =
constant, that the Mach number and compressibility are the same in both scales in
order that complete similarity is maintained. Although the analysis circumvents
explicit consideration of the details of collapse, this added similarity will
necessarily ensure that the shock wave formation in the final stage will be similar
as long as the partial pressure of noncondensable gas is also similar. As we have
seen, the maximum wall velocity is controlled Ly liquid compressibility as well as
by the bubble gas pressure. Even more fundamentally, the statement of an equal ratio
of acoustic to potential encergy also implies an equal ratio of far-field to near
field particle velocity. The n2ar field motion controls the potential energy-
kinetic enecrgy balance which, in turn, governs overall collapse. The accustic
energy, a by-product, really, of the near field motion, depends upon the speed of
sound in the liquid and, therefore, the compressibility. To maintain complete
similarity in the energy balance will rzquire equal compressibilities in the manner

of

A variation of the similarity hypothesis expressed by Equations (4.148) and
(4.149) depends also on the assumption that the scund is shock-wave controlled.
Levkovskii169 and Baiterl7o reasoned that because shock-related noise has the form of
Equation (4.138), then the sound pressure level at frequencies very much less than

. -1
(Ots) must behave as

. -1 2.
v ;< Q ~ -
pr( (\ts) ) J pa\L) dt
~ 3
Py (Jts)

"

herefore, Nguation (4.147), with 7 replaced by (6tq) implies that

7:3
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and luitting

RM”L

the spectral density function 1s written in the form

'
N
»

Loy

i
SO

L)

s

~
™k
[T
.
‘.
.

[

— A
2 () L’ o
L__J.L.‘ s P —pc (4.150) Vo
Aw a 2 "0 o0 L
r IRt
PR
and the frequency still .¢5 as T

R :

o .

u¢,<F~) = constant .
1 - !
hquation (4.150) has bean used for scaling propeller cavitation nolse by Bark, L
172 . . 171 R
Lovik and Vansenden, and Bjorheden and Astrom; their fmplementation of this o
relatfonsblp will be discussed dn Section 4.4.3.3. 1n using Equation (4.150), ?Hl
complete stmflarity 15 matntained by maintalning 3‘]
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which dn recopntzed ae bepuatdon (4.149), 1 Ao v w and offers the teguirement of }?ﬂ
rinflaot ity dn 3 lguid compressiblility as diecussed above, .55
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As indicated by the calculations in Section 4.4.1.1, this behavior will only
be important at relatively large frequencies.
When model testing is done in water at the same value of P_ as in full-scale,

Equation (4.150) gives the same scale factor as the preceeding equations.

4.4.3 Examples of Hydrodynamically-Induced Cavitation Noise

We now examine two shear flows and the cavitation noise produced by each within
tne framework of the relationships of bubble dynamics. Measured noise spectra, made
dimensionless on parameters that are deduced from these relationships, show a
similarity to the theoretical bubble noise spectrum. This similarity provides
evidence that certain general expressions for cavitation noise may exist and it

provides a framework for developing general laws of similarity for other flow types.

4.4.3.,1 Cavitating Free Jets. Sound pressure levels from cavitating jets were made

by Jorgensenla at Reyriolds numbers in the vicinity of 6 x 105 which is well within
the turbuleut regime (see Chapter 3, Figure 3,10). The total air content of the
water was within 10 percent of the value for saturation so that a possibility ..I the
influence of noncondensable gases exists, but it will not be addressed here. .

Flgure 4.36 shovws some of tlhie measurced sound pressures 1in one-half octave bands at a
& P

' ® ! s = 0200 8 v 0100 O] l g e 0.060
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Pigure G030 = Measured spectra of Jet tavitatlon holsye,
in Halt-0ctave Bands
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range r/D =~ 5,7. The prominent noise frequency nondimensionalized on the efflux
velocity and diameter decreases as K decreases, but the maximum sound pressure level
remains nearly equal to lO-3 times the dynamic pressure for all cases.

An alternative form of nondimensionalization can be used which 1s based on the
notions of bubble dynamics in turbulent flow. The maximum bubble size will be on

the order of

Ry =0y - (3 vdx 0] M2 (4.151)

where we have applied Equations (4.53) and (4.115;. The time scale'ez is the moving
axis correlation time scale for an eddy to decay to l/e of its strength, equivalent

to .-'"\m/UC in Section 3,.6.3,3, see Figure 3.21, which is

= x 1.4 (4.152)

The time coastant for collapsc of thesc bubbles is the same as given by the theo-

retical collapse time from bubble dynamics, from Equation (4.70),

0.9 RN

‘ <Pu,>”"'
T.
[}
or
. (Kt"x >1/2
o Z _— = ) [
1. 1,2(»Ul m (4.153)

Adopt Ing the dimensfonless form of Equatdons (4.97) and (4,98), from Scation 4,4,1,

we tind a nondlmensional spectrun tunctian®

#he band loevel ds approximately rcelated to the (two-sided) autospectrum level
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1]
—
N
=
n F
> N
|
| WIS |
-
~
O
n

= v e (W)

where Vi = 3 is taken as the approximate bubble life time, relative to Teo and
w= 2mf. The proportional bandwidth is

. ) . (r) 2 qJ
(0.8 wt ) S(r,wr = 0.9y (=
c o D (K -K)KZ
i
2 2
= 0.9y (—g) —L2— (4.155)
P, (K,~K)
and
e 1/2
wl = 2uf + (1.26) — \ ——
C U K
J
i -1/2
- 20D (h, k)14 (Afi\ (4.156)
i “o/

9
where = 1/2 ¢ 3 Flpnre 6.37 shows the reculting nondfnennional wpectrel
) QO

funct fon tor ueleeted samp ies of Jorgenoen's results,  These levels bear a close
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Figure 4.37 - Jorgensen's Spectra of Noise from Cavitating Jets Made
NDimensionless on Estimated Bubble Sizes and the Constants; 0.4 wl
is the Dimensionless Filter Bandwidth; Yy = 3 °©

Ry = 6 x 10°
rescublence teo the ideal spectrum (nultiplied by ch) of Figure 4.33 at low fre-
quen~ies, but show a nore pronnunced roll-off at high frequencies. This roll-off
oceurs at a frequency that s much too low to be caused by effects of the com-
pressibility of the liquid.

The nondimensionalization defined by Equations (4,155) and (4.156) does not
completely reduce tiie neise spectra; thire appears to be a residual dependence on
K/Kj of both the Yevel and the frequency of the maximum value of the spectrum that
i not explalned with the above theory., This residual appears as the lowest value
ol K/K1 and possibly 1s a result of the large bubbles altering the turbulence

glructus - In the jet,
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4,4.3.2 Cavitating Hydrofoils. Noise from cavitating hydrofoils has been measured

175,176 ¢rdnann et al., ”’ by Blake et al.,t12:113

in water tunnels by Barker,

and by
178,179

Thompson and Billet, In the measurements of Blake et al., and of Erdman
et al., an attempt was made to correct the sound pressure measurements made in the
water tunnel for the effects of reverberation, in order to report absolute values of
equivalent free-field sound pressures. The other measurements gave sound levels
relative to an arbitrary reference and the magnitudes were influenced by facility
reverberation and in some cases perhaps absorption from free bubbles in the facility.
The acoustic level depends upon the type of cavitation that occurs on the
hydrofoil. Barker's results disclosed that a form of surface cavitation produced
more noise than cavitation in a trailing vortex beginning at the tip of the hydro-
foil. It was concluded by Barker that the vortex noise was mainly due to gaseous
cavitation while surface cavitation noise was due to vaporous cavitation. The
vortex cavity had the visual appearance of a2 glassy rope which extended well down-
stream of the diffuser section of the tunnel. This experimental characteristic may
be important, for, as Morozovl 0 has shown theoretically, the noise from a cavitating
line vortex is emitted from the ends of the vortex where incomplete cancellation of
the pressures caused by vibrations of the cavity-water interface will not be
cancelled. Therefore, although the vortex cavitation noise may be less than that
from surface cavitation, it is possible that the noisiest part of the vortex cavity

was outside the test section.

Moise from specific forms of surface cavitation has been reported by
Llake et al.ll7’118 Using a hydrofoil that was designed for the generation of an
extensive region of i1uw ctatic pressure, it was possible to develop either traveling
bubbie or a form of sheet cavitation depending on whether the noncavitating
boundary layer on the hydrofoil was turbulent (causing traveling bubbles) or
scparated-laminar. TFigure 4.38 illustrates both the pressure distributions and the
tyvpes of cavitation that were producced on side one of the hydrofoill which is the
suction side. The traveling bubble cavitation appeared as a continuum of non-
spherical bubbles, some of which became disintegrated by the turbulent flow around
them,  The statde pressure distribation downstream of the point of minimum pressure
vas adverse so that althouph the turbulent noundary layer was attached it was thick.

The sheet cavitatlon Lhat was gencrated because of lamlnar separatfon had ull of the
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characteristics that were described in Section 4.3.2.7, although the downstream be-
havior of the sheet was undoubtedly influenced by the prominent pressure gradient on

the downstream part of the foil.

Y ™ CRE T Bl 2 TAILTT VNS LR LS

- Within the distribution of the traveling bubbles was a sub-group whose behavior

was very similar to that illustrated in Figure 4.14. The bubbles grew to a maximum

size and then collapsed as spheroids; other bubbles disintegrated. Figure 4.39 shows

u measured sound pressures from the traveling-bubble cavitation for a variety of

indices above and below Ki' Also shown is a representative spectrum for the sheet

cavitation that was obtained for a corresponding value of K It can be seen in this

g
case that the sheet cavitation is less noisy than traveling bubble cavitation, but it

’ is not yet known how generally this result would apply to other hydrofoil flows. ;
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The noise spectra for the traveling-bubble noise were nondimensionalized
according to Equation (4.154), using Equations (4.53) and (4.115) for the maximum
size of the bubbles. Strictly speaking, however, this nondimensionalization may be
interpreted as a modeling of the actual bubble dynamics only for those spheroidal

bubbles that do not disintegrate by splitting. Therefore, we write

(4.157)

where T is the residence time of the bubble in the rarefaction zone. Letting the
chordwise length of this zcne be ir(: 0.2¢c for the experiment of Blake et al.), and

the average translation velocity of the bubble be

U= (1-EP)”2

where.Ep = -0.8 is the average pressure coefficient in that zone, it is £found that

Lo (Ki—K)l/2
(4.158)
M (1-c )1/?
P
so that the dimensionless spectrum function is
2 .
pstﬂﬁnﬂ u,/¢c .12
S(r,uﬂc) = S o 3 " % [:]
Lov?) k-0t
270w i
(4.159)

and

360

E “_.::
-

>

[}
s #

et

': -‘_ !1 ',l'n

¢

DRt T s S L




L.V { St

)

wl = 27T
Cc C
N I 1/2
=5 S| —— (4.160)
o KQ-C))

where ¢ is the chord of the hydrofoil. The term in brackets (=1811) in Equation
(4.159) is a numerical constant for a given pressure distribution as long as £r is
relatively invariant with changes in K. Bubble sizes that are predicted from
Equations (4.157) and (4.158) agree closely with those observed on a Joukowski
hydrofoil by Parkin,116 on the subject hydrofoil by Blake et al.,lu’118 as well as
on the body of revolution used by Plesset.14

Figure 4.40 shows the dimensionless spectrum levels according to Equations

(4.159) and (4.160) compared with the ideal spectrum of Figure 4.33. The measured
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Figure 4.40 - Dimensicnless Spectral Densities for Various Conditions
of Travelipg Bubble Cavitation

(Normalization is based on variables assoclated with single-

bubble cavitation noisc.lls)
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spectrum levels extend over a frequency range above that which is dominated by the
growth of the large bubbles. For dimensionless frequencies in the range 3 < Wt < 60
the spectrum levels decrease as w-z, which is in close correspondence with the be-
havior, u‘2'4, shown for dimensionless spectrum of jet cavitation noise in Figure
4.37. It is apparent, therefore, that for Wt < 60, the spectrum levels of noise
from traveling bubbles on the hydrofoil and from traveling bubbles in the shear flow
cf the jet are roughly similav when expressed in terms of estimated bubble radii
using characteristic length and time scales for the respective flows. The general-
ity of this result to bubble cavitation in other types of flows remains to be proven.
Indeed, as we shall see below, noise levels from sheet cavitation similarly non-
dimensionalized are less than those for bubble cavitation.

At frequencies that are greater than wr = 60, the spectrum in Figure 4.40 has
a secondary peak which is of uncertain origin. It is suspected, however,118 that
the motions of microbubbles which result from the disintegration of the larger
bubbles cause this noise.

Noise from the sheet cavitation associated with laminar separation, nondi-
rensionalized using the same set of parameters as used for Figure 4.40, i.c.,

Equations (4.159) and (4.160), is shown in Figure 4,41, 1In this case, because
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Figure 4.41 - Dimensionless Spectral Densities of Cavitotion Noise from

118
the Untripped Hydrofoil Calculated Using Eguations (4.159) and (4.160)
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spheroidal large traveling bubbles were not produced, the nondimensionalized
spectra cannot be interpreted as modeling any particular vubble dynamics, but rather

as a form of approximate similitude. (The bracketed term in Equation (4.159) was

again taken as equal to 181l just to make the numerical comparison.) These di-
mensionless spectra provide a basis for comparing the ncise from the two types of
cavitation at equivalent pressures and similar values of (Ki-K) and they show the
ii‘ greater noise levels for the traveling bubble cavitation in a relative sense
e compared to this type of sheet cavitation at similar stages of development.

Both representations, Equations (4.155) an (4.159), are functicnally
equivalent, as can be determined by rearranging the terms in either equation to re-
. place pressure and velocity. For two dynamically similar cavitation flows,

Equations (4.155) or (4.159) reduce to the simple form of Equation (4,143), since
(K)l = (K)2 and (Ki)l = (Ki)Z when similarity exists between cases 1 and 2.
Equations (4.155) and (4.159) are also the same as Equation (4.145) which was

° derived without recourse to explicit reference to dynamics of single bubbles,

modeled as convected through a low pressure region.
Noise from sheet cavitation on side two of the hydrofoil shown in Figure &4.38

was 10 dB quieter than that generated by the sneet cavitation on side one in Figurec

| .
[N

" 4.41. An example of the shect cavitation on side two is shown in the inset of

Figure 4.42 which shows the scund pressure spectra for a similar parameter range as

.

presented in Figure 4.39.

v .
.

N The dimensionless forms used in Figures 4.37, 4.40, and 4.41 provide a format

v 2 v
)
.

i‘ fyom fuvr analyzing other data, as well as perhaps a weans of crudely estimating

‘..-
Batata alae’adl

N noise from other similar systems. Unfortunately, there is to date little

;i, additional acoustical information on which to develop dimensionluss nolse epectra

- for other flow types. Host experimenters, being interested mainly in generzl .
. trends (spced dependence, etc.), do not (or are not able to) carryout the necaossary P,
i:: acoustical calibratijions with which to deduce absolute values. _é

So far our discussion of hydrofoil cavitation noise has addressed only direct fé

monopole radiation f.om cavitation bubbles. Additional radiation from resonant ?i

PY motion of the hydrofoil responding to surface pressures will also be produced. This 5‘
' nolse will he dipole like and will depend upon the relative impedances of the water f:
and the hydrofoil. TFor surfaces which are stiff{ and Mightly damped yet have Jow f€
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mass per unit area, the hvdrofoil will doubtlessly act as a sounding board and
radiate additional energy. On the other hand, more massive surfaces and surfaces
with higher damping may act only as reflectors of sound energy so that the sound
power radiated will not be enhanced by any re-radiation from the surface. No

-
systematic work ou the subject has been done. In one investigation, Barkerl75’]/6
has observed certain spectral peaks in the noise radiated from his hydrofeil speci-
mens; the freguencies of the peaks changed when both ends of the hydrofeil were
iixed compared to when the hydroicil was a caatilever. Barker deduced that the
spectral character was due to a modal radiation from the hydrofoil excited into
flexure by the cavitation. Contradictery evidence, on the other hand, has been
shown by Blake et al.ll7’118 In their experiment, flicw-excited acceleration of the
tydreofoil was monitored, and then the sound level to be expected from this vibration
alone was later deduced by mechanically shaking thie hivdrofeil in the absence of
cavitaiion. The vibration-induced dipole sound power was then fournd to be less than

one-tenth of the total throughout most of the 1 kHz to 100 kHz frecquency range of

interest, reaching a fraction of one-half the total power at 4C kiiz to 80 khHz. At

[h

at

ro

weenciss the rad on efficiency (sce Chapter ¢) of the hydrofoil is

r.ughly unity so thiat dififerences in structural radiation will be effected by

diffcvences in wess imvedauce.  The average Lhitwness of both Barker's and Blake's

vdrofoils was the same, however, Barker's hydrofcil was aluminun (specific

gruvity - 3) and Blzke's was brass (specific gravity 8). The high-frequency sound
power f{rom wvibration will be¢ in reugh proportion to (fer nearly structurallyv-similar
0

bedrofoils) 7y this implics acarly 9 dB more structural radiation from Barker's
‘ L

Slupinum hydrefoil thun for the brass nydrofoil. This increased level! nearly
accounts Yor the apparently greater structural radijation chucrved by Barker thaen b

talte ot z2l. Altueugh Lhis ds a plausible exnlanation for greater modal wcund din

B - t . e - - N M S - PR N K v -
Barrer's experiuent, clearly nere wors iz necessary to cleac-ap che issac,

4.4.4 Propeiler Cavitation

L.a.%.010 Cencral Characteristics. A primacy appliceticn o the pvonecinles of the

procecding sccticns in the scaliag and diavnesis of medoel propedivr neasc
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important requirements for the use of noise-control in cavitating propellers can be

found in positioning thrusters of oceanographic vessels,172 and in the achievement

172,173-181 4 reduction of radiated .

171,182

noise interference to fish finding sonars on fishing vessels.

g of greater crew comfort on merchant vessels
’_-'.

b The types of
-

]

'52 cavitation occurring on propeller blades are basically the same as those occurring
i on hydrofoils, but with the obvious complication that more than one type of cavi- "l;i
tation may appear simultaneously as shown in Figure 4.43. Figure 4.43a shows a e
propeller with the trailing vortices from the blade tips heavily cavitating. Sheet ‘
cavitation on the leading edge of the pressure face of the propeller blades is also i;f]ﬂ
apparent aud extends toward the hub of the propeller. Ry
Noise from cavitation on propellers is further complicated by the fact that the ‘9.
inflow to the propeller, being modified by the boundary layer of the hull, is not
symmetric about the axis of the propeller. This nonuniformity induces local changes
in the angle of attack of the propeller blade sections as they rotate. Considering
the blade as a progression of elemental hydrofoils alon