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PREFACE

Thisvolumecontainstheproceedingsof theSecondComputationalAeroacoustics
(CAA) WorkshoponBenchmarkProblemsco-sponsoredbyFloridaStateUniversityand
NASA LangleyResearchCenter.ComputationalAeroacousticsembodiestheemployment
of computationaltechniquesin thecalculationof all aspectsof soundgenerationand
propagationin air directlyfrom thefundamentalgoverningequations.As such,it enjoys
all thebenefitsof numericalapproachesincludingremovalof therestrictionsto linearity,
constantcoefficients,singlefrequencyandsimplegeometriestypicallyemployedin
theoreticalacousticanalyses.In addition,mostimportantlyfrom theacousticviewpoint,
soundsourcesproducedby fluid flowsarisenaturallyfrom thefluid dynamicsanddonot
requiremodeling. However,thesebenefitscomeat thecostof modificationof standard
computationaltechniquesin orderto handlethehyperbolicnatureandsmallmagnitudeof
thephenomenon.

Thefirst Workshopin thisseries,whichwasheldin 1994,containedbenchmark
problemsdesignedto demonstratethatthenumericalchallengesof CAA couldbe
overcome.Thesuccessfulaccomplishmentof thatgoalledto morerealisticbenchmark
problemsbeingchosenfor this SecondWorkshopin anattemptto convincetheU.S.
IndustrythatCAA waswell on its wayto comingof ageandwouldbecomeanimportant
designtool asCFDistoday. Thebenchmarkproblemsare:

Category1-AcousticScattering frgrn a Cylinder or a Sphere. Acoustic scattering from a
cylinder is a model of the technologically important problem of propeller noise impinging
on the fuselage of an aircraft. The sphere case was included to challenge the community to

solve a computationally intensive, fully three-dimensional geometry in which the potential
of parallel computations could be demonstrated.

Category 2-Sound Propagation through and Radiation from a Finite Length Duct. Duct
acoustics finds application in jet engine and shrouded propeller technology. Classically,
such problems have been broken into three parts: source description, duct propagation, and
radiation into free space. In these benchmark problems, although the source was specified,
the contributor was challenged to solve the duct propagation and farfield radiation problems
simultaneously.

Category 3-Gust Interaction with a Cascade. Turbines, such as employed in jet aircraft
engines, typically contain cascades of rotor and stator blades. The problems in this
category were designed to demonstrate CAA technology, such as computing the sound
generation due to the wake of an upstream cascade impinging on a downstream cascade and
the ability to faithfully propagate waves through a sliding interface between a stationary and
a moving grid, necessary to approach the industrial turbomachinery noise problem.

Category 4-Sound Generation by a Cylinder in Uniform Flow. Aeolian tones which are
generated by uniform flow into a cylinder are important in airframe and automobile noise.
Further, this geometry is a model of the technologically critical class of high Reynolds
number, massively separated flow noise generators. In this problem, the sound source is
inherent in the fluid dynamics and would not exist if the flow were inviscid. Thus, the
contributor is challenged to attack a fully turbulent flow. Since a direct numerical
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simulation cannot be carried out at the Reynolds number requested with present

computational capabilities, of particular interest is the success of the turbulent modeling
employed and the dimensionality of the solution attempted.

Exact solutions for all but the Category 4 problem are available for comparison and are
contained in this volume.

Christopher K.W. Tam, Florida State University
Jay C. Hardin, NASA Langley Research Center
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Benchmark Problems

Category 1 -- Acoustic Scattering

Problem 1

The physical problem is to find the sound field generated by a propeller scattered off by

the fuselage of an aircraft. The pressure loading on the fuselage is an input to the interior

noise problem. Computationally, this is a good problem for testing curved wall boundary

conditions.

Figure 1

We will idealize the fuselage as a circular cylinder and the noise source (propeller) as

a line source so that the computational problem is two-dimensional, figure 1. We will

use a polar coordinate system centered at the center of the circular cylinder as shown.

Dimensionless variables with respect to the following scales are to be used.

length scale

velocity scale
time scale

density scale

pressure scale

= diameter of circular cylinder, D

= speed of sound, c
= DO_

c

= undisturbed density, p0

-- PO C2

The linearized Euler equations are

(1)

(2)

cgp Ou Ov

a-7+N+N =s (3)

1



where

(0.2)2 sinwt.

Find the scattered sound field for _v = 8rr.

GiveD(0) = lira rp2 for0 = 90 ° to 180 ° at A0 = 1 degree (--=

State your grid specification and At used in the Computation.

time average).

Problem 2

This is the same as problem 1 above except that there is no time periodic source; i.e.,

S = 0 in equation (3). Consider an initial value problem with initial conditions t = 0,

u = v = 0, and

Find p(t) at the three points A (r = 5,0 = 90°), B (r = 5,0 = 135°), C (r = 5,0 = 180°).

Give p(t) from t = 6 to t = 10 with At = 0.01. State the grid specification and the At

used in the computation.

Problem 3

Solve the axisymmetric linearized Euler equations to predict the scattering of acoustic

waves from a sphere. The governing equations (including the acoustic source) are given by

[i][i]I0 0 0
+N =

p

V

r

0

0

--_ + Aexp(-B(gn2)((x - x,) 2 + r2))cos(wt)

The length scale is given by the radius of the sphere, R. The ambient speed of sound,

ao,, and the ambient density, po_, are used as the velocity and density scales, respectively.

The pressure is nondimensionalized by 2p_ao_ and time is scaled by R/a_. For the source,

use A = 0.01, B = 16, xs = 2 and w = 20rr.

There are no constraints on the maximum size of the domain or number of grid points;

although, CPU time will be used in part to assess the algorithm.

Submit the RMS pressure along the circle x 2 + y2 = 25 at A0 = 1 °, 0 measured from

the x-axis. The computer used, CPU time per timestep, the number of timesteps per

period of the source, the number of grid points and CPU memory per grid point should

also be reported.
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Problem 4

This is the same as Problem 3 except that the computation is to be carried out in

Cartesian coordinates.

Solve the 3-D Cartesian linearized Euler equations to predict the scattering of acoustic

waves from a sphere. The governing equations (including the acoustic source) are given by

_0
Ot [i]+2_ +_0

Ox Oy

pJ

;] 0 ]0

0

0

-Aexp(-B(en2)((x - xs) 2 + y2 + z2))cos(wt)

The length scale is given by the radius of the sphere, R. The ambient speed of sound,

ac_, and the ambient density, poo, are used as the velocity and density scales, respectively.

The pressure is nondimensionalized by 2p_aoo and time is scaled by R/ao_. For the source,

use A = 0.01, B = 16, xs = 2, and w = 207r.

There are no constraints on the maximum size of the domain or number of grid points;

although, CPU time will be used in part to assess the algorithm.

Submit the RMS pressure along the circle x 2 + y2 = 25 at A0 = 1°, 0 measured from

the x-axis. The computer used, CPU time per timestep, the number of timesteps per

period of the source, the number of grid points and CPU memory per grid point should

also be reported.

Category 2 -- Duct Acoustics

Problem 1

A finite length, both end open cylindrical shell (duct) of zero thickness is placed in a

Uniform flow at a Mach number of 0.5 as shown in figure 2. A time periodic, distributed

but very narrow spherical source is located at the geometrical center of the duct.



Duct wall
r

M=0.5___ \

--_" D/2

1S

Source x

Figure 2

The length L and the diameter D of the shell are equal (L = D). The flow variables and

the geometrical quantities are nondimensionalized using D as the length scale, the ambient

speed of sound a_ as the velocity scale, the ambient density p_ as the density scale, and
2

p_a_ as the pressure scale. Time is made dimensionless by the time scale D/a_. The

problem is axisymmetric and should be solved using the linearized Euler equations given,

in dimensionless form, as

0 0

0-7
P

where the source S' is given by

" Moop + u

M_u + p

Mc_ v

M_p + u

?)

0
+

P

?)

S=0.1exp -48(gn2) _ (x 2+r 2) cos(kDt), withkD=167r.

An equivalent set of equations could also be used. Calculate the intensity of sound, _-,

along the circular arc x 2 + r 2 = (5/2) _ at A0 = 1 °, 0 measured from the x-axis. There is

no requirement to use a specific domain or number of grid points. However, for algorithm

assessment purposes the investigator is asked to report the computer used, the total CPU

time, time step size, total number of time steps, total number of grid points, and the size

of the physical domain.

Problem 2

Consider the radiation of sound from a thin wall duct as shown in figure 3. The param-

eters of this problem have been so chosen that unless some fundamental understanding of

duct acoustics such as duct modes, cutoff frequencies are incorporated in the design of the

computational algorithm, the computed results would, invariably, be quite poor.

i
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, / circilar duct

I incomingsound

R

o x

_sound radiation

Figure 3

For convenience, we will use a cylindrical coordinate system (r, ¢, x) inside the duct

and a spherical polar coordinate system (R, O, ¢) outside the duct. Dimensionless variables

with respect to the following scales are to be used.

length scale = radius of duct, a

velocity scale = speed of sound, c
time scale = _-

C

density scale = undisturbed density, p0

pressure scale = p0c 2

Consider a semi-infinite long circular duct with infinitesimally thin rigid wall as shown.

Small amplitude sound waves enter the duct from the left and radiate out through the open

end to the right. The incoming wave is a spinning duct mode with velocity and pressure

given by

i -'- Re

P

2 2 t/2
(+ -t%m) Jn(pnmr)

oJ

-i 2: s'(...,,-)

"--J.(u..:')
hg r

ei[(w2-#_,_) _x+n¢-wt]

L J.(U..:)

where (u, v, w) axe velocity components in the (x, r, ¢) directions. ,In( ) is the n th order

Besselfunction. #nm is the mth zero of J_; i.e., ,,(#nrn)=0, n=0,1,2,., m 1,2,3, ....

1. Find the directivity, D(0), of the radiated sound.

D(8) = lim R2p2(R,O,¢,t),
R'---* oo

--= time average.

Give D(O) from 0 = 0 to 0 = 180 ° at A0 = 1 degree.

5



2. Find the pressure envelope inside the duct along the four radial lines r = 0, 0.34, 0.55,

0.79. The pressure envelope, P(x), is given by

P(x)= max p(r,¢,x,t).
over time

Give P(x) from x = -6 to x = 0 at Ax = 0.1.

For both parts of the problem, consider only n = 0, m = 2 and the two cases

(a) co = 7.2

(b) = 10.3
Note: #o2 = 7.0156. You are to solve the linearized Euler equations.

Category 3 m Turbomachinery Noise

The purpose of these problems is to study the computational requirements for modeling

the aeroacoustic response of typical rotor-stator interactions that generates tonal noise in

turbomachinery. You may solve either the full Euler or Ilne_(zedEuier equations. Be sure

to specify the grid size, the total CPU time required, the CPU t:[me per period, and the

type of computer used for each problem.

and
. L

. :=

This problem........ is designed to test the ability of a numerical scheme to model the acoustic

response ofacascade to an incident "frozen gust_,',_

ConslaeT_h_-c_scaae of flat-plate airfoils Shown in figure41 The mean flow is uniform

and axial wi{h inflow velocity Uoo and s{atiC density po_. The inflow Mach number M_:{S

0.5. The length (chord) of each plate is c, and {he gap-ico-chord ratio g/c is i.0.

: We will use non-dimensional variables with U_ as velodty scale, c as length scale,

c/U_ as time scale, poo as density scale and pooU_ as pressure scale.

The incident:vortical gust, which is carried along by the mean flow; has z and y

velocities givefi by ......

v =   cos( x + av (2)

respectiveiy;::where vG = 0.01. Consider two cases. For CaSe 1, the Wavenumber/3 is

g_r[2 Correspond{ng:{o an "interblade phase angle!' a of 5rr/2. The frequency w (same

as the reduced frequency based on chord, k)_is equal to 5rr/2 (_ 7'864). For Case 2,

a = k = 13_r/2 (_ 20.42). The gust is convected by the mean flow. Therefore, the

x-wavenumber _ for both cases is equal to co.:

: : : : :: : Z72 L ::
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Computational __

Domain _X .

GUST

Ua_

Periodic Boundaty..__ _ Vgrid ---- U

I

0 1 2 x

Reference Plate

with length e

Figure 4

Using the frozen gust assumption, determine the magnitude of the pressure jump across

the reference airfoil (the airfoil at y = 0) where Ap = Plower- Pupper. You need not

solve for the gust convection as part of your numerical solution, but instead may simply

impose an upwash on the airfoil surfaces given by (2). Also, determine the intensity of

the radiated sound _2 along the lines z = -2 and z = +3. Finally, plot contours of the

perturbation pressure at time t = 2rrr_/w where n is an integer. If you are using a time

marching algorithm, n should be large enough that the solution is temporally periodic.

Your contour plots should show the instantaneous nondimensional static pressure p for the

entire computational domain.

Problem 2

This problem is designed to test the ability of a numerical scheme to simultaneously

model the convection of vortical and acoustic waves in a cascade.

Repeat Problem 1, but this time specify the gust along the upstream boundary of

the computational domain. Then use your numerical algorithm to model the convected

vortical wave and subsequent interaction with the cascade. Apart from truncation error,

your solution should be identical to Problem 1. In other words, be careful to specify the

phasing of the incoming gust such that the upwash on the airfoil has the same phase used

in Problem 1.

7



Problem 3
L77:

This problem is designed to test the ability of a numerical scheme to model the p_0p-

agation of acoustic and vortical waves across a sliding-interface typical of those used in

rotor stator interaction problems.

Repeat Problem 2, but translate the portion of the grid aft of the line x = 2 in the

positive ?]-direction with speed 1. If possible, arrange the sliding grid motion so that at

times corresponding to the start of each period (t = 27rn/w) the sliding grid is in the

original nonsiiding position. This will aid in the plotting and evaluation of solutions.

Category 4 m Airframe and Automobile Noise

Aeolian tones, sound generation by flow over a cylinder, are relevant to automobile

antenna and airfl'ame noise. The purpose of this problem is to demonstrate computation

of sound generation by viscous flows.

Consider uniform flow at Math number 0.2 over a two-dimensional cylinder of diameter

D = 1.9cln as shown in figure 5. The Reynolds number based on the diameter of the

cylinder is 90,000. Perform numerical simulations to estimate the power spectra of the

radiated sound in dB (per 20Hz bandwidth) at r/D = 35 and 0 = 60 °, 90 °, 120 ° over the

Strouhal number, St = u/_-0D, range of 0.01 < St __ 0'61 a{ ASt = 0.002,

You may use a smaller Reynolds number in your simulation. However, data may not
be available for direct validation.

Perform grid and time resolution studies to demonstrate that your solution has con-

verged.
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ANALYTICAL SOLUTIONS OF THE CATEGORY 1,

BENCHMARK PROBLEMS i AND 2

Konstantin A. Kurbatskii

Department of Mathematics

Florida State University

5t - 4,/_

Tallahassee, FL 32306-3027

1. ANALYTICAL SOLUTION OF THE PROBLEM 1

The linearized Euler equations are

Ou Op = 0
0-7+ 0-7

Op Ou Ov
-_ + _x + o_ = s(x,_,_)

where

S(x, y, t) = e-l"2((_-_')2 +u_)/W_sin(a_t)

is the time-periodic acoustic source located at x = xs, y = 0. Here xs = 4, w = 0.2, w = 87r.

Boundary conditions are

1) zero-normal-velocity at the surface of the cylinder

v . n = O at x 2 4- y2 - (0.5)_

2) radiation boundary condition for x, y --+ oc, i.e. the solution represents outgoing waves.

By eliminating u" and v from (1) to (3), the equation for p is,

O2p (O2p O2p_ e-b[(x-z,)2+y2]im(iaJe-i_t )
o_ \-g_+ N_ ) =

where b = In2/w 2

The boundary condition (5) becomes

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(s)



__OP=0 at z_+y2=0.25 (9) _;

The solution for pressure, p, can be written as

p(x,y,t) = !m(_(x,g)e -i_') (10)

|
Substitution of (10) into (7), (9) gives the problem for _(x,y)

02D 02P -ia;e -b[(x-=')_+y_] (11)
Ox----7 + _ + _2i_ =

015 _ g2
On -0 at x _+ =0.25 (12)

radiation boundary conditions as x, y --4 oc (13)

(11) is a non-homogeneous I-Ielmholtz equation. The problem (11) - (13) can be solved by the

method of superposition. Let

_(_,y) = pi(x,_) + p_(x,y) (14)

where pi is the incident wave generated by the source and p_ is the wave reflected off the cylin-

der. pi satisfies

-4- w2pi --" -iwe -b[(_-_')_ +y_]

and the outgoing wave condition. When pi is found the problem for p_ becomes

(15)

02pr 02pr

Ox---7- + _ + W2p_ = 0 (16)

Op____Z__= Opi at x 2 + g2 = 0.25 (17)
On On

To solve for p,(z, y) we use polar coordinates (r=, 0_) with the origin at x = z=, y = 0; thus the

solution is independent of 0_. (16) reduces to the non-homogeneous Bessel equation

d2Pi d- 1 dpi -4-wZpi --iwe -br_ (18)
dr] r s dr=

with boundary conditions

pi(r=) is bounded at r= = 0 (19)

10



pi(rs)e -i_t represents outgoing waves as rs --, cc

The Greens function for (18)- (19) is

(20)

G(rs,() = ___(j0(w()H_l)(wr_), ( _< % < oc

where J0 and H_ 1) are the zeroth order BesseI and Hankel functions respectively.

The solution for pi(rs) is

(21)

_0 °(3
pi(r_) = G(r_,_)[-iwe-b_2]d_

With pi found, the problem for the reflected wave, pr, is

(22)

02pr 1 Opt 1 02p_
Or------_ + -_ + + _o2p_ = 0r Or r 2 002

(23)

Pr

Or -B(O) at r=0.5

where B(O) is now known.

By separating variables in (23) pr(r, 0) is represented by Fourier series

(24)

pr(r,O) = E CkH_l)(ra_)c°s(kO) (25)

k=0

(1)
where H k is the Hankel function of the first kind. Only cosine terms are retained in (25) be-

cause the problem is symmetric about the x-axis.

The coefficients Ck of (25) are found by applying the boundary condition (24). This gives

gT
ek B(O)co (kO)dO (26)

Ck "- 71.co[2kH(1) (1) (W 2L-L- k (W/2)-- Hk+l, / )]

Heree0 =I, ek=2, k= 1,2, ....

Finally, by means of the asymptotic formulas for H_ 1) (see ref.(1)), it is easy to find that the

directivity

D(O) = llm rp 2 is given by
r --), oo

D(O) = r(Jo(w_)e -b_ d( + Cke-i(_'_/2+'_/4) cos(kO)

k=O

(27)
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I. ANALYTICAL SOLUTION OF THE PROBLEM 2

This is an initial-value problem governedby the linearized Euler equations

The initial conditions are:

and

p(x, y, 0) = e -u'2((,-*'):+y2)/w2

Here xs = 4, w = 0.2.

The boundary conditions are:

=

i

Ii
E

Ou Op
-_ + N = 0 (28)

Ov Op
N + _yy = 0 (29)

Op Ou Ov
N + _ + N = 0 (30)

u=v=0 at t 0 (31)

l
E

l

at t = 0 (32) _*
E

and

v.n=O at x 2+y2=(0.5) 2, (33)

when x, y ---+ oc the solution respresents outgoing waves. (34)

Solution of the problem (28) - (34) can be found in terms of velocity potential ¢(x, y, t) defined

by

0¢ 0¢ 0¢
= N' "= 0_' p - ot (35)

It is easy to show from (28) - (30) and (35) that the governing equation for ¢ is the wave equa-

tion which may be written in polar coordinates (r, O) as

102¢ f82¢ 10¢ __02¢_
Ot 2 \ Or 2 + r -_r + r 2 002 ,] = 0 (36)

Initial conditions (31) and (32) are reduced to

t=O:
¢=0, Ot - e (37)

12



where b = In2/w 2.

Boundary condition (33) becomes

0¢ o at r 0.5 (3S)
Or

The problem (36) - (38) can be solved by the method of superposition. Let

¢(r,/9,t) = ¢_(r,/9,t)+ Cr(_,/9,t) (39)

where ¢i is the incident wave generated by the initial pressure pulse, and Cr is the wave reflected

off the cylinder. ¢i(r,/9, t) satisfies

02¢i (0 2¢i 1 0¢i
Or2 _,0_ + --_, ] = 0 (4O)

with the initial conditions

0¢i _ _b_ (41)
t=O: ¢i=0, Ot e

where (%,/gs) are the polar coordinates with the origin at x = xs, y = O.

The initial value problem of (40) and (41) can be solved by means of the order-zero Hankel

transform. The solution is (see ref.(2))

lf0_¢i(_s,t) = -2-_

or in terms of (r,/9) coordinates

e--b_2/(4b) Zo(o.)rs ).si12(o3t )do.)

fo :x)
¢i(r,O,t) = Ai(r,O,w)sin(wt)dw (42)

where Ai(r, 0,w) = 1 _b_2/(4b) r£bo _0(wv/_2+ x_ - 2_x_co_0) (43)

The problem for ¢_ is

02¢_ (02¢r 1 0¢r 1 02¢_)Ot 2 _,0r 2 +-_+ =0 (44)r Or r 2 002

0¢_ 0¢i
0---_-= - 0--_- at r = 0.5 (45)

In view of (42) we will represent the solution for ¢_ by Fourier sine transform it t,

f0 _
¢_(r,/9, t) = A_(r,O,w)sin(wt)dw (46)

13



Substitution of (46)into (44), (45) gives
=

02At 1 OAr 10ZA,.

Or 2 + + +ofiA = 0 (47) :r Or r 2 002 ._
I

_rr |= B(6,o_) at r =0.5 (48)

]where B(0,0J)= OA.___i (49) i
Or It=0.5

(47) can be solved by separation of variables giving,

O0

A4r, e,_) = _ Ck(_)lC_l)(r_)co_(ke) (50)
k=0

The coefficients Ck of (50) are found by applying the boundary condition (48). It is straight-

forward to find,

_ B(e,_)cos(ke)de (51)
Ck = 7rw[ZkH(1) ' ,,,,--d k (w/z)- g_l(w/2)]

Finaiiy, substitution of (50), (51) into (46) and on combining (42), (46), the velocity potential

is found,

where

j00 _
¢(r,e,t) = A(r,e,_)_i.(_t)d_ (52)

!

[]

i
m

g-bw=/(4b){2/) OO [ 71"_3[_-H_I)(O2/2)_kH(kl)(Fc'O)g°'S(ICe)--
A(_,e,_) = Jo(_/_ _+ _ - 2_z._o.e) + F_.n_

.. k+l (w/2)]D "(1)k=0

r + (53)]0 v/0.25 + x] - x,cos_ J
The pressure field may be calculated by

f0 _

p(_,e,t) = _o¢ = _ A(_,e,_)_¢o.(_t)d_
Ot

(54)

REFERENCES
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SCATTERING OF SOUND BY A SPHERE: CATEGORY 1: PROBLEMS 3_ND
o

Philip J. Morris*

Department of Aerospace Engineering

The Pennsylvania State University

University Park, PA 16802

INTRODUCTION

The scattering of sound by a sphere may be treated as an axisymmetric or three-dimensional

problem, depending on the properties of the source. In the two problems here, the solution is

axisymmetric. The method described below uses a Hankel transform in spherical polar coordinates.

Additional details of the solution, including the numerical evaluation of spherical Hankel functions,

are given by Morris [3]. This reference also includes solutions for non-rigid spheres. The same method

may be applied to cylinder scattering problems as described by Morris [2].

EXACT SOLUTION

Consider the scattering of sound from a spherically-symmetric source by a sphere of radius a. The

source is centered at S, a distance x_ from the center of the sphere. A spherical coordinate system

(r, 9, ¢) has its origin at the center of the sphere. The line joining the centers of the sphere and the

source defines 9 = 0. Thus, the problem is independent of ¢. The density and speed of sound are Po,

co respectively. The radial distance from the center of the source is denoted by R.

A periodic solution is sought in the form e -_t. The source has a spatial distribution given by

p,(R). The pressure, po(r, 0), satisfies the equation,

r20r r2or) +r2sinO00 sinO +koPo--p_(R ) (1)

where, ko = w/co.

Let the pressure be decomposed into incident and scattered fields: pi_c(R) and p,c(r, 9),

respectively. Then p_nc(R) satisfies the equation,

1 d R2 + kop_nc -- p_ (R)
R 2 dR

*Boeing/A. D. Welliver Professor of Aerospace Engineering

(2)
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and the scatteredfield satisfiesthe homogeneousform of Eq. (I). -::_ ,

The solution for the incident field is obtained here through the useof a Hankel transform, given by

oc

G(s)= -2 R2 jo(sR)g(R)dR (3) _'
T"

0

g(R)--/s2j°(sR)G(s)dSo (4) i

where jn(z) is the spherical Bessel function of the first kind and order n. The properties of spherical

Bessel functions are given by Abramowitz and Stegun [1]. i

Now, integration by parts and the use of general expressions for the derivatives of spherical Bessel |
|

functions [1], gives i

_ n _3o(ns) N_ n _ dR = -s2a(s) (5) .

So, the Hankel transform of Eq. (2) leads to i

p_n_(R) = - jo(sR)P_(s) z
0 (s 2 _ k2o) ds (6) _--

where,

P_(s) = -rr2/R2jo(sR)p,(R)d R
0

Now, with R = Cr 2 + x_ - 2rx_ cos 0, Abramowitz and Stegun [1] give an addition theorem for
spherical Bessel functions,

z

(7)

sin(sR)
jo(_n) - _n

oo

-- -- _(2n + 1) j,,(sr) jn(sx,) P,(cos0)
n=0

(8)

where P, (cos 0) is the Legendre polynomial of order n. Thus, from Eqs. (6) and (8),

c_

p_,_(R) = - y_' (2n + 1) Pn(cos 0) I_(r)
n=0

where,

f s_j.(_) j.(_) P_(_)
(s 2 _ k2 ) es

The general solution for the scattered field may be written in separable form as

oo

p_(r,O) = _ A_h_)(kor) P,(eos 0)
n_O

16

(9)

(_o)

(11)



whereh O) (z) is the spherical Hankel function of the first kind and order n.

At the boundary of the sphere we require that the normal derivative of the pressure be zero. So

that,

A,, = (2n, + 1) I'_(a)
ko (1), (12)hn (koa)

where,

j (82_ ko ds
0

j_(z) denotes the derivative of j_(z) with respect to z and is given by

j'n(z) = jn-l(Z) - (n + 1) jn(z)/z

with fo(Z) = -jl (z). Identical forms of expression may be used for the spherical Hankel function

derivatives.

Now, consider a spherically-symmetric, spatially-distributed Gaussian source given by

ps(R) = aexp(-bR 2)

(13)

(14)

(15)

Then, from Eq. (7),

Ps(s) = a exp(_s2/4b ) (16)
2bv/_

In this case, neither the incident field nor the unknown integrals I_ (a) and I'_ (a) may be evaluated

analytically. However, they may be obtained numerically. The numerical procedure used involves the

use of an integration contour in the complex s plane to include the effect of the pole at s = ko. It is

described by Morris [2] and is not repeated here.

In the present problem, where the source is introduced into the linearized energy equation,

a = -ikoA (17)

b = B

and

A=0.01, B=16, xs=2

Different frequencies are considered in the model problems.

(18)
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RADIATION OF SOUND FROM A POINT SOURCE

IN A SHORT DUCT

M. K. Myers

The George Washington University

Joint Institute for Advancement of Flight Sciences

Hampton, VA
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7
?z

INTRODUCTION

It is the purpose of this paper to provide, in relatively brief form, a summary of a boundary

integral approach that has been developed for calculating the sound field radiated from short ducts in

uniform axial motion. The method was devised primarily to study sound generated by rotating sources

in the duct, as is of current practical interest in connection with ducted-fan aircraft engines. Detailed

background on the fan source application of the technique can be found in refs. 1 and 2. The author has

not previously discussed the simpler monopole source case of interest in these proceedings. However,

readers desiring a more detailed treatment than will be included here should have little difficulty in

extracting it from those references after making the relatively minor modifications necessary to adapt the

analyses to the monopole case.

It should be noted that other authors have also considered radiation from short ducts. In

particular, readers may find the finite-element approach of Eversman [3] of interest as well as the

alternate boundary integral method treatments of Martinez [4] and of Dunn, Tweed, and Farassat [5].

BOUNDARY INTEGRAL EQUATION

The problem to be considered is illustrated in fig. 1. An infinitesimally thin, rigid circular

cylinder of radius a and length L moves at subsonic speed V in the negative x 3 direction relative to a

frame of reference 2 fixed in fluid at rest. The duct encloses a monopole source located at its center,

which is taken as the origin of a co-moving system X. The monopole emits sound harmonically at

circular frequency m in the moving frame X. The objective is to determine the acoustic field radiated

into infinite space through the ends of the moving duct.

The field is assumed to be described by the linearized equations of ideal isentropic compressible

fluid motion. The problem is expressed in a scattering formulation in which the acoustic pressure is

written as p = p_ + Ps, where the incident pressure p_ is the free-space field radiated by the monopole

source in the absence of the duct. The scattered pressure ps(z_,t) is then sought as an outgoing solution

to the homogeneous wave equation subject to appropriate boundary conditions on the inner and outer

surfaces of the duct.

As shown elsewhere [1, 2], an integral representation of p_ is obtained by utilizing generalized
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function theory to accountfor the fact that Psis discontinuousacrossthewall of the duct. The
representationis the formal solutionof a generalizedwave equationsatisfiedby Ps, which hasa source
term that arisesbecauseof the discontinuityin Psacrossthe wall. It expressesthe scatteredpressureat
anypoint in termsof the pressurejump Aps acrossthe wall in the form

4r_ps(:_,t)- l a [ A pscos0] [ A p cos0 ]c & f[0[r]l---_] ],,dS - f=of r2il---_rlJr, dS (1)

In eq. (1), r = ]gl is the radiation distance between a source point on the moving surface f = 0 and the

observer at _, 0 is the angle between f and the normal to f = 0 at the source point, and Mr is the

component of the surface Mach number vector in the direction of f. The speed of sound in the

undisturbed medium is denoted by c, and the subscript "_" indicates that the integrands in

eq. (1) are to be evaluated at the emission time z" which satisfies the retarded time equation t-v-r/c=0.

The boundary integral equation from which the unknown jump Aps along the duct can be

determined is obtained by applying condition that the normal component of acoustic particle velocity

vanishes on both sides of the duct surface f=0. This is equivalent to 0p]0n = 0 on f=0, or

aps/an = - @i[C_l on f = 0 (2)

where n is the direction normal to the surface f = 0. Use of eq. (1) in eq. (2) leads to the integral
equation

-4_xOPi l = lim
a la

On cOt I r- c°s°l tf .r211_M [j, ' dSf=0

(3)

in which _ denotes any observer point on the moving surface f = 0. Equation (3) is the boundary

integral equation which is solved numerically in the current analysis to find the unknown jump Ap_

across f = 0. Once Ap_ is known, then the scattered pressure at any point in space can be calculated

using eq. (1) and added to the incident pressure to obtain the radiated field.

z

i
i
w:

i

E-

E

ANALYSIS OF BOUNDARY INTEGRAL EQUATION

The integrals in eq. (3) are highly singular when r = 0, i.e., when the source point on f = 0

coincides with the observer point :_o- To solve the integral equation numerically it is necessary that this

singular behavior be analyzed in detail. This is most conveniently done by first expressing eq. (3) in

terms of the translating coordinate frame _ in which, as indicated in fig. 1, cylindrical observer and

source coordinates _ =(Rcos_, Rsin_, X3) and Y: (aeos4}, asintD/,Y3) are introduced.

2O



ref. 6.
Theincidentpressureemittedby the translatingmonopolecanbeobtained,for example,from
In complexform it canbewritten as

Pi=15(X3,R)exp[-i(° (t+MX3]cl32)]

exp( 
in which M = V/c, 132= 1 - M 2, and the amplitude _ is given by

[,iw (-MXa+IX_+[ _2R2) + MX3
4nlb(X3,R) = - pc A

cl32 X_+132R 2 (X32 + 132R2) 3/2

Here A is the volume strength of the monopole and p is the density of the undisturbed medium.

follows that the left side of eq. (3) is

(4)

(5)

It

-4rrP(X3) exp [-it,) (t +MX3/c132)]
(6)

where P(X3) = O_IOR[R=a.

Because of the symmetry of the duct, bps will have the same complex form as the expression in

(6) when expressed in the moving coordinate frame. Thus bps is written as

Ap_ : _(X3) exp [-i60(t +MX3/cl32)]
(7)

The remaining quantities in the integrands of eq. (3) are also easily expressible in the translating

cylindrical coordinates, although the details are omitted here. They can be found in refs. 1 and 2. After

substitution of eqs. (6 and 7) into eq. (3) and repetition of precisely the same algebraic steps as in refs. 1

and 2, the boundary integral equation (3) assumes the complex form

-4riP(X3) = 2ap 2

L/2 1_

lira d f _(Y3) fvcY ,,) d_dY 3 (8)
R-a OR -I_ o

in which u? (Y3, _) is defined by

_ (Y3,_) = (Rcos_ -a)[-- ia _ 1 ]_2+B (_2+B) 3/2 exp (itz _2_--B) (9)

In eq. (9), the abbreviations ¢ =Y3-X3 and B=[32(R2+ a2-2aRcos _) have been introduced, with
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_:C-_ and _=,.o/ct32.
=:

Equation (8) casts the boundary integral equation in a form from which its singular behavior may

be extracted explicitly. The analysis necessary to do so is fairly lengthy, however, and it will be only

summarized here in symbolic form; more detail will be found in a forthcoming publication [7]. First, it

is seen in eq. (9) that the singularity occurs when Y3=X3(_=0),_=0 and R-a-h=0. Expansion of

for small _,_,h results in

1 i_- R*2

(_Z+Bo)3/zj (_2 +B0)3/2

+
• , ,

(lO)

in which Bo=[32(h2+a2_ 2) and the omitted terms are all O(1) or smaller. Let the terms shown in eq.

(10) be denoted as _o(Y3,#) and define q=_-_0- This function is completely regular. Then the

circumferential integral in eq. (8) is written as

f@d* +fVod* =I._(V_)+I(Y_)
0 o

(11)

such that the first integral (Ins) is nonsingular and the second (I) can be evaluated analytically because it

contains only quadratic expressions in _. After carrying out this integration it is found that

I(Y3) = Q,_(Y3) ÷ Qs(Y3), where Q,_ is also completely nonsingular at Y3 =X3, h=O. The term Qs

contains the singularity and is discussed further below.

If the results just described are substituted back into eq. (8), that equation becomes

I?-4r_P(X3) :2a[32 _(Y3)

l-L/2 -ff_ jR= dY3 + lima._ aRj

(12)

after the radial derivative of the nonsingular integrals on R=a has been evaluated analytically, and in
which

-u2[ ¢_2 +[32Cn2+aR_2) J_2+[32h2
(13)

=

[
l

The entire singular nature of eq. (18) is now isolated in the integral (13) and the final step in the analysis

is to remove the singularity from this integral by appropriate expansion about _ =0 of the nonsingular
bracketed factor in the integrand of (13). When this is carried out it is found that the last term on the

right of eq. (12) is expressible as
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-_I ] dY3 "K '_ (X3) + 1

(Y3)1 -g
- _ (X 3) - _ _ _(X3)lim .... ÷ -- --

R-a OR a13 X/_2/a2132+n2 _2 2a2132 a13

(X3) - _ Z(X3)l°g (14)

with _,=±L/2-X 3. The integral remaining in eq. (14) is also nonsingular at _=0.

The result of all this is that the integral equation (12) now involves one double integral over Y3

and @ and two single integrals over Y3, all of which are completely nonsingular. The original

singularity in eq. (18) has been integrated analytically and gives rise to the explicit terms on the right

side of eq. (14).

NUMERICAL SOLUTION

The solution of the integral equation (12) is obtained numerically using the method of collocation

after expressing the unknown _(X3) in terms of suitable shape functions. It is known that a unique

solution exists only if certain edge conditions are specified, and these are incorporated into _ by

enforcing a Katta condition at the trailing edge of the duct and an inverse square-root singularity at the

leading edge. Accordingly, the jump is written as

_(X,) =a0 _ +_/1-4X2/L 2 ,+a2--_2+_a j [ L 2
j=3

(15)

in which the square-root factor in the numerator guarantees the correct functional form for the vanishing

of _ at the trailing edge to comply with the Kutta condition.

The expansion (15) is then substituted into eq.(12) and the integral equation is evaluated at J + 1

suitably chosen points along the length of the duct. This results in the algebraic system

J

-47zP(X3i) :E ajKj(X3i)
j:o

i=l,2,...,J+l
(16)

from which the J + 1 constants aj are obtained. The coefficients Kj(X3i ) are calculated from the

expressions in the previous section utilizing a four-point Gauss-Legendre quadrature scheme in which the

duct surface is discretized into panels based on the wavelengths of oscillation in • and X 3 of the

various integrands for each j. A minimum of one panel per wavelength in the circumferential direction

and four per wavelength in the axial direction are used, and the scheme has been extensively tested for
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accuracy. The numberof shapefunctionsJ is chosensufficiently large to captureat Ieast 2-3 t_mes the

number of oscillations in _ expected along the duct; this number can be inferred from the incident field

given in eq. (6).

RESULTS

Numerical predictions from the theory outlined in thispaper are illustrated in figs. 2 and 3.

Figure 2 corresponds to the case of primary interest in the current proceedings: the forward Mach

number is 0.5, the duct (D) diameter and length are both I m, and the dimensionless clrcular frequency

is tzD/c=16r_. On the figure is shown the sound pressure level in dB re lO-51.tPa radiated from a

monopole for which pc tAI= IN. The polar plot gives the SPL of the incident field alone and that of the

total field in the presence of the duct on a spherical radius 2.5m from the origin of _. The angles 0 °

and 180 ° correspond to the exit and inlet ends of the duct, respectively. As would be expected at this

relatively high frequency, the duct causes very little scattering in the axial directions. There is, however,

a lateral shielding effect that cuts the SPL about 20dB around the 90 ° direction as is seen in all

problems of this type [1, 2, 7].

Figure 3 illustrates the directivity found for the same case except with the frequency reduced to

wD/c=4.409n (corresponding to 750 Hz). While the axial scattering is somewhat stronger in this case,

the duct obviously affords minimal lateral shielding at the lower frequency.

i
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CIRCULAR DUCT

SUMMARY

This paper presents a method of evaluation of Wiener-Hopf technique solutions for sound radiation from an
unflanged circular duct with infinitely thin duct wall, including mean flows.

1. INTRODUCTION

Sound radiation from circular ducts is a classical acoustics problem. Exact solutions were previously reported:
the Wiener-Hopf technique was used for radiation of propagating modes from a circular duct with negligibly

thin duct wall, 1-3 and the Hyperboloidal wave function was defined and employed for radiation from duct

with various types of termination including a plane flange and horns. 4 Exact solutions undoubtedly help one
to gain physical insight into the problem, and can often be used in practical designs. In this electronic
computation age, another significant role of exact solutions is defined as means of cross examination of results

of numerical techniques. These techniques, embraced as computational aeroacoustics, are just starting to attract
wide-spread attention as a potential tool in attacking important aeroacoustic problems for which quantitative
solutions are not available.

Despite the elegance of the closed form solutions with the Wiener-Hopf technique, numerical presentations
have been limited to mere demonstrations of its capability. As a matter of fact, no computer program is
publicly available for its numerical evaluation. Numerical evaluation of the Wiener-Hopf solution is not
straight forward; and it requires the exercise of extreme care, and often sophisticated mathematical tricks. This
paper attempts to provide a comprehensive mathematical procedure for evaluation of Wiener-Hopf solutions.

In section 2, acoustic waves will be briefly reviewed for in-duct propagation and radiation. In section 3, the
Wiener-Hopf technique is applied to obtain solutions, and Section 4 is devoted to the evaluation of integrals
involved in the solutions.

2. REVIEW OF DUCT ACOUSTICS

Duct acoustics will be briefly reviewed here for its aspects relevant to the present problem. This review is also
intended for clarification of terminology and nomenclature used in this paper.

The wave equation for the acoustic pressure, p, in flow is

1 O o. (1)V P-? - Z P=

* Partly based on two consulting reports submitted to Pratt and Whitney Aircraft, May 25, 1976; and

December 17, 1976. 27



Herec is speedof sound,and 1) themeanflow velocitywhichis assumedto haveonlytheaxialcomponent.
Theanalysisis confinedto a steadywavewith theharmonictimedependencee -_o,,, and axial angle

dependence e '" _, where m is an integer called the circumferential mode number. Eq. (1)_is then written for

circular cylindrical coordinates (r, _b, x) as

-(r grt, G-r)+ax -7-p=° (2)

where k = co/c, and M = V/c.

The sound radiation from an unflanged circular duct is schematically displayed in Fig. 1. With reference to this

figure, the entire region is divided into two: region 1 for r < a, and region 2 for r > a, where a is the duct
radius. The subscripts 1 and 2 will be used from now on to indicate respectively the region 1 and 2, unless

specified otherwise. The mean flow velocities are assumed to be uniform in each region, and denoted by Vj

and Vz. For V_4: V2, there will be the mean flow mismatch at r = a, for x > 0. The sound speed can differ for

the two regions for reasons such as differences in mean density and temperature. The respective sound

speeds, wave constants, air densities, and Mach numbers are denoted by q and c2, k_ and k2, Pl and P2,

and M I and M 2, where k t = co / q, k 2 = co / c2, ,,141= Vt / q, and M 2 -- V2 / q.

In a hard-wall circular duct, the general solution to Eq. (2) is obtained as

p(r,x)= Jr. {A,..e_L'X +B,..e_'_} •
n=l

(3)

Here J., is the Bessel function of order m, /1,.. the n-th zero of J" (x), and A,.. and B,... constant

coefficients. The wave constants k_. and k,7,. correspond to the mode propagations respectively in the

positive ( to the right) and the negative (to the left) directions, and are given by

-klM j q-_ kl 2-(1 - M 2)( l'lmn ) 2

÷ a (4)kmn "_- 2
l-m,

M

J

The integer n here is called the radial mode number, and the pair (m,n) is used to represent a single duct mode.

Consider the incident wave of a single mode, say (m,g),

Pinc--Jml--I e e .
kay

(5)

This wave is incident from x =- _ and propagating towards duct termination as in Fig. 1. Upon arriving at

the duct termination, it will be partly reflected back into the duct, and partly radiated out of the duct. In
general, the reflected wave contains many radial modes including propagating and attenuating modes, and is

represented by
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n=l

(6)

Here R,.m is the conversion coefficient for the (m,g)mode incident and the (m,n) mode reflected. The

reflection problem is completely solved by determining this coefficient for all values of n. The Wiener-Hopf
technique yields radiation solutions in terms of the far field, which is represented by

__im(p .l" [0_ 1 eiA(k2,M2,R)
Prad -- e, Jm__ J" k2---_

(7)

Here R is the radial distance from the center of the duct termination, and 0 the polar angle measured from the

x-axis (duct axis) as shown in Fig. 1. (R, 0, ¢) are spherical coordinates. The complex factor free(O) is called

the amplitude gain function, which provides the far field directivity of radiation. The phase A(k 2, M 2, R) of the

far field depends on M 2 as well as on k 2 and R. The radiation problem is completely solved by determining

fm_(O) and A(k2,M2,R).

This analysis with a single mode incident can be extended to accommodate incident waves composed of many

modes in a straight-forward manner.

3. WIENER-HOPF FORMULATION

The Wiener-Hopf technique involves extensive mathematical manipulation in the Fourier transform space. The

Fourier transform of p(r, x) is given by

1

• (r,a) = .vt_- _2 p(r,x)eiaXdx, (8)

and p(r, x) is restored by the inverse transform

1

p(r,x) = _ _2 _(r'a)e-i_Xd°t " (9)

In the process of the Wiener-Hopf formulation, various parameters and functions are defined and derived as
follows:

± +kj for i=1, 2,
yi(oO=__(ot-q;)'(O_-q;), qj -l_Mi

I,_Oqa)
w, (a)=

),_a l" (?'_a)
, I.. being I- Besselfunctionofoder m,

G(a)=
Km(y2a)

i aY2a K,.(Y2 )
, K,. being K - Besselfunction ofoder m,

(10)

(11)

(12)
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+ 1- j (13)

a 2 )2 2K(of)=_[p,c, (ki+ocM, W_(o_)-P2c_(k2+aM2) W2(00]. (14)
TM?',L

In deriving K(o0, we have used the condition of the continuity of the acoustic pressure and acoustic

displacement at the mean flow mismatch at r = a, for x >0. K(a) is factorized into two, one is analytic in the

upper half plane (+) and the other in the lower half plane (') as K(a)= K÷ (o_). K (o0. These factors will be

included in the final solutions with arguments representing physical quantities. For the present problem, the
factorization is obtained not in closed forms but in integral representations a s follows:

1____, LogeK(a) do_ '
Log<K+ (y+)= 2rci C+ or-y+ (15)

-1 £ Log_K(a) da.
Log J( (y_)= 2zri C o_-y_

(16)

Here the integral path is from - _ to + _ near the real axis, and the argument y+ (y_) is located above

(below) the respective integral path, as illustrated in Fig. 2:

Forgoing details of the formulation, 5 the final results are presented here. The conversion coefficient for the
reflection is obtained as

m

__ 2, (m m + 1-<,+
Re'" aTM_-M, 2 J,,,(tA,,,,,) \ ]lmn) Lt. 1-Mr) 1--_ ]]

(ki-MI k7")2 - K_(-k,,u,)K+(-k,,,)]+ _ -1
k + - (k I + (1-Ml2)k,7,,, ) "[(.,<-k,.°) M,

The symmetry between the radial mode numbers g and n is salient, implying that the result satisfies the

reciprocity principle, 6 which can be used to infer the conversion coefficients of a nonpropagating mode.

For the radiation, the phase is obtained as

A (k 2, M 2, R) = k2 M 2 x
1_ff_22 (R ff----777 )'41-M?

and the amplitude gain function is

(17)

(18)
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f_,(O) =
(-i) ' J=(vm,)p24 (1-v2 cosO')2

_ TM(1-M22) '/2

• sin0. m' k2asinO'

.{K÷(_rl(O)).[k+ e _r/(0)].t( k_1+ M z /, +,I/<1}77(o) .K --km, " k2,+ (19)

where

7"/(0) = kz(c°s0'- M2 )
1- M_

(20)

Here the modified coordinates R' and 0' are defined as

I X2R'= r24 1-Mff '
tan0'= t_- Mff tan0 .

(2I)

f

H2_(x) is the Hankel function of the first kind, and H2 _) (x) is its derivative with respect to x.

Comments are made on the expression of f,.,,(O) for two limiting cases• First, as can be shown readily, when

0 becomes zero, the quantity in the first square bracket will be infinite except for the case of m = 0. In other

words, the radiated field is zero for 0 = 0 except for the radiation of axi-symmetric modes. Second, as will be

seen later, when its argument approaches - k+.,., K+ in the second square bracket varies as [ k+..e- r/(0)]-'. It

follows that the radiated field will be zero for the angle satisfying

J _

r/(0)=k_+, or cos0'= M 2+ (1-M 2_'_" for n,e. (22)
2jk2 ,

However, for the angle corresponding to the incident propagation constant k2,., the radiated field is non-zero,

because the term adjacent to K÷ becomes zero in this limit. In fact, the radiated field reaches the maximum in

this limit. These findings are all familiar for cases of no mean flows. We will also see later that if its argument

approaches - k_/(1 + M_), K+ varies in such a way as to compensate the term involving the square root in the
same square bracket to maintain the amplitude gain finite.

A remark should be made on the constant TM. As M_ and M 2 both become zero, this constant becomes zero,

but the expressions for the conversion coefficients and the radiation directivity remains correct, and finite
when evaluated as a limit.

4. NUMERICAL EVALUATION

The integrals in Eqs. (15) and (16) cannot be carried out analytically, and thus, we will employ a semi-
numerical method. To this end, all the variables are made dimensionless by multiplying or dividing with the
duct radius a. For notation simplification, the sub- or superscript m will often be dropped.
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K(a) satisfies all the conditions required for its factorization by the integration. Nevertheless, the integrand

possesses singular points in the vicinity of the integral paths. These singular points arise as branch points,

simple poles, and zeroes of K(a). It should be emphasized that there are no other singularities near the

integral paths. The branch points are located at o_= q_. We adopt a rule for determining phase around these

branch points, as illustrated in Fig. 3. For example, consider (cz-q_). Its phase is 180 degrees for its real

part less than zero, and changes clockwise to zero as the real part bec0mes positive. On the other hand, the

phase of (_z-q() is -180 degrees for the real part less than zero, and changes counterclockwise to zero as the

real part becomes positive. This rule should be strictly observed for the integrations.

The simple poles of K(a) occur at zeroes of 1" (7'_ a), Which is included through W_ (a) as in Eqs. (11) and

(14). Theses zeroes correspond to the wave constants of duct modes, and one can show that the simple poles

of K(a) are located at a=v, _ -- -k_,. Note that v + ( =-- k_,) is above the respective integral path, and v;

( -- k_+,) below the respective integral path as shown in Fig. 2. K(a) can also possess zeroes near the
+ + +

integral path if q( > qz. The zeroes are located between o_=qz and a=qj, and above the integral path. The

number of zeroes equals that of simple poles between a = q_ and a = q_, or can be less by one. The zeroes are

denoted by z,, for n = 1, 2 .... n o, n o being the number of zeroes. These zeroes are ordered such that z_ is the

smallest, and z,o the largest.

The imaginary parts of all the singular points are related to 9,_ (k). As the latter tends to zero, all the singular
points approach the real axis, and the integral paths are then indented as shown in Fig. 2b.

Consider the integral

I =I_ L°ge K(a) dol (23)f

a-y

This integral is divided, for convenience, as

I=R_+R+ +B_+B+ +S+S.+Z+Y+N. (24)

R's are the contribution from the integration over larger arguments as

where Z >[q;[

Loge K(a)
R_ = 1_- da,

o_- y

Loge K(a)
t?,+= l do_ ,

,IZ÷ Ot- y

(25)

(26)

B's are the contribution from the integration over small intervals containing the branch points:

f_ Log e K(cx)B = da, with b_-< q_-< b_-,
; _z-y

(27)

i
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,i Log e K(ot) da, with b_+< q_+< b]. (28)
B+= ; _-Y

S's are the contribution from the integration over small intervals containing the simple poles:

n c

S± = _ S,_ , n Cbeing the largest propagating radial mode number, (29)
n=l

S-_= If 2 L°ge K(a) da, with s,_ < v_- < s_-2, (30)
o:-y

÷

S+ = ,.2 Log, K(a) do_, with s,i < v, < s,z.
2, O_-y

Z's are the contribution from the integration over small intervals containing the zeroes of K(a):

no

Z = _ Z., (32)
n=l

Z. = r..[2 Log_ K(ct) d_, with z.i < z. < z.z •
"%1 o_-y

Y is the contribution from the interval containing the pole at a = y:

i>;2 LogeK(a) do_ ' with y_ < Y < Y2,
Y_ = ', Ot-y

(33)

where the plus (negative) sign indicates that the pole is above (below) the integral path. This integral needs to

be evaluated only if K(a) is free of singularity and zeroes within the integral limit. Otherwise, it should

belong to one of B, S, and Z because there are no other singular points than those involved in B, S, or Z.

large _, as

Finally N is the integral over the whole remaining intervals. There is no singularity at all in these intervals, and
thus the integration can be carried out numerically.

K(o0 approaches unity as l al becomes large, that is,

Ai
K(_) _= 1 + -- + -- (35)

O_ a 2 '

where the expansion coefficients A_ and A z can be readily obtained. With this substitution to Eqs. (25) and
(26), one obtains

[+d l(l+dlLogJZ+-yl] (36)R_=A, ,f-_+ T-y\ YJ \ Z± ; '
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where

d - A2 AI

A x 2

Error limits and the expansion coefficients are used to determine the integral limits Z±.

(37)

The integral near the branch points can be replaced by

where

B±=IL°g_Q_(a)daa-y-211 Log_(a-q_)da,a_y

Q±(a)=x(a)._.

(38)

(39)

Q4 (o0 are free of singularity and zeroes within the respective chosen integral limits.

The simple poles of K(a) are separated as follows:

where

s-+ Loge L_(a) Loge (a - v_. )t" P=I
a-y _ oe-y

L±(a)=K(a). (a- v_).

(40)

(41)

L± (a) are free of singularity and zeroes within the respective integral limits.

The zeroes of K(a) are similarly separated as

where

Z. = I L°geU(°_) d_ + I L°ge(a-Z") doe,
o_- y o_- y

(42)

K(o0
U(a) - (43)

U(a) is free of singularity and zeroes within the respective integral limit.

Now consider the integral

H(y) =If L°ge G(a) da,
o_- y

(44)

Here G(a) is free of singularity and zeroes within the integral limit, and thus represents Q_(a) in Eq. (38),

L+(a) in Eq. (40), U(o0 in Eq. (42), or K(o0 in Eq. (34) if K(a) is free of singularity in that region. This
integral can be written as

b da

H(y) =i_ Loge[G(oOIG(y)]ot_y da + LogeG(y) I£ ot-y (45)

i

z

II

|
E

34



As a approachesy, onereadilyobtains

Log e [G(ot) / G(y)] _- G'(y) (46)

a-y G(y)

Thus, the first integral in Eq. (45) does not involve any singularity, and can be easily evaluated whether y is
within the integral limit, or not. The integral contained in the second term yields

,'.| dot _ Loge[b-Y±[,('') for y±<a, or y.>b,
_a ot- y± \a-y± )

for
k y±-a )

(47)

where (_+) signs are used to indicate that the simple pole is above (+) or below (-) the integral path, which is
indented around the pole like u for (+), and n for (-).

Consider the integrals

fh Log e (ot - __)£2- dot,
d, ot- y_

(48)

H Log_ (ot-__)
_ =J_ dot,

ot - y+

(49)

Loge (ot-_+ )eb

_+ =l dot,
- .,_ ot-y_

(50)

eb Log_ (ot-_+)
YS_ =jo dot.

ot - y+
(5i)

Here, the singular point at ot = _ is within the integral limit, that is, a < 4_+< b. The subscript on _ and y is

used to indicate that the pole is above (+) or below (-) the integral path. The indented integral paths are shown
in Fig. 4. The second integral in each of Eqs. (38), (40), and (42) is identified with one of the integrals in

Eqs. (48) - (51). These integrals are evaluated as follows:

For y < a,

=4_ircLoge(._+-y+ I /z"2 1 r.
\ a-y± )--_'+2 "[(L°g_(b-y±))2+(L°ge(_±-y±))2]

1 a-y._ JI (52)

fory >b,
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= + l
- la_y ± 3 _

1 y±-b \ y±-a+ L°ge(Y±-_±)'L°ge(Y±-b)-j_=lT[(y±-_+_ )J+(Y-+--_±)J];
(53)

for a<y <b,

f2_ = + irc Loge(Y_-a) + Dr[-Loge(y_-_±) T- Loge(y -_+_) ]

- l[(Loge(b-¢e))2+(Loge(y-a))2 ] + Loge(b-_+_). Loge(b- y_)

,_ J J

2 f"-lj2LLb-¢±) Ly_-a)]'
(54)

n+-+= +igLoge(y+-a)+ iTr[ Loge(y+-_±) T- Loge(y+-_±)]

-l[(Log,(b-_±))2+(Log_(y+-a))2]+ Log_(b -_±). Log_(b- y+)

rc2 S, 1 Y+_-_± + Y+-_
+ 2 j2 b-_+_--- y÷-a (55)

All the integrals involving singular points are analytically evaluated according to Eqs. (47), (52) - (55). For
large arguments extending to the infinite, the integral is evaluated according to Eq. (36). The rest involves
finite integrals with well-behaved integrands, and thus can be numerically evaluated without any difficulty.

A remark will be made on the results in Eqs. (54) and (55), particularly on the second term on the right. This

term vanishes if y and _ are on the same side (above or below) with respect to the integral path. However, if y

and_ are separated by the integral path, the second term equals +2mLog,(y± - _), and diverges as y

approaches _. Of the K-factors contained in the results in Eqs. (17) and (19), only 1(.(-71(0)) can have y

and _ separated by the integral path. Its argument is above the integral path according to Eq. (15). As 0
varies, the argument can approach a singular point located below the integral path. For this case, the second

term above is given by 2zciLog_(-rl(O)-__), where __ is v_- or q_-. Inspecting Eqs. (15), (23), (24), (38),

and (55), one obtains, for -7/(0) close to ql-,

1

K÷ (-rl(O)) o_ 4_rl(O)_q? . (56)

Similarly, from Eqs. (15), (23), (24), (40), and (55), one obtains, for -r/(0) close to v,-,

(57)
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It follows thenthat, as7/(0)approachesk_,, f,,e(O) given in Eq. (19) tends to be zero for nag, and will

reach the maximum for n=g. Also one can see that f,,_(O) will remain finite asr/(0) approaches to

k_/(1 + M_) as discussed earlier.

CONCLUDING REMARKS

An analysis for evaluation of the Wiener-Hopf solution was presented for sound radiation from an unflanged
circular duct with mean flows. This analysis was initially developed for radiation of spinning modes in
conjunction with aircraft inlet noise control studies. We have a well working computer code available for such
radiation. However, while generating numerical results for the Benchmark problems, we learned that the code
needed to be refined for radiation of the axisymmetric modes.
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Figure 1. Sound radiation from unflanged circular duct with flow
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Figure 2. (a) Integral path C+and C., and singular points: (v_ correspond to an

attenuating mode); (b) indentation of the integral paths as Im(k) _ O.
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EXACT SOLUTION TO CATEGORY 3 PROBLEMS- TURBOMACHINERY NOISE

Kenneth C. Hall _ _'_5"._

Duke University z/Department of Mechanical Engineering and Materials Science

Durham, NC 27708-0300

In the far-field upstream or downstream of the cascade, the perturbation flow will be composed of

pressure waves and vorticity waves. The pressure waves travel away from the cascade, with solutions
taking the form

p(x, y, t) = Re p,,eJk'xeJ_'Ue-J_t (1)

where n is the mode index, kn and /3n are the axial and circumferential wave numbers of the nth

outgoing pressure wave, and the coefficient p, is a complex constant expressing the magnitude and

phase of each pressure wave. The circumferential wave number ¢?,_is given by

_. = (_ + 2,_) /a (2)

where G is the blade-to-blade gap, which for this problem is equal to unity. The axial wave number k,
is given by

u(_- _,,v)+ a_'N (u_+ v_-a_) + 2A_V +J
k_ = Us - a2 (3)

where a is the speed of sound, and the root used corresponds to that which produces a wave which

propagates away from the cascade in the case superresonant (cut-on) conditions as determined by the

group velocity, and which decays away from the cascade in the case of subresonant (cut-off) conditions.

Recall from the problem definition that U = 1, V = 0, and a = 2.0. The frequency w is 5_r/2 and
137r/2 for Cases 1 and 2, respectively.

Equation (3) can be rewritten as

1

p(x,y,t) = "_ E [pnejk'xejz'ye-j_°t + Pn e-jg'xe-j_'ye+j_t] (4)

where p,, is the complex conjugate of pn. Note that as ln[ gets large, the waves tend to be strongly cut

off. Thus, the sum in Eq. (4) may be truncated, keeping only cut-on modes and weakly cut-off modes.

To find the mean square value of the pressure, )-_, one takes the square of Eq. (4), integrates over

one temporal period T and divides by T, so that

1 ft+T 1 _
-_ = -T "Jr p at = -_ _ _ [pm_d(k"-k")Xe j(_-_)_ + _mp, e-J(k'-k_)_e-;(_"-_")Y] (5)

Finally, Eq. (5) can be expressed more compactly as

_ae _ (6)

Using a modified version of Whitehead's [1] LINSUB computer code, tables containing the "exact"

solution to the Category 3 problems have been prepared. Since the LINSUB analysis is based on a semi-

analytical theory due to Smith [2] requiring both truncated infinite sums and numerical quadrature,

the analysis is in fact approximate. However, the analysis converges very quickly as the number of

quadrature points on the airfoils is increased, and for our purposes may be considered exact. Tables 1

and 2 describe the far-field pressure field for Cases 1 and 2, respectively.

Whitehead's LINSUB code also computes the jump in pressure across the airfoil. This information
is tabulated in Table 3 for both Cases 1 and 2.
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Table [: Outgoingpressurewaveinformation for Case1: o" = co = 57r/2,

n

-3

-2

-1

0

+l

-77r/2
-37r/2
+7r/2

+57r/2
+9n-/2

kn (upstream)

-2.6180 - 11.5667j

-2.6180 - 1.4810j

-7.5298 + 0.0000j

-2.6180 - 7.4048j

-2,6180 - 15.4617j

k,., (downstream)

-2.6180 + 11.5667j

-2.6180 + 1.4810j

+2.2938 + 0.0000j

-2.6180 + 7.4048j

-2.6180 + 15.4617j

p_ (upstream)

+0.12147 - 0.03873j

+0.53682 - 0.09116j

+0.07381 - 0.16809j

-0.17443 + 0.04846j

-0.09719 + 0.03356j

p_ (downstream)

-5101.2 + 682.1j

2_12552 + 0.4629j

-0;14795 - 0.15700j

+150:37 - 21.37j

+163539 - 2i470j

72

-6

-5

-4

-3

-2

-1

Table 2: Outgoing pressure wave information for Case 2: a =_ = 137r/2.

-llrr/2

-7 /2
-3rc/2

+7r/2
+57r/2
+97r/2

k,_ (upstream)

-6.8068 - 14.5858j

-11.7186 + 0.0000j

-19.2856 + 0.0000j

-20.2990 + 0.0000j

-16.9597 + 0.0000j

-6.8068 - 9.0083j

k_ (downstream)

-6.8068 + 14.5858j

-1.8950 + 0.0000j

+5.6720 + 0.0000j

+6.6854 + 0.0000j

+3.3462 + 0.0000j

-6.8068 + 9.0083j

p, (upstream)

+0.05313 - 0.03263j

+0.06037 + 0.16068j

+0.01165 + 0.02662j

+0.00163 - 0.00941j

-0.01447 - 0.029273'

-0.07713 + 0.04236j

Pn (downstream)

+18415 - 3385j

-0.08366 + 0.04531j

+0.03342 + 0.08047j

-0.01837 - 0.02195j

+0.01783 - 0.11869j

-120.370 + 35.98j
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Table 3: Pressurejump acrossairfoil surfacefor Cases1 and 2.

X

0.002739

0.01O926

0.024472

0.043227

0.066987

0.095492

0.128428

0.165435

0.206107

0.250000

0.296632

0.345492

O.396O44

0.447736

0.500000

0.552264

0.603956

0.654509

0.703368

0.750000

0.793893

0.834565

0.871572

0.904509

0.933013

0.956773

0.975528

0.989074

0.997261

Ap (Case 1)

2.537370 + 5.408126j

1.325919 + 2.919922j

0.956211 + 2.171698j

0.804730 + 1.841727j

0.745766 + 1.657842j

0.733135 + 1.523461j

0.740240 + 1.392526j

0.744923 + 1.241506j

0.725826 + 1.060468j

0.662893 + 0.851991j

0.540426 + 0.629459j

0.351306 + 0.415466j

0.100116 + 0.236820j

-0.195112 + 0.119009j

-0.505591 + 0.079066j

-0.796183 + 0.121177j

-1.033825 + 0.234332j

-1.193248 + 0.395377j

-1.263362 + 0.573535j

-1.246460 + 0.738373j

-1.157928 + 0.864475j

-1.019010 + 0.936690j

-0.854140 + 0.949121j

-0.683514 + 0.905481j

-0.523146 + 0.813910j

-0.381359 + 0.686081j

-0.261630 + 0.5323993"

-0.161759 + 0.362603j

-0.076972 + 0.183421j

Ap (Case 2)

2.947770

1.396297

0.837480

0.517989

0.287019

0.091642

-0.085729 +

-0.247446 +

-0.379861 +

-0.466097 +

-0.496350 +

-0.481046 -

-0.442407 -

-0.391473 -

-0.316766 -

-0.201247 -

-O.O5621O -

0.075022

0.148032

0.152358

0.115422

0.075100

0.054080

0.052595

0.059792

0.063751

0.058764

0.044899

0.024118

+ 2.7756773

+ 1.4174903

+ 0.9698263

+ O.74O3393

+ 0.5889543

+ 0.4675933

0.3613123

0.2659593

0.1831513

0.1067313

0.0262433

0.O660533

0.1559883

0.2121943

0.2120003

O. 1673753

0.117913j

- 0.0914083

- 0.0807603

- O.O555393

+ 0.0O36O63

+0.0876933

+ O.1691693

+ 0.2229823

+ 0.2393893

+ 0.2216573

+ 0.1802793

+ 0.1251753

+ 0.0639283
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Application of the Discontinuous Galerkin

method to Acoustic Scatter Problems

H. L. Atkins

NASA LaRC

Hampton, VA

Introduction

The discontinuous Galerkin method is a highly compact formulation that obtains the high accu-

racy required by computational aeroacoustics (CAA) on unstructured grids. The use of unstructured

grids on these demanding problems has many advantages. Although the computer run times of CAA

simulations may take tens of hours, the time required to obtain a structured grid around a complex

configuration is often measured in weeks or months. The mesh smoothness constraints imposed

by conventional high-order finite-difference methods further complicates the mesh generation pro-

cess. Furthermore, the impact of poor mesh quality on the accuracy obtained by these high-order

methods is not well known.

Unstructured meshes, on the other hand, can be generated in a nearly automated manner in

a relatively short time. Unstructured grids often have fewer cells because the cell distribution is

more easily controlled. In the case of structured grids, regions of unnecessarily small cells often

exist. These small cells can be a waste of computer memory and time; furthermore, in the ease

of an explicit time-accurate method the small cells may result in an unnecessarily small time step.

The use of an unstructured grid allows such cases to be avoided, and the savings usually makes

up for the increased cost per cell that is common with most unstructured methods. The use of an

unstructured approach also facilitates grid-adaption and refinement techniques, which can further

reduce the cost of a simulation.

Although most finite-element methods can be applied to unstructured grids, the property of

the discontinuous Galerkin method that distinguishes it from its finite-element counterparts is its

compactness. In a typical finite-element method with an order that is greater than 1, the mass

matrix is global but sparse; however, the mass matrix becomes more dense as the order of the

method is increased because the basis functions, or shape functions, must be globally C O functions.

The discontinuous GMerkin formulation relaxes this constraint; as a result, the mass matrix becomes

local to its generating element. This property makes the approach ideally suited to advection- and

propagation-dominated flows for which an explicit time-marching strategy is appropriate.

This article describes the application of the quadrature-free form 1 of the discontinuous Galerkin

method to two problems from Category I of the Second Computational Aeroacoustics Workshop on

Benchmark Problems. The quadrature-free form imposes several additional constraints and permits

an implementation that is more computationally efficient than is otherwise possible. The first part

of this article describes the method and boundary conditions relevant to this work; however, details

of the implementation can be found in reference 1. The next section describes two test problems,

both of which involve the scattering of an acoustic wave off a cylinder. The last section describes

the numerical test performed to evaluate mesh-resolution requirements and boundary-condition

effectiveness.
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Disconthmous Galerkin Method ==

The discontinuous Galerkin method can be applied to systems of first-order equa_ns in the

divergence form
OU
--+ v. P(u)= s(u) (1)
Ot ::: ::

where U = {Uo, U,,...}, ,6 = (j_,._,...}, and S = {s0, s,,...}, defined on Some domafn _ with a

boundary 0fL

domain f_ =
The domain is partitioned into a set of nonoverlapping elements f_i that cover the

U _2i. Within each element, the following set of equations is solved:
vi

Ot_ _
f bk-_didf_-f Vbk.a-[lfi(_/})Jidfl+ / bka_-llJn. Jifs=O (2)
a, ai Oh,

for k = 0, 1,..., N where {bk, k = 0, 1,...,N} is a set of basis functions,

O(.,v,Z) :=
U _ Vii = __,vi,jbj, Ji- and Ji = tail

,=0

Equation set (2) is obtained byprojecting equation (1) ontoeach: member of the basis set and then

integrating by parts to obtain the weak conservation form. In the present work, the basis set is

composed of the polynomials that are defined local to the element and are of degree < n. In two

dimensions, for example, the basis set is {1, _, r/, {e, gr/, r/=,...,_,g_-_r/,..., {r/_-_, 71_}, where (_, r/)

are the local coordinates. The solution U is approximated as an expansion in terms of the basis

functions; thus, both V and ,F(V) are discontinuous at the boundary between adjacent elements

(hence, the name discontinuous Galerkin). The discontinuity in V between adjacent elements is

treated with an approximate Riemann flux, which is denoted by baR; Ji is the Jacobian of the

transformation from the global coordinates (x,y,z) to the local element coordinates ({,r/,_) of
element i.

In the usual implementation of the discontinuous Galerkin method 2, 3, 4 the integrals are eval-

uated with quadrature formulas. This approach is problematic for even moderately high-order

implementations in multidimensions and has limited most efforts to n = 2 or 3. The difficulties are

due in part to two considerations; first the integral formulas used in the evaluation of (2) must be

exact for polynomials of degree 2n (even higher when /_ is nonlinear). Second, multidimensional

Gaussian quadrature formulas do not always exist. Near-optimal quadrature formulas that have

desirable properties such as symmetry are uncommon, and usually the number of quadrature points

exceeds N + 1 (the number of terms in the expansion) by a wide margin. The Common practice of

forming tensor products of one-dimensional Gaussian quadrature formulas is straightforward but

also results in considerably more than N + 1 quadrature points.

In the quadrature-free form, the integral evaluations are reduced to a summation over the coeffi-

cients of the solution expansion, which is an operation of order N + 1. To implement this approach,

the flux F must also be written as an expansion in terms of the basis functions:

N

j=0

(a similar expansion is made for the approximate Riemann flux _n). This Step is tr_i-ally ac-

complished for linear equations, and several approaches for nonlinear equations are discussed in

|

46



reference1. In addition, the allowedelementshapesare limited to those for which the coordinate
transformation from a fixed computational element(suchasa unit squareor anequilateral triangle
in two dimensions)to the physicalelementis linear; thus,ai is a constantwithin the element. With
theseassumptions,the integrals can be evaluated exactly and efficiently, and equation (2) can be
written in matrix form as

TI e

JiM OV--_ - .& . JiJf'd_ + Z Bk (ffiJ_ldiRh) " ffi,k -_- 0 (3)
Ot

k=l

where n_ is the number of sides around element i, gi,k is the outward unit normal on side k,

Vi [Ui,O,1'i, 1, "l, Gi [9-_,o,g-'i,1, .], and 6 n __n -.Ri,k [gi,k,O, .]. The matrix M and_--- . . _ . . z gi,k,1, " " mass

the vector matrix _& are given by

M : [,na-,z], ink,, : f bk-lbl-1 df_, and X : [ga-,l], fla-,, : f b,_,Vbk_, d_
f_ f_

for 1 _< k, l _< N + i. The matrices are the same for all elements of a given type (e.g. the same for

all triangles, the same for all squares, etc.) and can be precomputed and stored at a considerable

savings.

Derivation of the boundary integral terms is complicated by the fact that the solutions on either

side of the element boundary are represented in terms of different coordinate systems. This problem

is circumvented by expressing the solution on both sides of the element boundary in terms of a

common edge-based coordinate system (a simple coordinate transformation). After some additional

algebraic simplification, an edge matrix Bk is obtained that is the same for similar sides of similar

element types. A detailed derivation of the matrices M, .&, and Bk is given in reference 1. Because

equation (3) is of the same form for all elements, the element index i is dropped for clarity.

The first two terms of equation (3) depend only on the solution within the element, and com-

munication between adjacent elements occurs only through the Riemann flux _n. The Riemann

flux provides this communication in a biased manner by evaluating the flux with data from the

"upwind" side of the element boundary. In the case of a system of equations, the upwind side may

be different for each characteristic wave component; thus, the flux/_R will usually be a function of

the solution on both sides of the element boundary. Cockburn and Shu 5 have demonstrated that

this upwind bias is essential to the stability of the discontinuous Galerkln method.

In this work, the discontinuous Galerkin method is applied to the two-dimensional linear Euler

equations given by

U -[p- P, p, u, v] T and F- _TIU + [0, l/, iP, )p]X (4)

where aTI = [M,.,Mv], 17" -- [u, vl, and i and 3 are the Cartesian unit vectors [1,01 and [0,1],

respectively. The dependent variables p, p, u, and v are the normMized perturbation values of

density, pressure, and the x- and 9-components of the velocity, respectively; Mx and M v are the

normalized x- and 9-components of the mean flow velocity. The density, pressure, and velocities

are normalized with respect to the mean flow density po, the sound speed of the mean flow c, and

poc, respectively. The length scale lr is problem dependent, and the time scale is given by l,./c. The

source term ,_qis also problem dependent and is described in a later section.
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Equation (3) is advancedin time with a three-stageRunge-Kutta method developedby Shuand
Osher6. Analysis of the stability of this approach,alongwith many numerical validation tests, can
be found in reference1.

Boundary Conditions

An important feature of the discontinuous Galerkin method is that the Riemann flux is the

only mechanism by which an element communicates with it surroundings, rega-rdiess of whether

the element boundary is on the interior of the domain or coincides with the domain boundary.

A notable consequence is that the usual interior algorithm is valid at elements that are adjacent

to the boundary. In contrast, the interior point operator of most high-order finite-dlfference and

finite-volume methods cannot be applied at points near the boundary without some modifications.

These modifications usually result in reduced accuracy, and careful attention is required to prevent
the introduction of numerical instabilities 7 The discontinuous Galerkin method eliminates these

problems and, thereby, eliminates a major source of error that is common to most high-order finite-
difference and finite-volume methods.

A detailed description of the implementation of boundary conditions for the discontinuous

Galerkin method is in preparation 8. The implementation of the two types of boundary conditions

required for the benchmark problems (i.e. hard wall and nonreflecting freestream) are described

here. These boundary conditions can be implemented either by supplying the exterior side of the

Riemann flux with a complete solution or by reformulating the flux such that it requires only the

interior solution and the known boundary data. The later approach is usually more accurate and

is used in the present work.

The flux on the element boundary is given by

!

V(U)b -- f(U) . + [0, Vn, Px, p ]r

where Air_,= A). g, I/_ = lP. g, P_ = Pi. g, Py = Pj. g, and g = J-'ldd_ is the boundary-normal

vector for an arbitrary, edge. At a hard-wall boundary, the flow through the boundary Vn is zero.

Also, hard-wall boundary conditions can only be applied at boundaries where M_ = 0. After these

constraints have been imposed, the flux at a hard wall becomes

F(U)w . [0, 0, Px, r: Py]interior

The pressure contribution to the flux can be attributed to both inbound and outbound acoustic

waves. The evaluation of both components by using the interior pressure value corresponds to

specifying that the wave entering the domain is the reflection of the wave leaving the domain which
is the desired behavior at a hard wall.

Many CAA problems are defined on an infinite or semi-infinite domain; however, limited com-

putational resources require that the numerical simulation be performed on the smallest domain

possible. Thus, certain boundaries of the computational domain must behave as if no boundary

existed at all. The development of effective nonreflective boundary conditions for treating these

boundaries is a critical and ongoing area of study within CAA. The approach used here is a simple

variation of standard characteristic boundary conditions that works well in many cases.

In the standard characteristic boundary condition, the flux through the boundary is written in

terms of tile set of characteristic variables Q as F(U)b = [A]Q(U), where

Q(U) = [p - P, oev - flu, au + flv + P, o_u + flv - p]r,
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c_ = i. $/Igl, and fl = j-_/l_l. Each component of Q corresponds to the strength of a fundamental

wave that either enters or leaves the domain along a path that is normal to the boundary. An

approximation to the nonreflecting condition is imposed by setting the strength of the wave compo-

nents that enter the domain to zero. All other components are evaluated from the interior solution

values. When characteristic boundary conditions are applied to finite-difference methods, the pro-

cedure is usually applied in a differential form such as in the procedure described by Thompson 9 ;

variations of the differential form are widely used. This differential approach degrades the accuracy

of the method because of the need to use one-sided operators near the boundary. The problem is

especially severe for high-order methods. Because the discontinuous Galerkin method needs only

flux information, the characteristic boundary condition is quite accurate if, in fact, the only waves

present are propagating normal to the boundary.

In most cases, however, the waves that leave the domain are not traveling normal to the boundary

everywhere. In fact, the waves that reach any particular point on the boundary may be coming

from many different directions simultaneously. In these cases, a reflection is produced that depends

on the amplitude of the incident wave and the angle between the direction of wave propagation and

the boundary normal.

In many flows, the sound emanates from a general area that can be determined a priori. In

these instances, a first-order correction to the characteristic boundary conditions just described

is to express F(U)b in terms of the strength of simple waves that are traveling in a prescribed

direction instead of in the direction of the boundary normal. These wave strengths are given by the

characteristic variables associated with the flux in an arbitrary, but prescribed, direction u_:

Q(U)_=[p-P, Sv-fiu, &u+_v + P, &u+fiv - p]T

where _ = i.t_ and ¢) = j.t_ (assuming lull = 1). As in the standard case, the nonreflecting condition

is obtained by setting the inbound components to zero and evaluating the outbound components

from the interior. Evaluating the F(U)b in terms of these characteristic variables results in a

significant improvement in many cases. (Note that equation (2) requires the evaluation of the flux

through the boundary 1_. _, even though the characteristic variables are arrived at by considering

the flux in an alternate direction ft. v_.)

Category I Problems

The problems of Category I model the sound field generated by a propeller and scattered off the

fuselage of an aircraft. This test case is intended as a good problem for testing curved-wall boundary

conditions, but it also poses a challenge to nonreflecting far-field boundary conditions. Although

the geometry is by no means complex, this test case still serves to illustrate the advantages of an

unstructured method.

The model geometry, shown in figure 1, is defined relative to a polar coordinate system in which

the dimensions are normalized by a length scale l_ that equals the fuselage diameter. Fuselage is

modeled by a cylinder with a radius of 1/2, the sound source is at (r, 0) = (4, 0), and measurement

points A, B, and C are at r = 5, and 0 = 90, 135, and 180 respectively.

The flow is governed by the linear Euler equations

Ou Op
O-t + Ox - 0
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Measurement
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Fuselage Source

Figure 1. Geometry for problem 2.

=

Figure 2. Typical grid with five triangles

on cylinder (No = 5).

Ov Op

0--[+ oy - o
Op Ou Ov

O--[+ -5-x + Oy - s

where s is a periodic forcing function that is used to generate sound in problem 1. In problem 2,

s = 0, and the sound results from a disturbance in the initial solution. This later case results

in a discrete wave which facilitates the testing of the boundary conditions. For this reason, the

discussion of problem 2 will precede that of problem 1.

The computer program solves the linear Euler equations in the more general form given in equa-

tions (1) and (4), with Mx = M v = 0 and S' = [-s, s, 0, 0] T. Thus, the continuity equation

is solved even though it has no role in this particular problem. All calculations presented use

polynomials of degree n = 4 (nominally fifth order).

Problem 2

In problem 2 of Category I, a single acoustic pulse is generated by an initial pressure disturbance
of the form

p=exp

A typical grid, shown in figure 2, is constructed from triangles of nearly uniform size. The average

size of the triangles is set by specifying the number of triangles around the cylinder Arc (e.g., in

fig. 2, Nc = 5). Note that if a structured polar grid had been used the mesh spacing in the 0

direction would have been 10 times smaller on the cylinder than at the measurement points. Thus,

the time step of an explicit method would be approximately seven times smaller than necessary to

resolve the wave (assuming that the grid spacing and the time step are chosen such that the wave

is resolved at the measurement points). The use of an unstructured grid allows the resolution to be

uniform over the region of interest. As will be shown later, the use of an unstructured grid permits

easy local refinement in special regions without adversely affecting the grid elsewhere.

A baseline solution, which is shown in figure 3, is obtained on a grid with Nc = 15 and the outer

boundary at r = 10. With the outer boundary at this distance, any nonphysical reflections off

the outer boundary will not reach the measurement points (A, B, or C, in fig. 1) within the time
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(a). Pressurecontour at t = 10.
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(b). Pressure at measurement points A, B,

and C.

Figure 3. Baseline solution with N_ = 15 and outer boundary at r = 10.
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Figure 4. Grid refinement with outer boundary at r = 5.5.

span of interest (t _< 10); however, no visible reflection is evident in the solution. The initial pulse

generates two reflections that originate from the sides of the cylinder.

Figure 4 shows results at point A from a series of calculations with .X_ = 3, 4, 5, 7, 10, and 15

with the outer boundary at r = 5.5. The N_ = 3 case shows considerable error, but the solution

rapidly improves as the grid is refined. The solution of the case in which Arc = 5 is indistinguishable

from the solution on the finest grid.

In addition to the error that is inherent in the discontinuous Galerkin method, at least three

other factors contribute to the error in this particular case: the accuracy of the initial solution,

the accuracy of the solid geometry boundary, and the accuracy of the nonreflecting boundary

condition. Tke initial solution within each element is a polynomial defined by a Taylor's series

of the prescribed function about the center of the element. Thus as the element gets larger, the

initial solution becomes less accurate near the outer edges of the element. Figure 5 shows the initial

solution in the neighborhood of the disturbance for Arc = 3, 4, and 5. The initial solution of the
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Pmin = 0.0 Pmax = 1.0 -_

(a). l\_ = 3. (b). x =4. (c). = 5.

Figure 5. Grid refinement with outer boundary at r = 5.5.
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coarsest grid is clearly not as smooth, which probably accounts for the high-frequency oscillations

observed in figure 4.

In regard to the accuracy of the solid geometry boundaries, the current implementation is re-

stricted to triangles or squares with straight sides; consequently, the geometry is represented by

linear segments. (Note that this restriction applies only to the current implementation and not to

the discontinuous Galerkin method or the quadrature-free form in general.) Thus, with Arc = 3 the

cylinder is poorly represented, and this poor resolution may produce much of the error. To test

this possibility, a second refinement study is performed in which the cylinder is resolved with 10

segments and the resolution away from the cylinder is defined as before. The coarsest grid, Arc =

3, is shown in figure 6. A comparison of the solutions (fig. 7) shows that only the solution on the

coarsest grid is significantly different from the solution on the finest grid and that Arc = 4 provides

adequate resolution for this problem.

The last issue, the nonreflecting boundary condition, is examined by placing the outer boundary at

different distances from the cylinder and comparing these solutions with the baseline case. Figure 8

shows solutions in which the outer boundary is placed at r = 5.5, 6, 7, 8, and 10. The last case is the
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Figure 8. Effect of position of outer boundary on solution accuracy.

baseline solution, in which Nc = 15. For the other cases, Nc = 5, but the cylinder is resolved with

10 segments (as illustrated in fig. 6). Initially, all five solutions are in agreement. At approximately

t = 7, the solution with the outer boundary at r = 5.5 begins to diverge from the baseline solution.

The time at which the other solutions diverge from the baseline increases as the boundary is moved

further out. The case with the outer boundary at r = 8 agrees well with the baseline solution.

This agreement indicates that, at this resolution (No = 5), all visible error is attributable to the

nonreflecting boundary condition. In the case with the outer boundary at r = 5.5, the error is less

than 5 percent of the amplitude of the initial pulse. Note, however, that the error is not in the form

of a compact pulse, as might be expect, but in the form of a shift in the mean value of the solution.

This finding suggests that errors in both wavelength and amplitude, relative to a computed mean,

may be relatively unaffected by the error produced at the outer boundary.

Problem 1

Problem 1 is similar to problem 2; however, the initial solution is uniform, and the acoustic waves

are produced by a temporal forcing. The forcing is given by S = [-s, s, 0, 0] v, where

s:ex,[ ,n,2) +'2)](0'2) 2 sin(87rt)

The frequency specified for the workshop results in a wavelength of 0.25, which is smaller than the

half-width of the source distribution (0.4). A large transient wave is produced when the forcing

is abruptly applied to an otherwise uniform solution. However, because the wavelength is small

relative to the size of the source, the amplitude of the periodic acoustic wave is small compared

with the amplitude of the forcing (and the initial transient). Consequently, any reflections of this

transient off the outer boundary can be quite large relative to the periodic acoustic waves, even if

only a fraction of a percent of the energy is reflected.

Simulations were performed at five grid resolutions (No = 5, 7, 10, 15, and 20) and with the

outer boundary at two different positions (r = 5.5 and 7.5). Figure 9 compares the solutions at

measurement point A obtained with N_ = 7, 10, 15, and 20 with the outer boundary at 7"= 5.5. The

two finest grids give essentially identical solutions, the case with Nc = 10 is only slightly different,

and the case with Arc = 7 appears to have inadequate resolution. Note, however, that as the grid

is coarsened the amplitude of the acoustic wave increases, whereas an underresolved wave would

normally be dissipated. Further examination of the solution in the case with Arc = 7 reveals that
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Figure 9. Grid refinement with outer boundary at 7"= 5.5.

the wave is not growing as it propagates and that the wavelength agrees with the wavelength of

more well resolved solutions. This observation suggests that the error may be due to insufficient

resolution of the source causing an excessive amount of energy to be propagated. This possibility

can be resolved by a local refinement at the source; however, this issue is left for future study.

The influence of the initial transient is clearly evident during the time span shown in figure 9.

Figure 10 shows a comparison of two solutions at a later time with the outer boundary at r = 5.5

and 7.5. In both cases, N_ = 1.5, and the initial transient has decayed by the time t = 30. The

two solutions are not distinguishable fl'om one another which suggests that no significant error is

produced by the simple, modified characteristic nonreflecting boundary condition used in this work.

The scaled directivity pattern, given by D(r, O) = rp-g, should depend only on the angle 0 when

r is large (where ( ) denotes a time average). The workshop requested this quantity in the limit as

r -+ :x_; however, during the workshop, D(r, 0) was shown to converge slowly. Thus, the direct com-

putation of the limiting value of D(r, 0) does not appear feasible because of the large computational

domain that would be required. In figure 11, which shows results for 11 values of r averaged over

the time span 30 < t < 31, the phase of the directivity pattern clearly varies with r. However,

in figure 12, which shows a contour plot of D(r,O), the problem clearly is not that the directivity

pattern converges slowly but that the center of the directivity pattern is not at the origin of the

grid (which was chosen for convenience but is arbitrary). Figure la shows the directivity pattern

D(/;, 0) computed from the same simulations, but _ and 0 are measured relative to a point that

is halfway between the source and the cylinder. Note that the curves have collapsed to a single
directivity pattern.

Conclusions

The discontinuous Galerkin method is applied to problems i and 2 from category I of the Second

CAA Workshop on Benchmark Problems. Fifth-order elements are used to obtain acceptable res-

olution with approximately 1.5 elements per wavelength, and mesh independence is obtained with

2 elements per wavelength. The current implementation uses only linear elements; thus, hard-wall

boundaries are represented only to second order. However, the hard-wall boundary condition is

accurate, provided that the wall curvature is adequately resolved. The method is applicable to

elements with curve boundaries, and this extension can improve the surface resolution. The simple

modification of the characteristic boundary condition worked well for these problems. No adverse

reflections were detected in problem 1, where the acoustic source was periodic. When reflections
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were detected, the error was in the form of a shift in the average of the solution rather than a

discrete pulse. The acoustic directivity pattern can be estimated directly from a simulation on a

small domain, provided that the correct center of the pattern is identified.

References

1. H. L. Atkins and Chi-Wang Shu, "Quadrature-Free Implementation of the Discontinuous

Galerkin Method for Hyperbolic Equations," AIAA-paper 96-1683, 1996.

. B. Cockburn, S. Hou, and C.-W. Shu, "The Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws IV: The multidimensional case," Mathe-

matics of Computation, v54 (1990), pp. 545-581.

. F. Bassi and S. Rebay, "Accurate 2D Euler Computations by Means of a High-Order Discontin-

uous Finite Element Method," Proceedings of the 14th international Conference on Numerical

Methods in Fluid Dynamics, Bangalor, india, July ll-15, 1994.

. R. B. Lowrie, P. L. Roe, and B. van Leer, "A Space-Time Discontinuous Galerkin Method for

Time-Accurate Numerical Solution of Hyperbolic Conservation Laws," Presented at the 12th

AIAA computational Fluid Dynamics Conference, San Diego, CA, June 19-22, 1995.

. B. Cockburn and C.-W. Shu, "TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws II: General framework," Mathematics of Computation,

v52 (1989), pp. 411-435.

6. C.-W. Shu and S. Osher, "Efficient implementation of essentially non-oscillatory shock-

capturing schemes," Journal of Computational Physics, v77 (1988), pp. 361-383.

. B. Gustafson, H.-O. Kreiss, and A. Sundstr5m, "Stability theory of difference approximations

for mixed initial-boundary value problems, II," Mathematics of Computation, v26 (1972), pp.
649-686.

. H. L. Atkins, "Continued Development of Discontinuous Galerkin Method for Aeroacoustic

Applications " To be presented at the 3rd AIAA/CEAS Aeroacoustic Conference, Atlanta,

CA, May 12-14, 1997.

9. Kevin W. Thompson, "Time dependent Boundary Conditions for Hyperbolic Systems," Journal

of Computational Physics, v68 (1987), pp. 1-24.

!
!
m

!

|
|

i

!
=

56



COMPUTATION OF ACOUSTIC SCATTERING BY A
SCHEME

<=7
LOW-DISPERSION i+

Oktay Baysal and Dinesh K. Kaushik
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Physical problem and background

The objective is the evaluation of a proposed computational aeroacoustics (CAA) method in simulating an
acoustic scattering problem. An example may be the sound field generated by a propeller scattered off by
the fuselage of an aircraft. The pressure loading on the fuselage would be an input to the interior noise
problem. To idealize the problem, the fuselage is assumed to be a circular cylinder and the noise
generation by the propeller is represented by a line source.

A typical CFD algorithm may not be adequate for this aeroacoustics problem: amplitudes are an order

of magnitude 0 smaller yet frequencies are 0 larger than the flow variations generating the sound. For

instance, an 0 (2) CFD method was previously used for a nonlinear wave propagation problem in
unsteady, nonuniform mean flow (Baysal et al., 1994). It was observed that a direct simulation of acoustic
waves using a higher-order CFD would become prohibitively expensive, due to the required excessive
number of grid points per wavelength (PPM). Also, CAA would need minimal dispersion and dissipation,

which would preclude a typical 0 (2) CFD method from a long-term wave propagation simulation.
Furthermore, a consistent, stable, convergent, high-order scheme is not necessarily dispersion-relation

preserving, i.e. no guarantee for a quality numerical solution. Therefore, a baseline 0 (4) dispersion-
relation-preserving (DRP) method (Tam and Webb, 1993) was investigated (Vanel and Baysal, 1997) for a
variety of wave propagation problems, such as, single-, simultaneous-, and successive-acoustic-pulses.
Then, a number of algorithmic extensions were performed (Kaushik and Baysal, 1996), when the
following were studied: viscous effects by solving the linearized Navier-Stokes equations, low-storage
and low-CPU time integration by an optimized Runge-Kutta scheme, generalized curvilinear coordinates

for curved boundaries, higher-order accuracy by comparing 0 (4) DRP vs. va (6) DRP, and choice of
boundary conditions and differencing stencils. The scheme is now being investigated for nonlinear wave
propagation in nonuniform flow (Baysal et al., 1997).

Mathematical approach

The linearized, two-dimensional, compressible, Euler equations were considered in generalized curvilinear
coordinates

0/
(1) o/£18__7.= -R(I) ) + S , where R(O) = _ +--,90

The primitive variables, 0, and the transformed fluxes, /_ and _, are,

(2) 0=_[p u v p]', D={[_=E+_yF], F=-}[rl, E+rlyF]
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and the physical fluxes and the source vector are,

l"°"+p/
(3) E= 1 Mov 1, F= 0 S=

LMop+Uj

0I:t
The perturbed values of density (p), pressure (p), and velocity (u, v) are denoted without a subscript, but
those of the mean flow are demarcated using the subscript 0. These variables were normalized using the
cylinder diameter (D) for length, speed of sound (ao) for velocity, D/ao for time, Po for density, and
po(aofi for pressure.

Dispersion relation of a proposed numerical scheme should match closely that of eq. (1) for large

range of resolution; i.e. _ and N be close approximations to a and 09. Assuming -flAx was a periodic

(2r0 function of aAx with, Fourier-Laplace transforms rendered,

-i M ei.aj_ -- i(e -i'°_at - 1)
= _ aj and co - N(4) a Ax j--Z'-L

At E bj e i'j°Jat

Finite difference coefficients were obtained from Taylor series expansions as one-parameter family, and
the remaining coefficient from an error minimization, where the integration limit e depended on the
shortest wavelength to be simulated: _

__7r/2_ _4. SAx_
(5) min fl=min_ iI' Ax--fla t where l,_Axl-_e and e-[ 1.1J for [. 7Ax J"

/.

The time integration of eq. (i) was performed in two different ways. In the first approach, a four-
point finite difference, which in a standard sense could be up to third-order accurate, was derived from the

Taylor series as a one-parameter family. The remaining coefficient (bJ) was determined, as in the spatial
coefficients, by minimizing the discrepancy between the effective and the exact dispersion relations. After

discretizing all the terms in eqs. (1)-(3), the resulting O(At2,Ax N+M-2) DRP scheme was as follows:

M ^n M ^n

A.÷_ ". s ._j " E aj E.j,,. -_,, E aj F_,,.+j(6) "e,m = U_.,, + At 5".bj Re.,, where Re.,,, = _-_
j=O j=-N j--.-N

In eq. (6), g and m are the spatial indices and n indicates the time level. For N=M, difference is central,
for N=0, it is fully forward, and for M=0, it is fully backward. All the interior cells were computed using
central differences with N=M=3. However, since these high-order stencils require multiple layers of
boundary cells, all combinations between a central and a fully-one-sided difference need also be derived.
Only then, it would be possible to always utilize the information from the nearest possible points for better
accuracy. In the present computations a fourth-order scheme was used, requiring 7-point stencil: N takes
values from 6 to 0, M takes values from 0 to 6, and N+M=6.

The numerically stable maximum time step At was calculated from the Courant-Friedrichs-Lewy
relation. For example, for the fourth-order scheme in Cartesian coordinates, the stable CFL number was
found to be 0.4. However, after analyzing the numerical damping of the time integration scheme, the CFL
value was set to the more stringent value of 0.19. Since, however, time integration with DRP would
require the storage of four time levels, a lower storage alternative, the low-dissipation and low-dispersion
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five-stage Runge-Kutta scheme (Hu et al., 1996) was adapted and implemented. The resulting scheme had
the spatial integration identical to eq. (6), but the time integration was replaced by the following:

(7) 0_o) = (j., (j_i) =0_o) -fli At R(i-t) , (j.+t : (fie), i = 1,2 .... p

The indices n, p and i indicate the time level, and the order and the stage of the Runge-Kutta method,
respectively. As for the coefficients,/31=0 and the other coefficients/3i were determined from

i

(8) ci= I-l flp_k+2 , i=2 .... ,p
k=2

The coefficients c i were computed by considering the amplification factor of the Runge-Kutta scheme, then
minimizing the dispersion-relation error. The time steps were determined from the stability as well as the
accuracy limits. In the present study, a five-stage Runge-Kutta (p =5) was used, which required two
levels of storage and it was at least second-order accurate. When it was used with the present 7-point
spatial stencil to solve the scalar linear wave equation, the CFL limit from the stability was found to be
3.05, but it was only 1.16 from the accuracy limit. Since, however, this still was larger than the CFL limit

of the DRP time integration, this method was also more efficient in processing time.

Usually low-order schemes are used in resolving the highly nonlinear flow or acoustic phenomena.
Even with second-order schemes, it is common to have limiters or artificial damping mechanisms, either
implicit in the scheme or explicitly added. Since simulating low-amplitude acoustic waves for a long time
and for many wavelengths of travel is the objective in CAA, devising such artificial damping mechanisms
requires extreme care. For example, constant damping over all wave numbers need to be avoided. Tam et
al. (1993) suggested terms, which have small damping over the long wave range but significant damping in
the short wave range. The present central-difference scheme includes similar terms with a user specified
artificial Reynolds number, to overcome the expected spurious oscillations:

M

(9) D_,, n _ I _c [ 1 _n 1 ^n
n _ _eD j=-NJ" _ g+j,m +-_02Ug,m+j], where Re o -- P°a°Dlaa

The boundaries should be transparent to the acoustic disturbances reaching them to avoid any
degradation of the numerical solution. From the asymptotic solutions of the finite difference form of the
Euler equations, a set of radiation boundary conditions, were derived and implemented. Therefore,
following Tam and Webb (1993) and from the asymptotic solutions of the finite difference form of eq. (1),
a set of radiation boundary conditions were derived,

(10) --+A_--:_-.+__-z---+CU = 0, where
o_t o¢

(ll) A=vX_x+Y_rr ' B=vXOx+yrlYr ' C_'_r and r=l_ x2+y2, V=XMo+_ 1-(MOy)2r

For an inviscid solid wall (w) or a symmetry plane, the impermeability condition dictates that the normal
contravariant velocity be zero at all times:

(12) ¢_= rlxU+ rlyv = 0 .

When this equation was constructed from the q- and {-momentum equations, after multiplying them by the
appropriate metrics and adding, the wall value of pressure at the ghost point (subscript -1) was obtained,
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(13)

Pg,-I =
2 2 { [(rlx_x)gw aqjrt(+j,w +(Tly_x)g,w jSagl"vg+j,wat_l(rlx+71y)e, w , .=_

N+M (Ox_x+Oy_y)g w 3 . N+M

+(rlx)_,w ._.,ajue,j]_ A_ ' Y.ajpe+j,w}-a@,[ _.ajpg jJ
J=W j=-3 t,-I j=w "

The coefficients for all the boundary conditions (Tam and Dong, 1994)were derived by an analogous
method to that of the boundary region cells. At the corners, two separate ghost points were used, one for
each boundary, hence both boundaries' conditions were satisfied.

Results

The present method and its boundary conditions were evaluated by:consiaering a number of reflection or

scattering cases (table 1), all in quiescent medium, i.e. Mo =0. The acoustic waves were generated either
by an initial acoustic pulse introduced to the field at t =0 by setting S =u =v =0, and

(14) p=/3 exp {-In2 [ (x-xs)2+(y-y')2
b2 ]} (Category 1_Problem 2),

or by a periodic source with w=8zr,

(15)
--Xs)2 +(y--ys) 2

$4 = g exp{- In 2 [ (x b 2 ]} sin(cot) (Category 1_Problem 1).

Case Equation
Table ii Description of computational cases

/3 or _ b xs,y s Grid ,_t Figure

1 14 1.00E-2 1
2 14 5.00E-3

3* 14 5.00E-3 3, 4
4 15 1.00E-2 5
5 15 1.00E-2 6

1.0 3D
1.0 0.2D
1.0 0.2D

0.01 3D
1.0 3D
1.0 0.2D
1.0 0.2D

Category I_Problem 2

4D, 0 H 251x101
4D, 0 O 401x181
4D, 0 O 801x181

0,2D H 251x10t
0,2D H 251x101
4D, 0 O 801x181
4D, 0 "O 361x321

Category l_Problem 1

6

7

2.5E-3 7
2.50E-3
1.25E-3

15
15 8, 9

Gaussian pulse: an initial-value problem

In case 1, a coarse H-grid was generated, where the _-lines were along the cylinder and the centerline,
and the 77-1ines were perpendicular to the centedine. The transformed computational domain was
rectangular with uniform steps in each direction and orthogonal grid lines, as needed by the DRP scheme.
Despite some smearing of the wave front, the initial pulse, its propagation and scattering off the cylinder,
were simulated fairly well (fig. 1). However, some oscillations inside the domain and spurious reflections
off the boundaries started to emerge.

Then, the grid topology was changed to an O-grid with a radius of 10.5D (cases 2 and 3). The grid
had _-lines as concentric circles, with the first and last circles being respectively the cylinder and the outer
boundary, and the 71-lines emanated radially from the cylinder to the outer boundary (fig. 2). The time
step At = 5.0E-3 was less than one-half of the accuracy limit for eq. (7) as applied to a linear wave
equation, but about five times that needed for eq. (6). Although, the results with the 401 _-lines appeared
adequate (case 2), doubling these lines rendered a truly symmetric initial pulse (case 3). On an SGI R10K
computer in a time-shared mode, case 3 required 24 megabytes of run-time memory and 16 hours of CPU
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processing.Theunit processingtimewascomputedto beabout0.2ms/At/node.At threelocations,given
in their cylindrical coordinates,A(5D,n/2), B(5D, 3n/4), C(5D, n), the pressure history was recorded from
t = 6 to t = 10 at intervals of 0.01 (fig. 3). The computed results matched the analytical solution very

well. The peak reached these points at about t ---6.3, 8.2 and 9.0, respectively, and it appeared slightly

attenuating (0.06, 0.052, 0.048, respectively) due to the scattering. The peak-trough pair was followed
by another set with lower amplitudes. All the waves were crisply simulated with virtually no numerical
reflections from the boundaries (fig. 4). This very feature, i.e. the success of the boundary conditions,
appeared to be pivotal for this problem.

Pedodic source: a limiting-cycle problem

In the preparatory cases of 4 and 5, the equations were solved on an H-grid conforming to the wall shape:
a flat plate in the former (fig. 5), and a circular bump on a flat plate in the latter case (fig. 6). The objective
was to check the implementation of the boundary conditions and the suitability of the grid. The
interference patterns from the cascades of incident and reflected waves reached a periodic state (limiting
cycle), after some transient time, as could also be observed by the wall pressure (figs. 5 and 6). Note that
the source amplitude was 1% in case 4.

In cases 6 and 7, the scattering off a cylinder was simulated on O-grids and the directivity,

lira [r--_ R " 2
(16) D( O) = r __ _ t.,.. j= _, p,

n 2 -- n I nl

was computed at r=R and from time step n I to n2. In case 6, the solution was obtained on a 801x181 O-
gridwith 10.5D radius. This resulted in 20 PPW radially, and PPW circumferentially were: 28.6 on
cylinder, 2.86 at r =5.0, and 1.36 at the outer boundary. However, from eq. (5), the theory required 4.5
PPW, which was satisfied for points with r < 3.18. Consequently, despite the periodic response attained,
e.g. on the cylinder (fig 7), neither the computed directivity pattern nor its amplitudes at R=10.5D were
satisfactory.

Hence, another O-grid was generated with 361x321 points and a radius of 8.5D (case 7). This resulted
in 10 PPW radially, and PPW circumferentially were: 57.3 on cylinder, 5.73 at r =5.0, and 3.37 at the outer
boundary. The theoretically required 4.5 PPW was satisfied for points with r < 6.36. (Practice may prove
the safer requirement to be 8 PPW, which was satisfied for points with r < 3.58.) Initially, At was 2.5E-3,
but after t=-15, it was reduced to 1.25E-3, which was one-fourth of the accuracy limit for eq. (7) as applied
to a linear wave equation, but 2.5 times that needed for eq. (6). At r = R =5 and 0 from 0 to rd2, the
periodic response was detected after 100 periods of source excitation, then the results were recorded at r
=R =5 and 0 from 0 to n at 0.5-deg intervals. The computed directivity is presented in fig. 8. Although,
the directivity had not yet attained the limiting cycle values at t =26.25, the number of peaks matched
analytical values well. Since the results were relatively better for 0 < rd2, and for 0 > rd2, they improved
with the elapsed time, it was deemed that all the transients had not yet left the domain. Also due to the
marginal PPW circumferentially at r =5 and the uncertainty about the sufficient artificial viscosity to be used
(Re in eq. (9) was set to 1.0E4), some oscillations were detected. This computed scattering pattern is also
depicted via its pressure contours at two instants (fig. 9). Finally, on an SGI R10K computer in a time-
shared mode, case 7 required 19.2 megabytes of run-time memory and 100 hours of CPU processing.
Conceivably, the elapsed time for the scattering shown should have been doubled, which, naturally,
would have required twice as much computing time.

Conclusions

By and large, the present simulations of the propagation of acoustic waves, their reflections and scattering,
in particular, the initial-value problem with the acoustic pulse, were successful. Two necessary building
blocks to success, once a suitable CAA scheme was selected, were the correct boundary conditions, and an
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adequateandefficientgrid. Notwithstandingtheimperfectlyorthogonalgridsandtherequired
transformationmetrics,employingthebody-fittedcoordinatesallowedastraightforwardimplementation
of theboundaryconditions.Theroleof thegrid becamemoreaccentuatedin theperiodicsourcecase.
The spreadof thesource(b in eq.(15))andtheintervalsthatthedirectivity wasrequested(1-deg)proved
narrowenoughto necessitatetoo fineagrid resolution,whichsupersededthebenefitsof a low PPW
scheme.A betterdeploymentof thegrid points,suchas,somesortof domaindecomposition,could
reducetherequiredcomputationalresources.Also,sinceit took longerfor theperi0dicbehaviorto be
establishedat 0=-_ it would have been less resource taxing to request the data up to, Say, _3_41 Further,
the definition of directivity included the r --_ oo, leading one to place the outer boundary as far away as

possible; however, the benchmark analytical solution was integrated virtually at any r =R value. Finally, a
parametric study of the required amount of artificial dissipation proved to be another prerequisite.
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ABSTRACT

We use a Staggered-Grid Chebyshev spectral multidomain method to solve two of the workshop

benchmark problems. The spatial approximation has the ability to compute wave-propagation

problems with exponential accuracy in general geometries. The method has been modified by the use

of a stretching transformation to extend the range of accurately represented Fourier modes and to

increase the allowable time step. We find that the Category 1, Problem 1 solution requested is

accurate to 2.6% at r = 15 using five points per wavelength. In the second problem, we find that the

over the times and angles requested, the maximum error is less than 10 -6.

INTRODUCTION

The efficient and accurate approximation of time dependent compressible flow problems requires

high order methods both in space and in time [9], [11]. Second order finite difference methods,

typically designed for steady-state computational fluid dynamics problems, are strongly dissipative

and dispersive unless the number of grid points per wavelength computed is on the order of 20 to 40

[9]. Computing with so many points per wavelength is impractical in problems where waves must be

propagated many hundreds of wavelengths. With high order methods, the required number of points

per wavelength can be reduced significantly, making accurate multidimensional solutions more

practical.

Spectral methods [1] are natural choices for the solution of flow problems where high spatial

accuracy is required. They are exponentially convergent for smooth problems. Phase and dissipation

errors decay exponentially fast [5]. Special boundary stencils are not required, since spatial

derivatives are defined right up to the boundaries.

The advantages of spectral methods are balanced in many peoples' minds by the methods' cost

and inflexibility. The cost per grid point is higher than a fixed stencil finite difference method because

the cost of computing the spatial derivatives is high, and explicit time marching procedures typically

used for wave-propagation problems require a more restrictive time step. Inflexibility is a result of the

global polynomial nature of the approximation.

As a means for reducing the high cost and inflexibility of spectral methods, spectral

multidomain methods were introduced in the mid 1980's [10], [4]. The basic premise is that high cost
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and inflexibility canbe reducedby subdividing the computational domain into multiple subdomains
on which a spectral approximation is applied. As a result, the method canbe usedon more complex
geometries.The useof lower order approximating polynomials in eachSubdomainmeansthat matrix
multiplication can be both efficient and accurate,and the time step restrictions neednot be assevere.

Recently,a staggered-gridspectral approximation method wasdeveloped:that givesspectral
accuracyand geometric flexibility [7], [6]. In this method, the solution and the fluxes are
approximated on different grids. Unstructured subdomaindecompositionscan be used,and
connectivity betweensubdomainsis simplified becausesubdomaincorner points are not usedaspart
of the approximation. The useof Chebyshevpolynomial approximationsgivesexponential
convergenceand simplicity at boundaries.The isoparametricrepresentationof boundariesmeansthat
they are approximated to the sameaccuracyasthe solution.

In this paper, weuse the staggered-gridmultidomain method of [7] to compute solutions to the
Category 1 benchmarkProblems 1 and 2. To increasethe rangeof accuratelyapproximated
wavelengths,and to increasethe time step requiredby the Chebyshevapproximation, weuse the
transformation presentedby Kozloff and Tal-Ezer [8]. To treat radiation boundary conditions,we
replacethe equationsin outer subdomainswith the Perfectly-Matched-Layerequationsof Hu [3].

!

=

i
=

=

i

|
!

|
___--

THE STAGGERED-GRID SPECTRAL MULTIDOMAIN METHOD

The staggered-grid method [7], [6] solves the Euler equations in conservative form,

Qt + F_ + G_ = S (1)

where Q is the vector of solution unknowns, S is the source vector, and F(Q) and G(Q) are the flux

vectors. In this paper, we solve the linearized Euler equations where

[Pl [0]Q= v F= 0 G= p (2)

p U V

In the multidomain approximation, we subdivide a computational domain, f_, into quadrilateral

subdomains, gtk, k = 1,2,..., K. Under the mapping _k _ [0, 1] x [0, 1], the Euler equations (1)
become

where

Q,=JQ, s=Js

F'= yyF- xyG, G = -yxF + xxG

J(X, Y) = xxyy - xyyx

(3)

The staggered-grid approximation computes the solution and source values, 1_ and o6 , and the

fluxes fi" and G on separate grids. These grids aretensor products of the Lobatto grid, Xj, and the
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Gaussgrid, Xj+I/2 , mapped onto [0,1]

Xj=½(1-cos(_)) j=O, 1,...,N

/2j+l \\
Xj+il2=½(1-cos(_m 7r)) j=0,1,...,N-1

On the Lobatto and Gauss grids, we define two Lagrange interpolating polynomials

(!-x;)ej(_)= ,:oII\x_ - x,
i¢j

and

(_ %,.
i:0 \ Xj+_/2 - Xi+l/_ J
iCj

We see that g.j(x) E PN(X), and hj+l/2(_) c PN-t, where PN iS the space of polynomials of degree

less than or equal to N.

The mapping of each subdomain onto the unit square is done by a static isoparametric

transformation. By making the mapping isoparametric, the boundaries are approximated to the same

accuracy as is the solution. Let the vector function g(s), 0 _< s <_ 1 define a parametric curve. The

polynomial of degree N that interpolates g at the Lobatto points is

N

d=O

Four such polynomial curves, Fra(S), ra = 1, 2, 3, 4, counted counter-clockwise, bound each subdomain.

As in [7], we map each subdomain onto the unit square by the linear blending formula

x_(x,Y) = (1 - Y)rl(x) + YF3(x) + (1 - x)r4(Y) + xr2(Y)

-x,(1 - x)(1 - Y)- x2X(1 - Y) - x3xY

where the xj's represent the locations of the corners of the subdomain, counted counter-clockwise.

The solution unknowns are approximated at (J(i+l/2,_+t/2), i,j = 0, 1, ..., N- 1 , which we

will call the Gauss/Gauss points. The interpolant through these unknowns is a polynomial in

PN-t,N-1 = PN-t ® PN-_,

N-1 N-10i+l/2,j+l/2
O.(x,v) = E E h,+_/2(x)h_+,/2(v) (4)

i=0 j=0 Ji+l/2,j+t/_

The horizontal fluxes are approximated at the Lobatto/Gauss points (X_, _+t/2), i, j = 0, i,..., N,

computed from the polynomial 4

= - d(x,,
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Finally, the vertical fluxes are approximated at tile Gauss/Lobatto points

(ffi+_/2,Yj), i,j = 0, 1, ..., N - 1 and are computed as

Gi+t/2,j = N - .

It remains now to show how the fluxes are computed at subdomain interfaces and at physical

boundaries. The coupling of the subdomains is made by defining interface conditions that compute

the interface fluxes. Though the interface points between two neighboring subdomains coincide, the

two solutions at the interface need not, since they are computed independently from the interpolant

through the Gauss/Gauss points in each subdomain. A unique flux is computed, however, by

choosing from the solutions on the forward and backward side of the interface according to the

normal characteristics at the interface point. In non-linear problems, this is done using a Roe solver

(see [7]). For the linear system (1), we do a linear decomposition of the normal coefficient matrix into

forward and backward going waves

A

o o
0 0 N_ =A++A -

N_NyO

where A + = ½ (A + ]At), and A- = ½ (A - IAI). Then the normal flux is computed as

FN = A+Q + + A-Q- = F} + FN, where Q=_ refers to the forward and backward solutions along the

normal direction. One of the eigenvalues of A is identically zero, and we put that case into A +. The

flux P or G, depending on which side is being considered, is then computed directly from the normal

flux at the interface.

Wall boundary conditions are imposed as simply as they are in a finite volume formulation,

through the evaluation of the wall flux. At walls, the reflection condition is imposed by choosing the

exterior solution value, Q+ to have the same pressure, but opposite normal velocity to Q- when

computing the boundary flux.

Radiation boundary conditions are implemented by a buffer-zone technique. Buffer-zone

methods are natural for use with multidomain spectral methods, since all that is required is to change

the equations in the outer subdomains to ones that will not reflect waves into the interior. It is not as

convenient, however, to impose radiation boundary conditions through the solution of a one-way wave

equation, since boundary solutions are not part of the approximation.

We will report results using the Perfectly Matched Layer (PML) method of Hu [3]. In this
method, the solution vector, O, is split into two vectors, Q = QI + Q2, where the components satisfy

the equations

o-7-+ =

+ dy = _orO 
Ot
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The coefficients,a x and aY determine the amount of damping added to the solution. We report

solutions using the ramped functions, a x = c (X - Xedge) m , and a w = c (Y - Y_dge) 'n with c = 150,

and m = 10. After the split variable vectors are updated, we simply add them to form the full
solution vector.

Once the fluxes are computed, we form the semi-discrete approximation for the solution on the

Gauss/Gauss grid. For each subdomain

dt i+1/2,j+_/2

The derivatives, defined as

i =O, 1,...,N-1

S_+_,j+½, j = 0, 1, ..., W - 1 (5)

N

-_ Fn,j+i/2_n(Xi+l/2)gx i+1/2,j+l/2 _ ~ t -
n=O

O.,+,m+,/ = _ O,+_/2,me'(D+,/,)
in-----0

are computed by matrix multiplication. Similarly, in the PML subdomains, we solve

°011 + g,-),+½,j+½= -o-"01 _+.,,_÷½0/ _+½,j+½

o02[ + dr ,+½,_+½= - o-Y02,+_,s+½
Ot _+½,J+½

Equations (5) and (7) are then integrated in time by a fourth order, two-level low-storage

Runge-Kutta scheme [2].

(6)

(7)

To extend the range of wavelengths over which the method is accurate, and to increase the size

of the time step allowed by the explicit Runge-Kutta integration, we have also applied the

transformation of Kozloff and Tal-Ezer [8]. This transformation makes the change of variables

x =
Y = sin -t (aI_')/sin(a)

where a c [0, 1] is a parameter that can be used to optimize the approximation. Under the

transformation, eq. (5) become

s,.(o>[,/ (o,. 1 o+_ 1- 1- )_ : (8)
a J i+t/2,j+l/z

The limits of the parameter correspond to the pure Chebyshev case when a = 0, and to uniform

spacing when a = 1. We have found a _ 0.92 to be a good choice. The transformation has the effect

of reducing the size of the spurious eigenvalues, thus allowing for a larger time step. It also gives a
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Figure 1: Variation of the maximum phase error across a subdomain as a flmction of resolution for N
= 20.

wider range of accurately approximated Fourier modes. To see the latter effect, Fig. 1 shows for N =

20, that the accumulated phase error across a subdomain can be substantially reduced for a wider

range of frequencies by the use of the transformation.

RESULTS

We present solutions to the first two Category 1 benchmark problems. In the first problem, a

line periodic source is placed four diameters from the center of a circular cylinder. In the second, an

initial pressure pulse is centered four diameters from the cylinder and allowed to propagate. In both

problems, lengths are scaled to the diameter of the circular cylinder, and velocities to the sound

speed, c. The time scale is the cylinder diameter divided by the sound speed. Density is scaled to the

undisturbed density, P0. Pressure is scaled to poc 2. In the first problem, the source is time periodic,

_--4 2+ 2• . .
S = sln(cot)e _ o., /

with w = 87r. In the second problem, there is no source, but the initial pressure is

Category t. Problem l.

The first Category 1 problem is solved in the region [-16, 16] x [0, 16] so that only the top half

of the problem is computed. The grid is of tile form shown in Fig. 2, which shows the skeleton of the

subdomains. Overall, the region as subdivided in 514 subdomains, with 32 in the horizontal direction,

16 in the vertical and four around the cylinder itself. Around the exterior, 66 PML subdomains were
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Figure 2: Subdomain decomposition for scattering off a cylinder

added. Except for those around the cylinder, the subdomains were taken to be one unit on a side. A

polynomial order of 20 was used in each direction and in each subdomain for a total of 232,000

degrees of freedom. With this grid, the diffracted waves are resolved to an average of five points per

wavelength. A stretching factor of a = 0.92 was used on this computation. Finally, a time step of

4.17 × 10 -3 was used, which corresponds to 60 steps per cycle. The entire computation, which was

run for 360 cycles of the source, took approximately 58 hours on a single IBM SP2 node.

Fig. 3 compares the computed and exact values of (P2)/r at r = 15 as a function of angle

about the center of the cylinder. At this distance, the reflected wave has travelled roughly 60

wavelengths. The graph indicates excellent precision in both the amplitude and the phase of the

solution. The maximum relative error is 2.6%.
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Figure 3: Pressure amplitude as a function of angle at r = 15.

Category 1, Problem 2.

We solve the second problem in the region [-6, 6] × [0, 6] on the grid shown in Fig 2. The Euler

equations (5) are solved on 74 subdomains with 12 in the horizontal direction, six in the vertical, and
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Figure 4: Pressure contours at three times for the scattering of a gaussian pulse off a circular cylinder.
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four around the cylinder. The PML equations were applied in an outer ring of 26 subdomains. The

subdomains were chosen to be one unit on a side, and twenty points horizontally and vertically were

used in each, for a total of about 40,000 degrees of freedom. With this grid, the initial pressure pulse

is resolved by 8 grid points. The transformed equations (8) were computed with a transformation

parameter a = 0.92. The time step was 2.0 × 10 -3. The computation for the time range 0< t < 10

required a total of 48 minutes of CPU time on a single IBM SP2 node. Since the computations were

made on a four-variable system that includes the density, we estimate that this corresponds to about

36 minutes for the system defined in the problem statement.

Contours of the pressure at the times t = 6, 8, 10 are shown in Fig. 4. We see that the pressure

pulse propagates smoothly through the subdomains and out of the grid. Time traces requested in the

problem statement at r = 5, and t? = 90 °, 135 °, 180 ° for time between 6 and 10 are shown in Fig. 5.

Plotted with the computed solutions are the exact solutions. Table 1 shows the maximum errors at

the requested probe points over the time interval requested. We see that at five points per

wavelength, the maximum error in the three cases is less than 1 × 10 -6.

{D
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Time

Figure 5: Pressure vs. time for the scattering of a gaussian pulse off a circular cylinder at the three

probe points.

8 Max Error

90 ° 4.7×10 -T

135 ° 6.2×10 -T

1800 7.0×10 -T

Table 1: Maximum Error at probe points for Problem 1.2
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i

CONCLUSIONS
i

E

We have used a Chebyshev spectral multidomain method to solve two 0(tt_eworkshop |

benchmark problems. The method, described in detail in [7], has been modified_by i_e use of a

stretching transformation to extend the range of accurately represented Fourier modes and to increase

the allowable time step. In the first problem, we use an average of five points per wavelength. We find

that the Category 1, Problem 1 solution requested is accurate to 2.6% at r = 15. In the second

problem, with eight points across the width of the initial pulse, we find that the over the times and at

the angles requested, the maximum error is less than 10 -6.
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SUMMARY

The results for the first two CAA benchmark problems of the category 1 are presented here.

These two problems are designed for testing curved wall boundary conditions. The governing

equations for the problems are the linearized Euler equations. For the better treatment of

the curved boundary, coordinate transform is used to map the Cartesian coordinate system

to polar coordinate system. The governing equations are discretized using the Dispersion-

Relation-Preserving (DRP) scheme of Tam and Webb. The DRP schemes with artificial

viscosity terms are evaluated as to their suitability for equations in curvilinear coordinate

system.

INTRODUCTION

The computation of aeroacoustic problems requires numerical schemes of high accuracy,

low dispersion and almost non-dissipation. 1'2 Recently developed 7-point stencil Dispersion-

Relation-Preserving (DRP) scheme of Tam and Webb 3 was designed so that the dispersion

relation of the finite difference scheme is formally the same as that of original partial dif-

ferential equations. The DRP method has been shown to be quite successful on calculating

linear waves in many acoustic computations 3'4'5.

In this work the DRP method is used to solve the acoustic scattering problems in the presence

of a curved wall boundary. The physical problem is to find the sound field generated by a

propeller scattered off by the fuselage of an aircraft. The fuselage in our computations is

idealized as a circular cylinder, and the noise source is given at a specified location. Since

the problems are axisymmetric, the computations are conducted only for the upper half of

the flow field. Computational domain is chosen as a semi-circular region (see Fig. 1) which is
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boundedby an outer semi-circle,the cylinder wall, and the axisymmetric lines. The meshes
are generatedby the circumferential and radial lines.

Y

axis of'sylmetry fuselage _ noise source

Figure 1: schematic diagram showing the computational domain and boundaries.

X

Two different noise sources are considered, the first one is atime periodic source and the

second one is non-time-periodic source but with a given initial pressure disturbance.

NUMERICAL PROCEDURE

The governing equations with artificial viscosity terms for the transferred polar coordinate

system are given as follows:

Ou Op sinO Op .02u l Ou 1 02u
0--7 +c°s0_ r O0-U(-_r 2+-rOt +-_002) (1)

Ov cos 00p 02v 10v 10=v
Ot + sin00Pr -u( + +----) (2)-- o0
Op oOu sin 00u oOV cos 00v .02p 10p 1 02p
0--/+c°s Or r 00 +sin Or + -r -_ = S + u(_r2 + -r-_r + r2 OO2) (3)
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where damping factor v = eAr × A9 with the damping coefficient c. Here the artificial

viscosity is added to damp out spurious oscillation.

The DRP spatial difference scheme is applied for both the first order derivatives, O/Or and

0/00, and the second order derivatives 02�Or 2 and 02/002. The derivatives are discretized by

seven-point damping stencil of Tam and his colleagues for interior points. Near the boundary

standard five-point and three-point central difference schemes are used for the second order

derivatives. So the values of time derivatives at grid points are then obtained from the

equations and DRP time marching scheme can thus be used to get values of variable at next

time level.

BOUNDARY AND INITIAL CONDITIONS

Boundary and initial conditions for the acoustic simulations are given below:

Solid Wall: The pressure derivative condition at the cylinder surface _ = 0 is derived from

the governing equations using the no-slip condition, IP. 77 = 0, at the cylinder wall. One row

of ghost points for p is placed inside the circle to enforce this condition. Ghost points are

shown in figure 1. One-side DRP schemes are used for descretizing velocities u and v near

the boundary.

Axis of Symmetry: The symmetric boundary conditions, u(x, y) = u(x,-y), v(x, y) =

-v(x,-y) and p(x,y) = p(x,-y), are used near the x-axis.

Outer Boundary: Radiation conditions 2 are used near the outer boundary.

solving the linearized Euler equations, the following equations are solved:

Instead of

001[ ]=o. (4)
p

Initial Condition: For both problems, the initial velocity is zero, u = v = 0, because of no

fluid flow at the beginning. For the problem 1, there is a periodic disturbance source located

at (4, 0) described by the expression below:

exp[_ ln2(( z _4)2 + y2S
0.22 )] sin wt.
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For the problem 2, a pressuredisturbancelocated at (4, 0),

p=exp[-ln2( (z-4)20.22+ y 2)],

is initially released.

RESULTS AND DISCUSSION

Two sets of grid are used for the problem 1. One is 400 x 360 with Ar = 0.02 and A0 = 0.50

and the other one is 200 x 180 with Ar = 0.04 and A0 = 1°. In both cases the outer

boundary is chosen as 8 times the diameter of the cylinder. Time step is determined by the

formula
0.19At

t=

1.75_/1 + (Ar/AO) 2"

The damping coefficient e is chosen as 1/60 after several trials. The result of directivity as

a function of the angle 0 is shown in Fig. 2. The directivity here is defined by

D(O) = lim rp _,
T "4" C_

where r is chosen as 7.5 and time average of pressure square is obtained over two time periods

of t from 39.5 to 40, in which the pressure p is ahnost periodic. Different patterns shown in

the Fig. 2 indicate that the finer grid 400 should be used in order to predict the directivity

correctly. In the computation of problem 2, The grid 200 x 180 with Ar = 0.0375 and

A0 = 1° are used. The outer boundary is chosen as 7.5 times the diameter of the cylinder

with the time step At = 0.001 and the damping c oefficient c = 1/20. The Fig. 3 shows the

pressure as a function of time for three different points A, B and C shown in figure 1. The

profiles of the first wave and its reflection wave can be clearly seen in the Fig. 3.

We should mention that the simulations of both problems can also be proceeded without

any artificial viscosity, but spurious short waves is observed with the reflection waves.

CONCLUSIONS

The aeroacoustic computations with curved boundary are presented here. One way to han-

dle this class of problems is to map a non-rectangle domain into a rectangular domain. The
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Figure 2: Directivity versus angle for problem 1. Solid line is for 400 x 360 and dash line is

for 200 x 180

resulting governing equations in curvilinear coordinate systems can then be discretized by

the DRP methods. Numerical results in our applications show that this is a valid approach.

The DRP methods require explicit artificial viscosity for some complicate flows. Artificial

viscosity becomes even more important when there is discontinuous jump in flow field. Dif-

ferent problems require different artificial viscosity factors, the adjustment of which might

need many trials.
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Figure 3: pressure versus time for problem 2. solid line for pressure at point A (r = 5, 0 =

900); dash line for pressure at point B (r = 5, 0 = 135 °) ; dash dot line for pressure at point
C (r = 5, O = 180°).
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ABSTRACT

This paper reports the progress in the development of solvers based on a compact scheme
for the computation of waves scattered and diffracted by an arbitrary surface. The formulation that
allows the reduction of multidimensional wave problems involving curved surfaces into a set of

one-dimensional problems involving line segments will be revisited and the schemes for labeling
and enforcing time-domain physical or impedance boundary conditions on an arbitrary surface will
be briefly introduced. Applications of these algorithms and benchmarking comparisons with
available exact solutions for scattering and diffraction of harmonic and compact wave sources by
generic and realistic geometries are presented, and results for Problem 2 of Category 1 are
reported.

INTRODUCTION

The major difficulties for time-domain approaches to wave computation are representation of
curved surfaces and enforcement of boundary conditions on these surfaces. Current methods can

be classified into four types: I) the use of simple unstructured elements to fill the space restricted
by the surface, 2) the mapping of the bounding surface to a coordinate plane, 3) the labeling of
boundary points and application of special stencils for them, and 4) the employment of domain
inhomogeneities for their desirable reflective or absorptive properties. The use of structured and
unstructured surface-conforming grids has been quite successful for steady flow computations.
This success is largely due to effective suppression of all physical and spurious waves by
artificially added damping during convergence. The technique of adding artificial viscosity for
enhanced algorithmic stability can be detrimental for wave computation. Surface-conforming grids
may be inappropriate for their often hard-to-control excessive stretching and skewness and the
resultant equations after the transformation are so entangled with the coefficients of transformation
that only exlblicit and stability-stringent boundary conditions are practical, compromising the
accuracy and effectiveness of the interior scheme. On the other hand, if Cartesian coordinates are

used, the management of the points on a curved surface may become too complex for many
schemes, particularly implicit ones to operate efficiently. The employment of domain
inhomogeneities avoids the management of boundary points for rectangular grids but compromises
the accuracy of the surface definition to within a grid cell and correspondingly a reduction of
numerical accuracy.

Reference [ll describes the development of a new class of efficient and accurate numerical
schemes for computation of waves. It demonstrates that wave propagation in a multi-dimensional
medium involving solid boundaries can be efficiently and accurately predicted using an implicit
scheme on a suitable, finite, not asymptotically large domain without having to apply specific
outgoing conditions at the domain boundaries. The advances described in this paper are: 1)
development of an essentially fourth-order, unconditionally stable, implicit scheme having a simple
three-point, two-level data structure suitable for various nonuniform grids, 2) introduction of an
implicit, stable, characteristically exact, easily implementable end scheme for the exit Of wave at

any end point of a numerical domain, and 3) demonstration of the feasibility of solving multi-
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dimensionalwave equationsasa systemof uni-directionalwave equations,thus reducingthree-
dimensionalproblemswith curvedsurfacesto one-dimensionalproblemsof lines.

We will revisit theideaandrationalebehindthereductionof a multi-dimensional problem into a

system of one dimensional problems, explore the issues and extend the schemes proposed in [ 1 ! to
accommodate possible irregularities due to a realistic geometry and the assoctate boundary
condition, and introduce a method for imposing characteristically exact and numerically accurate

boundary conditions and the associate data management scheme for solving wave propagation
problems involving a realistic geometry on rectangular grids.

Long-Time Computation of u(x,t)=sinco(x-t)/4

on an Essentially Uniform Grid
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Figure 1 The simple, right-propagating sine wave was computed on an EUG of thirteen points
over the domain of 1.5 wavelengths. Similar experiments have been conducted to

show same accuracy on EUGs with left or right end grid ratios of 0.5<r<1.5.

NATURAL WAVES IN ONE DIMENSION

The formally third order C3N compact scheme [1], having a three-point two-level data
structure closed with a characteristically exact exit condition, forms a numerical simple wave solver

for the simple wave equation,

0u 0u
(1) --+c-- = 0,

0t 0x

and the basis for the approach and extensions here. This robust, accurate, simple wave solver
allows a signal to enter at one end and leave cleanly atthe other. It has been tested on various grid
types and equation models for wave. Once initialized, an array passed into this solver is updated
by the specification of the entry wave value u(a,t) as theory requires, where a is the left or right end
of the interval depending on the sign of c. Regardless of the grid distribution and time stepping,
long-time stable arrays are returned. In particular, numerical experiments have substantiated that
fourth-order scheme accuracy (eight grid point per wave length) is achievable on Essentially

Uniform Grids, EUG, everywhere uniform but the end points. Figure 1 shows the long-time
(conveniently chosen at t=800,000) computation of a right-running wave with a left EUG of grid
ratio r,=(x_-Xo)/(x2-x,)= 1.5. The computation can be conducted indefinitely and the RMS error is

essentially unchanged after t>15. Similar results with grid ratios 0.5<r<1.5 at both ends have
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supportedthat C3N is long-time stable and fourth order accurate on EUG. This feature of allowing
even abrupt nonuniformity in the grid, especially at end points, is essential for extension to multi-
dimensional problems involving curved surfaces.

The extension of the simple wave to a system of waves is essential for description of natural

wave phenomena. Since an isotropic medium has no preferred direction, propagation of a wave in
one direction implies the capability to propagate in the opposite direction, or in any direction in a
multi-dimensional space. At a given time when a wave is observed in an infinite one-dimensional

space, its future is already determined by solution of a Cauchy problem. For a natural wave to
assume a preferred direction with a particular waveform, the directional information must be
encoded in the initial data. This is possible only if there are two independent sets of data in a

wave. A specific type of combination of the sets excludes propagation in the other direction. Thus,
a natural wave in one dimension must have two components which satisfy a set of complementary

equations. The extension of the simple wave u(x-ct) to a natural wave system must then be the
addition of the complementary component v(x+ct) corresponding to the substitution c _ - c. The
simple wave by itself is not natural, since the direction is reference frame dependent. This implies
that a natural wave must be governed either by a second-order partial differential equation for one

state variable, or equivalently by two first-order PDE for two state variables, i.e.,

c(2a) --(;)Ot +(0 '

(2b) 02_ C 2 02(_ = 0; with qb= c_u + [Sv.
0t 2 0X 2

A natural wave is then determined by specification of (ct,t3) using the boundary and/or initial

conditions. The components (u,v) either satisfy Eq. (2a) individually or their linear combination d_
satisfies Eq. (2b). Therefore, extension from a simple wave to a system of waves is not only
necessary, the method of prediction should also be extendible from one wave component to a
system. Equation (2) implies that any physical variable _bother than the characteristic variables
(u,v) can only be described by the second-order form Eq. (2b). Hence, any formulation in
primitive variable form would have to deal with the difficulty of having to address the appropriate
conditions for the two boundaries in each spatial dimension.

It is, therefore, important to consider extension of a simple wave solver to solution of a system
of waves. Equally important is the realization that in characteristic form the components (u,v)
satisfy distinct equations and are uncoupled on an unbounded domain. On a bounded domain, the
components are unrelated everywhere except at the boundaries (i.e., the left and right ends in one
dimension). Thus, once initiated, the solution of each component requires only the value at wave

entry as determined by the sign of c. If u(a,t) is given at the entry point a, u(b,t) is fully
determined at exit end b. Exactly the opposite is true for the complementary component v(x,t) at its

entry point b and exit point a. It is then clear that any condition on a physical quantity, i.e.,
¢=ctu+13v, at a boundary point must use the boundary-exiting component to determine the
boundary-entering component, i.e., c_u(a,t) = -[3v(a,t)+d_(a,t). The fact that the components u and
v are linearly independent assures that any given _(a,t), other than the unallowed specification of
the exit value v(a,t) (the grossly ill-posed case ct=O), determines the domain-entering component
u(a,t) uniquely. It is also clear that the components of a natural wave system cannot be explicitly
specified at a boundary unless they satisfy some compatibility conditions. In any form other than
characteristic, the equations are everywhere coupled, allowing lateral communication between
components and exchange of error over the entire interval ia,bl. Therefore, the only way to avoid
unwarranted coupling is to solve the equations in characteristic form. If one end is unbounded, or
no waves have reached this end, the solution of a system can easily be obtained by first applying
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the simple wave solver to the exiting componentfor the boundedend and relating the newly
updatedexit valuethroughthephysicalconstrainttotheentryvalueof theenteringcomponent. If
bothendsarebounded,the properway to solvethe systemis to connectthe arraysand solvethe
assembledsystem, including the boundaryconditions at both ends, using a cyclic tridiagonal
solver.

MULTI-DIMENSIONAL WAVE SOLVER

The groundwork for extensionsto multi-dimensionalwave problemshas been laid in [I],
althoughnoneof the examplesgiventhere involvedcurvedsurfaces. In [11the two-dimensional
Eulerequationsweresplit for eachspatialdimensioninto systemsof one-dimensionalwavesand
solvedusingthesystemwavesolver. After a sweep of all wave components in one direction, the
variables are converted directly into characteristic form and swept in the other direction. In
alternating sweeps, only p is exchanged and, hence, advanced twice. Both u and v are advanced

once in x and y, respectively. Therefore, the sweeping order, x-y or y-x, is unimportant. If the
sweeps are done alternately, only one array for each variable needs to be stored. If u and v are

advanced in parallel (for massively parallel computing systems) an additional array is needed for

storing the directional changes in pressure. The latter can be completely symmetrical at the expense
of a slight increase in memory and operation count, since u and v are advanced independently and
unaffected by the intermediate pressure changes until they are summed. Thus, the only question
remaining is the validity of the condition at finite boundaries where values of the domain-entering
components must be specified. For generalized curvilinear coordinates, equation splitting and
component decoupling may not be effective or possible. How, then, can a general curved surface
be taken into consideration in a rectilinear coordinate system?

Once split a wave domain can be seen as an array of straight wave conduits in each spatial
direction, the presence of the surface of an object blocks and segments these conduits. Each
conduit or line in the simplest case becomes two semi-infinite lines. Again, the rule for bounded
domains applies. For each line segment the components propagating towards the wall can be
integrated up to the surface point. After all such wall-bound components from all directions are

found up to the surface, the physical constraint there is sufficient to determine the domain-entering
components (i.e., the reflections). Some grid lines may not intersect the object and thus remain
unbounded. Thus, the grid lines are divided into bounded and unbounded grid line blocks.
Strategies for solution sweeping on unbounded and bounded grid blocks are different. Operator
symmetry, and direction and order of sweep may affect accuracy. However, the best strategy for
sweeping a partially bounded domain can be numerically determined, and directional symmetry can
be ascertained by exchanging indices in the data management of the sweeps.

Figure 2. Data flow of wall-bound values from x-lines to y-lines.
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Figure 2 shows intersectionsof horizontaland verticalgrid lines with a circle, which is a
convexobjectandallowstwo intersectionpointsper grid line. Evenwhena line is tangentto the
circle,it canstill beconsideredastwo numericallydistinctpoints. For concaveor wavy surfaces,
multipleintersectionsby one grid line arepossible,forming two types of segments,finite and
semi-infinite. Solution logic andsweepingstrategymaybedifferent, dependingon the segment
type. Given an arbitrarycurve, a routinecanbe written to searchfor the intersectionpoints
(xx,yx), denotingthe(x,y) pairsin anx-grid line. Thesepointsin generaldo not coincidewith a
grid node. ThedistanceAxs between a surface point and the closest grid point is greater than zero
but less than a full grid step Ax. To avoid the extreme case where Axs is close to machine zero,
logic can be built in to extend the next grid point to the surface point {- - + - +- +- -I}. or add
the surface point as an additional grid point {--+- +- +-I}. Thus, the ratio between
neighboring steps satisfies Axs/Ax=r< 1.5 when the regular grid point is extended, and r > 0.5
when a grid point is added. Since the spacing of the grid near the ends of a segmented grid line
may change abruptly, the importance of a robust solver for nonuniform grids is clear. If the last
grid point is extended, the value at the eliminated point is retrieved by interpolation from the newly

updated solution, as if the solution had been computed on the original grid.

Separate arrays ux(xx,yx), vx(xx,yx) for the wave components at surface points (xx(s),yx(s))
along the surface coordinate s are stored for enforcement of boundary conditions. Here ux and vx
denote the vector wave components at a surface point intersected by an x-grid line. After the first
x-sweep the set of wall-bound values ux at the surface is computed and transferred by interpolation
to the set of values uy at the surface points (xy,yy) intersected by y-lines, and similarly (xz,yz) by
z-lines. After all sweeps for the wall-bound components from all directions are computed and
transferred, each surface point on a grid line will have all components of the wave vector (e.g., u-p
and v-p) stored as (ux,vx) for a bounded x-line and (uy,vy) for a bounded y-line. Each pair
together with the surface normal vector (ex,ey) is sufficient to satisfy a physical constraint, such as

Uex+Vey=0, determine the unknown temporal variation p, and form the domain-entering
characteristics (u+p,v+p). A subroutine can be written to transform the surface values from wall-
bound to domain-entering variables, and vice versa, and enforce numerically exact boundary
conditions.

APPLICATIONS

Figure 3 shows the diffraction (left) of a harmonic plane wave train by the cylinder of radius
R=5 computed on a 120x120 uniform rectangular grid filling the 15x15 domain as exactly shown
without employing a buffer zone or outgoing boundary condition. The directivity pattern (right)
evaluated at the computational boundaries compares well with the analytical solution 12]. Figures
4a and 4b show the computed pressure contours of a plane Gaussian pulse diffracted by a
projected contour of the Sikorsky S-70 on a 100xl00 uniform grid, at t=10 and 20, respectively,
following initiation at t=0 (when the wave centerline is at a distance of 12.5 units from the grid
center). The entire computational domain is shown; no buffer zone was used. The incident pulse
enters the top and left boundaries and leaves the right and bottom boundaries. The diffracted wave
is quite clear, as well as the satisfaction of the wall boundary condition, having contours normal to
the true surface. Both domain-entering and -exiting waves are allowed on each boundary without

spurious reflections. Figures 4c and 4d show essentially same contours except that the incident

pulse and the fuselage are rotated -45 ° with respect to the grid. Since the body is defined by
marking the surface points on the grid lines, its movements with respect to the grid can easily be
effected by changing the markings. Thus, the formidable body-conforming grid generation
problem which often leads to solution degradation, especially in three dimensions, is avoided. The
contour used was represented by a set of points taken from a photograph. To avoid the

development of spurious waves due to abrupt changes of contour slope, a damping of E=0.001

was added as a default value for a range of computations, including that for Fig. 3. This damping
was later found to be excessive for high frequencies after the presentation of Problem 2 of
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Category1at theWorkshop. Figure5 shows thesamecomputationaspresentedbut without the
defaulteddamping,which is notneeded.Goodagreementwith theanalyticalsolution is found for
thesolutioncomputedon a 281x28l rectangulargrid overa domainof 14x14centeredaboutthe
cylinderusing a time stepof 0.02. The recomputationof Problem1of Category[ hasnot been
completedby thedeadlinefor submission.

Diffraction of Harmonic Waves by a Cylinder
(kR=2.5:_, R=5.0, Domain = 15x15, Grid=120xl20)
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Figure 3. Computed diffraction pressure field of a plane harmonic wave train impinging on the
cylinder (left), and corresponding comparison with the exact directivity pattern (right).
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Pressure contours of a plane Gaussian pulse diffracted by a projected fuselage of the
Sikorsky S-70 at t=10 (left figures) and t=20 (right figures). Top figures were

computed with fuselage aligned with the horizontal x-axis and incident wave at 450;

bottom figures with fuselage and wave rotated -45 ° but computed on the same 100x 100

uniform grid.

90



0.08

0.06

0.04

0.02

0

-0.02

-0.04

Comparison of Exact (lines) and I A

Computed (symbols) Pressures I ..... BC

t

6 7 8 9 10

Figure 5, Comparison of Solutions for Problem 2 of Category 1
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Abstract

We compute tile sound field scattered off a circular cylinder as given in category I.

The linearized Euler equations are solved using a multi-block algorithm. A Low-Dissipation

and Low-Dispersion Runge-Kutta Scheme is adopted for the time integration, while spatial

derivatives are discretized with a combination of spectral and 6th order compact schemes.

In this study, spectral discretization is performed in the radial direction in domains adjacent

to the cylinder. Away from the cylinder and in the azimuthal direction we use compact

differencing. Explicit filtering of the solution field is avoided. We exploit the symmetry of

the problem and only compute the solution in the upper half plane. Symmetry boundary

conditions are built into the derivative operators. Absorbing layers near the computational

boundary at large radii minimize numerical reflections. The absorbing-layer equations are

based on the Perfectly Matched Layer (PML) formulation of Hu (1996).

Problem Formulation

Problems in category 1 model the sound field generated by a propeller and scattered by

the fuselage of an aircraft. The model consists of a line noise source (propeller) and a circular

cylinder (fuselage). The governing equations are the linear Euler equations:

Ou Op

Ov Op

0-7+N =°

Op Ou Ov= s(x,y,t).
o-i+ + ov

where S(x, y, t) is an acoustic source term.

The above equations are transformed to polar coordinates through x = r cos 0, Y = r sin 0

which leads to the transformed Euler equations

OU Op

0-7
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OV 10p
--+---=0
0t 7- 00

Op 1 c)(rU) 1 0V
o-7+ + -sr Or r O0

where U and V are velocity components in the radial and azimuthal directi0ns respectively.

Boundary conditions on tile cylinder demand a zero normal velocity. " _:_-

We consider problem 1 for which

S(x,y,t) = exp [-ln2 ((x-4)2 + Y2)](0.2)2 sin(8rct)

and problem 2 for which S(x, y, t) = 0. Initial conditions in problem 2 are given by u = v = 0
an d

|

|
|

|

Numerical Method

The governing equations are solved with a recently developed multi-block algorithm. In

each domain, and in each coordinate direction, derivatives are either spectral or 6th order

compact. Oil domains which abut a solid boundary, spectral discretization is chosen normal

to the boundary to improve the dissipation characteristics of the derivative operator. Away

from wall, and in the azimuthal direction, a compact discretization is prefered for reasons of

computational efficiency. If N is the number of points along a coordinate direction, the cost

of a derivative computation is O(N) for compact schemes, and O(N 2) for spectral methods.

Spectral domains are often limited to a maximum of 15 points in each direction, leading to a

high number of domains. Higher densities of grid points on spectral discretizations are also

detrimental to explicit time stepping algorithms.

Compact difference schemes in general lack adequate numerical damping and filtering is

often required to eliminate high frequency errors in the computational domain. However,

we prefer to avoid explicit filtering of the solution. There is no general prescription on how

the filtering should be applied or how often. These decisions are often left to the intuition

of the numerical analyst. Time integration is implemented with a Low-Dissipation and

Low-Dispersion Runge-Kutta Scheme [Hu et al., 1996].

The problem is symmetric about 0 = 0; we only compute the solution for 0 _< 0 _< rr. To

this end, the compact operator stencil is modified at the symmetry plane to maintain 6th

order accuracy. In the radial direction, we use then standard 5= - 6 - 52 scheme [Carpenter
et al., 1993].

We use a non-staggered uniform mesh in the coordinate directions used by the com-

pact derivative stencils, and a Gauss-Lobatto grid in the directions used by the spectral

differentiation. Along the domain edges, continuity of the fluxes is imposed normal to the

domain interfaces. As a consequence, only two domains are taken into account at all bound-

ary points, including corners (by continuity). Continuity of normal fluxes is imposed at
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the boundary interface (in computational space),which leadsto discontinuousvaluesof the
primitive variables. Except for the grid and the discretization, the schemepartially follows
that of Kopriva (1996).

To minimize numerical reflections in the far field direction, we implement an absorb-
ing layer techniquein the radial direction. The absorbing-layerequationsare obtained by
operator-splitting the governingequationsin the two coordinatedirections and by introduc-
ing absorption coefficientsin eachsplit equation. Sinceweusethe symmetry condition in the
azimuthal direction, our model problem has only one absorbing layer (see Figure 1). This

layer is located at large r. The equations inside the absorbing layer are

OU Om
--+ - _rU
Ot Or

OV 10p2

0--[ + ....r O0 aoV

0pl 1 0(rU)

O---_ + r Or -- --O'rpl

Op2 10V

0---[+ r O0 - _rop2

where p = pl + p2, o'0 = 0, o'_ = cr0z 2 where z increases linearly from 0 at the inte-

rior/absorbing layer interface to 1 at the exterior computational boundary. In general one

may also have a layer which is parallel to the radial direction, i.e., at a constant azimuthal

location. In those layers, o'0 is positive and _r_ is zero. Further details on the formulation of

absorbing layers and their effectiveness and limitations are given by Hu, 1996 and Hayder et

al., 1997. Note that the source term in the pressure equation decays rapidly from its center

(i.e., x=4 and y=0, or r= 4, 0=0). It is set to zero inside the absorbing layer.

Results and discussion

The computational domain is shown in Figure 1. We use two computational blocks and

an absorbing layer. For the oscillatory source in problem 1, we obtain a flow field with

interference patterns. A snapshot of pressure is shown in Figure 2. This computations was

done with 671 points in the radial direction (46 points in block-1 and 625 points in block-2)

and 361 points in the azimuthal direction. For simplicity, we used a polar grid with the origin

at the center of the cylinder. The edge of the buffer domain is at r --- 12.5. Unfortunately,

the grid spacing at the cylinder boundary is extremely tight in the azimuthal direction which

forces the time step to be very small. On the other hand, although the resolution is very fine

near the cylinder, it becomes coarse at large radii. Poor azimuthal resolution in the far field

for our choice of grid is a weakness of the present study. This shortcoming may be overcome

by increasing the number of points in the azimuthal direction at large radii (possibly through

the use of multiple blocks). The absorbing layer is very effective and the oscillations vanish

smoothly inside this layer. At r = 12 and with 361 azimuthal points, there are 487r waves

around the outer boundary, which is 2.4 points per wavelength. The wavefront is almost

95



parallel to the radial direction, so the waves are more resolved than is indicated. Nonetheless,

there is a lack of resolution at large 7"in the azimuthal direction as seen from Figure 3, which

shows the computed and analytical D(O) at r = 11.44; the analytical solution was obtained

flom Hu (1997). In addition to results with 361 azimuthal points (ny), we also show results

with 181 aziml_tl_al points. Lack of suNcient resolution in the azimuthal direction probably

is a major cause for the disagreements between the analytical and computed solutions.

Temporal variations of pressure at point A in the problem 2 is shown in figures 4 and

5. Results for 671x361 and 671x181 grid resolutions are visually indistinguishable, and are

also indistinguishable from the exact solution. This indicates sufficient azimuthal resolution

at r = 5. However, when the number of radial points is halved, noticeable discrepancies in

the solution are visible.
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Abstract

In this work, a new optimized MacCormack-type scheme, which is 4th order
accurate in time and space, is applied to Problems 1 and 2 of Category 1. The performance
of this new scheme is compared to that of the 2-4 MacCormack scheme, and results for
Problems 1 and 2 of Category 1 are presented and compared to the exact solutions.

Introduction

In the past, the 2-4 MacCormack scheme of Gottlieb and Turkel 1 has been used for

aeroacoustics computations. It is a scheme that is robust and easily implemented, with
reasonable accuracy. Past experience has shown that the 2-4 scheme requires 25 points per
wavelength for accurate wave propagation.

Recently, a new family of MacCormack-type schemes have been developed 2, using

the Dispersion Relation Preserving methodology, of Tam and Webb 3 for guidance. These
schemes have been tested on 1-D wave propagation, showing a significant improvement

over the existing 2-4 and 2-6 schemes 4. As an initial test of this new scheme, Problems 1

and 2 of Category 1 were chosen.

These problems require accurate propagation of high-frequency low-amplitude
waves for a considerable distance, with curved-wall boundary conditions adding to the

difficulties. The performance of the new scheme as well as the results obtained will be
shown and discussed.

Governing Eauations

In this work, the Iinearized Euler equations are solved in non-conservative form
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overahalf-plane.Theequationsusedare:

vo' + 0 +

p' v_'
t f

r , +J;o
[voJo iv,,

=S

For Problem l, S is a simple harmonic source, given by:

0

0

exp(-In(2) (x _(&__._2)24)2+ y2"
sin(87rt)

In Problem 2, S is an initial disturbance at time t = 0, given by:

Sl[=o =,

o

o

exp(-In(2) (x _(.__._._)24)2+ y2

=E:Z2E: :=

-- 17

(2)

(3)

= i

:: .7

. e

: -=

m_

_=

_|

Numerical Formulation

The scheme used is a new variant of the 2-4 MacCormack-type scheme I, which is

optimized in both space and time for improved wave propagation and accuracy 2. Tam and
Webb's Dispersion Relation Preserving scheme 3 is used to specify the spatial derivatives,

and Hu, et. al.'s Low Dissipation and Dispersion Runge-Kutta scheme 4 is used for the
time marching. The scheme can be written as follows:

_)(1} = dk

d(2)=_ik (" 1/2 1+k.a53323. tF(6/')

112 ,StF -_2)

d)(41 = Ok +( 1 )AtF(d(3)/

k,.240823) t /

0 latF(dc'q.240823) _ /
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6k+1 = (_k + At

-.766927) _ /

•147469

-. ] 40084

0
1.15941) _ J

(4)

where the values of the upper coefficients are used in the four stage step and those of the
lower coefficients are used in the six-stage step. Each derivative uses biased differencing,
either forward or backward, providing inherent dissipation for the solver. Unlike the
earlier MacCormack-type schemes, the stencil is not fully one-sided, allowing the

magnitude and behavior of the dissipation to be modified using an optimization technique.

Using a radial derivative at point j as an example,

Forward:

Od) (.30874_)i_,+.6326_i ]k_rr i = -1 |_1.2330d_i+, +.3334C)i+2
Ar __. 04168Qi+a

(5)

Backward:

1.30874_i+1+. 6326d)i )k

OQ I = 1|-l.2330Qi_,+.3334di_2|
-_-i z_r__.04168di_3

(6)

The sweep directions are reversed between each stage of the time marching scheme
to avoid biasing, and the first sweep direction in each time step is alternated as well. This

gives a four-step time marching cycle:

Qk+l= LBFBFQk

ok+2 = LFBFBFBQk+I

Qk+3 = LFBFBQk+2

Qk+4 = LBFBFBFQk+3

(7)
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At the computational boundaries, flux quantities outside the boundaries are needed

to compute the spatial derivatives, and the methods used to predict these fluxes are given
below .......

The resulting scheme is capable of resolving waves of 7 points per wavelength for
large distances while taking much larger time steps than the original 2-4 scheme. The
advantage of using this type of scheme is that the one-sided differences both add in

desirable dissipation at high frequencies and cost less to evaluate than the corresponding
central differences.

The performance of this new scheme is compared with the 2-4 scheme in Figures 1
and 2. Figure 1 shows the dispersion error per wavelength of travel for a 1-D wave as a
function of the number of points per wavelength. The time accuracy of the new scheme is

illustrated by the lack of error at larger time steps. Figure 2 shows the dissipation error per
wavelength of travel; notice that the optimization of the one-sided differences gives a
reduction in dissipation of nearly three orders of magnitude at 10 points per wavelength.
The CFL range shown in Figures i and 2 are. 1 < CFL < .6 for the 2-4 scheme, and .2 <
CFL < 1.4 for the new scheme.

...... =

2 -=--_

4j

=-

=

Boundary Conditions

There are three boundary conditions which are used. At the cylinder surface (r =
0.5), the Thompson solid wall boundary condition is used, and the equations become:

, F

t v. -p Jr LVo Jo '

In this computation, three ghost points are used inside the surface for the radial
derivative; their values are set as:

[P'JI-j _ P'-I+j

(9)

In the far field (r = Rmax), the acoustic radiation condition is used:

I1_ I0l;2 +v;,+ v.
[P'Jr 2r[p,J

=s (10)

For the radial derivative at the outer boundary, three ghost points are used. The
values of the variables at these ghost points are determined using third-order extrapolation
from the interior values.

At the symmetry planes (0 = 0 and 0 = n), a symmetry condition is used. For
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example,aroundi = 1"

where i is the index in the azimuthal direction.

(11)

Com0utational Grid

For Problem 1, a 801 (radial) x 501 (azimuthal) grid was used, coveting a domain

of 0.5 < r < 20.5 in the radial direction, and 0 < 0 < r_. Since the wavelength of the

disturbance is 0.25, this grid results in 7-10 points per wavelength. The exact results were

given at the r = 15 line, giving a maximum of 76 wavelengths of travel at 0 = _.

For Problem 2, a 201 (radial) x 301 (azimuthal) grid was used, coveting a domain

of 0.5 < r < 10.5 in the radial direction, and 0 < 0 < _. Since the transient problem only

requires data from 6 < t < 10, the outer radial boundary only has to be far enough away
such that no reflections can reach any of the three data points during this time period.

Results

Results for Problem 1 are given in Figure 3. In order to avoid problems with the

very large initial transient, a polynomial function was used to smoothly increase the
amplitude of the fo_:cing function. The time step used was limited by the stability of the

solid wall boundary; for these calculations a CFL number of 0.1 was used (At = .00245).
The calculation was run to a time of 32.09, with results being taken from 31.59 _<t <
32.09. This calculation took a total of 6.27 hours of CPU time on a Cray Y/MP, running

at 191 Mflops. The results are given at r = 15 D, and compare very well with the exact
solution.

Results for Problem 2 are given in Figures 4-6. The results agree very well with

the exact solution. This calculation, :using a At of .0025 in order to print out the required

results, took a total of 469 CPU seconds on a Cray Y/MP, running at 175.5 Mflops.

However, the code could run stably at a CFL number of 0.1 (At = .0045), requiring 261

CPU seconds. With more stable solid wall boundary conditions, it is expected that the
scheme can recover the CFL = 1.4 time step that has been seen previously.

Grid refinement studies were conducted for Problem 2; the effect of halving and

doubling the grid are shown for Point C in Figures 7 and 8. Point C was chosen because it
was the most distant point from the initial location of the pulse. In Figure 7, three
computed results are shown: a half grid (101 x 151), the grid used (201 x 301), and a
doubled grid (401 x 601). The two denser grids have nearly identical results, and compare
very well with the exact solution. The coarsest grid, however, shows leading and trailing

waves, some traveling much faster than the physical wave. This is due to the low
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resolution of the grid causing the solver to incorrectly allow high-frequency waves to travel

faster than the speed of sound. --_--_

Figure 8 shows the transient peak at point C. The effect of increased grid'rs
illustrated in this graph; the transient peak becomes closer and closer to the exact solution
as the grid becomes denser. At this extreme amplification, it can be seen that the transTienx =
peak velocity is very slightly off with the grid used, but the answer is well within expected _::
tolerances for this case.

Conclusions

.... i_=

• _=

_= _

8

I
7.

A new optimized MacCormack-type scheme was used to solve Problems 1 and 2 of
Category 1. This scheme performed very well, requiring less than 10 points per
wavelength to accurately propagate waves for a distance of 100 wavelengths. This scheme
has been validated on supersonic jet noise calculations, and is currently being applied to

parainetric calculations of coannular jet noise 6.
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ABSTRACT

Two problems are investigated : Category 1 - Acoustic Scattering, Problems 1 and 2. RADIOSS CFD,

an industrial software package is the solver used. The computations were performed on a HP9000 Model

735 workstation. No slip conditions are imposed on the surface of the cylinder body and non reflecting

boundary conditions are utilized at the artificial boundary of the computational domain. Numerical results

were reported in the specified format for comparison and assessment.

NUMERICAL MODEL

RADIOSS CFD finite element code includes several formulations that can solve a wide variety of

problems ranging from transient fluid flow to fully coupled fluid structure interaction. These formulations

include Lagrangian, Eulerian as well as Arbitrary Lagrangian Eulerian (ALE) [1] representations of the

compressible Navier-Stokes equations. To solve the proposed linearized Euler equations, an explicit time

integration and a Lagrangian Finite Element representation were chosen, because the associated algorithm

involves theoretically no numerical dissipation and minimizes dispersion effects [2]. In practice, some

numerical dissipation is artificially introduced to avoid zero energy modes (shear modes).

Outer domain boundaries are treated using the silent boundary of Bayliss and Turkell [3]

Op/Ot = p c (OVn �Or - vn div Iv - vn n]) + c (p_-p)/2l c

where v is velocity vector, n normal vector at boundary, vn normal velocity, p_ pressure at infinity,

Ic characteristic length for low frequency filtering. Here p_= 0 and lc = _ •
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Forbothproblems(1& 2 of Category1),noslipconditionsareappliedat thesurfaceof thecircular
cylinder,andnodesonx-axis areconstrainediny to takeadvantageof thesymmetryof theproblem.The
meshusedfor bothproblemsisunstructuredandcontainsroughly112000elements,whosesizesrange
from h=0.01to 0.04,withmostof thembeingcloseto 0.025(correspondingtoanaverageof tenelements
perwavelengthinProblem1).As usualinexplicitmethods,timestepisgovernedby Courant'sstability
condition•

At < Min (h/c)

At=O.O1 is used in all the calculations presented here.

The above assumptions (formulation, mesh size, boundary conditions) were first evaluated for a

monodimensional acoustic problem described below.

PRELIMINARY TEST

A rectangle (Fig. 1) is loaded with white noise propagating horizontally. The length of the model is

L=2.5 whereas the height is H=0.25 ; the total number of elements of the mesh is roughly 1000, with

mesh size comparable to that in Problems 1 and 2. The purpose of this test is to evaluate the transfer

function resulting from the numerical algorithm and the spatial discretization of waves propagating over

100 elements.

Inlet and outlet velocity signals can be decomposed using Fourier's transform,

vi(t) = Y_covi(03) eJ(C°t-cpi)

Vo(t ) = Zoo f o(_) eJ(cot-Cpo)

and the transfer function error can then be displayed in terms of dissipation error ed and dispersion error

(phase velocity error) e_p [4]"

ed(o_) = 20 Log(_o/fi)

e_p(co) = (Cpo-(Pi )/kL -1

Results are presented in Figures 2 and 3. Spectra are averaged as usual when dealing with white noise.

The cut-off frequency of the model is close to frequency f=6 ; there is less than ldB attenuation and 3%

dispersion error for f=4. This shows that the mesh size chosen for the two problems presented hereafter

should be good enough. For these problems, waves will indeed propagate over roughly 200 elements and

2dB attenuation and 6% dispersion error can a priori be expected.

m
m
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PROBLEM 1.1

The transient simulation was run until convergence was obtained at time 30. Isocontours of pressure

(Fig.4) show an image of the waves propagating through the mesh. No major reflection can be observed at

the outer boundary of the domain. The size of computational domain and the behavior of the silent

boundary seem good enough for this problem. The visible interference patterns are however altered by

region of lower intensities, whose origin is unclear. There are strong indications though, that this problem

stems from the discretization of the source region. Contours of pressure near the source (Fig.5) clearly

show that the wave shape is influenced by the square nature of the mesh. A much finer mesh of this

region should improve the solution. Figure 6 compares the computed results with the reference data

provided by the Workshop Committee. It is noted that the reported results are at r=5, boundary of the

computational domain. This boundary is obviously too close to allow the numerical results there to

approximate the solution at infinity. An extrapolation could have been made using a Boundary Element

Method, which would be in conflict with the underlying purposes of this benchmark. Differences can be

observed between the computed and the reference results at r=5, in particular around 0= 120 ° ; this is

probably due to the source modelization problem mentioned above. Orders of magnitude are anyhow

relevant.

More work will be undertaken to improve the model of the source region and to evaluate the influence

of the size of computational domain and of the amount of numerically added dissipation.

PROBLEM 1.2

Figure 7 shows the comparison between computed results at three locations (0=90 °, 135 ° and 180 °)

and the reference data provided by the Workshop Committee. A reasonably good correlation can be

observed. Presence of higher frequencies and early arrival of first peaks can be noted. This appears

consistent with the positive error in terms of phase velocity, that was noticed in the preliminary test

(Fig.3). This defect is inherent to the central difference nature of space and time derivatives used in this

simulation.

CONCLUSION

This work shows a promising application of time domain simulations to acoustics. Main limitations lie

in the dispersive and to some extent diffusive character of the method at high frequencies. Investigations

should be undertaken on how to improve accuracy, specially for Problem 1 in Category 1, including

sensitivity to computational domain, mesh size and source modelization, as well as methods for

extrapolating results to region away from the mesh boundaries.
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Fig. 1 • 1D problem - Unstructured grid used in ID test
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ABSTRACT

Accurate numerical non-reflecting boundary condition is important in all the proposed bench-

mark problems of the Second Workshop. Recently, a new absorbing boundary condition has been

developed using Perfectly Matched Layer (PML) equations for the Euler equations. In this ap-

proach, a region with a width of a few grid points is introduced adjacent to the non-reflecting

boundaries. In the added region, Perfectly Matched Layer equations are constructed and applied

so that the out-going waves are absorbed inside the layer with little reflection to the interior do-

main. It will be demonstrated in the present paper that the proposed absorbing boundary condition

is quite general and versatile, applicable to radiation boundaries as well as inflow and outflow

boundaries. It is also easy to implement. The emphasis of the paper will be on the application

of the PML absorbing boundary condition to problems in Categories 1, 2, and 3. In Category

1, solutions of problems 1 and 2 are presented. Both problems are solved using a multi-domain

polar grid system. Perfectly Matched Layer equations for a circular boundary are constructed and

their effectiveness assessed. In Category 2, solutions of problem 2 are presented. Here, in addition

to the radiation boundary conditions at the far field in the axisymmetric coordinate system, the

inflow boundary condition at duct inlet is also dealt with using the proposed Perfectly Match Layer

equations. At the inlet, a PML domain is introduced in which the incident duct mode is simulated

while the waves reflected from the open end of the duct are absorbed at the same time. In Category

3, solutions of all three problems are presented. Again, the PML absorbing boundary condition is

used at the inflow boundary so that the incoming vorticity wave is simulated while the outgoing

acoustic waves are absorbed with very little numerical reflection. All the problems are solved

using central difference schemes for spatial discretizations and the optimized Low-Dissipation and

Low-Dispersion Runge-Kutta scheme for the time integration. Issues of numerical accuracy and

efficiency are also addressed.

1. INTRODUCTION

Recently, a new absorbing boundary condition has been developed using Perfectly Matched

Layer (PML) equations for the Euler equations 1'2'3. In this approach, a region with a width of a few

grid points is introduced adjacent to the non-reflecting boundaries. In the added region, Perfectly

119



MatchedLayer equationsare constructedand appliedso that the out-goingwavesare absorbed
inside thelayer with little reflectionto the interiordomain.Theemphasisof thepaperwill beon
theapplicationPML techniqueto theBenchmarkProblemsof theworkshop,asaccuratenumerical
non-reflectingboundarycondition is importantin all the proposedbenchmarkproblems. It will

be demonstratedthat the proposedabsorbingboundarycondition is quite generaland versatile,
applicableto radiationboundariesas well as inflow andoutflow boundaries.

We presentresultsof problemsin categoriesI, 2 and3 arepresentedin sections2, 3 and 4
respectively.Section5 containsthe conclusions.

2. CATEGORY1 -- PROBLEMS1 AND 2

In Problemsl and 2, scatteringof acousticwavesby a circularcylinder is to be computed
directly from thetime-dependentEulerequations.Tosimplify the implementationof boundarycon-
ditions on thesurfaceof thecylinder,a polarcoordinatesystemwill beused.In polarcoordinates
(r, 0), the linearized Euler equations are

Ou Op

0--_-+ _r. =0 (1.1)

Ov 10p
0---t-+ - 0 (1.2)r 00

Op Ou 10v u

0---t-+ _ + -tO-0 + -r = S'(r, 0, t) (1.3)

where p is the pressure, and u and v are the velocities in the r and 0 directions, respectively. The

circular cylinder has a radius of 0.5 and centered at r = 0. The computational domain is as shown

in Figure 1.

Equations (1.1)-(1.3) will be discretized by a hybrid of finite difference 4 and Fourier spectral

methods 5 and time integration will be carried out by a optimized Runge-Kutta scheme 6. In addition,

numerical non-reflecting, or absorbing, boundary condition is needed for grid termination at the

outer boundary. This is achieved by using the Perfectly Matched Layer technique ],2,3 in th present

paper.

In what follows, we will first discuss the spatial and temporal discretization schemes used in

solving (1.1)-(i.3). Then the absorbing boundary condition to be used at the far field is proposed

and its efficiency is investigated. These are followed by the numerical results of Problems 1 and

2 and their comparisons with the exact solution whenever possible.

2. l Discretization

2.1.1 Mesh

From numerical discretization point of view, it is convenient to use a mesh with fixed spacings

Ar and A0. However, such a mesh will not be desirable for the present problem for two reasons.
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First, the grid pointswill beoverconcentratednearthe cylinderwhile relativelysparseat thefar
field. Consequently,in orderto resolvethe wavesat the far field, it will result in a needlessly
densegrid distributionnearthecylinder.Secondly,andperhapsmoreimportantly,theoverlydense
meshnearthe cylinderwill reducethe CFL numberand thus leadto a very small time stepin
explicit time integrationschemessuchas the Runge-Kuttaschemes.

To increase the computational efficiency, a multi-domain polar grid system will be used, as

shown in Figure 2. In this system, the number of grid points in the 0 direction is different in

each sub-domains. For instances, suppose that the entire computational domain is divided into 3

sub-domains and that there are M points in the 0 direction of the inner most sub-domain, then

`50 will be taken as follows :

,50 = 2_______for 0.5 < r < rl (2.1)
M
27r

A0 = -- for rl <_ r < r2 (2.2)
2M
27r

,50 = -- for 7 2 '_ r ___ r3 (2.3)
4M

The Spacing in r, ,st, will be fixed for all sub-domains.

2.1.2 Spatial discretization

The spatial derivatives will be discretized using a hybrid of finite difference (in r direction)

and Fourier spectral (in 0 direction) methods on the grid system described above. In particular, a

7-point 4-th order central difference scheme (as in the DRP scheme 4) is used for the derivatives in

the 7"direction. For grid points near the computational boundary where a central difference can not

be applied, backward differences are used. For numerical stability with backward differences, a

11-point 10th order numerical filter is all applied in all the computations. The details are referred to

ref [2]. This is largely a straightforward process. However, at any interface of two sub-domains,

extra values are needed in the inner sub-domain for the stencils extended from the outer sub-

domain, as shown in Figure 3. These values are obtained by interpolation using Fourier expansion

of the inner sub-domain values 5.

2.1.3 Time integration

Time integration will be carried out using an optimized Low-Dissipation and Low-Dispersion

Runge-Kutta (LDDRK) scheme 6. The Runge-Kutta scheme is an explicit single-step multi-stage

time marching scheme. Let the time evolution equation, after the spatial discretization, be written

as

dU
= F(U, t) (3)

dt

where the right hand side is now time dependent when the forcing term is present. Then, a p-stage

scheme advances the solution from U n to U "+1 as follows :
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1. For i = 1,2, ...,p, compute (_31 = 0) •

Ki = AtF(U n +/3iKi-l, tn +/3iAt)

2. Then

U n+l = U n + Kp

The optimized coefficients ,3i are given in ref [6].

used in all the computations.

(4.1)

(4.2)

In pa_icular, the LDDRK 5-6 scheme is

2.2 Perfectly Matched Layer

At the far field boundary, non-reflective boundary condition is needed to terminate the grids.

In the present paper, we introduce a Perfectly Matched Layer around the outer boundary for this

purpose, so that the out-going waves are absorbed in the added Perfectly Matched Layer domain

while giving very little reflection to the interior domain.

The Perfectly Matched Layer equations to be used in the absorbing region will be constructed

by splitting the pressure p into two variables Pl and P2 and introducing the absorption coefficients.

This results in in a set of modified equations to be applied in the added absorbing layer. The

following PML equations are proposed :

Ou Op
O-t+ u = - 0--7 (5.l)
0_' I Op

0-t- = r O0 (5.2)

Opt Ou

0--7-+ a,.pt - Or (5.3)

Op2 10"t' u
- (5.4)

Ot r O0 r

in which p = Pt +P2 and or,- is the absorption coefficient. We note that when Or = 0, (5.1)-(5.4)

reduce to the Euler equations (1.1)-(1.3).

The above PML equations are easy to implement in finite difference schemes since the spatial

derivative in r involves only the total pressure p, which is available in both the interior and PML

domains. Thus the difference operator can be applied across the interface of the interior and

PML domains in a straight forward manner. Inside the PML domain, the value of o-,- is increased

gradually since a wide stencil has been used in the finite difference scheme. In particular, o-,- varies

as

T F o

a_ = crm (6)

where D is the thickness of the PML domain and ro is the location of the interface between the

interior and PML domain.
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2.3 Numerical results

2.3.1 Results of Problem 1

In Problem 1, a time periodic acoustic source is located at (r, 0) = (4, 0). The source term in

equation (1.3) is given as

S(r, 0, t) = sin(_t)e -0n 2)[(r cos 0-4)2+(r sin 0)2]/0.2 2

where :v = 87r.

For the results presented below, the grid spacing in radial direction is Ar = 0.03125 and the

mesh is terminated at rma:_ = 13.0. This results in 401 points in the r direction. The computational

domain of r x 0 = [0.5, 13] x [0, 27r] is divided into 3 sub-domains with the r range as [0.5, 1.5),

[1.5, 3) and [3, 13] respectively. The value of A0 in each sub-domain is as shown below •

27r
A0=-- for 0.5<r< 1.5

90

27r
A0=-- for 1.5 <r <3.0

180

27r
A0- for 3.0<r < 13.0

360 - -

This yields a mesh with 135480, or approximately 3512, total grid points.

The time integration is carried out by an optimized Low-Dissipation and Low-Dispersion

Runge-Kutta scheme as detailed in section 2.1.3. The time step is At = 0.02083.

A PML domain of 16 grid points in the radial direction is used around the outer boundary.

That is, the Euler equations (1.1)-(1.3) are used for 0.5 _< r < 12.5 and the PML equations

(5.1)-(5.4) are used for 12.5 < 'r < 13.0. ar varies as given in (6) with_mAr = 2 and fl = 2.

Figure 4 shows instantaneous pressure contours at t = 30. The resolution of the grid system

is about 8 points per wavelength. To assess the effectiveness of the absorbing boundary condition,

the pressure history was also monitored at a set of selected locations near the PML domain. Figure

5(a)-(c) plot the pressure as a function of time at r = 11.6875 and 0 = 0, 7r/2 and 7r, respectively.

It is seen that the pressure history first shows large initial transient generated by the startup of the

source term. However, after the transient has passed the monitoring points, time periodic responses

are observed. We point out that the periodic oscillations had much smaller magnitudes compared

with the transient and, yet, the time periodic state is established very quickly after the transient

signal. This indicates that the absorbing boundary condition is quite effective and the reflection is

indeed very small. The reflection error will be further quantified in problem 2.

The directivity pattern of the acoustic field is shown in Figure 6 where/72 was computed as

fi2 1 [to+r= pZdt
T Jr o

where to = 25 and T = I has been used, which includesfour periods.Also shown in Figure 6 is

the exact solutionin dotted line.Excellentagreement isobserved.
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2.3.2 Results of Problem 2

In problem 2, the source term in (1.3) is not present, i.e. S(r, 0, t) = 0, and the acoustic field

is initialized with a pressure pulse given as

p = e -(ln2)[(rc°sO-4)2+(rsinO)2]/0,22, It = u = 0

For the results presented below, Ar = 0.05 and the mesh is truncated at rma_ = 8.5. Thus the

number of grid points in the r direction is 161. Again, the computational domain is divided into

three sub-domains and the values of A0 are

A0=--27r for 0.5<r< 1.5
64

27r
A0=-- for 1.5<r<3.0

128

27r
A0=-- for 3.0<r<8.5

256

This yields a mesh with 33536, or approximately 1832, total grid points. Time step is At = 0.03125.

Figure 7 shows the instantaneous pressure contours at select times. The out-going waves are

absorbed in the PML domain giving no visible reflection to the interior domain. A PML domain

of l0 points in the radial direction is used for this problem. Thus the domain where the PML

equations are applied is for 8 < r _< 8.5. Pressure responses at three chosen locations are shown

in Figure 8.

To further quantify the numerical reflection error at the artificial boundary, the current solution

is compared with a reference solution. The reference solution is computed using a larger com-

putational domain so that its solution is not affected by the grid truncation. The differences of

the computed solutions using PML domains and the reference solution are plotted in Figure 9.

We observe that, first, the reflection errors are small when PML domains of 10 or more points

are used. Second, the reflection errors, however, does not show order-of-magnitude improvements

as the thickness of PML domain increases. This is a different behavior as compared to that of

Cartesian PML equations 1,2,3.

3. CATEGORY 2 -- PROBLEM 2

In this problem, CAA technique is applied to compute sound radiation from a circular duct

(Figure 10). The progressive duct wave mode is specified at the duct inlet and the radiated sound

field is to be calculated. In particular, sound directivity pattern and pressure envelope inside the duct

are to be determined. For the given problem, the duct mode has been chosen to be axisymmetric.

In cylindrical coordinates (m, r, 0), the Linearized Euler Equations for the axisymmetric dis-

turbances are

Ou Op

O----t+ _m = 0 (7.1)
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Ov Op

0--t-+ Or = 0 (7.2)

Op Ou 0;, v
0--t-+ _x + _ + -r = 0 (7.3)

where p is the pressure, u and v are the velocities in the x and r directions respectively.

As in the previous section, the spatial derivatives will be discretized by the 7-point 4th-order

central difference scheme and the time integration will be carried out by the LDDRK 5-6 scheme.

These are the same as those used for the First Workshop Problems, ref [7], including the solid

wall and centerline treatments. The emphasis of this section will be on the implementation of the

non-reflective boundaries in the current problem.

There are two types of non-reflective boundaries encountered in the present problem, as shown

in Figure 10. One is the far field non-reflecting boundary condition for the termination of grids.

The numerical boundary condition should be such that the out-going waves are not reflected. The

second type is the inflow boundary condition at the duct inlet. At the inlet of the duct, we wish

to feed-in the progressive duct mode and at the same time absorb the waves reflected from the

open end of the duct. In the present paper, both types of non-reflective boundary conditions are

implemented using the Perfectly Matched Layer technique. The details are given below.

3.1 PML absorbing boundary condition

To absorb the out-going waves, we introduce a PML domain around the outer boundary of

the computational domain, similar to that used in the previous section only that the form of PML

equations will be different. For the linearized Euler equations (7.1)-(7.3) in cylindrical coordinates,

we proposed the following PML equations :

Op
-- + (rxU - (8.1)
Ot Ox

Ov Op
-- + o'_-v = --- (8.2)
Ot Or

Opl Ou
-- + crxpl - (8.3)
Ot Ox

Op2 Ov v
-- + O'rP2 - (8.4)
Ot Or r

where p = Pl +P2 and the absorption coefficients crx and err have been introduced for absorbing the

waves that enter the PML domain, The above form follows the PML equations for the Cartesian

coordinates given in refs [1, 2]. Here we need only to split the pressure since no mean flow is

present. We note that, the Euler equations (7.1)-(7.3) can be recovered from the PML equations

(8.1)-(8.4) with crx = err = 0 by adding the split equations. Consequently, the interior domain

where the Euler equations are applied is regarded as absorption coefficients being zero.

The absorption coefficients ax and or,. are matched in a special way, namely, a_: will remain

the same across a horizontal interface and o'r will remain the same across a vertical interface, as
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shownin Figure 11anddescribedin detail in ref [1, 2]. Within the PML domain,crx or or,. are

increased gradually as discussed in the previous section.

3.2 Infow Boundary Condition

At the inlet of the duct, we wish to feed-in the progressive duct modes and at the same time

absorb the waves reflected from the open end of the duct, as shown in Figure 12. For this purpose,

a PML domain is also introduced at the inlet. In this region, referred to as the inflow-PML domain,

we treat the solution as a summation of the incoming and out-going waves and apply the PML

equations (8.1)-(8.4) to the out-going part. That is, we express and store the variables as

= Vin + Y l (9)

Pin pt

in which Uin , vin, and Pin are the "incoming wave", traveling to the right, and u t, v I, and pt are

the "out-going" wave, reflected from the open end and traveling to the left. Since the incoming

wave satisfies the linearized Euler equation, it follows that the out-going reflected wave will also

satisfy (7.1)-(7.3). To absorb the "out-going" part in the inflow-PML domain, we apply the PML

equations (8.1)-(8.4) to the reflected waves. This results in following equations for u t, v t and pt :

OU t Op OPin

O---t_+ O'xUI - Ox Ox (10.1)

Or� Op OPin

0--{ + a_vt - 0'I" Or (10.2)

Op', Ou Ou
Ot- + crxp_l - Ox Ox (10.3)

Op_2 t O'O OVin 1) Yin

Ot + arP2 - Or Or + (10.4)f r

where pt = p] +p_ and u, v, p are those given in (9). Since the inflow-PML domain involves only

a vertical interface between the interior and PML domains, it results in a,. = 0 in (10.1)-(10.4).

The right hand sides of (10.1)-(10.4) have been written in such a way that they can be readily

evaluated in finite difference schemes. In particular, we note that, first, since the incoming wave

is known, there should be no difficulty in computing their spatial derivatives. Second, the other

spatial spatial derivative terms inyolve only the total u, v and p which are available in the interior

domain as well as the inflow-PML domain by using (9).

3.3 Numerical Results

For the results given below, the computational domain is x x r = [-9, 9] x [0,9] in the

cylindrical coordinate system. The duct centerline is at r = 0 and the radius of the duct is unity.

The open end of the duct is located at x = 0. For both the low and high frequency cases, we have

used a uniform grid with &c = Ar = 0.05. This results in a 361 x 181 grid system. The time step

that ensures both accuracy and stability is At = 0.0545 in the LDDRK 5-6 scheme.
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To absorbthe out-goingwavesat thefar field, PML domainswith a width of 10 grid points

are used around the outer boundaries of the computational domain. In addition, an inflow-PML

domain is employed at the duct inlet with the same width as in the far field.

Figure 13 shows the instantaneous pressure contours at t = 87.2 and w = 7.2 (low frequency

case). It is seen that the waves decay rapidly in the PML domain. As in the previous section, the

pressure as a function of time is monitored at a set of chosen points. Figure 14 shows the pressure

histories at two points near the interior-PML interfaces (x, r) = (8, 0), (0, 8), and two points inside

the duct (x, r) = (-2, 0), (-4.5, 0). We observe that, while the pressure responses at the far field

quickly become time periodic after the initial transients have passed, it takes a longer time for the

pressure inside the duct to reach the periodic state. This is believed to be due to the reflection

of the transient at the open end of the duct which has to be absorbed by the inflow-PML domain

before a periodic state can be established.

Numerical reflection error has also been assessed by comparing the computed solution using

PML absorbing boundary condition to a reference solution using a larger computational domain.

The maximum difference of the two solutions around the outer boundaries is plotted in Figure 15

for n = 10 and 20 where n is the width of the PML domain used. It is seen that satisfactory results

are obtainable with a width of 10 points and the reflection error is further reduced significantly

by increase the width of the PML domain.

Figure 16 shows the directivity pattern of the radiated sound field. The envelopes of the

pressure distribution inside the duct are given in Figure 17. Results for the high frequency case,

_o = 10.3, are shown in Figures 18-21.

4. CATEGORY 3

In this category, CAA technique is applied to a turbomachinery problem in which the sound

field generated by a gust passing through a cascade of flat plates is to be computed directly from

the time-dependent Euler equations :

0-_+ Ox+_x =0 (11.1)

&, MaY Op
O-t + Ox + _ = 0 (! 1.2)

Op _xx Ou Ovo +M (11.3)

where M is the Mach number of the mean flow. In the above, the velocities have been non-

dimensionalized by the speed of sound ao and pressure by poa2o where Po is the density scale.

The problem configuration is as shown in Figure 22. In non-dimensional scales, the chord length

and the gap-to-chord ratio are both unity. In addition, periodicity is assumed for the top and

bottom boundaries. A uniform mean flow is present which has a Mach number of 0.5. The
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incident vortical gust is given as

ui,_ - cos(c_x + fly - wt) (12.1)
Og

vin = Vg cos(a'x + _3y - wt) (12.2)

Pi,_ = 0 (i2.3)

where 1,_ = 0.005.

In all three problems posed in this category, the sound field scattered by the plates as well as

the loadings on the plates are to be determined. In Problem 1, the solutions are to be calculated

by using a frozen gust assumption. In problem 2, the convected gust is to be simulated together

with the scattered sound field. In prob|em 3, a sliding interface is introduced and the grids down

stream of the interface are moving vertically with a given speed _. Problems in this category

include several important and challenging issues in developing CAA techniques, such as the inflow

and out flow conditions, solid boundaries and moving zones. In the present paper, the inflow and

outflow conditions are implemented by the PML technique. The details of the boundary conditions

as well as the sliding zone treatments are described below.

4.1 Outflow condition

At the downstream outflow boundary, the out-going waves consist of the acoustic waves scat-

tered from the plates and the vorticity waves convected by the mean flow. To absorbed these waves

with as little reflection as possible, a PML domain is used at the outflow boundary. For the linear

Euler equations (11.1)-(11.3) with a uniform mean flow in the x direction, the following equations

are applied in the added PML domain :

Ou Ou Op
-- + ax u = -M (13.1)
Ot Ox Ox

Ovl Op
- (13.2)

Ot Oy

0v___22+ crz v2 = -M cjp (13.3)
Ot Ox

Opl O,v Ou
-M --_" + -- (13.4)

O---t-+ ax p, = Ox Ox

Op2 Ov
__ = _w (13.5)
Ot Oy

where v and p have been split into vt, '/;2 and Pl, P2, i.e., v = vl + v2 and p = Pl + P2. Note

that, since now the top and bottom boundaries are periodic, only one absorption coefficient, crx,

is needed. In addition, the u velocity may not be split. For the Cartesian coordinates, it has been

shown that the PML domain so constructed is reflectionless for all the linear waves supported by

the Euler equations and the waves that enter the PML domain decay exponentially. The details

are referred to ref. [1, 2].
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4.2 Inflow condition

At the inflow, two types of waves co-exist, namely, the downstream propagating vorticity waves

(the gust) and the upstream propagating acoustic waves (scattered from the plates). A successful

inflow condition should simulate the downstream connection of the vorticity waves and at the same

time be non-reflective for the upstream acoustic waves. As in the previous section (category 2),

the inflow condition is implemented by introducing a PML domain at the inflow boundary. In

the inflow-PML domain, the variables u, v and p are expressed and stored as a summation of the

"incoming" vorticity wave and "out-going" acoustic waves as those given in (9). The incoming

wave _tin, vin and Pin is as given in (12.1)-(12.3). The PML equations (13.1)-(13.5) are then

applied to the "out-going" waves u t, v _ and p'. Thus, in the inflow-PML domain, we solve

Out u I - Af Ozt OR Ou in Opi________n ( 14.1 )
O-Y,+ _r_ = O:r Ox + AI _ + Ox

0_, I Op OPin
- -- + -- (14.2)

Ot Oy Oy

Ot- + o'x v_ = -M + M (14.3)

Op_ _ Ou Oui,, (14.4)

Op'z Ov OVin
- + (14.5)

Ot Oy Oy

Again, the right hand sides have been written in a way that the spatial derivatives can be readily

evaluated in finite difference schemes. The implementation of above is similar to that in section

3.2.

4.3 Sliding Zone Treatments

In problem 3, a sliding interface is added to the computational domain and the grids down-

stream of the sliding interface is moving vertically with a speed _,_, Figure 23. That is, after each

time step, the grids in the sliding zone advance vertically by l,sAt. Due to this movement, the

grids in the two zones are not necessary aligned in the horizontal direction. This will obviously

give rise to difficulties in finite difference schemes when the stencils extend across the interface.

Extra grid points are created as shown in Figure 24. In the present paper, values of variables on

these points are obtained by interpolation using Fourier expansions in the vertical direction. For

instance, let the values of pressure p on the regular grids be denoted as pOAx, kay). Then the

values of p on a point (jA.r, y), not on a regular grid point, will be computed as

p(jA:r, y) =

X/2-

n=-N/2
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where /3),_ is the Fourier transform of p(jAx, kAy) in the y direction and N is the number of

grid points (N = L/Ay). The Fourier expansions are implemented efficiently using FFT. It is

well known that Fourier interpolation is highly accurate, better than any polynomial interpolations.

Indeed, we found that, using Fourier interpolation, the results with sliding zone (Problem 3) are

virtually identical to those without a sliding interface (Problem 2).

4.4 Numerical Results

Since solutions of all three problems in this category are similar, we will concentrate on nu-

merical results of Problem 2 in particular and present the results of Problems 1 and 3 as references.

4.4.1 Effectiveness of the inflow-PML boundary condition

We first demonstrate the validity and effectiveness of the inflow-PML boundary condition

described in section 4.2 by a numerical example plane wave simulation. In this example, a plane

vorticity wave, convecting with the mean flow, will be simulated. The computational domain is

the same as that of problem 2 except that now no plate is present. The flow field is initialized as

follows •

At t=0 •

Vg; 
_L- cos(crx + fly - _,t)H(x + 1)

O:

v = k 9 cos(c_x + t3y - _,t)H(x + 1)

p=O

where H(x) is a step function which has a value of zero for x > 0 and unity for x < 0.

Figure 25 shows instantaneous pressure contours at the initial state t = 0 and subsequent

moments at t = 4.8 and 14.4. The inflow-PML domain described in 4.2 is applied at the inflow

boundary. It is seen that a plane vorticity wave is established. Figure 26 shows the v-velocity

and pressure as functions of time at a point (x, y) = (-2, 0). Notice that while the velocity is

periodic, the pressure is not exactly zero as a plane vorticity wave should behave. This is due to

our initial flow field being not exact along the cut-off line x = -l which generates small pressure

waves. Although these pressure waves are eventually absorbed by the PML domains at both the

inflow and out-flow boundaries, the decay of the pressure is slow due to periodicity of the top and

bottom boundaries. However, the magnitude of these pressure waves is small as shown in Figure

25.

Simulation of a plane acoustic wave has also been performed with similar results.

4.4.2 Low frequency gust

For the low frequency case, oJ = 57r/4, _ = /3 = 57r/2. The computational domain is

[-3.5, 4.5] x [0, 4]. A uniform grid with Ax = Ay = 0.05 is used and time step used is At = 0.044.

The PML domains contain 20 points in the x-direction. Thus the interior domain in which the

Euler equations are applied is [-2.5, 3.5] x [0,4]. Figure 27 shows the instantaneous pressure
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and u-velocity contours. In the velocity contours, also visible is the trailing vorticity waves from

the plates due to numerical viscosity in the finite difference scheme. The pressure intensity along

.r = -2 and :r = 3 are shown in Figure 28, along with the results of Problems I and _. Close

agreement is found. Especially, results of Problems 2 and 3 are identical.

4.4.3 High frequency gust

For the high frequency case, _ = 137r/4, c_ = _ = I37r/2. The computational domain is

[-3.5,4.5] x [0,4] and At'= Ay = 0.03125. Time step At =0.028.

Pressure and e-velocity contours are shown in Figure 29. We point out that it appears that

the out-going waves are not absorbed as efficientl_, as in the low frequency case as they enter

the out-flow PML domain. However, the waves reflected from the end of the PML domain are

absorbed more effectively so the solutions in the interior domain are not affected. Results for

sound intensity are shown in Figure 30.

5. CONCLUSIONS

Problems in Categories l, 2 and 3 have been solved by a finite difference method. Numerical

schemes have been optimized for accuracy and efficiency. Perfectly Matched Layer technique for

Euler equations have been successfully applied to all the problems as a general treatment for non-

reflecting boundaries. It is demonstrated that the proposed PML technique is applicable to radiation

boundaries as well as out-flow and inflow boundaries and can be effective for non-Cartesian grids.

The accuracy and efficiency of the PML absorl_ing boundary conditions are also addressed.
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Figure 5a. Pressure as a function of time at r = 11.6875, 0 = 0.

0.0005

0.0004

0.0003

0.0002

0.0001
o.o

-0.0001
-0.0002

-0.0003

-0.0004

-0.0005

1 .e-05

m m

0 5 10 15 20 25

5.e-06

o
-5.e-06

-l.e-05 ' ' ' ' ' ' ' ' - ' ' ' ' ' ' '
25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0

Time

Figure 5b. Pressure as a function of time at r = 11.6875, 0 = 7r/2.

135



0.0005

0.0004

0.0003

0.0002

0.0001
0.0

_._ -0.0001
-0.0002

-0.0003

-0.0004

-0.0005

k--
i , I , I , l I

0 5 10 15 20 25

r_

I.e-05

I5.e-06

0.0'

-5.e-06

-l.e-05 ' ' ' ', ' .... _ ' ' , _ , ' ,
25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0

Time

Figure 5c. Pressure as a function of time at r = 11.6875, 0 = 7r

3.e-10

2.5e-i0

2.e-lO

1.e-lO

5.e-ll

0.0
90 i00 ii0 120 130 140 150 160 170 180

0

Figure 6. Directivity computed at r = 11.6875. computed, - - - - exact.

136



-5

5

0

i
i

-5 0 5

Figure 7a.

I 1 i i i

10 15

0

-5

i

i

Figure 7b.

-5 0 5 10 15

137



-5

Figure 7c

-5

-5 0 5

...............................iiiii.......

/J

10 15

Figure 7d.

-5 0 5 10 15

Figure 7 Instantaneous Pressure contours. Problem 2. (a) t = 3; (b) t = 5; (c) t = 7; (d) t = 9.

138



008

006

0,04

i 0.02

O,., 0.0

.002

-0,04

,. , ,60 6 5 7.0 7.5 8.0 8.5 9.0 9.5 I0.0

0,08

0,06

0,04

0.02

0.0

-0.02

-0.04

6.0

i
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

13,

0.08

0.o6

0.04

0.02

0.0

-0.02

-0.04

6.0 6 5 7.0 7.5 8.0 8.5 9.0 9 10.0

time

Figure 8. Pressure history at three chosen locations, r = 5.

o= 90°

8= 135°

0= 180°

10"

=_
"_ I0'

8

10

I(}
(I

..... n=10

....... n=20

n=30

I_ _,,/. .

f /"

i i

2 4 6 8 10 12 14 16

Time

Figure 9. Maximum umerical reflection error as compared to a reference solution. The reference

solution is obtained using a larger computational domain. Indicated are the width of PML domain.

139



Figure 10. Schematic of

domains are introduced at

_[ PML

I

I

v=O

__

r

e_

the computational domain for Category 2, Problem 2. PML absorbing

the far field, as well as an inflow-PML domain at the inlet.

q)'r_:O

(rx4 0

C;r= 0

_=o %¢o

_x=or =o

%¢o
ar¢O

ax¢O

Or=O

rp

Xp

Figure 1 I. Schematic of absorbing coefficients in the interior and PML domains.

///////M/////////_,
i

', out-going

|

i

,, incoming

PML

///

Figure 12. At the duct inlet, incoming and out-going waves co-exist. An inflow-PML domain is

introduced inside the duct at the inlet to absorb the out-going wave only.

140



i /

-8 -6 -4 -2 0 2 4 6 8

X

Figure 13. Pressure contours at t = 87.2, _ = 7.2.

0,02

0,015

0.01

0.005
0.0

-0.005

-0.01
-0.015

-0.02
0

I i i , 1 , b i i

20 40 60 80 100 120 140

(a)

0,02

0.015
0.01

0.005

0,0
-0.005

-0.01

-0.015
-0.02 , / I , I , , I I , I

20 40 60 80 100 120 140

(b)

2.0 , ,

1.5

0 20 40 60 80 100 1 0 140

(c)

2,0

1.5 __t1/t i

1.0

0.5
0.0

-0.5

-1.0

-1.5
-2.0

0 20

I I I I

40 60 80 100 120 140

(d)
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W. M. Keck Foundation Laboratory for Computational Fluid Dynamics,

Department of Aerospace Engineering, University of Michigan, Ann Arbor MI
48109-2118.

INTRODUCTION

Upwind leapfrog schemes were devised by Iserles [1] for the one-dimensional linear

advection equation and the second-order version was extended to multidimensional

linear wave systems by Roe and Thomas [2,3] using bicharacteristic theory.

Fourth-order versions on square grids were presented by Thomas [4] and Nguyen [5] for

acoustics and electromagnetic waves respectively. In the present paper we describe

experience implementing the second- and fourth-order methods on polar grids for two

of the workshop test cases.

THE SECOND-ORDER ALGORITHM

In polar coordinates (r, 0, t) with velocity components u, v the acoustic equations in

dimensionless form are

1 u
Pt + Ur Jr- -vo -t- -- = 0, (1)

r r

u,+p_ = 0, (2)
1

v_+-po = 0. (3)
r

Bicharacteristic versions of these equation, describing respectively radial and

circumferential wave propagation,are

(O,+O,)(p±u)+ a-00v = -_- (4)
r r

(o,4-LOo)(p4-v)+ o,_, - u (5)
I" 7"

Compared with their Cartesian counterparts, these equations have 'source terms' on

the right-hand-side, which require careful treatment to avoid exciting long-term

instabilities, as noted in [2,3].
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1 + 3 +

4

(a) (b)

Figure 1" Basic second-order stencils for waves running in the +r and +0 directions.

Quantities u, p are stored at the black grid points and v, p at the white ones.

Tile basic philosophy of the method is to discretize each bicharacteristic equation by

using points that cluster as closely as possible around the plane wave that it describes,

as shown in Fig 1. This also motivates the use of staggered storage. To discretize the

equation (4 +) on the stencil of Fig l(a), the time derivative of u, for example, is taken

as the average of the two differences

_I+ -- _gl -[-U2 -- 7A2-

2At

The spatial derivatives are evaluated in the only possible way, and the 'source term' is

evaluated in a way that was found to eliminate instability in [2,3] as

ill+ Bt- t/2-

T1 @ T2

The equations for circumferential wave motion are treated analogously, except that no

special treatment of the source term is required.

We offer tile following comments on this discretization

• Because the weightings are equal for points symmetrically disposed with respect

to the centroid of the stencil, the discretization is time-reversible and has

even-order accuracy. In this simple case the accuracy is second-order.

• For every mesh point, two variables are stored, and two bicharacteristic equations

are available. The scheme is therefore explicit. It is found to be stable up to a

Courant number of 0.5.

• The scheme can be applied directly at computational boundaries. The equation

describing any wave entering the domain at the boundary is unavailable, but is

simply replaced by the appropriate boundary condition. A point on the outer

boundary is updated by any outgoing wave, but there are no incoming waves.
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• Becausethe discretization connectsthree time levels thereexist, as with all
leapfrogschemes,spurious (non-physical) solutions.

• Becausethe pressureis stored twice, there is a possibleerror mode in which the
pressuresstored at the black and white meshpoints becomeuncoupled.

• It is an easyconsequenceof the governingequationsthat the vorticity shouldnot
changewith time. However,this is not enforcedby the discretization, so another
spuriousmode may appearthat is linked to vorticity.

The first three of thesepropertiesare desirable;the last three constitute potential

problems.

Like any other leapfrog method, we need a special starting procedure for the first time

step. This is important, because errors generated at that moment can be inherited by

all later times. At present, however, we use a very crude starting procedure. We p,Lt

u 1 = u °, and then advance to u 2 with one half of the regular timestep. It is easy to

show that this effectively advances u ° to u 2 with the regular timestep according to a

first-order upwind scheme.

THE FOURTH-ORDER ALGORITHM

Construction of this is straightforward in principle. Each of the quantities appearing in

the second-order scheme can be replaced by its Taylor expansion (with respect to the

centroid of the stencil) to give the equivalent equation of the scheme. The higher

derivatives that appear can be regarded as error terms and are mixtures of space and

time derivatives. The time derivatives are due to expansions like

h2 __ k2u,+ - _1 + u_ - u_- = 0,_, + -gO_,u + O_u_ + --ffO,,u + O(h _ k4).2At

from which the terms involving time can be eliminated, in the spirit of Lax-Wendroff

methods, by using the governing equations to convert time derivatives to space

derivatives..The outcome is an estimate of the truncation error entirely in terms of

space derivatives. Evaluating these merely to second order is enough to eliminate the

errors, because they come already multiplied by second-order factors. If the error

terms are kept in a form that preserves the symmetry with respect to the centroid of

the stencil, it is guaranteed that no third-order terms will be introduced. The resulting

scheme will be fourth-order, time-reversible, and fully discrete. All of the above

algebraic manipulations can be carried out using symbolic manipulation, and the

neccessary FORTRAN expressions can be generated in the same way.
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Unfortunately the resulting schememay not be stable;numerical experimentsindicate
that instability is usually encountered,although it may bevery mild and may not b}
apparentuntil after severalhundred time steps. Becausethe schemesare
time-reversible,the instability alwaystakesthe form of a bifurcation wheretwo
neutrally stable modessplit into onestable modeand one unstablemode. In the
languageof Fourier analysis,the complexamplification factors moveoff the unit circle.
In fact a Fourier analysiswill revealeight1modes,eachof which has an amplificatloa
factor dependingon a vector wavenumberk, on the (possibly unequal) mesh spacings,

on the Courant number, and on the magnitude of the source term (assumed locally

constant). Three of the eight modes are physical, corresponding to acoustic waves

travelling in one of two directions plus a stationary vorticity mode. The other five are

spurious modes which may be excited by boundary conditions, or starting errors, or by

rounding error.

There seems to be no analytical method for checking stability, and no simplifying

assumptions that are useful (for example, the bifurcations do not always begin at the

highest wavenumbers). Therefore we have had to resort to a numerical search in the

parameter space. One fact that influences stability is that the discretizations available

to remove the second-order errors are far from unique. A term like &rrU can be

performed using a single row of radial points or by averaging over more than one row

(this situation is familiar in other contexts; for example there are, in higher dimensions,

families of Lax-Wendroff schemes sharing the same stencil). We had hoped by trial and

error, or inspired insight, to find the correct choices that lead to stable schemes. So far

this has not happened, and we have had to introduce smoothing operators.

1

SMOOTHING OPERATORS

An ideal smoothing operator is one that attacks only the spurious modes, leaving the

physical modes untouched. To accomplish this rigorously would require a

decomposition of the numerical solution into its eigenmodes, and that would be very

expensive. However, intuitive reasons were given above for supposing that the method

might support spurious modes involving either pressure decoupling or vorticity. We do

not in fact find modes exhibiting either type of behaviour in a pure form, but damping

out such behaviour does have a powerful effect on the spurious modes. It is simple to

do this by focussing on the control volumes shown in Fig 2. In control volume D

pressure decoupling is detected by comparing the average pressures along each

diagonal. The high pair are adjusted dowrtward, and vice versa. Every pressure value

takes part in four such comparisons, and the net effect can be shown to be a

fourth-order adjustment that does not damage the formal accuracy of the scheme. In

control volume V the vorticity co can be evaluated. If it turns out to be positive (as

iThere are four unknowns in two dimensions; the two velocity components and the pressure eoun_,ed

twice. Recognizing that the variables stored at odd and even time levels are independent gives eight.
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Figure 2: Control volumesfor detecting pressuredecouplingand vorticity modes.

shown) then small equal correctionsare madeto eachof the four velocitiesso asto
reduceit. The effectof this canbe describedby the partial differential equation

0try = e curlaS,

which has no effect on the divergence, but applies a Laplacian smoothing to the

vorticity. Since the vorticity is anyway zero to truncation error, there is again no harm

to the accuracy of the scheme. An analysis of this form of dissipation can be found in

[6].

It has proved possible to determine the coefficients of these smoothing operators by

performing the Fourier analysis numerically on Cartesian grids, but at the present time

none of our analysis is systematic enough to justify recommending any universal values.

GRID REFINEMENT

We decided to attempt some of the workshop problems involving diffraction around a

cylinder, and to employ a polar grid for the purpose. This would simplify the surface

boundary conditions, and also be the first implementation of the upwind leapfrog

methods on a non-Cartesian grid. There were no problems with maintaining accuracy,

but the appearance of source terms, accompanied by slight uncertainty how best to

discretize them, triggered weak instabilities that had to be removed by the smoothing

operators just described,

There is a geometric problem, however, inevitably associated with trying to use polar

grids on large domains. If we employ uniform intervals At, A0 on a domain

rl _< r _< r2, then the aspect ratio of the cells will change by a factor r2/rl and so the

grid will contain cells whose aspect ratio is at least _-2/rl. These high-aspect-ratio
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Figure 3: A typical (but rather coarse) grid (At = _).

cells significantly degraded both the accuracy and, in some cases, the stability of the
code.

Therefore we divided the grid into three subgrids (as in Fig 3) so that in each outer

grid there ,,,,'ere three times as many radial lines as in the inner grid. This meant that

for some grid points on an interface we lack the information required to provide the

update due to the outgoing wave. This was determined simply by constructing two

rings of 'ghost points' inside the interface and interpolating onto them with cubic

polynomials. This worked very straightforwardly and gives good reason to hope that

automatic adaptive mesh refnement (AMR) could be easily incorporated into the
method at some future time.

BOUNDARY CONDITIONS

For the inner (cylinder) boundary, we again created two rings of ghost points, this time

inside the cylinder surface. We extrapolated radially onto these points assuming thaL

u_ = 0 and &p = 0 at the surface. Although we realise that the second of these

conditions is only justified for uo = 0, the results that we obtain appear to be

fourth-order accurate away from the surface (see below).

At the outer boundary, the second-order method comes equipped with a default

boundary condition, as mentioned above. Simply doing nothing special at the outer

boundary means that no update is received from incoming waves, but the outgoing

wave is updated by the outgoing radial bicharacteristic equation. It can be shown that

this is effectively Tam's second boundary condition.
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Figure 4: The mean square pressure rip2[ at r = 15.0 for problem 1. The dashed line is

the exact solution and the solid line is the numerical prediction on a grid with 10 points

per wavelength (Ar = _0)"

RESULTS

CATEGORY 1, PROBLEM 1. We obtained results for this problem using grids

defined radially by 8 and 10 grid points per wavelength. Using 8 points did not se_m

to be enough and we present only our results with 10 points. This translates to

Ar = 426. The frequency is w = 87r and the solution is given in Figure 4 for r = 15.0.

The computational domain was 0.5 < r < 16.0. The directivity pattern seems to be

very well predicted, but the amplitude is less satisfactory. Partly we attribute this to

the effect of the small damping terms we had to introduce to cure instability due to the

source terms arising from the non-Cartesian grid. It is possible that dealing with this

more systematically would improve the agreement. We estimate that a calculation with

12 points per wavelength would be much better, but with our code still undergoing

modification as the deadline approaches, we have not yet been able to perform such a

calculation. There is moreover the possibility that we have some interference due to

spurious reflections from the computational boundary. In the future we hope to

implement some of the ideas described at this meeting by Radvogln and by Goodrich.

CATEGORY 1, PROBLEM 2. This problem is distinctly easier and we are able to

make a fairly thorough comparison of results from different schemes on different grids.

Figure 5 shows a snapshot of the pressure at t = 6.0, according to the fourth-order

scheme with Ar = 1 The main purpose of including this is to show that no wave20"

reflections are visible from the grid refinement lines at r = 2.0 and r = 6.0. Next w_: •

give time histories of the pressure at the points A,B,C. First we show results from the

second-order scheme for grid sizes Ar - 1 1 1 The heavy dashed line is the 'exact'24 _ 32 _ 40"

solution, and it can be seen that not even on the finest grid is there really close
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Figure 5: Pressure contours at t = 6.0 for Problem 2.

agreement. By contrast, Fig 7 shows results from the fourth-order method on grids

with Ar = 12,1lS,1 24"1Although the grid with Ar = _ produces noticeable precursor

oscillations, the results with Ar = _ are difficult to distinguish from the exact

solution, and those with Ar = _ match it to plotting accuracy.

To confirm that these results do in fact have the formal accuracy that we expect, we

have plotted the pressure at one particular place and time versus the second or fourth

power of the mesh size. Such a plot should of course yield a straight line whose

intercept at h = 0 is the "deferred approach to the limit", our best numerical estimate
of the exact solution.

In Fig 8 results from the second-order scheme for point A at the time of arrival

(t = 6.7) of the first pressure minimum are plotted on the left against Ar 2 for

1/Ar = 20(4)40. The cross on the vertical axis is the 'exact' solution; clearly the

numerical solution is converging to something not far from this, but a precise estimate

would be hard to give. On the right we plot results from the fourth-order scheme

against Ar 4 for 1�At = 14(2)26. As we would hope, the errors are very much lower,

and there is now no doubt that a grid-converged solution would be very close indeed to
the exact one.

Because the first minimum comes from the wave directly transmitted to A it gives no

information about how well the reflections are treated. Therefore in Fig 9 the exercise

is repeated for the second pressure minimum (at t = 8.6) at point A. Again the

fourth-order results are much more accurate and convincing. They seem to be headed

rather precisely for the exact solution. Any tiny dicrepancy might be due to small

errors in the 'exact' calculation, or to errors in the code. We concede above that

neither our starting procedure nor our surface boundary condition is beyond reproach,

but the effect of these appear to be so small numerically that the code behaves for all

practical purposes 'as if' it were fourth-order accurate.
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CONCLUSIONS

_Te have presented a progress report giving the outcome of applying to two of the

Workshop problems a fourth-order version of the upwind leapfrog method. The

exercise has proved very useful in developing the method and we are grateful to the

organisers for providing test cases that were originally just beyond our reach, together

with independent solutions against which to measure our progress.

We feel encouraged by the outcome, especially by our results for Problem 2 where a

careful analysis of the error is possible. We find that the fourth-order method is a very

substantial improvement beyond the second-order version and amply repays the

additional costs. Tile ability to implement the scheme on non-Cartesian grids with

local refinement is a new and valuable feature to which we have been impelled by our

efforts to solve the workshop problems. However, we have much to do to make the

scheme more systematic, and we hope eventually to eliminate the need for smoothing

operators with arbitrary coefficients. Current work aims to develop the schemes not

only for acoustic and electromagnetic problems, but for linear elastodynamics also. We

hope to achieve a general methodology, first for long-range linear wave propagation,

and eventually for weakly non-linear waves also.
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LEAST-SQUARES SPECTRAL ELEMENT SOLUTIONS
THE CAA WORKSHOP BENCHMARK PROBLEMS
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ABSTRACT

TO

o4'3 e--/-7 z/-

This paper presents computed results for some of the CAA benchmark problems via the acoustic
solver developed at Rocketdyne CFD Technology Center under the corporate agreement between Boeing
North American, Inc. and NASA for the Aerospace Industry Technology Program. The calculations are
considered as benchmark testing of the functionality, accuracy, and performance of the solver. Results of
these computations demonstrate that the solver is capable of solving the propagation of aeroacoustic
signals. Testing of sound generation and on more realistic problems is now pursued for the industrial
applications of this solver.

Numerical calculations were performed for the second problem of Category 1 of the current workshop
problems for an acoustic pulse scattered from a rigid circular cylinder, and for two of the first CAA
workshop problems, i. e., the first problem of Category 1 for the propagation of a linear wave and the
first problem of Category 4 for an acoustic pulse reflected from a rigid wall in a uniform flow of Mach
0.5. The aim for including the last two problems in this workshop is to test the effectiveness of some
boundary conditions set up in the solver. Numerical results of the last two benchmark problems have
been compared with their corresponding exact solutions and the comparisons are excellent. This
demonstrates the high fidelity of the solver in handling wave propagation problems. This feature lends the
method quite attractive In developing a computational acoustic solver for calculating the
aero/hydrodynamic noise in a violent flow environment.

INTRODUCTION

Accurate determination of sound generation, propagation, and attenuation in a moving medium is vital
for noise reduction and control, especially for the design of quiet devices and vehicles. Currently, a
sophisticated tool to accurately predict the noise generation and propagation is still lacking even though the
aerodynamic noise theory has been extensively studied since Sir James Lighthill's famous paper on sound
generated aerodynamically appeared in 1952 [1]. The major difficulty in computational aeroacoustics is
caused by inaccurate calculations of the amplitude and phase of an acoustic signal. Because of its relatively
small magnitude compared with its carrier - the flow field - an acoustic signature is not easily computed
without distortion and degradation. Nowadays it is relatively easy to compute a steady flow field at most
speeds with reasonable accuracy but it is still quite difficult to accurately compute an acoustic signature
associated with a violent flow field. The basic reason for this difficulty is caused by the dispersion and
dissipation effects introduced by most numerical methods for stability control in performing numerical
computations. To circumvent the deficiency of current numerical methods for computational aeroacoustics,
we have proposed a spectrally accurate method to compute the reference flow field and the generation and
propagation of sound in an unsteady flow.
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The methodis basedona least-squaresspectralelementmethod.This methodsolvesthe linearized
acousticfield equationsby firstly expandingthe acousticvariablesin terms of somebasis (or trial)
functionsandunknowncoefficients.Then,themethodminimizestheintegralof thesquaresof theresidual
over the domainof influence.The resultantequationsarea set of linear algebraicequationsfor the
unknowncoefficients.Thesealgebraicequationsincorporatethe systemderivativesof the acousticfield
equationsin integralforms.Thespatialderivativesarediscretizedby theuseof Legendrepolynomials,and
thetime derivativeis performedby a three-leveltime steppingmethod.Theresultantmatrix equationis
solvedby aJacobipreconditionedconjugategradientmethod.

Alongwith thefield equationsis asetof boundaryconditions,includingthenonreflectingandradiation
conditions,to besatisfiedfor agivenproblem.Theseboundaryconditionswereexplicitly implementedin
theacousticsolver.For instance,the normalvelocity componentis setequalto zero for anacoustically
rigid wall. Testingof the solver hasbeenbegunon the secondproblemof Category 1 for the current
workshopbenchmarkandthefirst problemsof Categories1and4 for thefist CAA workshopbenchmark.
Resultsof the last two computationscomparevery well with theanalyticresults.Thesecalculationswere
consideredasbenchmarktestingon thefunctionality,accuracy,andperformanceof thesolver.

MATHEMATICAL FORMULATION

Consideraninhomogeneous,partialdifferentialequationof theform

[L] {u} = {fl, (1)

where L is the first-order partial differential operator, {u} the column vector of unknown variables, and
{f} the column vector of forcing functions. The aim of working with the first-order derivatives is to

ensure C O continuity in field variables at element interfaces. Next, we divide the domain of influence, D,

into S elements and assume an approximate solution to Eq. (1) for a typical element can be written as

N

{ue} = _1 {aj} _je,
j=

(2)

where _je are linearly independent basis (or trial) functions, aj the expansion Coefficients for the unknown -
variables, and N the total number of basis functions (or degrees of freedom) in an element. It should be
noted that the same basis functions are used for all unknown variables. This feature is a characteristic of

the proposed method and it simplifies the mathematical formulation and numerical implementation. In
general, the basis functions are arbitrary and need not satisfy the differential equation or the boundary
conditions. However, they must be differentiable once in the domain D and at the boundaries. The basis

functions used in the current study are Legendre polynomials of the independent variables.

Substituting Eq. (2) into Eq. (I), forming the residual, and applying the method of least squares with

respect to the expansion coefficients, one leads to
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N

j_l Kijaj = Fi (3)

for each element, where Kij = S (e) (LTq)i) (L _j) dD, and

F i = S(e) (LT¢i) f dD

where D is the domain of interest, and L T the transpose of L. Therefore, the original partial differential
equation becomes an algebraic equation with its coefficients in terms of the derivatives of basis functions.

The forcing functions are also weighted by the basis functions.

In order to evaluate the above integrals via the Gauss quadrature rules, we used a rectilinear relations to
transform the coordinates, ranging from -1 to 1, of a computational element onto the coordinates of a

physical element. The interior points in the computational element are determined as Legendre-Gauss-
Lobatto collocation points [2], which are the roots of the derivatives of the Legendre polynomial. Details of
the transformation and integration can be found in [3]. In the following paragraph we briefly present the
governing equations in the matrix form for the benchmark problems we solved. For the acoustic scattering
problem of Category 1 of the current workshop, the semi-discrete equation is

_ pn+l"
a 1 At _-_ At _-_

un+l
At _-_ a 1 0

vn+l
At _ 0 _x1

a2 pn + a3 pn-1

_x2 un + o_3 un- 1

a2 v n + a3 v n- 1

(4)

For the acoustic reflection problem of Category 4 of the first workshop, the semi-discrete equation is

0_1 3 3 __ pn+l"+ M At _ At _-_ At

_ un+l
At_-_ a 1 + MAt_--_ 0

_ vn+l
At_-_ 0 ¢x1 + MAt_--_

a2 pn + a3 pn-1

a2 u n + a3 u n- 1

o_2 v n + cz3 v n- 1

(5)

where M being the free-stream Mach number (equal to 0.5 in this case), n denoting the n th time step. In

these semi-discrete equations the accuracy is second order in time with the application of a backward

difference scheme in which a 1 = 1.5, o_2 = -2, and ot3 = 0.5.
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For the linear wave problem of Category1 of the first CAA workshopbenchmark,the semi-discrete
equationis

(1-ctAt_)u = (l+[1-o_]At_-_)u 0, (6)

where u° denotesthe initial condition, and o_ is a parameterrepresentingvarious time-marching
algorithms; for example,if ct = 0.5,the algorithmis theCrank-Nicolsonscheme[4]; andif ct = 1,the
algorithmis thebackwarddifferencescheme.In ourcalculationsthevalueof ct was set to 0.5. Therefore,
the accuracy of the time integration for this problem is also second order.

NUMERICAL RESULTS AND DISCUSSION

Problem 2 of Category 1 - Acoustic Scattering

Totally, the computational grid used for the calculation has 14,651 nodes, which includes 9
elements in the radial direction and 16 elements in the angular direction. Within each element, 11

collocation points were used in each direction for the interpolation. The radius of the circular cylinder was
set as unity and the location of the acoustic pulse was at r = 4 from the origin of the cylinder. The outer

boundary for the computational domain was at r = 10. The time step used for this calculation was At =
0.01 from the initial state. Before time, t, reachedsix, data for every 20 time steps were stored; and

starting from t = 6 to t = 10, data for every time step were stored for postprocessing.

Results are shown in Fig. 1 for the computational grid and the pulse location, in Fig. 2 the
contours of pressures at t = 6, 7.25, 8.65, and 10, and in Fig. 3 the instantaneous pressures at three
points as designated in the benchmark problem. In this benchmark calculation there is no effect of
reference (base) flow. The aim of this study is to investigate the effectiveness of curvilinear wall

boundary condition and farfield nonreflecting condition.

Originally the acoustic pulse is released at the spatial point and free to expand in space. The
cylinder is on the way of pulse passage and reflects the pulse when both encounter each other. As seen
from Figure 2, the pulse expands and hits the cylinder when time increases. As the pulse touches the
cylinder it is scattered from the cylinder. The original pulse interacts with the scattered wave, continues to
spread omni-directionally, and travels across the farfield boundary. The fact of no reflection from the
outer boundary indicates that the farfield nonreflecting condition is effective to pass the waves. This
benchmark testing shoxCs that the acoustic solver of CAAS is capable of handling the curvilinear spectral
element for sound wave propagation, where CAAS standing for Computational Aeroacoustic Analysis
System developed at Rocketdyne for NASA Aerospace Industry Technology Program (AITP).

The First CAA Benchmark Problems:

Problem 1 of Category 1 -Linear Waves

In this one-dimensional wave propagation problem the domain was divided into 30 elements
between -20 and 450 and within each element there were 16 collocation points; therefore, the total grid

nodes were 451. The time step for the calculation of this problem was At = 0.1. Results are presented in
Fig. 4 for the pulse at t = 100, 200, 300, and 400, and in Fig. 5 for detailed comparisons between the
numerical and exact solutions. As seen from the figures, the comparisons at these time instants are
excellent. It indicates that the numerical algorithm of the CAAS solver is accurate enough for predicting

wave propagation.

Problem 1 of Category 4 - Acoustic Pulse Reflection from a Wall
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For thisproblemthecomputationaldomainis asquare,namely,x rangingfrom -100to 100and
y from 0 to 200.The grid usedfor thecalculationhas5929nodes,which includes4 elementsin bothx
andy directions.Within eachelementthereare20collocationpointsusedfor the interpolation.Thetime
stepusedin thecalculationwasAt = 0.1.

Results shown in Figs. 6 and 7 are the time history of the pulse reflected from the wall at t = 15,
30, 45, 60, 75, 90, 100, and 150. As seen from the plots, for t = 150 there are still some small variations
of the lower-level pressure contours at the downstream boundary. This may indicate that the non-reflecting
boundary condition at the outflow is not perfect. We have tried both Tam's and Webb's [5] and Giles' [6]
outflow boundary conditions in the calculations for this problem and found that Tam's and Webb's
boundary conditions produced slightly better results. A numerical sponge layer is now being investigated
for its effectiveness of absorbing the undesirable wave energy at the outflow boundaries.

Figure 8 shows the pressure waveform along the line x = y at t = 30, 60, 75, and 100. In each

figure the exact pressure field was also plotted for comparison, where s = (x 2 + y2).5. The computed

pressures compare very well with the exact pressures; only at t = 100, there is a small discrepancy
happening between s = 130 and s = 135. This good comparison again shows that the numerical algorithm
used in the solver is quite accurate for handling sound wave propagation.

CONCLUDING REMARKS

An aeroacoustic solver has been developed in the framework of CAAS developed at Rocketdyne

for predicting aerodynamic sound generation and propagation. The mathematical formulation of the solver
is based on the linearized acoustic field equations and the numerical algorithm is based on the least-

squares weighted residual method. The two-dimensional version of the solver has been tested with some
of the ICASE Workshop benchmark problems. The numerical results obtained via the CAAS acoustic
solver compare very well with the known analytical results. Testing of the solver for the three-
dimensional problems and for sound generation is now being pursued.
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FIG.1 PROBLEM 2 OF CATEGORY 1 - ACOUSTIC
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FIG. 2
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Fig. 5 Comparisons of Numerical and Exact Solutions
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ABSTRACT

The strict formulation of the Adequate Boundary Conditions in the case of the wave equation

is presented. The nonlocal ABC are obtained by means of Riemann's method. The corresponding

Riemann's functions can be used to create ABC for each Fourier mode. Approximate boundary

conditions are also presented. First order accurate BC coincides with the well-known Tam's BC.

Second order accurate BC provide more exact numerical solutions. Comparison analysis of the exact

solution and both of approximations as applied to the Category I, Problem 2 demonstrates the

advantages of second order accurate BC. Some results relating to steady problems are also presented.

INTRODUCTION

One of the important elements of a numerical algorithm for solving aeroacoustic problems is the

formulation of radiation and outflow boundary conditions and their numerical implementation. In

one-dimensional problems, the corresponding conditions can be easily constructed using character-

istics of the governing system. This problem becomes rather complicated for the multidimensional

case.

This paper is mainly devoted to the simplest problem of this kind. The main purpose is the

formulation of the exact boundary conditions (so-called adequate boundary conditions, ABC). As a

rule, such conditions are too complicated. In many cases, one can use one or another approximate

conditions. Only this approach is optimal for a wide class of aeroacoustic problems.

ADEQUATE BOUNDARY CONDITIONS FOR THE WAVE EQUATION

We consider the 2D wave equation in polar coordinates

02P 02P 10P 1 c92P

Ot 2 Or 2 r Or r 2 c9_o2
-0. (1)

Let P(r, q_, 0) and Pt(r, qp, 0) be the initial data which are compactly supported in the circle Cn

of radius R. We denote by D and OD the cylinder C × [0, t] and its boundary, respectively.

Our goal is to construct ABC on OD such that the solution of this mixed problem coincides in D

with the solution of the original Cauchy problem.

First, we use the Fourier expansion and obtain

pl_) ,jk) 1,,(k) k:
-- Urr -- rt, _ + _-Tp (k) 0, (2)

where p(k)(r, t) are the corresponding Fourier coefficients.
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The initial data transform into the form

p(k)(r, 0) = p0(r), plk)(r,O) = pl(r). (3)

We note that p0 and pl are also compactly supported functions. Now we can formulate the

problem for each p(k)(r, t). Namely, to construct ABC on the boundary 09 : r = R, such that the

mixed problem in the strip g : (r _< R, t > 0) coincides with the solution of the Cauchy problem (2)

-(3).
In order to deal with self-adjoint operators we introduce the new unknown functions u (k) = v/Tp (k).

Then we obtain the following problem

02 02 a (k)
L(k)u (k) = O, L (k) _ + -- a (k) = k _ - 1/4; (4)

Ot 2 Or 2 r 2 ,

0) =  Ikl(r,0) = (5)

To construct the desired boundary conditions we shall use the well-known Riemann method. Let

t = r be fixed. Consider the triangle ABP, see Fig. 1, where AP and BP are the upper and lower

characteristics, respectively. Clearly,

u(k)la p = 0. (6)

We introduce the Riemann function v(k)(r, t, r) as the function satisfying the following conditions:

L (k) =0, (7)

Combining (5) and (7) we obtain

v(k)lB P = 1. (8)

vLu -uLv = 0

(for simplicity we omit all superscripts "k").

By integration this identity over the triangle ABP we obtain

ff (vLu - uLv)do" = J(vut- uvt)dr + (vu_ - uv_)dt = O.
ABP ABP

Using (6) and (8) we have
B

j(vu_ - uv_)dt + u(B) = O.
A

Finally, for each k we obtain the desired boundary conditions

7"

u(r, r) = f [u(R,t)v_(R,t) - u_(R,t)v(R,t)]dt.
0

(9)

It remains to turn back to the original function P = _2k P(k)eik_°X/_.

It should be pointed out that the presented above ABC is nonlocal in both time and space.
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}Ve note that each v (k) is determined not uniquely. To find v (k) we have to define v(k)(R, t), for

example. Thus, we can choose Riemann's fimctions in a convenient way, which is important for

applications.

We also note that despite the non-uniqueness all AB conditions lead to the same solution of mixed

problem.

Some of Riemann's functions are connected with Legendre functions. For example, let v(r, t, r) =

v((), where _ = (R + r- t)/r. Then

d 2v dv k2
({2 _ 1)_3 - + 2_--_- + - 1/4 = 0. (10)

Therefore v(_) = Pk-1]2(_).

Boundary condition (9) can be rewritten in the following way. Since us is also a compact supported

function, it follows that we can rewrite (9) replacing u by u_:

_,(R, _-)= f(_,_r -

T

_,.v)gt -_[_,v.- ..V]o - f (_,v. - ,,.v,)gt.
0

In other words,

T

.,(n, T) + _,.(n,T) = .(n, ,-)v.(n, T) - f (_,v.- u.v,)dt.
0

(11)

Further we shall consider Riemann's functions satisfying the condition

v(R, t) : 1. (12)

In this case v,(R, r) = 0 and vt - 0. Therefore ABC (11) takes the form

T

ut + ttr = -- / uv,tdt.
0

(13)

We shall call V(r, t) the base function if

LV=O and V=I fort=r-R.

It is obvious that V(r, t) gives the correspondent Riemann's function v(r, t, r) = V(r, r - t).

Some properties of V(r, t) were investigated numerically and analytically. In particularly, it was

found that limt--,oo V_t(R,t) = 0 and limt__+_ V_(R,t) = -(k- 1/2) in the case V(R,t) = 1. Only

these V(r, t) will be considered below.

APPROXIMATE BOUNDARY CONDITIONS

The exact ABC (13) is too complicated for practical use. In many cases one can apply approximate

boundary conditions. In order to construct such conditions we consider the approximations of v,t in

(13).
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(i) As the first approximation we put V = 1.

boundary condition in the form

Ut + Ur = O,

However, u (k) = p(k)v_. Thus, we have

Then v = 1 and v_ - 0.

r =R.

As a result we obtain

(14)

p(k)
plk)+ p_k)+ 2---R--0.

We recall that p(k) are the Fourier coefficients.

original function p(r, t, _):
P

Pt+P_+ 9"_=O.

Note that condition (15) coincides with the well-known Tam's condition [1].

(ii) The second approximation can also be easy obtained:

Clearly, this condition remains the same for the

(15)

a

v(,,t) = 1- - n)(t + n-

This leads to

and

From (13) we obtain

a R)(T t + R r)
v ( r, t ) = 1 - -_-ff (r - - -

a ,(k)-- k2-1/4
vrt = _-R-7, i.e. vrt 2R 2

ulk)(R,T)WU_k)(n,w) k2--1/4 "_ - 2R 2 f u(k)(R,t)dt.
0

(16)

Turning back to p(k)(r, t) we obtain

p}k) + p_k) + 2__p(k) _ _ k2-1/4 ]2R 2 p(k)(R, t)dt.
0

Finally, we have
t

P 1/Pt + P_ + 2R - 2R 2 (P_ + P/4)dr, r = R. (17)
0

(Here we interchanged t and T for convenience.)

Further we use approximate boundary conditions only. Thus, we shall denote by ABC an approx-

imate BC.

One can show that the truncation error 5 = O(T 2) for ABC (17) unlike 5 = O(T) for ABC (15).

In accordance with these estimates, boundary conditions (15) or (17) will be denoted 1ABC and

2ABC, respectively.
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FORMULATION OF THE PROBLEM AND THE NUMERICAL ALGORITHM

We consider the linearized Euler system for M_ = 0 in the form

Ou OP

0--[+ Or o,
Ov 1 OP

4- - 0,
Ot r Oc2

OP Ou 1 l"

o---f+ + [
=0.

(18)

where P is the pressure, u and v are the polar components of velocity.

The initial data equal zero outside the circle Cn of radius R. Since this system can be reduced

to the wave equation with respect to p, it follows that the foregoing construction does apply. Using

ABC we replace the Cauchy problem in the whole plane by the mixed problem in Cn.

Thus we have the boundary condition on OCn in the form

P

Pt + Pr + 2--R = F(P), (19)

where

p(P)- 0

which corresponds to the first order approximation (1ABC), see (15), or

t
1

F(P) = -_ f (P_ao + P/4)dr
0

which corresponds to the second order approximation (2ABC), see (17).

We note that, as a rule, additional boundary conditions can lead to an ill-posed problem.

The numerical algorithm we apply is a modification of our method [2]. The original second order

accurate differertce scheme belongs to the TVD-type class and uses the minimal stencil. In order to

create a third order accurate scheme we apply the well-known Runge's rule.

We write the initial scheme in the form

U2+1 = RhU .

The first step of the desired scheme is a reconstruction of U n at the intermediate points (m +

1/2, k + 1/2). It can be done using the cubic interpolation. As a result we obtain "the fine" grid.

Then according to Runge's rule we have

Uh(t n + r) = 3[4Uh(tn + r) - Uh/2(t n + r)].

SinceUh(t n + T) = RhU_ Uh/2(U + r)= 2 n, Rh/2U[/2 we obtain the resulting scheme in the form

1
= Rh/_U;;/_). (20)U_+I 5(4RhU__ 2 ,,
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To calculate(P, u, v) at the boundary one can use a difference approximation of two characteristic

relations

Ot + Or + -r u+ =0,

Ov 10P

57 + = o,

and ABC (19).

NUMERICAL RESULTS

In this section, results for the Category I, Problem 2 are presented. To estimate the validity of

the method including approximate BC we present three sets of numerical data.

The computational domain is the ring GR: r0 < r < R; r0 = 0.5. The grid size in the _ direction

is constant. As for size in the r direction, we use a nonuniform grid. Namely,

1 R
r = roe _(°-'°), c_ - In--.

R - ro To

This method allows to deal with practically square cells over the whole domain, which leads to

the improvement of the numerical results.

Each variant is defined by three constants: R, Acp and Ap and the type of BC.

The first variant: R = 5 (this is the minimal size of the computational region because of given

coordinates of the points A, B, C); A_o = 7r/600, Ap = 1/440; 1ABC.

The second variant differs from the first one by ABC only. Here we use 2ABC.

Finally, for the third variant we apply the same A_ and Ap but R = 10.40284; 2ABC. Since in

this case the boundary OGlo does not affect the solution in Gs up to t = 10, it follows that we can

consider this solution "exact".

Comparing all these solutions one can estimate the role of the type of ABC.

The time histories of P at A, B, C are plotted in Figs 2 - 4, respectively. It is seen that 2ABC-

results look at A and B better then 1ABC-results.

The superiority of 2ABC over 1ABC is considerably more visible in Figs 5 - 8. Here we show

spatial distributions of pressure on some semi-infinite lines: Fig. 5: _, = 0 °, t = 2; Fig. 6: _o = 45 °,

t = 4; Fig. 7: _= 90 ° ,t =7; Fig. 8: _= 135 ° ,t = 10. In all these Figures "exact" solutions are

plotted up to r = 10. This gives an indication of the structure of the solution.

As for the accuracy of the difference method we examined it using calculations with fine grid

A@ = A_/2, A_ = Ap/2. It was found that the third-order accuracy is achieved and results for

both grids are prac£ically the same. Thus, we can omit quotes and call the third variant the exact

solution.

CONCLUSION

The presented method of constructing ABC can be generalized to the case Mo, -¢ 0 as well as to

a wide class of hyperbolic systems. One can use the exact ABC if the problem admits the Fourier

expansion. Otherwise we are forced to use the approximate ABC like it was shown above.

We also note that this approach can be applied to the steady-state problems. The case of the

wave equation outside G is presented in the Appendix.
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APPENDfX

We considerthe following problem in the wholeplane

LP -- f,

where

Suppose that

L

02�Or - A outside Gn,Lint in Gn.

0 outside GRf = fi_t in GR.

(i) The initial data are compactly supported;

(ii) This problem is well-posed;

(iii) There exists the limit solution P as t --* oc.

Then the adequate boundary condition at OG for the steady-state problem can be presented in

the form

_ _ P 1 'IT+7./(T)\_,_ )Pt + Pr + 2R - 2R 2

where 7Y(P) is the Hilbert operator

1 2['P(5)d_
_(P)(_) = _ J tan gz__"

o 2
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FIGURE CAPTIONS

Figure 1. Sketch for Riemann's method

The following Figures illustrate the solution of the Problem 2, Category I.

Figure 2. Time history of pressure p at the point A (c2 = 90 ° , r = 5). Short dashed line

corresponds to boundary condition (15) (1ABC, i.e. 'ram's BC). Long dashed line corresponds to

boundary condition (17) (2ABC). Solid line corresponds to the numerical solution in the expanded

region, R = 10.4 ("exact").

Figure 3. The same for the point B (_o = 135 °, r = 5).

Figure 4. The same for the point B (_o = 135 °, r = 5).

Figure 5. Spatial distribution of p on the ray p = 0 ° at t = 2.

Figure 6. The same for _ = 45 ° at t = 4.

Figure 7. The same for V' = 90° at t = 7.

Figure 8. The same for c2 = 135 ° at t = 10.

185



7"

t

B

A

R

-i u-O

P

F

Fig. 1.

0.06

0.01 -

-0.04

5

A ...... 1ABC
/"1 -- 2ABC

l/ '1 j._-- exact

t
i I I I I I t t I I I I I I I I I I I J I I r I I I I I ] I I I I I I I I I I I 1 I I 1 I t I I 1

6 7 8 9 10

Fig. 2. _-90 °, r-5

186



0.06

0.01

-0.04

m

w

m

m

m

m

5

1ABC
2ABC
exact

t
I I I I I I I I I I I I I I I I I I I [ t I I t t t I I t ] I I t t t I I I I I I I I I I I I I I I

6 7 8 9 10

Fig. 3. _-135 °, r-5

0.06

0.01

-0.04
5

...... 1ABC
2ABC
exact

t
[1 I t I I I I I I I I I i I I i t I I I I I I I I I t [ t I t t I t I I I I I I I I I I I I I I

6 7 13 9 10

Fig. 4. _-180 °, r-5

187



0.13 -

0.03 -

1ABC
2ABC
exact

\

r

Fig. 5. _-0 °, L-2

0.10 -

-0.00 -

-0.10 -
0

1ABC
2ABC
exact

r

1 2 3 4 5 6 7 8 9 10

Fig. 6. _-45 °, L=4

188



i

0.05 -

-0.00 -
\

1ABC
2ABC
exact

F
ilillO_EIIIIIlillllllt,,IzllJlllllllililllllllllll

1 2 3 4 5 6 7 8 9 10

Fig. 7. _-90 °, t=7

i

0.05 -

-0.00 -

-0.05
0

1ABC
2ABC
exact

/ \

// -- \\

Fig. 8. _-135 °, t-lO

189





NUMERICAL BOUNDARY CONDITIONS FOR

COMPUTATIONAL AEROACOUSTICS BENCHMARK PROBLEMS

Chritsopher K.W. Tam, Konstantin A. Kurbatskii, and Jun Fang

Department of Mathematics

Florida State University

Tallahassee, FL 32306-3027

SUMMARY

 ¢ooo

/)io

Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved

computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are

governed by the linearized Euler equations. The resolution requirements of the DRP scheme for

maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the

linearized Euler equations are now well understood. As long as 8 or more mesh points per wave-

length is employed in the numerical computation, high quality results are assured. For the first

three categories of benchmark problems, therefore, the real challenge is to develop high quality nu-

merical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary

conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the

duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream

and downstream of the blade row. These are the foci of the present investigation. Special non-

homogeneous radiation boundary conditions that generate the incoming disturbances and at the

same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation

domain without significant reflection are developed. Numerical results based on these boundary

conditions are provided.

1. INTRODUCTION

The governing equations of the Category 1, 2 and 3 benchmark problems are the linearized Eu-

ler equations. Recent works have shown that the linearized Euler equations can be solved accu-

rately by the 7-point stencil time marching Dispersion-Relation-Preserving (DRP) scheme (Tam

and Webb, ref. 1) using 8 or more grid points per wavelength. At such a spatial resolution, the nu-

merical dispersion and dissipation of the scheme is minimal. Also, the scheme would support waves

with wave speeds almost the same as those of the original linearized Euler equations. Thus, from a

purely computational point of view, all these problems are the same except for their boundary con-
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ditions. The formulation and implementation of the appropriate numerical boundary conditions for

the solutions of these problems are the primary focus of the present paper.

For spatial discretization, the 7-point stencil DRP scheme uses central difference approxima-

tion with optimized coefficients. For instance, the first derivative _ at the _th node of a grid with

spacing Ax is approximated by,

Of _ 1 E ajft+j (1)
- 3

where the coefficients aj (see Tam and Shen, ref. 2) are:

ao =0

al = -a-1 = 0.770882380518

a2 = -a-2 = -0.166705904415

as = -a-3 = 0.020843142770.

For time marching, the DRP scheme uses a four levels marching algorithm. Let At be the time

step. We will use superscript n to indicate the time level. To advance the solution f(t) to the next

time level the DRP scheme uses the formula,

where the coefficients bj are:

f(n+l) = f(n) + At bj -_
j=o

(2)

b0 = 2.302558088838

b, = -2.491007599848

b2 = 1.574340933182

b3 = -0.385891422172.

In (2) the functions (d/_(n-2 are provided by the governing equation.dt ]

The DRP scheme, just as all the other high-order finite difference schemes, supports short wave-

length spurious numerical waves. These spurious waves are often generated at computation bound-

aries (both internal and external), at interfaces and by nonlinearities. They are pollutants of the

numerical solution. When excessive amount of spurious waves is produced, it leads not only to the

degradation of the quality of the numerical solution but also, in many instances, to numerical in-

stability. To obtain a high quality numerical solution, it is, therefore, necessary to eliminate the
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short wavelength spurious numerical waves. This can be done by adding artificial selective damp-

ing terms in the finite difference equations. The idea of using artificial damping to smooth out the

profile of a shock is not new (ref. 3 and 4). In ref. 5, Tam et aI. refined the idea by developing a

way to adjust the coemcients of the damping terms specifically to eliminate only the short waves.

The long waves (with aAx < 1.0, where a is the wavenumber) are effectively unaffected.

Consider the linearized u-momentum equation descretized on a regular mesh of spacing _Sx. At

the t th mesh point, the discretized equation including artificial selective damping terms may be

written as,

dut 1 3 3
__ l]a

p0 x ( x)2 (3)
j=-3 j=-3

where dj are the damping coefficients and us is the artificial kinematic viscosity. Let a0 be the

speed of sound. The artificial mesh Reynolds number Rax will be defined as

a0/_x

Raz -- (4)
b' a

In computing the numerical solution below, a suitable value for R_,l, will be assigned in each prob-

lem. The choice of the numerical value of R_l, is largely dictated by the size of the computation

domain and the complexity of the boundaries of the problem. Near a wall or at the boundaries of

the computation domain, there may not be enough room for a seven-point stencil. In that case, a

smaller five-point or a three-point damping stencil may be used. The coefficients of the damping

stencils may be found in ref. 6.

2. CATEGORY 1 PROBLEMS

2.1. Problem 1

The acoustic field produced by the oscillating source in the presence of a rigid circular cylinder

is computed using the 7-point stencil DRP scheme on a Cartesian grid. By using a spatial resolu-

tion of 8 or more mesh points per wavelength we are assured that the numerical results are of high

quality.

On the outer boundary of the computation domain (see figure 1), the asymptotic radiation

boundary conditions of Bayliss and Turkel (ref. 7) or Tam and Webb (ref. 1) is used. Let (r, 0)

be the polar coordinates. The two-dimensional asymptotic radiation boundary conditions are,

0

Ot ] [1'° v+
P P

i] =0.
(5)
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Figure 1. Computational domain for Category 1, Problem 1.

The problem is symmetric about the x-axis. Thus only the solution in the upper half x-y-plane

needs to be computed. A symmetric boundary condition is imposed at y = 0.

On the surface of the cylinder, we implement the Cartesian boundary treatment of curved walls

developed by Kurbatskii and Tam (ref. 8). This boundary treatment is designed for use in con-

junction with high-order finite difference schemes. In this method, ghost points, behind the wall

outside the physical domain, are included in the computation. On following the suggestion of Tam

and Dong (ref. 9), ghost values of pressure are assigned at the ghost points. These ghost values of

pressure are then chosen so that the normal component of the fluid velocity at the wall is zero. De-

tails of the method are discussed in Reference 8 and, therefore, will not be elaborated upon here.

To remove spurious short wavelength numerical waves and to provide numerical stability near

the solid surface, artificial selective damping terms are added to the computation scheme. An in-
-1

verse mesh Reynolds number, Rcxx, of 0.01 is applied everywhere. In the region surrounding the

cylinder, additional damping is needed for numerical stability. This is provided by an additional

Gaussian distribution of R_ with a maximum value of 0.25 at the wall. The half width of the

Gaussian is 3 mesh spacings.

Figure 1 shows the dimensions of the computation domain. The numerical results reported here

use a spatial resolution of 8 mesh points per acoustic wave length in both x- and y-directions. For

the present problem, the far field directivity of radiated sound is dictated by the interference pat-

tern formed between the directly radiated sound and the scattered sound field centered at the
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cylinder. The separation distancebetweenthe sourceand the cylinder is quite large so that to
achievean accuracy of one degreein calculating lim r p2 the computation must be extended to a7---,oo
distance of r __ 150. For this reason, comparisons with the exact solution will be carried out in the

near field only. Figure 2 shows the computed directivity function D(O) = r p2 at r = 10. The com-

puted results are obtained by time marching to a time periodic state. It is easily seen that there

is uniformly good agreement with the exact solution. Figure 3 shows the computed and the exact

directivity at r = 15. Again, the agreement is very good. The good agreement obtained suggests

that the Cartesian boundary treatment of Reference 8 is effective and accurate.

_.0 .......... t ......... t ......... I ......... t ......... I ......... t ......... I ......... I .........

10-1°_ 2.02.51.5

1.0

0.5

0.0
9o

i ..... ,_,1_,,, I I _ I jl I _LLLUJJJJJJ=U--L

II,lJ Zlll,,,,I ill ,ll II|l|lH _Jl,|,ll, J,,l|_lL_ U

100 110 120 130 140 150 160 170 180

8, degree

Figure 2. Directivity of radiated sound, D(O) = rp 2, r = 10.

numerical solution, ............ exact solution.
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Figure 3. Directivity of radiated sound, D(O) = rp 2, r = 15.

numerical solution, ............ exact solution.

2.2. Problem 2

The initial value problem is solved by the DRP scheme on a Cartesian grid in exactly the same

manner as in Problem 1. The same curved wall boundary treatment and radiation boundary con-

dition are used. Figure 4 shows a picture of the computed acoustic wave pattern at t = 7. There

are three wave fronts. The one that is farthest from the cylinder is the wave front created by the

initial condition. The next front is wave reflected off the right surface of the cylinder directly fac-

ing the initial pulse. The wave front closest to the cylinder is generated when the two parts of the

intial wave front, split by the cylinder, collided and merged to the left of the surface of the cylin-

der. This wave front is weak relative to the other two.
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Figure 4. Acoustic wave pattern at t = 7.
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Figures 5a, b, c show the time history of pressure variation at the prescribed measurement

points A, B and C. Plotted in these figures are the exact solutions. There is excellent agreement

between the computed and the exact time histories. This is, perhaps, not surprising when one ex-

amines the Fourier transform of the initial disturbance. The wavelengths of the main part of the

spectrum are very long, significantly longer than that of Problem 1.
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Figure 5. Time history of pressure fluctuation. (a) at A, (b) at B, (c) at C.

numerical solution, ............ exact solution.
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3. CATEGORY 2, PROBLEM 2

The axysimmetric linearized Euler equations in cylindrical coordinates are,

0u 0p
- (6)

Ot Ox

Ov Op
- (7)

Ot Or

(o ovv)-g=- _+_+ (8)

We solve these equations in the r-x-plane using the 7-point stencil DRP scheme. The computa-

tional domain is as shown in figure 6. To carry out the time marching computation, various types

of boundary conditions are required. Along the external boundary ABCDE radiation boundary

conditions are needed. On both sides of the duct wall FEH, the imposition of wall boundary con-

ditions is necessary. It is noted that equation (8) has an apparent singularity at the x-axis where

r = 0. A special duct axis treatment is needed to avoid the problem of division by zero. Finally, at

the computation boundary FG, a set of radiation boundary conditions for a dueted environment is

required. These radiation boundary conditions must create the prescribed incoming acoustic mode

and at the same time allow the reflected waves to exit smoothly out of the computation domain.

The formulation and implementation of these various types of boundary conditions are discussed

below.

Tr

(-5,10) [ radiation boundary condition (20,10)

D C B

/
(-8,1) E wal /_

internal IF . . ]H ' / /"k../'kJ'k_
duct[

conditionLG A

0 duct axis treatment

Figure 6. Computational domain for calculating acoustic radiation

from the open end of a circular duct.
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3.1. Radiation Boundary Conditions

The following three-dimensional asymptotic radiation boundary conditions are used along the

open boundary ABCDE.

+2 =0 (9)

where R is the distance from the center to the boundary point. The presence of the duct wall EH

requires a slight adjustment in the implementation of these radiation boundary conditions. This is

needed so as to allow the outgoing acoustic waves in the vicinity of E to propagate out parallel to

the duct wall. In this work, for the boundary ABC, the center used to compute R in (9) is taken

to be at O. For the boundary CDE, the center is taken to be at H. Numerical experiments indi-

cate that the change in the -_ factor in the last term of (9) does not lead to any noticable degrada-

tion of the numerical results.

3.2. Wall Boundary Conditions

To enforce the no throughflow boundary condition at the duct wall, the ghost point method of

Tam and Dong (ref. 9) is employed. For each side of the duct wall, a row of ghost points is intro-

duced. For mesh points within two rows of the duct wall, backward difference approximation is

used. To compute -_, the stencil is allowed to extend to the ghost point. The ghost value p is cho-

sen so that the wall boundary condition of no throughflow is satiafied.

3.3. Treatment of Singularity at the Axis of the Duct

Equation (8) has an apparent singularity at r = 0. One way to avoid the singularity is to re-

place the last term by its limit value; i.e.,

lim v = __Or (10)
r--+0 r Or"

At r = 0, (8) becomes

Or- Ox + Or/"

Tam et al. (ref. 10) used this limit value method in one of the benchmark problems of the pre-

vious computational aeroacoustics workshop. One not so desirable consequence is that there is

a change in the governing equations between the row of points on the duct axis and the first row

(11)
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off the axis. Such a change often results in the generation of spurious short wavelength numerical

waves. Thus the imposition of stronger artificial selective damping is needed around the duct axis.

In this work, the limit value method is not used. Instead, we make use of the Half-Mesh Dis-

placement method. Here the computation mesh is laid so that the first row of mesh points is at

a half-mesh distance from the duct axis. This is shown in figure 7. For this mesh, the problem of

r = 0 never arises. Thus there is no need to switch governing equation. In fact, the computation

stencil can be extended into the r < 0 side of the mesh. For the values of the variables in the neg-

ative r region, we use symmetric extension about the duct axis for u and p and antisymmetric ex-

tension for v. In this way, the tendency to produce spurious waves near the axis region is greatly

reduced.

% •

)(

()

)(

Ar

duct axis
-_ r=-O

Figure 7. Lay-out of the mesh for the Half-mesh point displacement method.

3.4. Radiation Boundary Conditions Inside a Duet

The radiation boundary conditions, to be imposed along boundary FG, (see figure 6) must per-

form two important functions. First, they are to create the incoming acoustic wave mode specified

by the problem' Second, they are to allow the waves reflected back from the open end of the duct

to leave the computational domain smoothly. As far as we know, boundary conditions of this type

are not available in the literature.
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By eliminating u and v from equations (6)-(8), it is easy to find that the governing equation for

p is,

a2p (a _p 1ap a_p'_
k._r2 +r_rr+_-fix2] =0. (12)Ot2

Let us look for propagating wave solutions of the form,

p(r,x,t) = Re [_r)ei(ax-_t)] . (13)

Substitution of (13) into (12) together with the wall boundary condition a°-_(r = 1) = 0 leads to the

following eigenvalue problem.
d2_ I d_
dr--T + r-_r + (w2 - a2) if= 0 (14)

-_- (1) =0 (15)

The eigenvalues (a = ±an, n = 0, 1,2,...) and eigenfunctions are,

(16)

_. = Jo(_.r) (17)

where ,q, are the roots of Bessel functions of order 1; i.e.,

Jl(,_n), n = 1,2,3,...

and J0 is Bessel function of order zero. The corresponding duct mode solution is,

= Re {A_

O_nj (/_nr)w 0

___j , (_n')
YO(_._)

The first four roots of 3"] are,

_0--0

(18)

_1 = 3.83171

n2 = 7.01559

(19)

,_3 = 10.17347

For propagating modes, a must be real. From (16), it is clear that for case (a) with w = 7.2. there

are three propagating modes and for case (b) with w = 10.3, there are four propagating modes.
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In the space" below, we will concentrate on developing the radiation boundary conditions for

case (b). In the region of the duct away from the open end (see figure 6), the solution consists of

the incoming wave and the outgoing wave modes (the wave modes propagating in the negative x-

direction have a = -a,, n = 0, 1, 2, 3). That is,

= -_Sl(_,.)sin(_2x -_t) + _ A.
J0(_2r)cos(_x -cot) .=0

_J0(_.d ¢os(_.x +cot + ¢.)
_J

Ja(_nr)sin(anx + cot + On)

J0(_.r) cos(_._ + cot+ ¢.) o

The reflected wave amplitudes An (n - 0, 1, 2, 3) and phases Cn (n = 0, 1, 2, 3) are unknown.

Let us consider the u-velocity component. By differentiating (20), we find

(20)

_(_,_,t) = _Jo(_)_i_(_z -_t) - [_,_lJ0(_), _2J0(_2_),_ J0(_)]A

A0 sin(cox + cot + ¢0)

where A = Aa sin(aax +wt + ¢1)
A2 sin(a2x + wt + ¢2)

A3 sin(a3x + cot + ¢3)

If the column vector, A, of (21) is known, then this equation can be used to update the value of u

at the boundary region. To find vector A, let us differentiate (20) with respect to x to obtain,

__x(r,x,t)=_____jo(x2r)sin(_2x_cot)_Oua_ [ a2 _2 o_ ]co,_z0(_lr),_J0(_2_),_J0(_) A. (22)

We will assume that the mesh lay-out inside the duct near the boundary of the computation do-

main is as shown in figure 8. Equation (22) holds true for r = (m + 1)At, m = 0, 1,2,... ,M. This

yields (M + 1) linear algebraic equations that may be written in the matrix form,

(21)

CA=b (23)

where C is a (M + 1) × 4 matrix and b is a (M + 1) column vector.

C __

-co elZ0(0.5_Ar) zlJ0(0.5_Ad
OJ _1

co dZ0(1.D_lA_) ZlJ0(1.5_A_)
02 _9

co _ J0(2.5xlAr) _Y0(2.5_2Ar)

.w -_Jo((M,,,,, +0.5)n_Ar) --_a_Jo((M +0.5)_2Ar)

b __.

_ J0(0.5_3Ar)
{aJ

4 J0(i.5_3A_)
laJ

-_ J0(2.5x3 Ar)
lag

_i 0.5)_3A_),o Jo((M +

o,,ta _Ar t) + 2__Jo(O.5tc2Ar)sin(a2x wt)_kv.v ,X, w

°"(i.5Ar, z,0 + dJo(1.5x2Ar)sin(_2x-wt)

Ou_((M + 0.5)A_,_,t) + d_So((M + 0.5)_zXd sin(_2_-cot)

(24)

(25)
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In (25) the z-derivatives are to be found by finite difference approximation.

m=M

Ar

m---0_,

m

r=O duct axis

(M+ 1/2) A r

Figure 8. Mesh lay-out inside the duct near the boundary of the computational domain.

(23) is an overdetermined system for A. Such a system may be solved by the least squares

method (ref. 11, Chapter 5). This leads to the normal equation, the solution of which gives,

A = (cTc)-IcTb (26)

where C T is the transposition of C.

Finally, by substitution of (26) into (21), we obtain a nonhomogeneous radiation boundary con-

dition for the ducted environment.

-_-(r,x0U ,t) = a2J0(R2r) sin((x2x - cot) - [w,_lJo(nlr),(_2Jo(tc2r),_3Jo(R3r)](cTc)-lcTb. (27)

In applying (27), it is noted that for a given column of mesh points, the matrix (cTc)-Ic T need

be calculated only once in the entire computation. At each time step, once the vector b is updated,

it can be used for all the mesh points in the column.

For the variable p and v, boundary conditions similar to (27) can be easily derived following the

steps above.
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3.5. Numerical Results

1 I 1
1 1 1 and Ar = 16.s, 24.s, 32.5 are used in the computation.Three mesh sizes with Ax - a6,24, 32

This allows us to monitor numerical convergence. Artificial selective damping is included in the

computation. An inverse mesh Reynolds number of 0.05 is applied to every mesh point. Addi-

tional damping is imposed around the boundaries shown in figure 9. The maximum value of the

inverse mesh Reynolds number of the additional damping is displayed. This value is reduced to

zero through a Gaussian distribution with a half-width of three mesh points in the normal direc-

tion.

r(-5,10) (20,10)

(-8,1)

+0.1

+0.05

+O.1

+0.05

+O.1

+0.05

+0.1

+0.05
D

0 x

Figure 9. Distribution of RT,_ used in the computation.

Figure 10 shows the computed directivity of the radiated sound at w = 7.2 using Ax -- _ and

Ar = _ There is a peak radiation around 8 = 60deg. Figure 11 shows the pressure envelope32.5 "

inside the duct at r = 0, 0.34, 0.55 and 0.79. The peaks and valleys of the envelope are formed

by strong reflection off the open end of the duct. Such strong reflection arises because the wave

frequency is quite close to the cut-off frequency of the second radial mode. The radial variation of

the amplitude of the pressure envelope follows the spatial distribution of the eigenfunction of the

second radial mode. For this problem, this mode is the dominant of the four cut-on modes.
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Figure 10. Directivity of radiated sound at co = 7.2.
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"(a) w=7.2, r =0.0

(b) w=7.2, r =0...34

(c) w=7.2, r =0.55

(d) w=7.2, r =0.79

-5.0 --4.0 -,.3.0 --2.0 -1.0 0.0

X

[

|

Figure 11. Pressure envelope inside the duct at w = 7.2.

(a) r=0.0, (b) r=0.34, (c) r=0.55, (d) r=0.79.
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Figure 12 is the computed directivity of the radiated sound at w = 10.3. Figure 13 shows the

pressure emvelope inside the duct at this higher frequency. These results are qualitatively similar

to those at _o = 7.2.

D(@=R_

0.06

0.05

0.04

0.03

0.02

0.01

0.00

' "' '"' 'I' "''" "I" '""' 'I' '" "" 'I" '" '" 'I' '"'" "I'" '" '"I'"'"' "I'" '" "'I"" '"' 'I' "*'" "I" ,,**.H I''" '"' 'I"'"'" 'I'"" "' 'I'"'" '"I" '" '"' I'"'" '"

w=lO.3

A

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

8, degree

Figure 12. Directivity of radiated sound at w = 10.3.
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Figure 13. Pressure envelope inside the duct at w = 10.3.

(a) r=0.0, (b) r=0.34, (c) r=0.55, (d) r=0.79.
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4. CATEGORY 3, PROBLEM 2

This problem, strictly speaking, is quite similar to Category 2, Problem 2. For this reason, only

the formulation of the inflow and outflow boundary conditions will be discussed.

The linearized Euler equations are,

Ou Ou Op
--_ + Ox Ox (28)

Ov Ov Op
O--t+ Ox - Oy (29)

Op Op 1 (Ou O_yy)0---/+ _xx + _-2- _xx + =0 (30)

where M is the mean flow Mach number. (28) to (30) support two types of waves, namely, the vor-

ticity and the acoustic waves.

For the vorticity waves, the general solution can be written as,

0¢(x_t,y), v= 0¢(x_t,y), p=0 (31)

where ¢ is an arbitrary function that is periodic in y.

The computation domain is shown in figure 14. Because of the periodic boundary condition,

the acoustic waves propagate in the x-direction in the form of duct modes. By eliminating u and v

from (28) to (30), the equation for p is,

(o__+_o) 2 M21 (02p 02p_p \_x2 + 0-_-y2] =0. (32)

The duct modes can be found by expanding the solution as a Fourier series in y with a period of 4;

i,e,,

- i_o, -'"--_-._0 (33)p(x, y, t) = Re Ane" "-" =

Substitution of (33) into (32), it is easy to find that the wavenumber a,, is given by

1

± (34)
an = (1 - M 2)

a+s are for waves propagating in the x-direction while o_s are for waves propagating in the nega-

tive x-direction. It is clear that the waves become damped if the square root term of (34) is purely

imaginary. In other words,
2w M

n>
_(1 - M2)½ "
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For the case w " _s_, there are three propagating modes corresponding to n = 0, 1 and 2. Thus at

the inflow boundary the outgoing acoustic waves are,

_[ o_ (_)u= An (w--_;) cos cos(c_;x - oat + Cn)
rt=0

+ B.(oa _ _.)

v = E An 2 sin sin((__ x - oat + Cn) (35)
n----1 (O_n -oa)

n_

2

- B,, (a_ _ oa)
COS

Iv) ]P=E A_cos cos( a-_ x - wt + ¢. ) + Bn sin cos( a'(_ x - oat + ¢_ )
n=O

where An, Bn are the unknown amplitudes and ¢,_, ¢. are the unknown phases. Similarly, at the

outflow boundary, the outgoing acoustic waves are,

_:E c°(__o_)_o_
n:O

v = E Cn(. oa) sin sin(a+x-wt +Xn)
n=l

COS

(v) (v) ]P: E Cncos cos(a+x -oat + X.) + Dnsin cos(a+x-oat + _.)
n----0

where C., Dn are the unknown amplitudes and X-, An are the unknown phases.

(36)
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Figure 14. Computational domain for the turbomachinery noise problem.

4.1• Inflow Boundary Conditions

In the inflow boundary region, the disturbances consist of the prescribed incident gust,

u = - (_-fl-) cos(wx + fly-wt), v = vgcos(wx + fly-wt) (37)

and the outgoing acoustic waves of (35), It is easy to see that the desired inflow boundary condi-

tions are very similar to the radiation boundary conditions in a ducted environment discussed in

Section 3. Thus a set of radiation boundary condition for the inflow region can be derived accord-

ingly. For example, let the computation domain in the y-direction be divided into (M+I) intervals,

the inflow boundary condition for the u-velocity component may be written as,

(9//

-_ = -vgflsin(wt + fly - wt)

, cos , -- cos (_ry), sin sin(Try) (38)
+ L(_ - %) (_ - _;) (_ - ,_;) (_ -_T) ' (_ - ,_;)

• (ETE)-I ETd
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where E is an (M + 1) x 5 matrix and d is a column vector of length (M + 1)

E

d

____11_ ___!sZ_ (o-_Z_
(u-ok) (_,-a?) (_-a;)

("_-%) (,___,;_)cos (,o-_)

__? _oL (____?) _ , ....
('-°o) (,____ } cos - ('_-_'_) costivJ lrza y)

_(z, O,t) - vg3 sin(a_z - a_t)

_(z, Ay, t) -- va3:in(wz + flAy -- wt)

(z, MAy, t) - vg¢_sin(wz + 3MAy - wt)

0 0

(°-)_- sin (_) -(--_ sin(trAy)

_ (.__-_ sin ( M_----_-2_ )
('_-G)

-(--_- sin(MrrAy)
(,_-_,_)

4.2. Outflow Boundary Conditions

In the outflow region, the outgoing disturbances consist of a linear superposition of the as yet

unknown vorticity wave, equation (31), and the downstream propagating acoustic waves of (36).

The presence of the unknown vorticity waves requires the outflow boundary conditions to be for-

mulated slightly differently than the inflow boundary conditions. However, there is no pressure

fluctuations associated with vorticity waves. Therefore, for p the outflow boundary condition can

be derived as in the case of inflow boundary conditions. On proceeding as before, it is straightfor-

ward to find,

Ot
(39)

where F is an (M + 1) x 5 matrix and p is a column vector of length (M + 1).

F

-04 -04 -,_t o o
--a + -o_ + cos (_-_2_ ) -a + cos(trAy) -a+ sin (_2-_-) --a+ sin(trAy)

-c_ + --a + cos (2_-_2_) -a+cos(2rrAy) -a+ sin (2_2-_) -a+sin(27rAy)

_o0 )

(40)

p

_(x,O,_)

!°o-_.(x,MAy, t)

(41)
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Also, in the course of deriving (39), the following relationship is established.

e =

Co sin(a+x - wt + Xo)

C1 sin(a+x - wt + _1 )

C2sin(a+x wt + X2)

D1 sin(a+x - a_t + A1)
D2 sin(a+x - wt + A2)

e = (FTF)-IF-Ip

(42)

(43)

Now in the outflow region, the velocity component u of the outgoing disturbances is represented

by,

0¢(x-t,_)
u(x, _,_)=

[ a°+ a+ (2) a+ cos(Try), a+ sin (-_) a+ sin(try)]+ +cos , ,

Cocos(,_o+x - _ + xo)
c1 cos(_+x - _t + xl)
c2 cos(a+x - ,or+ x2)
Di cos(a+x - wt + A1)

02 cos(a+x - wt + A2)

(44)

__o) to (44) and rewrite as,To eliminate the unknown function ¢, we apply (o + 0_

Ou Ou [a+,a+ (_2_y) , a+ cos(try), ol+ sin (__) , a+ sin(Try)]-b7(x'_'_) - o_(_'_'t) + cos e. (45)

The outflow boundary condition can be obtained by replacing e in (45) by (43). Hence

Ou Ou

ot (x,y,t)= -_(x,u,O

+ [a+,a + cos (2) 'a+ c°s(zrY)'a+ sin (2) 'a+ sinOry)]

(FTF)-IFTp.

(46)
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The v-velocity component in the outflow region is given by

a¢ (xv- Kz -t,_)

C1 sin(a+x -oat + x1)l

C2 sin(a+x -oat + X2)|

D1 sin(a+x -oat + A,)| '

Dz sin(_+.-oat + X_).J

__o) to (47) it is found,Upon eliminating ¢ by applying (o + 0x

(47)

y,t) -- Ox (x,y,t) + -_ sin , _-sin0ry), _ cos , _- cos(Try)

c1 cos(_tx -oat + x,)l
c=cos(o # -oat+x=)/
01cos( ,+xoat+ l)/"
Dzcos(_+x oat+ _z)J

To determine the last column vector of (48), we may start by differentiating p of (36) with respect

to y. This yields,

c1 cos(_+x -oat + xl)]

(z,y,t) = _sin ,-Tr sin0ry), _cos ,Tr cos(_'y) D1 cos( a+ x - oat + A1)| "

D2 cos(a+x - oat + Az) J

The unknown column vector can now be evaluated as an overdetermined system by enforcing (49)

at y = mAy, rn = 0, 1,2,... ,M. Once this vector is found in terms of a column vector of _, it is

inserted into (48) to provide the desired outflow boundary condition for v.

(48)

(49)

4.3. Numerical Results

We carried out numerical computation for the case oa = -_ using two size meshes with Ax =

± and _. The distribution of inverse mesh Reynolds number associated with the ar-Ay = 20

tificial selective damping is shown in figure 15. A R_,lx = 0.05 is used for general background

damping. Extra damping is added near the flat plate. A Gaussian distribution of inverse mesh
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Reynolds number with a maximum equal to 1.5 at the surfaces of the plate and a half-width of 3

mesh points is used.

-1

//Rax= 1.5 at the plate

R'_x ----0.05

x

Figure 15. Distribution of inverse mesh Reynolds number used in the numerical

solution of Category 3, Benchmark problem 2.

The computation starts with zero initial conditions and marches in time until a time periodic

solution is reached. Figure 16 shows the zero pressure contour at the beginning of a cycle. As can

be seen, there is very little difference between using the coarse or the fine mesh. Thus mesh size

convergence is assured.

i'M

:J3

CD

-5 -4 -3 -2

[,,_, .....1 l ........ ,,'iX,.,,,.........N ......... ,,.k...... , .......
-1 0 1 2 3 4 5 6

X

Figure 16. Zero pressure contour map at the beginning of a cycle.

solution using 20Ax per plate length,

............ solution using 30Ax per plate length.
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Figure 17 shows the calculated pressure distribution along the lines y = 0, 1, 2 and 3 at the be-

ginning of a cycle. The full line indicates the pressure on the bottom side of a flat plate and the

dotted line gives the pressure on the top side of the plate. The pressure loading on the plate at the

beginning of a cycle is shown in figure 18. There is good agreement between the results computed

using Ax = ! and _ except near the leading edge singularity. Figures 19 and 20 give the root2o

mean square pressure distributions along x = -2 and x = 3, respectively. Again, the computed

results using the coarse and the fine resolution are essentially the same. Judging by the above

results. We believe that the inflow and outflow boundary conditions have performed remarkably

well.
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Figure 17. Pressure distribution at the beginning of a cycle of oscillation along: (a) y=0,

(c) y=2, (d) y:3.

along the top side of a plate.

(b) y=l,

pressure along the bottom side of a plate, ............ pressure
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Figure 18. Distribution of Ap : Pbottom -- Prop across the flat plates at the beginning of a cycle

of oscillation. (a) y=0, (b) y=l, (c) y:2, (d) y=3. solution using 20Ax per plate

length, .......... .. solution using 30Ax per plate length.
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Figure 19. Intensity of radiated sound, p_, along x = -2.

solution using 20Ax per plate length,

............ solution using 30Ax per plate length.
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Figure 20. Intensity of radiated sound, p2, along x = 3.

solution using 20Ax per plate length,

............ solution using 30Ax per plate length.

218



ACKNOWLEDGMENT

This work was supported by the NASA Langley Research Center Grant NAG 1-1776.

REFERENCES

1. Tam, C.K.W.; and Webb, J.C.: Dispersion-Relation-Preserving Finite Difference Schemes for Com-

putational Acoustics. J. Comput. Phys., vol. 107, Aug. 1993, pp. 262-281.

2. Tam, C.K.W.; and Shen, H.: Direct Computation of Nonlinear Acoustic Pulses Using High-Order

Finite Difference Schemes. AIAA-93-4325, Oct. 1993.

3. Von Neumann, J.; and Richtmyer, R.D.: A Method for the Numerical Calculation of Hydrody-

namic Shocks. J. Appl. Phys., vol 21, Max. 1950, pp. 232-237.

4. Jameson, A.; Schmidt, W.; and Turkel, F.: Numerical Solutions of the Euler Equations by Finite

Volume Methods Using Runge-Kutta Time Stepping Schemes. AIAA-81-1259, June 1981.

5. Tam, C.K.W.; Webb, J.C.; and Dong, Z.: A Study of the Short Wave Components in Computa-

tional Acoustics. J. Comput. Acoustics, vol. 1, Max. 1993, pp. 1-30.

6. Tam, C.K.W.: Computation Aeroacoustics: Issues and Methods. AIAA J., vol. 33, Oct. 1995, pp.

1788-1796.

7. Bayliss, A.; and Turkel, E.: Radiation Boundary Conditions for Wave-Like Equations. Commun.

Pure and Appl. Math., vol. 33, Nov. 1980, pp. 707-725.

8. Kurbatskii, K.A.; and Tam, C.K.W.: Cartesian Boundary Treatment of Curved Walls for High-

Order Computational Aeroacoustics Schemes. AIAA J., vol. 35, Jan. 1997, pp. 133-140.

9. Tam, C.K.W.; and Dong, Z.: Wall Boundary Conditions for High-Order Finite-Difference Schemes

in Computational Aeroacoustics. Theoret. Comput. Fluid Dynamics, vol. 6, Oct. 1994, pp. 303-

322..

10. Tam, C.K.W.; Shen, H.; Kurbatskii, K.A.; Auriault, L.; Dong, Z.; and Webb, J.C.: Solutions to

the Behcnmaxk Problems by the Dispersion-Relation-Preserving Scheme. ICASE/LaRC Workshop

on Benchmark Problems in Computational Aeroacoustics. NASA CP 3300, May, 1995, pp. 149-

171.

11. Hager, W.W.: Applied Numerical Linear Algebra. 1988, Prentice Hall.

219





7'/

L/3 <-i,77

TESTING A LINEAR PROPAGATION MODULE ON SOME

ACOUSTIC SCATTERING PROBLEMS

(',..S. Djambazov, C.-ll. Lai, l{...\. Pericl_'ous

School of Computing and Mathematical Sciences, University of Creenwich

Wellington Street. Woolwich, London SEI8 6PF, U[x

ABSTRACT

Finite volume discretization of the Linearized Euler

Equations on a fully staggered computational grid
results in an efficient semi-implicit numerical scheme
which can be used in the 'near field' of aerodynamic
noise problems.

INTRODUCTION

Since sound is a form of fluid motion, when solving aeroacoustic

problems it is desirable to use existing Computational Fluid Dynamics

(CFD) codes as much as possible. They can simulate any flow field but, due

to numerical diffusion, they tend to smear the noise signal close to its

source. That is why they have to be combined with some other method to

produce accurate acoustic results. Traditionally the Acoustic Analogy [1]

has been used as a complementary technique [2, :3]. The alternative

Computational Aeroacoustics (CAA) approach provides additional

flexibility and simplicity when handling complex and/or moving geometries.

To reduce the computational cost Domain Decomposition methods are

used to define the 'near field' containing the noise generation region with

nonlinear acoustic effects and the 'far field' of linear sound propagation

[4, 2]. Special high accuracy CAA methods [.5] or I(irchhoff's surface

integral method [6] can be used in the far field.

In the near field commercial CFD codes cannot do the aeroacoustic

simulation alone because of the highly diffusive nature of the CFD

algorithms. This 'near field' has to be large enough to contain all the

nonlinearities of the sound field, and no CFD code can carry the acoustic

signal that fat'. This problem has been addressed at the University of
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Greenwich [7] by creating an acoustic software module which can be

combined with a CFD code to solve aerodynamic noise problems. The code

can also be used on its own in smaller domains of linear propagation or it

can be combined with some structural acoustics software for internal noise

problems.

The code has been applied to the first two problems in "'Category 1 -

Acoustic Scattering" of the Second CAA Workshop on Benchmark

Problems. The method and results are described below.

METHOD

With the popular approach of splitting the flow variables into mean-flow

and perturbation parts [8, 9] the Linearized Euler Equations are obtained

to describe the sound field. If the mean flow is uniform, or if there is no

mean flow at all, the relative form of these equations can be used, and in

two dimensions they can be written as:

or)O--i + c\ax+ =q

Ou Op

0-7 + c-07z u=pocv 
Ov Op

a--/ + cN=L' O : poCV_

(1)

Op c_ Po-- = =7--, 7_i_ = 1.4 (2)
Op po

Pert'urbation velocity components along the axes a: and g are denoted vx

and v_ respectively, c is the speed of sound, p0 is the density of undisturbed

air, p0 is the atmospheric pressure, and p is the pressure perturbation. The

right-hand sides q, .f,., fy are considered known functions of z, g and time t.

When discretizing the three unknown fimctions p,u and v, a fully

staggered (along both space and time) grid has been chosen. This is done

because it allows (as shown below) a fully explicit, stable, second-order

accurate scheme to be formulated. Its accuracy can then be extended to

third order by allowing the scheme to become implicit while retaining a

strong diagonal dominancy that guarantees fast convergence.
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[.;sing this ceil-centered regular ('artesian mesh and the notation pictured

above, a finite-volume set of equations has been obtained t)5' successive

integration of (!.) along each of the axes .r, !./and t:

-'{-C

f (p - pold)d.rdg

Ct ,I

[i7, J,dt ue -u_)dg + t v,_ - vs z

old us

newM n

+

cell oldAI s

newAl e

/ (V - Vold)dzdg + c / dt /(pN - ps)d,v =
cell old3,l w

7l e R2

J <"i (a)
old cell

newAI

old3,l cell

newM

old3,I cell

The solved-for values of pressure are stored in the cell centers (with upper

case indexes), while velocity components are stored on cell faces (lower case

indexes) in the middle of each time step (toldM = told + At�2,

t,_e,,M = tnew + At�2). The storage locations are shown in Figure 1.
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Figure 1" Computational grid and radiating boundary interpolation
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The integrals in (3) are first e,,'al,tatcd throltgh tnean values providing an

easy-to-prograln, second-order accurate, fully explicit numerical

scheme:

p = P_.l+l-- _rA"e -- ",+,) -- o'_,(v. -- v+) + qAt

u = Uol+- a+(pE - pw) + f.At (4)

v = eot,+- ,:r_(p,: - Ps) + f,jAt

cat cat
O',r -- O'g --

=_k.r' :S g

This scheme is accurate enough within about 5 wavelengths, accumulating

not more than S % error, and it can be used on its own in small domains,

e. g. with internal noise problems.

A second-order approximation of all the functions in all the integrals in

(3) can be employed to extend the accuracy of the method. Instead of

[(Xo, h) = hf(xo) now we have

h
x0+_-

Z(xo,h) = / fCx)dx =

h
xo-

= h[Af(xo - h) + (1 - 2A)f(xo) + Af(xo + h)],

1
A=--

24

applied to all integrals. In 2D this means

ff(.r,g)dxdg= [A_-'_f,.,b+(1-4A)f,:_u]AxAg
nbcell

with 'nb' used to denote all four neighboring cells.

(.5)

(6)

This semi-implicit scheme proved to be accurate enough to take the

sound generated out of the 'neat" field'. The resulting linear system is solved

iteratively at each time step starting with a very good initial gness

computed using the explicit scheme (4). Only one level of neighboring cells

are involved, and not second or further neighbors. The boundary cells are

processed with the explicit scheme only. With the discretization of those

integrals corttaining time as one of the argttments, "future' and "past'
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neighbors are involved. Both of them are (h'ternfined at each iterative step

by the fillly explicit scheme. Stored "past' values at the cell faces cannot be

used because of the Courant limit when the time step is adjusted to whole

cells.

Thc algorithm described above has been tested with one-dimensional

plane wave propagation showing maximum error of about 5 percent o[" the

amplitude over about i00 wavelengths in 2000 time steps.

Acoustic radiation boundary conditions are implemented assuming

plane u,ave propagation in the boundary region: velocity components at the

boundary faces are computed from the velocity field at the previous step by

interpolation at the appropriate points inside the domain (see Figure 1).

The direction of radiation has to be prescribed for each boundary cell.

Then the interpolation point inside the domain can be determined based on

the distance the wave covers in one time step.

Solid boundaries are represented in a stepwise manner as shown in

Figure :2. The corresponding velocity components perpendicular to the

boundary cell faces are set to zero.
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Figure "2: SoLid boundary and mesh refinement
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Benchmark Problem 1 in Category 1 has been attetnpted ttsing a

reglllar ('artesian grid of 800x 100 (:ell.s over a dornain of apl)rox, l.lx7 units

(Fig. 3). The cell .size is 0.01786. an(I the time step is 0.0125 units. The

cvliu<ler is represented by a st(,pwise bo!tu(lary mapped onto 56x2S cells.

Symmetry (no flux) t)omldary conditions have been imposed on the bottom

boundary of the domain. Averaging along two semi-circles with radii

respectively 5 and 7 units produced oscillating values which differ

considerably in some regions. Both sets of data have been submitted for

comparison.

Computational Domain and Pressure Field
i i i i I i I

' i ........ i
Z 4 ............ i

2

1

0
I..r_ I I ,,. t 1 I 1

-8 -6 -4 -2 0 2 4 6

X -axis.[-I

Figure 3: Sound pressure amplitude scaled to fit the plot area

The outer (r = 7) averaging locations are shown in Figure 4, and a

comparison between the results for the two close semi-circles (rt being the

outer one) are pres.ented in Figure 5. The greater oscillations in the graphs

are due to the standing wave pattern that develops around the cylinder

(be_:ause the diameter and the distance to the source are proportional to

the wavelength). There can be two reasons for the minor oscillations and

for the difference between the two graphs: some numerical inaccuracy

and/or coordinate truncation when cell centers have been picked as

averaging locations instead of the exact points on the circles.
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Radial-Ray Ph}t of Pressure Field
i i i i

tN) deg --

7 "¢" 105 deg .....

.,:"_.___;' 120 deg --

6 .,.? a
-; _ 165 deg .....

" dt:,fTl_li n

1_,I)dog --

5 averagmg o
cylinder --

E 4

3

2

I

o
I I 1 t I

-8 -6 -4 -2 0 2

X - axis. ['1

Figure 4: Instantaneous pressure and averaging locations
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B('ll('llulark Problem 2 i,i Category 1, has l)(,en solvc<l witli the sam(,

grid spacing (h = DiS(J), tinie six' I) ali([ solid t)oundarv Inal)l)ing as

Drot)l('iil [ ill a donlairi of O00x;lO0 cells - just enough to contain lh(, target

senli-circle witti ra(liils 5. These results (in solid lines on Pigiir(" O) [lave

been sitl)iilitted to tile workshop. Later coilllJlllatiotls on coarser ill('shes
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Figure 6: Mesh refinement resttlts

(h = D/40 and h = D/28) were carried out for comparison. In all three

case_ the mesh is fine enough to resolve the pressure pulse but the stepwise

discretization of the cylinder is different (see Fig. 2). At the workshop it

has turned out that the finer-mesh results are wrong, and the organizers

have shown how to determine the oi)timal grid spacing.

' N'CO: CLUSIONS

The finite volume discretization of the linearized Euler equations

presented here is accurate enough to handle the 'near field' of aerodynamic

noise problems. Mesh refinement to fit curved boundaries has to be done

most carefully as false oscillations mar occm'.
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Future work involves the inclttsiotl o[ tt.. convecthm and no./m(ar

terms [rom the Navior-Stokes [')ittat ions to pro+lttce a co.le capable of

simulatil G the getleration of aerodynamic noise.
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SOLUTION OF AEROACOUSTIC PROBLEMS BY A NONLINEAI_,

HYBRID METHOD*

Yusuf OzySriik t and Lyle N. Long _

Department of Aerospace Engineering

The Pennsylvania State University

University Park, PA 16802

ABSTRACT

Category 1, problem 3 (scattering of sound by a sphere) and category 2, problem 1 (spherical

source in a cylindrical duct subject to uniform flow) are solved in generalized coordinates using

the nonlinear Euler equations together with nonreflecting boundary conditions. A temporally

and spatially fourth-order accurate finite-difference, Runge-Kutta time-marching technique is

employed for the near-field calculations and a Kirchhoff method is employed for the prediction of

far-field sound. Computations are all performed on parallel processors using the data-parallel

paradigm.

INTRODUCTION

Past several years have withnessed a significant activity [1] to develop computational tools for

aeroacoustic applications. This has been so because of the increasing availability of powerful

computers to the computational sciences community as well as the continuous need for further

understanding of the physics of flow associated noise and its accurate prediction for quiet engineering

designs. This activity ranged from the development of high level algorithms [2, 3] to high level

applications [4, 5, 6]. Recently, the present authors have developed a nonlinear, fourth-order accurate

(both in space and time), hybrid, parallel code [4, 7, 8] for the prediction of ducted fan noise. This

code solves the full Euler equations in the near field and uses a Kirchhoff method for the prediction of

far-field sound. This code has been shown to be able to make accurate predictions. It is the purpose

of this paper to describe the application of this code to the solutions of the benchmark problems of

the Second Computational Aeroacoustics (CAA) Workshop. Particularly, problem 3 of category 1,

and problem 1 of category 2 are solved. It is shown here that even relatively simple problems, such as

these, could be computationally intense and demanding if the far-field sound is of interest. Therefore,

far-field extrapolation techniques, such as the Kirchhoff method, must be used for feasible solutions.

*Work sponsored by NASA grant NAG-l-1367
tpostdoctoral Scholar

tAssociate Professor
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NONLINEAR, HYBRID CODE

The hybrid ducted fan noiseradiation code [7,4] solvestile 3-D Euler equationson a 3-D
body-fitted coordinate systemand passesthe near-fieldacousticpressureto a Kirchhoff method based
on the formulation of Farassatand Myers [9] to predict the far-field sound. The governingequations
aresolvedin a relatively small domain using nonreflectingboundary conditions basedon the works of
Bayliss and Turkel [10] and Tam and Webb [2]. For realistic engineinlet geometriesan orthogonal
meshsystemis created through a sequenceof conformalmappings [11]and the governingequations
are formulated in cylindrical coordinates to effectively treat the grid singularity at the centerline.

Fourth-order accurate, cell-centered finite differencing and four-stage, noncompact R-K time

integration are performed to advance the solution. Adaptive artificial dissipation [12] is used to

suppress high-fl-equency spurious waves. The Euler solver and the Kirchhoff method are coupled such

that as soon as the Euler solution becomes available, the Kirchhoff surface integrations are performed

in a forward-time-binning manner to predict the far-field noise. All calculations are carried out on

parallel computers using the data parallel paradigm. Ref. [7] describes the fourth-order flow solver

with emphasis on the hybrid code's parallel aspects. Ref. [4] discusses the acoustic source model and

the Kirchhoff coupling issues for engine inlet noise predictions. The hybrid code utilizes a spatially

fourth-order accurate multigrid procedure for efficient calculations of the mean flow and this

procedure is described in Ref. [8].

The boundary conditions routines of this code have been modified to accommodate the present

workshop problems. Also, the Kirchhoff routine of this code has been improved for time-periodic

problems. In such cases, after the trensients are gone, the near-field Euler solution is obtained only

for one time period and this solution is replicated in the Kirchhoff routine for longer time periods so

that the forward-time-binning procedure [4] can be completed for a converged far-field solution. This

approach results in significant CPU time savings.

RESULTS AND DISCUSSION

Solution of Category 1, Problem 3

This problem requires the solution of the acoustic field driven by a spherical (Gaussian) source

plus its scattered field from a sphere. The source and sphere centers are separated from each other by

a distance of one sphere diameter. Since this problem is axisymmetric, it is solved on a polar mesh in

a constant 0 plane (i.e. x - r plane, (x, r, 0) denote cylindrical coordinates) with an (x, r)-to-((, rl)

coordinate transformation. This mesh is constructed such that there exist 384 grid points along the

half-sphere wall (_) and 256 grid points in the normal direction to the sphere wall (7/). The physical

size of the computational domain is taken to be about 6 sphere radii so that a direct Euler solution

on a 5-radius circular are on the mesh could be obtained and compared with the Kirchhoff solution.

The Kirchhoff surface is chosen to be at about 3 radii, where the source strength is diminished. This

mesh has approximately 18 grid points per wavelength in both curvilinear coordinate directions in the

vicinity of the Kirchhoff surface so that the acoustic waves are well resolved on the Kirehhoff surface.

Figure 1 shows a snapshot of the acoustic pressure contours in the domain for a nondimensional
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circular frequency of 4rr. The scattered pressure pattern is well defined. The Kirchhoff surface

location is also indicated in this figure. Although the Euler solution was obtained only in the x - r

plane, a closed Kirchhoff surface was constructed by a 360 degree rotation of the circular arc shown as

the Kirchhoff surface in the figure about the x-axis so that the surface integrations could be

performed. This surface had 64 elements in the rotational direction. The integrations were performed

at every 16th Runge-Kutta iteration. The Kirchhoff solution is shown in Fig. 2 together with the

direct solution. Both results agree excellently validating the modified Kirchhoff routine for

time-periodic problems.

Solution of Category 2, Problem 1

This problem involves the solution of the acoustic field generated by a spherically distributed

Gaussian source placed at the geometrical center of a finite, both-end-open, cylindrical duct subject

to a Mach 0.5 uniform flow parallel to the duct axis. Specifically, the sound pressure levels are sought

on a 2.5-duct diameter circular arc in the x - r plane ((x, r, 0) represent cylindrical coordinates). This

problem is axisymmetric as it is stated.

Because of the simple geometrical shape of the duct, it is convenient to solve the problem on a

mesh constructed by families of constant x and constant r grid lines. If the solution on this

2.5-diameter arc, which we will call here as the far field, is to be obtained directly from the Euler

calculations, the mesh resolution has to be sufficient all the way out from the source to the far field.

This in turn dictates an extremely high number of grid points in both x and r directions for the

specified nondimensional frequency. For example, if the mesh were designed to have 14 points per

wavelength, the required number of grid points would be more than 1000 in the x and more than 500

in the r coordinate directions, indicating an excessive total number of grid points for such an

axisymmetric problem. Therefore, mesh stretching is used and the Kirchhoff method is employed for

the solution of the far-field sound. The stretched mesh system is shown in Fig. 3. Uniform mesh

spacing is used in the duct and its immediate surrounding, and the mesh is stretched exponentially

outward. The uniform portion of the mesh has about 14 points per wavelength in the upstream

direction. A total of 512 grid points is used in the x direction and a total of 256 grid points is used in

the r direction. The Kirchhoff surface is placed just outside the duct as shown in the figure. Again

the problem is solved in two dimensions, i.e. in the x - r plane, but the Kirchhoff integrations are

performed on a closed surface formed by the rotation of the mesh.

A snapshot of the acoustic pressure contours is shown in Fig. 3. Because of the strong stretching

and poor grid resolution in the far field, the solution is inaccurate there. Also the downstream outer

boundary caused some reflections becuase of the high aspect ratio cells. However, the Kirchhoff

solution is expected to be accurate becuase the waves are reasonably well resolved in the near field.

The Kirchhoff results are compared with the point-source boundary-element solution of Myers [13] in

Fig. 4. Myers' solution was scaled to match the present calculations at about 90 degrees from the

duct axis. Both solutions agree very well in the most silent region. In fact, the solution in this region

is due to the effects of the duct leading and trailing edges behaving as point sources that account for

the diffracted waves, and this behavior is well represented by both methods. However, the differences

in the other regions are mainly becuase of the differences between the specified sources. This is shown

in Fig. 5, where a narrower Gaussian source was used to simulate the point source. The solutions
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agree better now although there are still differences at about 60 and 120 degrees. This is probably

due to Myers' boundary element method using singular functions at the duct leading and trailing

edges. It should be pointed out that it is always difficult to treat a point source in a finite difference

algorithm. The workshop problem, therefore, proposed the use of a distributed source.

The present calculations for this high-frequency case required about 9 CPU hours on a 32-node

CM-5. It should be noted that these calculations were carried out by a slightly modified version of

the ducted fan noise code and there is some overhead associated with this.

Calculations for a low-frequency case were also carried out. The nondimensional frequency chosen

for this case was 4.4097_. The comparison shown in Fig. 6 again indicates some differences between

the point source solution of Myers and tile present calculation, which used a distributed source. The

effects of various parameters on the current solution are shown in Fig. 7. This figure essentially

presents the effects of the grid and time step resolutions as well as the system of equations used. Since

the frequency for this case was significantly lower, we were also able to obtain the solution using 18

points per wavelength without grid stretching. This improvement in the grid resolution did not result

in significant change in the solution. Also, the solution was found using a significantly reduced time

step size. The effect of this is also very minor. The use of the linearized Euler equations versus the

nonlinear equations did not alter the solution signifiantly. A narrower Gaussian source test was also

performed and the solution was compared with Myers' point source solution. This is shown in Fig. 8.

Good agreement between both solutions is now evident from this figure. A conclusion from this is

that the distributed sources had some noncompactness effects in their respective numerical solutions.

CONCLUDING REMARKS

z

A nonlinear, hybrid the combination of Euler and Kirchhoff methods was used to solve two linear

CAA benchmark problems -cat 1, prob 3 and cat 2, prob 1. Although these problems were relatively

simple, they still required significant computational resources, even for moderate frequencies.

Therefore, the real applications of CAA must utilize far-field extrapolation techniques such as the

Kirchhoff method if feasible solutions are to be attained.

. z
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Figure 1: Snapshot of the acoustic pressure contours (Cat 1, Prob 3 with w = 47r).
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Figure 2: Comparison of the direct Euler solution with the Kirchhoff solution on a x 2 + r2 = 52 circular

arc (Cat 1, Prob 3 with w = 47r).
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Figure 3: The nonuniform 512 × 256 grid system and the acoustic field (Cat 2, Prob 1 with kD = 167r).
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THREE-DIMENSIONAL CALCULATIONS OF ACOUSTIC SCATTERING BY A

SPHERE: A PARALLEL IMPLEMENTATION

Chingwei M. Shieh* and Philip J. Morris t

Department of Aerospace Engineering

The Pennsylvania State University

University Park, PA 16802

ABSTRACT

In this paper, the problem of acoustic scattering by a sphere is considered. The calculations

are carried out with the use of a high-order, high-bandwidth numerical scheme and explicit time

integration. Asymptotic non-reflecting radiation boundary conditions are applied at the outer

boundaries of the computational domain, and the Impedance Mismatch Method (IMM)

developed by Chung and Morris 1 is implemented in order to treat solid wall boundaries. Since a

three-dimensional simulation of moderate source frequency is desired, parallel computation is

exploited in order to decrease the computation time required. This study further demonstrates

that in order for realistic CAA calculations to be performed, the computational power of parallel

computers has to be harnessed.

INTRODUCTION

The scattering of sound from a spatially distributed, spherically symmetric source by a sphere is

an excellent test case for numerical simulations in CAA. While the phenomenon is well understood,

three-dimensional calculations of such problem with a moderate to high frequency source are still a

daunting task because of the number of grid points per wavelength needed in order to resolve the

acoustic waves. In this paper, such simulations are performed with the utilization of parallel

computation. Numerical results are compared with the analytical solutions derived by Morris 2, and

excellent agreement has been found.

NUMERICAL ALGORITHM

In the section, the governing equations that describe the acoustic scattering problem are given.

The solution algorithm, with the implementation of non-reflecting boundary conditions and the IMM

for the solid wall boundaries, are mentioned only briefly. The parallel numerical algorithm is also

discussed briefly, and data from a scalability study are presented to demonstrate the improvement in

performance using parallel computations.

*Graduate research assistant

tBoeing Professor of Aerospace Engineering
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Governing Equations

The problem of acoustic scattering is governed by the linearized Euler equations. In a

three-dimensional Cartesian co-ordinate system, the equations can be written as

0 I [ 0ul]1p0vl][ 0wl][0]p' ' Ap
0 pou' 0 pov' 0 P°oW = 0

u' p'lpo o +-5-;
v I 0 P'/Po 0 0

w' 0 0 P' / Po 0

(1)

where it is assumed that there is no mean flow. In the above equations, all quantities are

non-dimensionalized by the radius of the sphere, R, the ambient speed of sound, a_o, and the ambient

density, Poo, as the length, velocity, and density scales, respectively. The characteristic scales for the

pressure and time are pooa_ and R/am, and the source term, Ap, is given by

-A exp _ - B(log 2)[(x- x_) 2 + y2 + z21_ cos(wt) (2)Ap
L J

where A - 0.01, B = 16, xs = 2, and w = 2u. p0 is the non-dimensional mean density equal to unity

exterior to the body.

Solution Algorithm

In the present study, a high-order, high-bandwidth numerical scheme is implemented for the

spatial discretization of the governing equations. This scheme, the Dispersion-Relation-Preserving

(DRP) method developed by Tam and Webb 3, is an optimized third-order finite difference operator

with the use of a seven-point stencil. A standard fourth-order Runge-Kutta time integration

algorithm has been applied for explicit time stepping. It has been shown in various CFD studies that

central difference operators are inherently unstable. Therefore, in order to circumvent this problem, a

filter is added explicitly. A sixth derivative is used as a smoother, as proposed by Lockard and

Morris4; however, since a uniform computational grid is used, and it is expected that the problem

does not possess any nonlinear effects, the artificial dissipation model has been further simplified so

that only a constant coefficient filter is applied. This decreases the computational time significantly

without sacrificing the integrity of the data.

Asymptotic non-reflecting radiation boundary conditions, first developed by Tam and Webb z in

two dimensions and later extended to three-dimensional cases by Chung and Morris l, are applied at

the outer boundaries of the computational domain. The Impedance Mismatch Method (IMM) is

introduced to treat the solid wall boundaries. This is achieved by simply setting a different value of p0

inside the sphere. Further details are given by Chung and Morris 1.

Parallel Implementation and Performance

The parallel implementation employed in the present study follows the same strategy outlined by

Lockard and Morris 4. The code is written in Fortran 90 with the Message Passing Interface (MPI) on :;
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the IBM SP2. The computational domain is decomposedin a singledirection only in order to
simplify coding. The asymptotic non-reflectingradiation boundary conditions areapplied at the outer
surfacesof the computational domain, asshownin figure 1. Along the interfacebetweeneach
sub-domain,a messagepassingboundary condition is applied. Data are transfered from one
sub-domainto another with the useof the MPI. Sincea sevenpoint finite differencestencil is used,a
three-point overlap region is constructedalong the interface of eachsub-domain.

r ....

I
I

..................... t_=:

Z ............................... "1

I." Direction of domain

..'1 .,. decomposition

Radiation B.C.

_ Radiation

Radiation B.C. B.C.

!
Message Passing B.C.

Figure 1: A schematic representation of the domain decomposition strategy.
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Figure 2: Scalability study and comparison of the increase in performance with a parallel implementa-

tion.

The increase in performance of the code with parallel implementation is summarized in figure 2. A

logarithmic plot of the CPU time per grid point per time step in micro-seconds versus the number of

processors used in the calculation is shown in this figure. Nearly ideal speed-up is seem to be achieved

for up to eight processors. This is due to the minimization of the overhead in communication between
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each processor that is associated with the paralMization, as discussed by Lockard and Morris 4. Based

on similar computations by Lockard and Morris 4, additional ideal speed-up may be eXl;)ected for at

least 128 processors.

RESULTS AND DISCUSSIONS

The sphere is placed at the center of the computational domain, with the source located at

(2, 0, 0). The acoustic wave is generated by a time periodic source in the energy equation, as shown in

equation (1). The domain extends from -5 to 5 in each direction, with 101 x 101 x 101 grid points.

This corresponds to approximately seven grid points per wavelength along a diagonal.
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Figure 3: Contour level of instantaneous pressure at the beginning of a period: (a) along the plane

z = 0; (b) along the plane x = 0.

Inside the sphere, P0 is set to 1/30 in the implementation of the IMM for the solid wall boundary

condition. The definition of the sphere surface is approximated by a staircase boundary. Figure 3(a)

shows the instantaneous pressure contours along the plane z = 0, a plane that intersects the center of

the sphere and the a_coustic source, at the beginning of a period. The axisymmetric property of the

problem is evident in figure 3(b). The contour levels of the instantaneous pressure are plotted along

the plane x = 0 that cuts through the center of the sphere. The concentric pattern of the pressure is a

clear indication that the physical phenomenon has been faithfully reproduced in the simulation.

Comparisons between the numerical results and the analytic solutions derived by Morris _ are

shown in figure 4. Along the line in which the center of the source and the sphere are located, as

shown in figure 4(a), an excellent agreement between the numerical and the analytic solutions has

been achieved. Only slight discrepancies are observed near the vicinity of the sphere. The

disagreement is more prominent when the instantaneous pressure is plotted along the line that
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intersects the center of the sphere only, as shown in figure 4(b). Most of the disagreement occurs

because of the staircase boundary that defines the sphere and the relatively coarse grid used in the

present study.
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Figure 4: Comparison of the analytic and numerical solutions of the scattered acoustic filed: (a) along

the line at y = 0 and z --- 0; (b) along the line at x = 0 and z = 0.

The root-mean-square (RMS) pressure is calculated by sampling the pressure data after a periodic

state of the pressure has been obtained. This RMS pressure is then plotted along a circle of radius

r -- 5 at A0 = 1°, as shown in figure 5. The discrepancies between the numerical and the analytic

solutions may be due to post-processing, where the RMS data have been interpolated from a

Cartesian grid to a circle. However, the difference is very small to be of any significance when sound

pressure levels are considered.
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Figure 5: Plot of the root-mean-square pressure along the circle x 2 + y2 = 25 at A0 = 1°.
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CONCLUSIONS

In this paper, a three-dimensionalcalculation of acousticscattering by a spherehas been
performed with a parallel implementation. It hasbeendemonstratedthat parallel computing canbe
exploited for CAA calculations in order to achievebetter computation time. The treatment of solid
wall boundarieswith the useof the IMM hasbeenimplementedin the presentcomputation. This
method hasmany advantagesover traditional solid wall boundary conditions, suchassimplicity in
coding, increasein speedof computation, and the ability to treat curved boundariesin Cartesian

grids. Good agreement between the numerical and the analytic solutions has been observed.
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ON COMPUTATIONS OF DUCT ACOUSTICS WITH NEAR CUT-OFF FREQUENCY

Thomas Z. Dong*
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ABSTRACT

The cut-off is a unique feature associated with duct acoustics due to the presence of

duct walls. A study of this cut-off effect on the computations of duct acoustics is performed

in the present work. The results show that the computation of duct acoustic modes near

cut-off requires higher numerical resolutions than others to avoid being numerically cut

off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme

with the selective artificial damping method and results are presented and compared to
reference solutions.

1. Introduction

Duct acoustics are sound waves transmitted along the interior of a duct. Once gener-

ated, the waves which do not propagate in the axial direction of the duct reflect from the

walls of the duct and interact with each other. Because of this, waves with only special

patterns defined as the duct acoustic modes are allowed in the duct. It is found that for

a given frequency only a finite number of duct acoustic modes can propagate through the

duct. The rest are blocked out by the duct walls. An illustration of this phenomenon as

results of interference of waves with different propagation angles can be found in the book

by Morse and Ingard 1. This unique feature was defined as the cut-off of duct acoustics. A

parameter called cut-off ratio was introduced to study this phenomenon quantitatively so

that waves with cut-off ratio greater than unity propagate while waves with cut-off ratio

less than unity are cut off. This brings up a new difficulty for direct numerical simulations

of duct acoustics involving waves with cut-off ratio near unity as a wave with cut-off ratio

slightly above unity could be cut off by the errors in the numerical approximations.

On the other hand, an analysis of a numerical scheme designed for acoustic computa-

tions often suggests that the accuracy of the numerical solutions is in general an increasing

* This work was performed while the author held a National Research Council-(NASA Lewis Research

Center) Research Associateship.
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function of the number of mesh points per wave length. This implies that more accurate

solutions will be produced for waves containing more mesh points than those containing

less. So if a scheme can produce an accurate solution for a wave with say eight points

per wave length, one would expect better or least equally accurate solutions for waves

containing more mesh points. For computations of duct acoustics, this is not necessarily

the case. In the present work, it will be shown that poor numerical solutions could be

produced for duct acoustic waves near cut-off, although the waves are well in the accurate

solution range. Higher resolutions are required for these duct acoustic waves in order to

produce the expected accuracy.

In the next section, we start with a brief review of linear duct acoustics including the

definitions of cut-off ratio, group velocity. In Section 3, a duct acoustic inflow boundary

condition is derived. The numerical simulations and a discussion of the results are given

in Section 4.

2. Linear Duct Acoustics

Consider a uniform subsonic mean flow with Mach number M0 in an infinitely long

circular duct with radius R. The linear duct acoustics is governed by the linearized Euler's

equations which can be further simplified to give the convective wave equation for acoustic

pressure p

0 0 2p(_+M0 ) -V_p= 0 (1)

and the boundary condition at r = R

0p -0 (2)
Or

The flow variables are non-dimensionalized by a0, p0 and poa_ where a0 and p0 are the

speed of sound and density of the mean flow.

A single eigen-solution or duct acoustic solution to the above system can be written as

pm,_(r,O,z,O = P,,_,_d_(t.t,,._r)e i(:_''_°-_t) (3)

where m is the circumferential mode number and n is the radial mode number. The

eigenvalue #,_,_ is the nth zero of the derivative of the ruth order Bessel function din,

namely

J'(#m,_n) =0 (4)

The variable k is the axial wave number and w is the angular frequency. They are related

by the dispersion relation of equation (1)

D(k,w) (w Mok)2 k _ 2.... #m,_ = 0 (5)
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It can be easily seen that duct acoustic waves are dispersive. The group velocity of the

duct acoustics can be obtained from the above equation as

d02 k

V_(02, k)- dk - Mo + (6)oJ-Mok

The axial wave number can be solved as

1
-- - M_),_ ]k+ (l_Mo_)[_Mow± V/022_(1 _ 2 (7)

where k+ represents waves propagating downstream and k_ represents waves traveling
upstream. For

022
>1

2 --

k+ are real. Waves propagate both upstream and downstream without attenuation. For

02 2
<1

2 2(:-

k_: are a pair of conjugate complex numbers. Waves in both directions are attenuated ex-

ponentiaUy with distance. This means no waves with these wave numbers can be observed

away from the source region in both upstream and downstream directions. These waves

axe defined as being cut off while the waves propagating without attenuation are referred

as to being cut on. A special parameter "cut-off ratio" is therefore introduced as

_'n'b 'rb =

O2

ttm,_V/1 - Moa

Waves with cut-off ratio greater than unity are cut on and waves with cut-off ratio less than

unity are cut off. For waves with cut-off ratio less than or equal to unity, the group velocities

are equal to zero. This means that the waves which are cut-off are not propagating and

waves with cut-off ratio only slightly greater than unity will propagate very slowly.

3. Duct Acoustics Inflow Boundary Condition

In numerical simulations of duct acoustics radiation, where the duct acoustic waves are

generated inside the duct and propagate through the duct and radiate to the ambient from

the duct open end, the duct must have a finite length. The boundary condition imposed

at the inflow boundary or the inner boundary of the duct, for problem 2 of Category 2,

serves two purposes. First, it simulates a noise source to generate duct acoustic waves

propagating towards the open end. Second, it must allow the acoustic waves reflected
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from the open end to travel out of the computational domain. The acoustic solution there
can be written as a sum of the incident and reflected waves,namely ....

p = p,. + p.o (8)

Assuming a single angular frequency w, the reflected wave must be in the form

The axial wave number km,_ can be computed from the dispersion relation

]i_ m Tb

O3
_ 1 [-Mo + 11-(I- Mo2)(_) 2 ]l-Mo 2

(10)

For reflected waves the plus sign in the above equation should be taken.

Differentiating equation (9) with respect to x and t yields

Op Oplr_ (11)
Oz Oz

mTb

and Op Opin
-- -- zWpre
Ot Ot

Since only the cut-on modes of the reflected waves are considered,

(V/1 - Mg)gm,_/w < 1. A Taylor series approximation leads to

(12)

we must have

il (1 M{)(_-_) _ 1+0((1 M2 (#m'_)2.... 0) --d- )

Therefore, by combining equations (11)-(13), we obtain the boundary equation for p

(13)

0I) +(1 + Op Op_,_O-7 Mo)_- Ot + (1 + Mo)_-_ '_ (14)

Similarly, boundary equations for other variables with the same form can be obtained.

4. Numerical Simulations of Duct Acoustics

In this section, the duct acoustics problems in Category 2 were solved by the DRP

scheme with the selective artificial damping method in reference 2-3. Schematic diagrams

of the computational domains for both problem 1 and 2 are shown in Figure 1-2. The duct

wall thickness was set to be Ar instead of zero to eliminate the ambiguity in numerical

approximation of x derivatives at points near the tips. The the length scale L is set to be
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the duct diameter D for problem 1 and the radius R for problem 2. The time scale is L/ao.

The damping coefficient # was set to be 0.05. To remove the singularities at the tips of the

duct wall due to the inviscid approximation, larger damping coefficients were used at the

tips (#t = 1.0) and along the wall (/_,o = 0.1). A Gaussian function with half width equal

to three mesh points was used to make a smooth transition of the damping. The time

step was set to be At = 0.05Az. The amplitude of the source was multiplied by a time

dependent factor 1 - e -('_'_t/_°°°a*)2 to make a smooth transient. The governing equations

are the Euler's equations. A numerical treatment of sofid wall boundary condition with the

minimum number of ghost points for high order schemes, developed by Tam and Dong 4,

was applied to the solid surfaces of the duct walls. The computations are done on IBM

RS/6000-590 workstations.

For problem 1, a harmonic source function with a narrow Gaussian spatial distribution

located at the center of the duct was added to the continuity and energy equations as

specified by the problem. The acoustic radiation boundary condition was used at the

inflow and top boundaries and the outflow boundary condition was used at the outflow

boundary. These boundary conditions can be found in reference S by Tam and Webb. Two

cases with angular frequency w = 4.409507rr and 16rc were computed. The mesh size for

the lower frequency case was Az = Ar = D/51. The shortest acoustic wave contains about

12Az. The mesh size for the higher frequency case was set to be Az = Ar = D/159. The

shortest wave in this case is about 10Aa:. The computational domain contains 272x136

and 801x401 mesh points for the lower and higher frequency cases respectively. The

solutions took a long time to reach a good periodic state. This could be partially due

to the fact that the modes near cut-off took long time to travel out of the duct. The

w = 4.409507_" case took 12 CPU hours and the w = 16re case took about 200 CPU hours.

The sound pressure levels (p,-ef = 2 x 10-SPa) for both cases are measured along a circular

arc z 2 + r 2 = (5D/2) 2 and plotted in Figure 3-4. The computed results in general agree

with the reference solutions which are computed by boundary element method with a point

source and rescaled with the computed solutions at a point. Because of the mean flow,

acoustic waves take longer time to travel upstream. More loss in sound pressure level due

to the numerical dissipation is expected in the upstream region (0 near 180 °) than in the

downstream region (0 near 0°).

The results from problem 2 are more interesting. The Mach number of the mean flow

is zero. The same acoustic radiation boundary condition was used at the boundaries of the

ambient region as shown in Figure 2. A single incoming duct acoustic mode was specified

at the inflow boundary of the duct as follows

P

= ere {
Jm(#m,r)

")2)'+' Jm(gm.r)

_--Jm(tzmnr)
r_

S..(,m.r)

x e i[(w'-_*_')tl'=+rn°-u'tl
(15)

The mode numbers are m = 0 and n = 2. Cases with w = 7.2 and w = 10.3 are considered.

The mesh size was Ax = Ar = R/15.5. So the wave with the lower frequency has about
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13.5 Az per wave length in the free space and the one with high frequency has about 9.5

Az. Waves in both cases are in the well resolved long wave range for the chosen scheme

and mesh size according to the analysis in reference s .

The computed results are compared with the reference solutions with mesh size Az =

Ar = R/32 which is smaller than half of the mesh size used in the present work. The

reference solution was computed by Tam. Figures 5-6 show the pressure envelope, which

is defined as the maximum amplitude of pressure, inside the duct along four radial lines

r = 0, 0.34, 0.55, 0.79. For the second radial mode (n=2), these are the locations of peak

and trough. It can be seen that the computed solutions agree in general with the reference

solutions except that the computed solutions have less interactions between the incident

and reflected waves. This could be due to the fact that the lip of the duct wall in the

present work is Ar instead of zero which is used by the reference solution. The directivity

D(O) (0 is the polar angle measured from the center of the duct exit plane as shown in

Figure 2) of the radiated sound, which is defined by

D(O) = n2p2(n,o,¢,t)

where the bar denotes the time average, is measured along the outer boundary of the

computational domain and plotted in Figure 7-8.

It is observed from Figure 7-8 that solutions of both cases predict the locations of the

lobes and nodes very well. The solutions of the present computations predict higher level of

sound in the forward direction than the reference solution. Again this could be caused by

a finite thickness of the duct wall. The solution with the high frequency in general matches

the reference solution very well as expected. The solution with the lower frequency loses

more than 30% of sound in the direction of the peak comparing to the reference solution

which is in contradiction with the analysis as both solutions have enough grid resolutions.

If this is caused by the numerical damping, the lower frequency solution should still perform

better than the higher one.

With a close look at the parameters, it is observed that the radial eigenvalue/_02 is

equal to 7.0156. This makes the lower frequency w = 7.2 very close to the cut-off frequency

wc = 7.0156 with M0 = 0. The group velocity computed from equation (6) is equal to

about 0.2 while the group velocity for the higher frequency solution is about 0.7. This

means that the amount of time for the lower frequency solution to propagate through the

duct is 3.5 ti_es the amount needed for the higher frequency solutions. Therefore, much

more numerical dissipation is experienced by the lower frequency solution.

In addition to the numerical dissipation, it is well known that on a discrete grid a

single wave spreads its spectrum to the adjacent frequencies. This spreading is usually not

a major concern as the propagation properties like dispersion, dissipation and wave speeds

are continuous functions of wave numbers. But for duct acoustics, if part of the energy of

the solution is spread to the adjacent modes which are cut off, a loss of sound level could

happen, in this particular case, any energy leaked to the next higher radial mode (n=3)

will be cut off by the duct wall.
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To fix "this problem, a multi-domain multiple time-step method s was used to double

the grid resolution only inside the duct. Since the artificial damping rate decreases faster

than a linear function as kAz decreases, a reduction of Az should decrease the amount

of damping. In addition, an increase of grid resolution should also reduce the spreading

of energy to the neighboring modes. With the use of this multi-domain multiple time

step method, the doubling of grid resolution inside the duct only increased the amount of

computation by 58% while an overall increase of resolution will make a 700% increase since

the resolution in time also needs to be increased to maintain the numerical stability. With

the new grid resolution, the computed results agree favorably with the reference solution

as shown by the dashed curves in Figure 5 and 7.

5. Conclusion

A study of numerical simulations of the radiation of duct acoustics with near cut-off

frequency was carried out in the present paper. The results show that the computation

of duct acoustics with near cut-off frequency requires higher grid resolution than the re-

quirement from the dispersion and dissipation error analysis due to their very low group

velocity and possible spreading of energy to the adjacent modes which are cut off. To avoid

an overall increase of grid resolution, multi-domain methods which allow for different grid

resolutions in different sub-domains should be considered.

REFERENCE

Morse, P.M.; Ingard, K.U., Theoretical Acoustics, McGraw-Hill, New York, 1968.

Tam, C.K.W.; Webb, J.C.: "Dispersion-Relation-Preserving finite difference schemes

for computational acoustics", J. Comput. Phys., Vol. 107, Aug. 1993, pp. 262-281.

Tam, C.K.W.; Webb, J.C; and Dong, T.Z.: "A study of the short wave components in

computational acoustics," J. Comput. Acoustics, Vol 1, 1993, pp. 1-30.

Tam, C.K.W.; Dong, T.Z., "Wall boundary conditions for high-order finite difference

schemes in computational aeroacoustics," Theoret. Comput. Fluid Dynamics, Vol. 6,

1994, pp. 303-322.

Dong, T.Z., "Fundamental problems in computational acoustics", Ph.D Dissertation,

Chapter IV, 1994, pp.78-105.

253



"°7"...t.on._--____

---/ 0''-- /_-- \1
/_ .o.o., , /?o ou.,o._oI

_--° _ \]
Solid Wall BC e 0 5D

Source

Figure I. Computational domain of problem 1.

J
Radiation BC

DR

Du_[ustics Inflow BC

............... _-_---_ ...........

12R

Figure 2. Computational domain of problem 2.

254



60.0 , _ , , ,. _- f ,

40.0

j 20.0
Q.. ,
O3

0.0

-20.0 _t , , , , , .....
0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

e

Figure 3. Sound pressure level with w = 4.47r. Com-

puted solution (solid line), reference solution (dotted

line).

m

.-I
Q.
O3

2oo? ....... t
0.0

-20.0

-40.0

-60.0

"80"00.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

Figure 4. Sound pressure level with w = 167r. Com-

puted solution (solid line), reference solution (dotted

line).

255



A

0"06.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
X

Figure 5. Pressure envelope at various r locations (w =

7.2). Az -- R/15.5 (solid fine), Reference solution (dot-

ted line), Multi-domain solution (dashed line).

1,6 _ T , ,

1.4

1.2

_ 0.8

_ 0.6
ft.

0.4 =r=0.5

0,2 _ " _ '

0.0

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0
X

Figure 6. Pressure envelope at various r locations (w -

10.3). Az = R/15.5 (solid line), Reference solution

(dotted line).

256



0.004 [-- ' r .... , - , ," . ....

O 0.003 f

-{ 0.002 f
i5

0.001 I _ .,.......---
0.000 _ ' _- -L_

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

0

Figure 7. Directivities D (w = 7.2). Az = R/15.5 (solid

fine), Reference solution (dotted line), Multi-domain so-

lution (dashed line).

0.06

0.05

0.04

E3

--> 0.03

o

0.02

II '

o.ol 
0.00 b____ ,

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 i80.0

8

Figure 8. Directivities D (_ = 10.3). Az = R/15.5

(solid line), Reference solution (dotted line).

257





2 @1t r'"
A COMPUTATIONAL AEROACOUSTICS APPROACH TO DUCT ACOUSTICS

Douglas M. Nark *
Joint Institute for Advancement of Flight Sciences

The George Washington University
Hampton, Virginia 23681

SUMMARY

A staggered finite difference approach is utilized in studying benchmark duct acoustics
problems (category 2). The numerical boundaries are handled through the use of buffer zones
which may be formulated to allow inflow while absorbing any outgoing waves. In addition, the use
of grid compression and some effects on solution quality are investigated.

INTRODUCTION

This work focuses on the application of a staggered finite difference scheme to the solution of
two benchmark problems in duct acoustics (category 2). These problems were chosen in order to
assess the use of such an approach in solving duct problems and to further validate the
performance of 'buffer zones' at computational boundaries. Additionally, the geometries involved
provide an opportunity to examine the effects of grid stretching and compression on the quality of
the solutions obtained.

The finite difference scheme employs a fourth order spatial discretization with fourth order
Runge-Kutta time integration which was chosen in light of results for previous benchmark
problems [1]. The staggered approach involves calculation of the flow variables at different grid
points in the computational domain. This may be illustrated by considering a grid square or 'cell'.
This 'cell' is comprised of five grid points; one in the center, and one point at the midpoint of each
of the walls. This is shown for cylindrical coordinates in figure 1. Scalar quantities are calculated
at the center of the cell and the components of the vector quantities are calculated at the sides.
The vector components in the r-direction are computed on the right and left sides, whereas the
components in the z-direction are computed on the top and bottom. The entire computational
domain may be thought of as a collection of these cells with the variables at the specified points.
The next issue is the treatment of the physical and numerical boundaries, and although the
geometries of the two problems are similar, it may be best to discuss that aspect of the problems
separately.

PROBLEM 1

This problem involves the calculation of the acoustic field produced by a spherical source in
the geometrical center of a finite length open-ended cylindrical duct placed in a uniform mean
flow. Taking advantage of the axisymmetry of the geometry, the problem is cast in cylindrical
coordinates with the z-axis being an axis of symmetry (figure 2). Along this axis, the

r-component of velocity and the partial derivative of the pressure, p, with respect to r, _, are set
equal to zero. Application of the fourth order stencil requires some special attention at this

"This is a portion of research being conducted in partial satisfaction of the requirements for the Degree of Doctor
of Science with the School of Engineering and Applied Science of The George Washington University.

259



__ llW ............ 41,W ....

w
.................... 0..IJ'_l._ .............

AT

eu ep

.... eW .......

eu ep

.......... eW ......

,u ep eu

...... IW___

u ep eu

......... IW .......
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location because the finite difference stencils can extend beyond the axis. In this case, the

condition on the pressure is used to obtain ghost values, and a full stencil may be used for _. The
radial derivatives of the other variables are then shifted so that they include only interior points.
The conditions on the duct wall are treated in much the same way following a procedure similar to
that given by Tam and Dong [2]. Here, ghost points for pressure are obtained by using the

w-momentum equation along the boundary. This allows a full stencil to be used for the term _.

The stencils for the remaining variables are shifted so that they require only known data points.

_Z

Symmetry
Axis

l_

Buffer Zone

Interior Domain

__D uct

Wall

r

Figure 2: Problem 1 geometry

The remaining computational boundaries are a result of truncation of the infinite domain of
propagation and are also illustrated in figure 2. These require outflow conditions which result in
minimal reflection. Here, a technique involving an absorbing buffer zone was employed. In this
formulation, a number of points is added to the computational domain to form a buffer zone. In
this region, the original equations are modified in such a way that no wave will be reflected from
the outer boundary of the buffer zone [3]. The construction of the modified equations in the buffer
zone is accomplished by changing the domain of dependence for the problem, or equivalently by
changing the dispersion relation near the boundary. The change from the interior domain, where
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the original equations hold, to the outer edges of the buffer zone must be done in a smooth way in
order to eliminate reflection caused by the inhomogeneity introduced,

One further aspect of this problem should be addressed before presenting results. The
presence of the mean flow causes disparate wavelengths on the upstream and downstream sides of
the acoustic source and therefore differing grid resolution requirements. A uniform grid would
require a mesh spacing tailored to the shorter wavelengths and would be finer than necessary in

regions where waves of longer wavelength were propagating. Thus, it would seem reasonable to
employ a variable computational grid, which is compressed upstream of the source and stretched
downstream, in order to minimize the total number of grid points and reduce computation time.
This may be accomplished by applying independent variable transformations of the form

= (if, z)
¢ = (ff, z). (1)

The partial derivatives with respect to r and z then become

0 0f 0 0¢ 0 =_ro _;oN = NS_ + Nb-¢ 0f + 0I

b-z-b-; +_ -_'#+¢ •
Since the duct walls are straight, the problem requires only a transformation which provides
refinement near an interior point (ie. the source location or duct wall). One may be found in
Anderson et aI [4] and in this case is written as

(2)

_(r) = B1 +--sinh-' - 1 sinh(rlB,
TI

(3)

where

((z) = B2 + --sinh -1 - 1 sinh(r_B__
r2

(4)

1
Bl = =---In

zrl 1 + (exp-,-1) (r_h)J

t + (e_p_-:l)_(_zo/h)]
B2= _r2|n 1 +(exp-'-l)(zch)]

O<vl <oo

O< r2 <oo.

Here, rl and r2 are stretching parameters which produce more refinement at r = r_ and z = z¢ for
larger values (zero produces no s.tretching). If this transformation is applied to the governing
equations, the following set is obtained

0A 0B 0C
+ _-==-. + (,--z-:-. + D = 0 (5)

0--t-- o_ d_

where A, B, C, and D are vectors given by

/ }A= u
w

P
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{u}B= P
0

U

{ M_p+w }

M_v

ooP

D= 0
0

u__ S
r

Here, p and p are the pressure and density, (u, w) are the velocity components in the (r, z)
directions, and 5' is the source given by

S = O'l exp [-48(ln2) (kD) 2 )](x + (6)

Having discussed the numerical solution technique, it is possible to present results and examine
some of the possible effects that variable grids may have on solution quality.

Results

Initially, the source was given by equation (6) with kD -- 167r. The pressure contours for this
case are presented in figure 3 to offer some guide to the form of the directivity pattern. Here, the

pipe has been turned on its side (with the positive z-axis directed to the right) and a uniform
mean flow at a Math number of 0.5 is present in this direction. The disparate wavelengths caused
b_y the mean flow may be seen clearly. Also presented in this figure is a plot of the RMS pressure,

p2, along a circular arc x 2 + 92 = (2.5) 2 at A0 = 1°, where the angle 0 is measured from the
positive z-axis (0 = 0 corresponds to the downstream side of the source). It is evident from these
plots that the radiated pressure drops off considerably around 0 = 90 °.

Pressure Countours (kD=16_)

r

.,,."I_'¢//#/_ID. _ _ N_,

10 "10

10""

10"12

p=

10-13

101.

Mean Square Pressure (kD=16_)

10 "is .............o 3'0 6'0 9'o" i:iO i8o
Theta

Figure 3: Pressure contours and RMS pressure along r = 2.5 for kD = 167r
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Although reasonable results may be obtained for the case given by kD = 167r, a significant

amount of computation time was required. Therefore, a source characterized by equation (6) with
kD = 4.4095077r was studied. With this lower frequency, computation time was decreased and
various grids more easily studied. Figure 4 shows the pressure contours and RMS pressure for this
case on a uniform grid. One feature to be noticed from these plots is that the radiated pressure
appears to be much more uniform and the null around 0 = 90 ° is much smaller than in the
previous case. At this point, it was then possible to look at results obtained on grids compressed
by differing amounts around the duct wall and upstream end. As an example, figure 5 shows the
pressure contours, as well as the actual grid for the situation in which T1 = 2.0 and r2 = 5.0 in
equations (3) and (4). Comparison of the pressure contours in figures 4 and 5 shows that similar

results are obtained. However, this is simply a qualitative comparison and a better understanding

of the effects of the variable grid is gathered by comparing the plots of RMS pressure p2 versus 0.

r

Pressure Countours (kD=4.4_)

Z

10 -7

Mean Square Pressure (kD=4.4_)
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Figure 4: Pressure contours and RMS pressure along r = 2.5 for kD = 4.4rr
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r

z

Computational Grid (z1=2.0, z2=5.0)

r

Figure 5: Pressure contours and computational grid for kD = 4.47r with rl = 2.0, T2 = 5.0

Several different grids of varying configurations (.ie different values of rl and _2) were
employed in solving the kD = 4.409507r case, however the results for only four of the grids are
required to bring an issue to light. The size of these grids and the stretching parameters are
included in table 1. Figure 6 shows the results for two uniform grids, and one compressed the
same amount around the duct wall and upstrcam end. In this plot, run 1 may be considered a
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baseline case, as it employed a very fine uniform mesh. The total number of grid points was then
reduced in run 2. And in run 3, the number of grid points was reduced even further, but
compression was then applied. As can be seen in figure 6, the results for run 3 match the baseline

case much better than run 2 and overall it appears that the variable grid performed effectively.
There does, however, appear to be some oscillation in the solution as 0 approaches 180 °. This may

be further studied by utilizing a grid which is identical to run 3 except that it is compressed even
further around the upstream end of the duct. These cases are plotted in figure 7 and appear to be
similar over a range of 0.

Run Grid Size _

1 250x500 0.0 0.0

2 i60x350 0.0 0.0

3 106x228 2.0 2.0

4 106x228 2.0 5.0

Table 1: Grid parameters for various cases

However, there is again some oscillation evident as 0 approaches 180 ° which is more prevalent for
run 4. A possible cause of this oscillation may be that the acoustic waves are actually propagating
through a fine grid which becomes coarser as the distance from the duct end increases. Thus, as

the grid is compressed further (.ie larger values of r), this transition from fine to coarse grid
becomes more abrupt and the possibility of introducing numerical error increased. It would then
seem that grid refinement may be applied effectively, with the understanding that compressing the
grid too much may lead further error. With these ideas in mind, the second problem in this
category may be discussed.

10 .7
Comparison of RMS Pressure

p2

10 4 £, "

10"g1040 i:

10"11 ............. Run 2
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Figure 6: Comparison of RMS pressure for various grid configurations

PROBLEM 2

This problem involves the propagation of sound waves through a semi- infinite circular duct
and the subsequent radiation to an unbounded domain. At first glance, this problem appears to
require a much different computational domain than problem 1. However, the form of the
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Figure 7: Comparison of RMS pressure for various grid configurations

incoming wave allows some simplification to be made. This incoming sound wave is taken to be a
radial duct mode (specifically n = 0, m = 2) given by

v =Re _" (#o2r) exp 2_la2o2z_wt
l/J w JO

(7)

where p is the pressure and (u,v,w) are the velocity components in the radial, azimuthal, and
longitudinal directions respectively. Thus, the problem may be taken to be axisymmetric and a
domain similar to that for problem 1 may be employed. Figure 8 shows various components of the
problem geometry. Again, the z-axis is a symmetry axis and the other boundaries are a result of
the truncation of the infinite physical domain. All of these boundaries, as well as the solid duct
walls, are treated in the same way as problem 1.

Symmetry
Axis

[_

z

Buffer Zone

Interior Domain

Duct

Wall

r

Figure 8: Problem 2 geometry

There is some difficulty in the treatment of the incoming duct mode within the buffer zone. In
this region, the governing equations are solved only for the outgoing waves by simply subtracting
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the incoming wavesolution from the full set of equations. If this procedure were not carried out,
then an incoming mode specified at the boundary of the domain, or within the buffer zone, would
never reach the actual computational domain. In effect, these waves would be swept out of the
domain by the buffer zone and the duct would not see a disturbance. Once the incoming mode is
specified, a computational grid is constructed keeping in mind that the radial mode requires
differing resolution in the r and z directions.

Results

The first case attempted was that for which co = 10.3 in equation (7). In figure 9, the pressure
contours are presented to aid in qualitatively understanding the directivity pattern. In addition, a
plot of the actual directivity, D(O), versus 0 is included. Here, 0 is the angle measured from the
z-axis and the directivity is defined as

D(O) - lira R2p2(R,O,t),
R--_ oo

where the overline denotes the time average of the quantity. Since the computational domain can
not extend to infinity, the directivity was calculated at R = 6. Also included for this case are plots

of the pressure envelope in figures 10 and 11. The pressure envelope is given by

P(z)= max p(r,z,t)
over time

and was calculated from z = -6 to z = 0, with z = 0 being the outflow duct end.

Pressure Countours(m=10.3)
r

z
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10_ [ Directivity(oo=10.3)
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104
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Figure 9: Pressure contours and directivity for co -- 10.3

Another set of calculations was performed in which co = 7.2 in equation (7). This frequency is
very close to the cutoff frequency of the duct making the calculation more difi3cult. The numerical
approach appears to give reasonable results as seen in the pressure contour and directivity plots of
figure 12 and the pressure envelope plots of figures 13 and 14.

DISCUSSION

The results from these problems presented above show that the staggered finite difference
approach can be applied effectively to some duct acoustics problems, provided that specific
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Figure 11: Pressure envelope at various locations
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Figure 12: Pressure contours and directivity for _o = 7.2

requirements inherent to the geometries (ie. mean flows, cutoff modes) are taken into account. In
addition, the buffer zone approach handled both problems well, including the introduction of an
incoming duct mode while sweeping other waves out of the domain. Finally, as evidenced by
results from problem 1, grid compression must be carried out carefully so that the transition from
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Figure 14: Pressure envelope at various locations

a 'fine' to 'coarse' grid takes place gradually. Overall, however, it was found that this technique
may be effective in providing more efficient calculations by reducing the total number of grid
points while maintaining solution quality.
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ABSTRACT

A variational method for computing the unsteady aeroacoustic response of turbomachinery blade

rows to incident vortical gusts is presented. A variational principle which describes the harmonic small

disturbance behavior of the full potential equations about a uniform mean flow is developed. Four-node

isoparametric finite elements are used to discretize the variational principle, and the resulting discretized

equations are solved efficiently using LU decomposition. Results computed using this technique are

found to be in excellent agreement with those obtained using semi-analytical methods.

INTRODUCTION

In this paper, an exfension of Bateman's [1] variational principle - previously derived by Hall [2]

for aeroelastic calculations and later extended by Lorence and Hall [3] for aeroacoustic applications

- is used to solve for the aeroacoustic response of a two-dimensional cascade of airfoils subjected to
an incident vortical gust. The variational principle describes the small disturbance behavior of the

compressible full potential equation. The small-disturbance variational principle is discretized using

bilinear four-node isoparametric finite elements, and the resulting set of linear equations is solved using

LU decomposition to obtain the unknown perturbation velocity potential.

Also presented is a numerically exact far-field boundary condition. To prevent spurious reflections

of outgoing waves as they pass through the far-field computational boundary, so-called nonxeflecting

boundary conditions must be applied. Previous investigators have found the analytical behavior of

the unsteady flow field and matched these solutions to the computational solution at the fax-field

boundary [4, 5, 6, 7]. In this paper, the exact far-field behavior of the discretized small disturbance

equations is found by performing an eigenanalysis of the discretized equations in the far-field. The

resulting eigenmodes are then used to construct perfectly nonreflecting boundary conditions.

The present variational finite element method is both accurate and computationally efficient. For

example, typical aeroacoustic calculations require less than one minute of CPU on a modern desktop

workstation computer. A number of computational examples are presented; results computed using

the present method are shown to be in excellent agreement with exact solutions.

THEORY

In the present analysis, the flow through a compressor or turbine blade row is assumed to be inviscid,

isentropic, and two-dimensional. Furthermore, the fluid is assumed to be an ideal gas with constant

specific heats. For the Category 3 turbomachinery problem, defined for the Second Computational

Aeroacoustics Workshop on Benchmark Problems, the cascade is composed of flat plate airfoils which

do no steady turning so that the mean or steady flow is uniform. Thus, the unsteady flow through

the cascade of airfoils can be modelled as the sum of three parts: a uniform steady flow, an unsteady

ICopyright @ 1997 by Kenneth C. Hall. Published by NASA with permission.
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irr,_tati_mal (._:.pt in the, wak.) .s. th.t ih. p_'rt_lrbati_m vel,,.ity may be represented by the gradient

.f a svalar w'l,.'itv pot,ontial, ,). "l'h,is th. t,_t_Ll w'lo_'ity V lll;-ly [/o ,;xpressed a.s

V(.r. !/, :) = U + v.(,r,.q, t) + V,_(s,.r/, t) (1)

where U is the (unifl)rm) steady or mean flow. vn(x, y) is the velocity associated with a divergence

free vorticity field, and c/5(x, y) is the unsteady perturb_ltion potential. Note that here we have assumed

that the unsteady quantities vn and XT,#are small compared to the mean flow U. Note also that since
the mean flow is uniform, the vortical disturbance is simply convected through the cascade without;

distortion, and further, there is no unsteady pressure associated with the vorticity itself.

Next, the expression for the velocity field, Eq. (l), is substituted into the conservation of mass,

which is given by
or)

+ = 0 (23

where # is the density of the fluid. Collecting terms which are first order in the unsteady quantities,
one obtains

0p + V. (RV¢ + pU) = 0 (3)
Ot

where R and p are the steady flow (zeroth-order) density and unsteady perturbation (first-order) density,

respectively. Integrating the momentum equation and making use of the isentropic assumption, one can

obtain expressions for the unsteady perturbation pressure p and density p in terms of the perturbation

potential, i.e.

o0 )p = -R_-_ = -R _- + U. V, (4)

and

P= C 2Dr =-C '_ _ +U'V¢ (5)

where D/Dt is the linearized substantial derivative operator, and C is the steady flow speed of sound.

Equation (4) is recognized as the linearized Bernoulli equation. Finally, substitution of Eq. (5) into the

conservation of mass, Eq. (3), gives the desired linearized potential equation,

v. RYe- V. _ W_V¢+-- C - _ V_V + 0t_] = 0 (6)

To complete the specification of the problem, boundary conditions must be specified on the surface

(gD bounding the solution domain D (see Fig. 1). On the airfoil surfaces, there can be no mass flux

through the airfoil surface so that
o¢

R_ = -RvR. n (7)

where n is the unit normal to the airfoil. Tim wake may also be thought of as an impermeable surface.

However, since the wave will in general oscillate unsteadily, Eq. (7) must be slightly modified to account

for the upwash produced by the wake motion. On either side of the wake, we require

b-;7.,,= R, -,,,_.n+37+ o_] (8)

where r = r(s, t) is the dispbwement of tho wake normal to its mean position, s is distance along

the wake, and V is the magnitude or" the steady velocity aligned with the mean wake position. To
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Figure 1: Computational domain D bounded by surface OD.

provide closure for the wake position, an additional condition is required, that is, the pressure must be
continuous across the wake. Hence,

where [p] denotes the pressure jump a_ross the wake. At the trailing edge of the airfoil, the wake

displacement is prescribed to be zero. This requirement is equivalent to the Kutta condition.

At the periodic boundaries, the complex periodicity condition

¢(a:, y + g) = ¢(x, y)e j_ (10)

is applied, where g is the blade-to-blade gap. This boundary condition permits us to reduce the

computational domain to a single blade passage significantly reducing the computational effort required

to compute the unsteady flow field.

Finally, boundary conditions are required at the upstream and downstream far-field boundaries to

prevent outgoing waves from being reflected back into the computational domain. These conditions

will be discussed in the following section.

In an earlier paper, Hall [2] showed that the linearized potential equation, Eq. (6), is the Euler-

Lag-range equation of a variational principle which states that the H is stationary, where

1
/T//D _1R [ 1 (uTv ¢ ] dt+_/r_ol qCds (11)l'I=_ 2 --vcT_7¢ +-_ + ¢_)_ dxdy o

and where T is the temporal period of the unsteadiness, and 0D is the surface bounding the spatial

domain D. Taking the variation of H with respect to the unknown ¢ and setting the result to zero

gives,

1 r 1

[-- v(_T VCSg} --]-= /j/oR +¢o + oo] + q6¢ ds = 0

(12)
Application of various forms of Gauss' theorem and integration by parts gives

_n= frf/_ v. Rye- v. urv¢ + U - UrV_ + 6¢dxdydt

JTJoo - q _¢d_ = 0 (_3)

In the interior of the domain D, the int.egrand of the first, integral must vanish for arbitrary variations

6¢. Thus, the Euh:r-Lagrange equation is just given by gq. (6). On the boundary of the computational
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(N_,lllnaim c_mf[itfims}. "['[1,' l,.t_,r ,',,z_,[iti,m i._ II._#,[ to mcht_l_' t.h_, iafluence of lipw_,_h on the airfoil

in_liice_l tiV the v<Jrti<'itl _ll._t vie +tnrl tlit, wake' ttit_tion r [Eels. (7) nn, l (8)].
For g, il,_t distlirtJ+ul<'<,._ whi,h at',, f<'titp<Jr+tll.V [iitrlll<Jni(', l:he illisteady perturbation potential ¢ will

also be hli.rin()irlic. Thil_, it. will b(; ('<)ll'¢_',lli(,ilt, N) lift.

l

where ¢(x,!1)isnow the complex amplitude of the perturbation potential,and ¢(z, y) isitscomplex

conjugate.

Substitution of the simple harmonic motion assumption into the functional l'I yields the functional

for the variational principle which describes the behavior of the harmonic small disturbance potential,

_b. The result is

=l R{ D [v_TuuTv_ j_Hshm 2 iSo - v_Tv(_ -I- -- (v_Tu_ - _uTv_] + 032_] } dz dy

l irf_D q'¢ds-I- _ + complex conjugate terms (15)

Taking the variation of Eq. (15) and setting the result to zero and applying the divergence theorem as

before gives the desired Euler-Lagrange equation and boundary conditions which describe the harmonic

small disturbance behavior of the flow• The Euler-Lagrange is given by

Rv.nv¢-v. _

As expected, Eq. (16) is identical to Eq. (6) with the operator O/Ot replaced by -jw. On the boundaries

of the domain, we hove the natural boundary condition

0_

which can be used to describe the upwash due to the wake or the periodic boundary conditions. For
additional details on the modifications to the variational principle required to compute unsteady flows

in cascade, the interested reader is referred to Hall [2].

NUMERICAL SOLUTION TECHNIQUE

Because the unsteady solutions are spatially periodic, the solution domain can be reduced to a single

blade passage. Within a single passage, an H-grid of quadrilateral cells is generated algebraically. The

unsteady variational principle, Eq. (15). is then discretized using conventional finite element techniques.

In the present work. a four-node isoparametric element is used. Consider the nth quadrilateral element

in the computational domain. The values of the unsteady velocity perturbation at the corners of the

element, {4_},,, are interpolated into the interior of the element using an interpolation of the form

¢(_, u) = [N], {¢h (lS)

where [N]n is a row vector of interpolation fimctions. Then, for example, the local stiffness matrix is

given by

[k] : fL
-.)_, (fN'] r V'<[>[N],,

'_t Itl

1
+ C--__,[[N']_r V'¢V'<Ibr [N'].

- [N], _, V'<U IN'l,,) + ..'' IN], r [Ni. ]} dx dy (19)
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The loom _titfm!ss matrix, E_I. (19), i,_ i_h'aticM t(_ that t'¢)_m_[ hy W_dtehead using a Galerkin method

(¢'.f. E¢l. (25) ,,t' R¢,f. [5]). D_r ¢'¢,lls which are h_cat.ed on the con_put, ational boundary, additional

cottt.ributioas t_ the st.iffIless matri× attct/',_r an itfltomogeae()_ts "'fi)rce vector" bn arise for those regions

in which NelLmann con_[itions are apt)lion[ (along the airfoil and wake surfaces).

Having computed the local stiffness matrices and force vectors, the global system of equations is

assembled. The assembly process is simplified because of the regular structure afforded by the H-grid.

To provide wake closure, auxiliary finite difference equations are applied along the wake to enforce

pressure continuity, and one equation is introduced at the trailing edge that specifies that the wake

must remain attached to the trailing edge (r = 0). The resulting finite element scheme is spatially
second-order accurate.

For unsteady flow computations, nonreflecting boundary conditions are required at the far-field

boundaries so that the flow field may be computed on a computational domain of finite extent. Without

nonreflecting boundary conditions, outgoing waves would produce spurious reflections at the far-field

boundary that would corrupt the solution. Previous investigators have found the exact analytical

behavior of the linearized potential [4, 51 and linearized Euler [6] equations and matched these analytical

solutions to numerical solutions at the far-field boundary. In this paper, the exact far-field behavior of

the discretized small disturbance equations is found by performing an eigenanalysis of the discretized

equations in the far-field. The resulting eigenmodes are then used to construct perfectly non.reflecting

boundary conditions (see also Ref. [8]).

The computational grid used in the present analysis is an H-grid. If in the far-field the grid spacing in

the axial direction is uniform and the "streamline" grid lines are parallel, then the discretized equations

are identical from axial grid line to axial grid line as one moves away from the cascade. The discretized

equations at the ith axial station in the far field are

}+ + } = 0 (20)

where {¢I,,} is the solution at the nodes of the ith axial station and contains not only the unsteady

perturbation potential, but also the wake motion r in the downstream region. The matrices [A], [B],

and [C] are sparse matrices which do not vary from axial station to axial station in the far-field. AI;

the upstream far-field boundary (i = 1) the discretized equations are

[A]{*o} + [B]{¢,} + [C1{O2} = 0 (21)

The i = 0 station corresponds to a line of false nodes. Hence the solution ¢I'0 is not actually calculated

but must be expressed in terms of the solution at stations i = 1 and i = 2.

Because of the periodic nature of this equation, one can hypothesize that solutions in the far field
are of the form

N

n=[

where N is the number of unknowns per station. Substitution of Eq. (22) into Eq. (20) gives

N

:i,-'[IAI+;oIBI+-';Ic]] --0
.=1

For this series to be zero, each term in the series must vanish so that

[[AI + :,,[B] + :],[C]] = 0

(22)

(23)

(24)
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=,,. T}I,' pr,)l)h,m'is pllt illr,, _J Jn,)r,, ,,,Jw,nti,m_d f,,rm by rP,'_L_ting E(I. (24) in state-space fi>rm, i.e.,

I ](-} [ ](-}{1 I ,I.,, I 0 4.,_
-A -B :,_+,_ = =" 0 C z._,, (25)

By examining ttw {'ig, mv_d,u's of E_I. (25), one can {l{,¢erminc wh,_ther the nth eigenrnode is travelling

away from or toward the c_Lsca, l,,. On l}hysi{'al grounds, no acoustic waves should travel toward the

cascade since such waves would originate outsi{le the computational domain or would be due to artificial

reflections at the far-field boundary. At the upstream far-field boundary, eigenmodes with eigenvalues

with a magnitude less than _mity represent incoming waves which decay as they move toward the

cascade, and hence, should be exchtded from the solution. If the magnitude of the eigenvalue is greater

than unity, the corresponding eigenmo{le is an outgoing mode which decays as it moves away from the

cascade. Such a wave is allowe{t. Finally, if the magnitude of the eigenvalue is unity, then the direction

that the wave travels is determined by its group velocity and again incoming waves are to be excluded.

If the solution is known at station i and i + 1 of the far field, then one can compute the solution at

some other set of stations j and j + 1 by decomposing the solution at station i and i+ 1 into eigenmodes,

propagating the individual eigenmodes to stations j and j + 1, and then recombining the eigenmodes.

Ivlathematically this is expressed as

where

{o,} [TI,T12],,{o,}{I}a+t = Tat T22 @i.t

[T] = [E][Z][E]-'
and where [E] is the matrix of eigenvectors and [Z] is a diagonal matrix whose nth entry is the nth

eigenvalue zn, found by solving Eq. (25).

To implement the far-field boundary conditions, say at the upstream far-field boundary, the tran-

sition matrix IT] is computed as above but with Bhose eigenvalues z= which correspond to incoming
modes set to zero thereby eliminating incoming eigenmodes. Substitution of the upper half of Eq. (26)

into Eq. (21) yields the desired nonreflecting boundary conditions at the upstream far-field boundary,
i.e.,

+ = 0 (2r)
where

[13] = [B] + [a][Tt,] and [(_] = [C] + [A][T,2]

Note that, in general, [13] and{(_] will be fully populated. The nonreflecting boundary condition at the

downstream boundary is constructed in a similar fashion.

The implementation of the far-field boundary conditions completes the discretizati0n of the lin-

earized potential equations. Because an H-grid is used, the resulting matrix is block tridiagonal and

can be solved efficiently using an LU-decomposition algorithm which takes advantage of the block-

tridiagonal structure. In the next section, some typical results of the present analysis are presented.

RESULTS

In this section, results computed using the present method are compared to the "exact" solutions

for Category 3, Problem 1. For this problem, a vortical gust washes over a cascade of unstaggered flat

plate airfoils. The mean flow is uniform with speed U_ and density p_. The inflow Math number M_o

is 0.5. The length (chord) of each blade is c. The gap-to-chord ratio 9/c is [.0. We consider the case

of an im'ident vortical gust whMt has .r: an{[ !! velocity components given by

+ 3u  t)l (28)
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Figure 2: Contours of unsteady perturbation potential, _ = u = 57r/2 (Category 3, Problem 1). Note:

two solutions are overlaid, one computed on a grid extending from x = -2 to +3, and one extending
from z = -1 to +2.

v = vcexp[j(ax +/3y-wt)] (29)

respectively, where ¢3 is the prescribed circumferential wave number equal to a/g where a is the so-

called interblade phase angle. [n the following, all lengths have been nondimensionalized by c, and

pressures by po_Uo_vc.

For the first case, a vortical gust with interblade phase angle u of 57r/2 impinges on the cascade with

a reduced frequency _ of 57r/2. The mean or steady flow through the cascade is uniform with a Mach

number of 0.5. In the original problem description, four blade passages axe required to achieve period-

icity. However, because we impose complex periodicity at the periodic boundaries, the computational

grid used here spans a single blade passage.

Figure 2 shows the computed contours of unsteady perturbation potential computed using two

computational grids: a 241 x49 node H-grid extending from approximately two chords upstream to two

chords downstream of the airfoil, and a 145x49 node H-grid extending from one chord upstream to

one chord downstream of the airfoil. The solution computed on the 241x49 node grid required 44 sec

of CPU time on a Silicon Graphics Power Indigo 2 RS000 workstation. Note that the two solutions

are nearly identical in the region where they overlap. If the far-field boundary conditions were not

perfectly nonreflecting, some differences would be seen when the location of the far-field boundary is

changed. Also note the jump in potential across the airfoil and wake. Figure 3 shows contours of

unsteady perturbation pressure for the smaller computational grid. One can clearly see that a single

pressure wave is cut on upstream and downstream of the cascade.

Next, the solutions computed using the present method are compared to the "exact" solution

computed using Whitehead's LINSUB code [9]. Shown in Fig. 4 is the (nondimensional) pressure jump

across the reference airfoil (located at g = 0). Note the present solution and the exact solution are in

almost perfect agreement at this moderate reduced frequency. Similarly, Fig. 5 shows the computed

mean square pressure of the aco_lstic response at x --- -2 and x = +3 (two chords upstream and

downstream of the cascade). Ag_fin. the agreement betweea the present method and the exact solution
is excellent.

Next, we consider the same gust t'(,Sl)(ms(, exatnple, but with _' = u = t37r/2. Again, the 241 x49 node

H-grid is use(| to COUlpUte the m, roacoLtst.ic r('sl)otl_e. Figttre 6 shows the computed pressure difference
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Figure 3: Contours of unsteady perturbation pressure, _ = a = 57r/2 (Category 3, Problem 1).
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Figure 4: Nondimensional pressure loading on airfoil, _ = or = 5rr/2 (Category 3, Problem 1).

present method: .... , exact solution.

across the reference airfoil. The agreement between the present method and the exact theory, while

still acceptable, is clearly not as good as in the lower frequency example. This is to be expected since at

higher frequencies the acoustic disturbances will have shorter wavelengths. Thus, more grid resolution

will be required to achieve the same level of accuracy.

Finally, shown in Fig. 7 is r,he computed upstream and downstream mean square acoustic pressure.

Again, the agreement is acceptable, but clearly nor, as good as in the lower frequency example.

CONCLUSIONS

276



o

*t

o4
Q.
v

:+
et

J

cJ
0.0

o

2
cl.

i+
n

"5

g
tO °0.(

i ,, I L., i ,, I , I , i _ I . .

02 0.4 06 0.8 02 0.4 06 0.8 T.O

Circumferenl=al Location, y Circumferential Localion. y

Figure 5: Mean square pressure upstream (x = -2) and downstream (a: = 3) of cascade, _o = cr = 5rr/2

(Category 3, Problem 1). , present method; .... , exact solution.

t£1

o.

O.

n

ID

Im

Re

, l .., I I ,, i ., .

"7,
0.0 0.2 0.4 0.6 0.8

Oislance Along Chorcl, x

1.0

Figure 6: Nondimensional pressure loading on airfoil, _a = cr = 13_'/2 (Category 3, Problem 1). --

present method; .... , exact solution.

In this paper, a finite element method for calculating the aeroacoustic response of turbomachinery

cascades to incident gusts is presented. The method is based on a linearized version of Bateman's
variational principle. The variational principle is discretized on a computational grid of quadrilateral

cells using standard finite element techniques. Two novel features are used to improve the accuracy

of the computed results. The first is the use of wake fitting to model the motion of the wake and the

jump in potential across the wake. Wake fitting allows the discontinuity in potential across the wake to

be modelled quite accurately with only moderate grid resolution, and also automatically incorporates

the Kutta condition. The second novel feature is the use of numerically exact far-field boundary

conditions. In the present method, the far-field boundary conditions are based on the eigenmodes of

the dtscretized potential equatious, rather than on the eigenmodes of the analytical model. Thus, the
boundary conditions are exact {to within round-off error) with no truncation error.

The present method is coniput+_tionatly efficient, with typical aeroacoustic calculations requiring
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(Category 3, Problem 1). ----, present method: .... , exact solution.

less than one minute of CPU time on a Silicon Graphics Power Indigo 2 R8000 workstation. The

method also gives results which are in excellent agreement with the exact solution, despite being only

second-order accurate in space.

Finally, in this paper, only flows with uniform mean flows were considered. However, the present

method can be extended to the more general problem of nonuniform mean flows using rapid distortion

theory to model the distortion of the vortical velocity component [3, 10].
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A PARALLEL SIMULATION OF GUST/CASCADE INTERACTION NOIS_
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INTRODUCTION

The problem of an incompressible vortical gust encountering a cascade of flat plate airfoils is investigated

using parallel computers. The Euler equations are used to model the flow. A high-accuracy, finite-difference

algorithm is used to solve the equations in a time accurate manner. Two frequencies of the incident gust are

investigated. The sensitivity of the solution to the boundary conditions and run times are examined. In

addition, the influence of the spacing between the blades is demonstrated. Although the use of parallel

computers significantly reduces the turnaround time for these calculations, the difficulties in properly

specifying the boundaries and obtaining a periodic state still makes them challenging.

SOLUTION METHODOLOGY

Extensive testing of CFD methodology has identified high-order algorithms as the most efficient for

acoustic calculations. Runge-Kutta time integration and central differences in space have been chosen for the

present work. In this section, the governing equations are presented as well as the details of the numerical
scheme.

Governing Equations

The Euler equations are normally associated with acoustic phenomena and are used for the present

simulations. The dimensionless equations of motion in two dimensions may be written as

Op Op Op Ou Ov

o-T+u_+vN+p(_+N)y = o,
Ou Ou Ou lop

+--ypox = o,

op op ±(o_.0-7+ + + + = o,
y M 20x Oy

Ov Ov Ov 10p

O-'-[+ U_x + V-_u + --- = O'yp Oy
(1)

Here, p and p are the instantaneous density and pressure, respectively. The Cartesian velocity components

are u and v, and t is time. M is the Mach number, and 7 is the ratio of specific heats and is taken as 1.4.

Since our primary interests are flows in air, the fluid is assumed to be an ideal gas. The inflow velocity, Uc_ is

used as the velocity scale. The pressure is nondimensionalized by pooU_, and the density by its freestream
value. The length scale is taken to be the airfoil chord.

A transformation from (x, y) to (_, _) space is applied to the equations by expanding the spatial

derivatives using the chain rule. For example, the derivative in the x direction is given by _z -- _z _ + r/x_-{.
The subscripts on the generalized coordinates denote differentiation. The resulting equations can be solved

efficiently by grouping like terms. J denotes the Jacobian of the transformation.

*Graduate Research Assistant

t Boeing Professor of Aerospace Engineering
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Numerical Algorithm

Equations (1) can be placed in the semi-discrete, compact form

0Q
Ot

- [7(Q) - = -n(q).

Here, _ represents the discrete form of all the spatial derivatives appearing in eqs.

artificial dissipation. Runge-Kutta time-integration of the form

Q(0) = Qn,

= Q. _ _
Qn+l = _sm,,_

(1). T) denotes the

(2)

(3)

is used to advance the solution in time. The local time step is chosen based on a Courant-Freidrichs-Lewy

(CFL) constraint.

Time integration is performed using the alternating five-six stage Runge-Kutta (RK56) time integration of

Hu et al.[1]. The smallest At for the entire domain is used globally. Although the method of Hu et aI. is

technically fourth-order accurate only for linear problems, the results have been found to compare well with

those from the classical fourth-order method. The primary advantage of the alternating scheme is to increase
the allowable CFL number based on accuracy requirements. For the present scheme, this is 1.1 compared =

with 0.4 for the classical method. The spatial operator can either be sixth-order or possess the

dispersion-relation-preserving (DRP) property developed by Tam and Webb[2]. All of the results in this _"

paper are obtained using the DRP coefficients given by Lockard et al.[3]

Since central difference operators do not possess any implicit dissipation, a filter has been _ded explicitly.

A higher-order version of the adaptive dissipation of Jameson[4] has been implemented for this purpose. An _--_

optimized smoother using a seven point stencil is used as a background dissipation rather than the fourth

derivative used in Jameson's implementation. This smoother is given by Tam[5] for a Gaussian half width of

a = 0.37r. A detailed description of the dissipation is given in a previous paper by the authors[6].

Boundary Conditions

Nonreflecting boundary conditions are necessary for acoustic simulations since nonphysical reflections of

waves back into the computational domain can alter the solution significantly. The specified problems

provide a stern test for nonreflecting boundary conditions since some of the acoustic wavefronts are nearly

normal to the boundaries. Furthermore, some of the cutoff modes decay very slowly. The present simulations

use Giles[7] linearized inflow and outflow conditions. However, the location of the outer boundaries is found

to have a strong influence the solution. Other boundary conditions for unbounded domains and

one-dimensional flows were found to perform poorly. Thompson's[8] wall boundary conditions based on a

characteristics analysis are used for solid surfaces. The normal derivatives at the boundary used in the

boundary treatment are discretized using third-order fully biased operators for stability reasons.

Gust Specification

The source of the noise in the problem is the interaction of an oblique, vortical gust with a cascade. Since

it is often difficult to impose arbitrary disturbances at curved boundaries and still minimize reflections of
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outgoing waves, an alternate approach has been developed to generate the gust inside the domain. The gust

defined by

u = -(vGP)cos(ax + _y-wt), v = v9 cos(ax + fly-wt) (4)
x Ol /

is introduced inside the domain by adding a source function to the governing equations. Since the gust is

incompressible and vortical, only the momentum equations need to be modified. The equations that include
the source have the form

au .... a______sin(wt), av ... = _a_ff__sin(wt) (5)
ot cOy cOt cOx

where

= vG(1 + cos[0.5a(x -- xo)]) cos(ax + fly)
lr

in the range Ix - xol < 2_r/a. The source is similar to a stream function so that the induced vortical gust

velocities axe solenoidal to linear order. Thus, the gust should not produce any noise.

(6)
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Figure h Geometry for the cascade problem.

The problem involves the interaction of a vortical gust with a cascade of fiat plate airfoils as shown in

figure 1. The gust amplitude VG = 0.01, and the mean flow Mach number in the x direction is M = 0.5. The

wavenumbers are a =/3 = w. The upper and lower surfaces of the fiat plates are represented by adjacent grid

lines. Thus, the spacing between the blades changes as the grid is refined. Although calculations on stretched

grids have been performed, only results from uniform grids will be presented due to space limitations. The

solutions on grids clustered near the edges of the plate are slightly better near the singularities, but smaller

time steps had to be used. The periodic boundaries are implemented by exchanging data from one side of the

domain to the other.
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The results are divided into different sections for the specified frequencies of w = 57r/2 and w = 13_r/2.

The effect of the domain length and the grid size are investigated. In addition, the influence on the rms

values of the starting time and sampling duration are examined.

Low Frequency

o
-4 -2 o 2 4

x

P
2.86878

2.86621

2.86364

2.86107

2.8585

2.85592

2.85335

2.85078

2.84821

2.84564

Figure 2: Instantaneous total pressure distribution for w = 5_/2.

The instantaneous total pressure distribution for w = 57r/2 at the beginning of a period is given in figure

2. The interference between different modes is clearly seen on the upstream side. It is also evident that one

of the modes is decaying as the pattern becomes dominated by a single mode away from the cascade.

To examine the effect of the boundary conditions on the solution, the rms profiles of the perturbation

pressure along the plate at y = 0 are given in figure 3 for different domain lengths in the x direction. A

temporal period of the gust frequency is represented by T. A domain length of five, which corresponds to the

minimum necessary to obtain solutions at x = -2 and x = 3, is shown to be very different from the longer

domains in 3(a). Domain lengths of 13 and 17 yield similar results. 3(b) compares the solutions for the two

longest domains when the starting sampling time is much later and for much longer sampling times. Again

the solutions are similar, but they are considerably different away from the plate from those in 3(a).

Obtaining truly periodic solutions numerically for this problem is extremely challenging for a

time-marching algorithm. The problem can be conceptualized as an infinite distribution of sources in the y

direction which all turn on at the same time. Hence, one must wait until all of the sources have had enough

time for their radiated field to reach the modeled domain. Since the problem is two-dimensional, the radiated

field will decay like 1/r. Thus, many of the sources must be included to obtain the correct periodic state.

This argument is also valid for startup transients and reflections at boundary conditions. Thus, the problem

is extremely sensitive to the run time and numerical errors.

Figure 4(a) shows the variation in the solution with sampling time. Sampling for less than 20 periods is

inadequate. The solutions for 20T and 40T are nearly identical, but sampling for 40T produces some

variation. Examination of the temporal signal shows a slight beating type phenomena that approximately

repeats every 20T. This may be caused by nonlinearities, the singularities at the leading and trailing edges of

the plates, or numerical errors. Although one would prefer to sample for an extremely long time to completely
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Figure 3: Variation of rms pressure values along y = 0 with domain length for w = 5r/2. 88 points in the y

direction and 20 points per unit length in the x direction.

resolve all of the waves, this is not feasible because of the computer costs. Figure 4(b) shows that although

the radiated noise is sensitive to the sampling duration, the relatively large fluctuations on the plate are not.
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Figure 4: Variation of rms values with sampling time along y = 0 for w = 57r/2. 261 × 88 grid for x = -6 to 7.

Figures 5 and 6 examine the effect of the grid size on the solution for a domain length of 13. It actually

appears that the change in the interblade spacing with grid size has a greater effect on the solution than the

change in resolution. The solutions on the 521 x 168 and 261 × 168 grids in figure 5 are very similar, but

solutions for different grids in the y direction yield different amplitudes. Increasing the number of points in

the streamwise direction does help to resolve the singularities at the leading and trailing edges, but the

influence of the blade spacing is the dominant effect. The amplitude of the oscillations of the modes within

the cascade change with the blade spacing. Hence, it is important to simulate the correct blade spacing in

the simulation. A similar modification of the amplitude of the noise is shown in figure 6 for the rms values at
x -- -2 and x = 3.
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High Frequency

The instantaneous total pressure distribution for w = 13_r/2 at the beginning of a period is given in figure

7. The pattern is considerably more complicated than the one for the low frequency case, indicating more
modal content.
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Figure 8: Variation of rms pressure values along y = 0 with domain length for w = 13_r/2. 2088 points in the

y direction and 50 points per unit length in the x direction.

The trend in the variation of the solution with domain length shown in figure 8 is similar to that found in

the low frequency case. Although the solutions for domain lengths of 13 and 17 look similar in 8(a), there is

a significant variation in 8(b). This may be caused by reflections and other errors having time to contaminate

the entire domain. Also, The solution on the blade surface is much smaller than in the low frequency case

and is much more susceptible to being altered by either the cascade effect or errors. Figure 8(a) shows that

the solutions on the blade are different for the two sampling times, so it is not surprising that the radiated
sound field also exhibits some variation.
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Figure 9: Variation of rms pressure along y = 0 with grid size for w = 131r/2.

Figures 9 and 10 examine the effect of the grid size on the solution for a domain length of 13. As in the

low frequency case, there appears to be sufficient resolution with the coarsest mesh, but the change in the
blade spacing changes the amplitudes of the oscillations.
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Performance

The Fortran 90 code used in this research was executed on an IBM SP2 with power2 nodes. It is written

for parallel computers using the message passing interface (MPI). A detailed description of the parallel

implementation can be found in a previous paper by the authors[9]. Table 1 summarizes the computational
resources used for some of the cases. The nominal value for the CPU/grid point/time step is 40 microseconds.

I w [ Domain size

5 /2 I 13 x 4

5_r/2. I 17 x 4

137r/2 13 x 4

131r/2 13 x 4

Grid Size I T I cPU (s)
261×88 11001 708
341×88 L1001 834

651 x 208 I 195 8584

1040 x 328 [ 75 11640

CPU/T .(s)[ Nodes I

7.088.34

44 /2155

Table 1: Performance numbers for the cascade problem.

CONCLUSIONS

Numerical solutions of the sound radiated from a vortical gust encountering a cascade of flat plate airfoils

have been obtained using a finite-difference algorithm implemented for parallel computers. The periodic

nature of the problem makes convergence to a periodic state very slow. Thus, longer run times than are

needed for unbounded flows are required. Furthermore, better inflow and outflow boundary conditions are

needed. Reflections from the boundaries cause significant changes in the solution even when the outer

boundaries are moved relatively far from the noise sources. These issues must be addressed before such

calculations can be performed efficiently in the time domain.
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SUMMARY

The sound generated by viscous flow past a circular cylinder is predicted via the Lighthill acoustic
analogy approach. The two dimensional flow field is predicted using two unsteady Reynolds-averaged
Navier-Stokes solvers. Flow field computations are made for laminar flow at three Reynolds numbers
(Re = 1000, Re = 10,000, and Re = 90,.000) and two different turbulent models at Re = 90,000. The
unsteady surface pressures are utilized by an acoustics code that implements Farassat's formulation 1A to
predict the acoustic field. The acoustic code is a 3-D code--2-D results are found by using a long cylinder
length. The 2-D predictions overpredict the acoustic amplitude; however, if correlation lengths in the range
of 3 to 10 cylinder diameters are used, the predicted acoustic amplitude agrees well with experiment.

INTRODUCTION

The sound generated by a viscous flow over a cylinder has been widely studied but is still difficult to

compute at moderate and high Reynolds numbers. This flow is characterized by the yon Karman vortex

street-- a train of vorticies alternately shed from the upper and lower surface of the cylinder. This vortex

shedding produces an unsteady force acting on the cylinder which generates the familiar aeolean tones. This

problem is representative of several bluff body flows found in engineering applications (e.g., automobile

antenna noise, aircraft landing gear noise, etc.). For the workshop category 4 problem, a fl'eestream

veIocity of Maeh number M = 0.2 was specified with a Reynolds number based on cylinder diameter of

Re = 90,000. This Reynolds number is just below the drag crisis, hence, the flow is very sensitive to

freestream turbulence, surface roughness, and other factors in the experiment. Numerical calculations

of the flow at this Reynolds number are also very sensitive---2-D laminar calculations are nearly chaotic

and the transition of the boundary layer from laminar to turbulent flow occurs in the same region that

vortex shedding takes place. These aspects of the workshop problem significantly increases the difficulty

of prediction and interpretation of results.

In this work, the unsteady, viscous flow over a two-dimensional circular cylinder is computed by two

different flow solvers, CFL3D and CITY3D. Two-dimensional (2-D) flow-field calculations were performed

at this stage of the investigation to reduce thc computational resources required. The noise prediction

utilizes tile Lighthill acoustic analogy as implemented in a modified version of the helicopter rotor noise

prediction program WOPWOP. The 2-D flow field data is utilized in WOPWOP by assuming that the

loading does not vary in the spanwise direction.

In the remainder of this paper we will first briefly describe both the aerodynamic and acoustic predictions

for both laminar flow and turbulent flows. The Lighthill acoustic analogy [1] utilized in this work effectively

separates the flow field and acoustic computations, hence, the presentation is divided in this manner. This

paper focuses on the acoustic predictions. More emphasis placed on the computational fluid dynamics

(CFD) calculations in a companion paper written by the authors [2].
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FLOW-FIELD PREDICTIONS

CFD Methodology

Two unsteady Reynolds-averaged Navier-Stokes (RANS) solvers (CFL3D and CITY3D) were utilized

in this work. Note that the term Reynolds averaged is used here not in its conventional sense (which

implies averaging over an infinite time interval) but, rather, to denote averaging over a time interval which

is longer than that associated with the slowest turbulent motions but is much smaller than the vortex

shedding period. Thus it is possible to cover a complete vortex shedding cycle with a reasonable number

of time steps (typically 2000 or less) without the need to resolve the details of the turbulent motions as

would be necessary, for example, with either Direct or Large-Eddy Simulations.

The first code, CFL3D [3], is a 3-D thin-layer compressible Navier-Stokes code which employs the

finite volume formulation in generalized coordinates. It employs upwind-biased spatial differencing for

the convective and pressure terms, and central differencing for the viscous terms. It is globally second

order accurate in space, and employs Roe's flux difference splitting. The code is advanced implicitly in

time using 3-factor approximate factorization. Temporal subiterations with multigrid are employed to

reduce the linearization and factorization errors. For the current study, CFL3D was run in a 2-D time-

accurate mode which is up to second-order accurate in time. Viscous derivative terms are turned on in

both coordinate directions, but the cross-coupling terms are neglected as part of the thin-layer assumption.

CFL3D has a wide variety of turbulence models available, including zero-equation, one-equation, and

two-equation (linear as well as nonlinear). For the current study, the code was run either laminar-only (i.e.,

no Reynolds averaging), or else employed the shear stress transport (SST) two-equation k-w turbulence

model of Menter [4]. This model is a blend of the k-_ and k-e turbulence models, with an additional

correction to the eddy viscosity to account for the transport of the principal turbulent shear stress. It

has been demonstrated to yield good results for a wide variety of steady separated turbulent aerodynamic

flows [5], but its capabilities for unsteady flows remain relatively untested.

CITY3D is a finite-volume code for the solution of the incompressible, 3-D Navier-Stokes equations in

generalized coordinates. A pressure-correction technique is used to satisfy mass and momentum conserva-

tion simultaneously. Temporal and spatial discretization are first- and third-order accurate, respectively.

The turbulence model used in this study is the k-e model modified as described in [6] to account for the

effects of superimposing organized mean-flow periodicity on the random turbulent motions. The modifica-

tion takes the form of an additional source to the e equation which represents the direct energy input into

the turbulence spectrum at the Strouhal frequency. Further details are reported in [2] which also gives

details of the high Reynolds-number treatment adopted in specifying the near-wall boundary conditions.

CFD Results

Both the shedding frequency and mean drag coefficient for flow past a circular cylinder are known

to exhibit only small Reynolds number dependence in the range 1000 < Re < 100,000. A little above

Re = 100,000 the drag crisis occurs and the mean drag coefficient C'd decreases significantly (from C'_ _ 1.2

to C'd _ 0.3 - see [7] for representative figures). The exact Reynolds number where the drag crisis

occurs can decrease significantly with any increase in free-stream turbulence intensity or surface roughness.

Because the workshop problem specified Re --- 90,000, we decided it would be prudent to make a series

of computations for both laminar and turbulent flow. Laminar computations were made for Re = 1000,

Re = 10,000, and Re = 90,000 with a flow Mach number M = 0.2, cylinder diameter D = 0.019 m, and

frecstream speed of sound 340 m/s. Turbulent calculations at Re = 90,000 were made for both the SST

turbulence model in CFL3D and for the modified k-e model in CITY3D. A portion of the lift and drag

coefficient time history is shown in figure 1. The predicted Strouhal number St and mean drag coefficient

Cu values are given in the legend of figure 1.

Figure I shows that the laminar Cl time histories have approximately the same amplitude, but the

laminar Re -- 90, 000 computation is somewhat irregular. The turbulent computations have both lower
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Figure 1. Comparison of predicted CI and Ca time histories for M = 0.2 flow past a 2-D circular cylinder.

(a) laminar Cl predictions; (b) turbulent Ct predictions; (c) Ca predictions.

Cl fluctuation amplitude and lower mean and fluctuating drag levels. These lower levels are in general

agreement with experiments which have a higher level of turbulence. For example, Revellet al. [8] measured

C'd = 1.312 for a smooth cylinder and C'd = 0.943 for a rough cylinder, both at M = 0.2 and Re = 89,000.

Notice that the CITY3D codes calculates a Strouhal number somewhat higher than CFL3D and more in

the range of a higher Reynolds number data. This is probably related to the fact that CITY3D used a

'wall function' and hence has a turbulent boundary layer profile throughout (as would be the case for flow

at a higher Reynolds number). More discussion of these results is given in reference [2].

ACOUSTIC PREDICTIONS

Acoustic Prediction Methodology

The unsteady flow-field calculation from CFL3D or CITY3D is used as input into an acoustic prediction

code WOPWOP [9] to predict the near- and far-field noise. WOPWOP is a rotor noise prediction code

based upon Farassat's retarded-time formulation 1A [10], which is a solution to the Ffowcs Williams -

Hawkings (FW-H) equation [11] with the quadrupole source neglected. Formulation 1A may be written as

p'(x, t) = p_(x, t) + pk(x, t) (1)

where

4_p_(x, t) [povn(rl_/Ir + C(Mr - M2))
/'r(1Ip°O)"-+Mr)2"n)]r'tds+ / r-_i---'Mrr) 5 ]retdS

f=0 /=0
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Here pr is the acoustic pressure, vn is the normal velocity of the surface, gi are the components of the

local force intensity that act on the fluid, M is the velocity of the body divided by the freestream sound

speed c, and r is the distance from the observer position x to the source position y. The subscripts r

and n indicate a dot product of the main quantity with unit vectors in the radiation and surface normal

directions, respectively. The dot over variables indicates source-time differentiation. The square brackets

with the subscript ret indicates that the integrands are evaluated at the retarded (emission) time.

Notice that the integration in equation (1) is carried out on the surface f = 0 which describes the

body---in our case a circular cylinder. Unlike the CFD calculations, the integration performed for the

acoustic calculation is over a three-dimensional cylinder that is translating in a stationary fluid. For the

predictions in this paper, we assume that the surface pressures are constant along the span at any source

time. To model a 2-D cylinder in the 3-D integration, we use a long cylinder length and do not integrate

over the ends of the cylinder. Experiments and computational work (e.g., [12-15]) have shown that vortex

shedding is not two-dimensional and the shedding is correlated only over some length (typically < 10D).

We have modeled the effect of vortex shedding correlation length by truncating the cylinder used in the

acoustics prediction.

Acoustic Results

To test the coupling of the CFD and acoustic codes, we chose to predict the noise generated by flow past

the circular cylinder for an observer position at a location 90 deg from the freestream direction and 128

cylinder diameters away from the cylinder. This corresponds to a microphone location in the experiment

conducted by Revell et al. [8]. The predicted acoustic spectra for each of the CFD inputs are compared

with experimental data in figure 2. One period of surface pressure data (repeated as necessary) was used to

predict the noise. (Approximately 62 cycles of input data were used in the noise calculation of the laminar

Re - 90,000 case because the loading time history was irregular.) A 0.5 m (26.3D) cylinder length was used

in the prediction, matching the physical length of the cylinder used in the experiment. In figure 2 we see

that both the Strouhal number and the amplitude are overpredicted. The CFL3D turbulent (SST model)

prediction yields a slightly lower amplitude and Strouhal number, but the CITY3D turbulent prediction

again has a high Strouhal value at the fundamental frequency and overpredicts the amplitude. The first

harmonic of the vortex shedding frequency can be clearly seen in the predictions, but the experimental

data is lower in amplitude and frequency.

One explanation for ,the discrepancy in the noise predictions is that the vortex shedding has been modeled

as completely coherent in figure 2. In experiments, however, the vortex shedding has been found to be

coherent only over a relatively short length, usually less that 10D. To investigate the effect of vortex

shedding correlation length on predicted noise levels, we varied the length of the cylinder L over the range

3D < L < 250D and plotted the overall sound pressure level predicted at the 90 deg, 128D microphone

location. Figure 3 show that the length of the cylinder has a strong effect on the peak noise level. For

example, a cylinder length of 10D (which is a long correlation length) yields a peak amplitude at the 90 deg

observer location that is within 2 dB of the experiment. Clearly then a true 2-D noise prediction should

be expected to overpredict the measured noise, possibly by as much as 25 dB!
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Figure 2. Comparison of predicted and measured sound pressure level for a microphone located 128D away

from the cylinder at a 90 deg angle to the freestream flow.
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Figure 3. Overall sound pressure level (OASPL) plotted versus cylinder length in the 3-D acoustic com-

putation. The 2-D CFD input data for the turbulent case with the SST model was used for this plot. The

CFD data was assumed to be constant along the span for any given source time.

Requested Workshop Predictions

Now that the noise prediction procedure has been compared with experimental data we have enough

confidence to present the results requested for the workshop. For these predictions, a cylinder length of

10D is used and the microphone locations are set to 35D away from the cylinder. Rather than just show

the spectra at a few angles we have chosen to plot the entire directivity pattern around the cylinder for the

laminar Re = 1000 and turbulent SST cases, which are representative. The overall sound pressure level,

fundamental frequency, first harmonic are shown in figure 4. In the figure, the cylinder is at the origin and

the flow moves from left to right. The 90 deg location is at the top of the figure and the axes units are

in dB (re: 20#Pa). Figure 4(b) and (c) show the expected dipole directivity pattern. The dipole shape in

figure 4(c) is not symmetric right and left because of the left-to-right direction of the flow.

The dipole directivity pattern in figure 4 can be understood in more detail if we assume that the cylinder

cross section is acoustically compact, that is that the acoustic wavelength is large compared to the diameter

of the cylinder. This is actually a very good approximation in this flow condition. By assuming the cylinder

has a compact cross section, we can predict the noise by using the section lift and drag directly rather

than integrating the pressure over the cylinder surface. Figure 5 shows the directivity of the lift and drag

separately for both the fundamental and first harmonic. By separating the lift and drag, we can see clearly

in the figure that the noise produced at the fundamental frequency is entirely from the lift dipole (except
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Figure 5. Comparison of the Cl and Cd noise components directivity pattern for M = 0.2 flow traveling

left to right. Axes units are decibels (dB, re: 20#Pa). (a) Cz fundamental frequency; (b) Cd fundamental

frequency; (c) Ci first harmonic; (d) C_ first harmonic.

at the nulls of the dipole), while the drag completely dominates the first harmonic frequency. This is what

should be expected because the period of the drag oscillation is half the lift oscillation period.

CONCLUDING REMARKS

The choice of Reynolds number Re = 90,000 makes the calculation of noise generated by flow past a

circular cylinder particularly difficult. This difficulty is due to the transitional nature of the flow at this

Reynolds number. Laminar flow caiculations at such a high Reynolds number are irregular and nearly

chaotic. The turbulent calculations are sensitive to both grid and turbulence model (See reference [2]).

Although we have performed only 2-D flow calculations in this paper, the amplitude of the noise predic-

tion seems to agree fairly well with experimental data if a reasonable correlation length of the cylinder is

used. To understand all of the details of the flow the problem must ultimately be solved as a 3-D problem

to properly account for partial coherence of vortex shedding. The acoustic model does not require any

changes for 3-D computations, but the CFD calculations will be very demanding. The CFL3D calculations
for two dimensions already require approximately 4.5 CPU hrs on a Cray Y/MP (CITY3D - 80 hrs on

workstation) to reach a periodic solution. This will be much longer for an adequately resolved 3-D com-

putation. In contrast the acoustic calculation for a single observer position required about 70 CPU sec on

a workstation.
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COMPUTATION OF NOISE DUE TO THE FLOW OVER A CIRCULAR CYLINDER

Sanjay Kumarasamy I, Richard A. Korpus 2 and Jewel B. Barlow 3
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ABSTRACT

Noise due to the flow over a circular cylinder at a Reynolds number of 90,000 and Mach Number of 0.2 is computed
using a two step procedure. As the first step, the flow is computed using an incompressible, time dependent Reynolds

Averaged Navier-Stokes (RANS) solver. The resulting unsteady pressures are used as input to a two dimensional fre-

quency domain acoustic solver, and 3D effects are studied using the Lighthill-Curle equation. Grid and time step depen-

dency studies were performed to ascertain the accuracy of the flow computation. Computed acoustic results are compared

to experimental values and agree well over much of the spectrum although the computed peak values corresponding to 2D
acoustic simulations differ substantially from the available experimental measurements. Three dimensional acoustic simu-

lation reduce the 2D noise level by 10dB.

INTRODUCTION

The most general way to compute noise radiation by a turbulent flow is to numerically solve the Navier-Stokes equa-
tions. The computation needs to be performed over a large spatial domain for long time intervals, simultaneously resolv-

ing small scales. This requirement overwhelms present day computing power. However, depending on the speed and
nature of the flow certain simplifications can be made to make the computations feasible. In the case of low Math numbcr

flows, there are many interesting cases in which there is no back reaction of the acoustic pressures on the flow. Hence, the

computations can be split into two parts, namely, the computation of the flow, and the computation of noise. One advan-

tage of this splitting is that computational methods and grids can be optimized separately for the vastly different scales
involved.

Flow over a circular cylinder shows a variety of features which vary with Reynolds number. Williamson I reviewed

the current state of understanding on the subject. The flow regime in the Reynolds number region of 1,000 to 200,000 is

termed the "Shear-Layer Transition Regime". In this regime, transition develops in the shear layer characterized by an

increase in the base pressure. As the Reynolds number increases, the turbulent transition point in the separated shear layer
moves upstream and at 200,000 the flow becomes fully turbulent. At 90,000 it is believed the wake is fully turbulent but

the attached boundary layer is essentially laminar. Unfortunately, the RANS solver used in the present work does not have

a transition model. Since the extent of turbulent and laminar flow affects the unsteady pressures, three separate simula-

tions were performed to ascertain the effect of the turbulence on the overall sound intensity predicted:
Case I. Laminar flow over the entire domain

Case 2. Laminar flow + Turbulent wake (Base line Study)
Case 3. Turbulent flow over the entire domain.

Once the underlying flow is computed, noise due to the flow can be computed by a two step procedure. Hardin et al 2

analyzed the sound generation due to the flow over a cavity at low Reynolds and Mach number using an incompressible,

two dimensional time dependent Navier Stokes solver to drive the acoustic radiation using the method outlined by Hardin
and Pope 3. The present work employs a similar two step approach. First, the high Reynolds number, low Math number

flow is computed by an incompressible, time dependent, Reynolds Averaged Navier-Stokes solver. Second, the acoustic

radiation is determined by solving the wave equation from the Lighthill Acoustic Analogy (LAA). The acoustic solver
was previously validated against test cases for which closed form solutions exist 4'5'6.

The Computations reported in the present work refer to the Category 4 problem of the Second Computational Aeroa-
coustics Workshop JS. The problem is restated for completeness. Consider uniform flow at Mach number of 0.2 ovcr a

two-dimensional cylinder of diameter D=l.9 cm. The Reynolds number based on the diameter of the cylinder is 90,000.

1.Research Associate, Glenn L. Martin Wind Tunnel, University of Maryland, College Park.
2. Senior Research Scientist, Science Application International Corporation, Annapolis.

3. Director, Glenn L. Martin Wind Tunnel, University of Maryland, College Park.
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Perform numerical simulations to estimate the power s_ectra of the radiated sound in dB (per 20Hz bandwidth) at r/D=35
and 0 =60°,90 °, 120 ° over the Strouhal number, St = J- , range of 0.01 -<St <_0.61 at ASt = 0.002.

Uo

MATHEMATICAL FORMULATION

RANS Solver

Computations were performed to obtain numerical solutions of the two dimensional Reynolds-Averaged Navier-

Stokes equations,
2

_Ui OUi _Ui + _P 1 _ Ui + _(uiui) = 0 (l)
Oxi - 0 ; 3t +-- Uj_x'-_) _x i ReOxjOx i ox) .

where U i, (uiu :) , and P represent the Cartesian mean velocities, Reynolds stresses, and pressure, respectively, and

repeated indices indicate summation. The equations are solved using the Finite Analytic (FA) Technique 7'8 on a body fit-

ted grid, and Pressure/velocity coupling is accomplished using a hybrid SIMPLER/PISO method. Closure is accom-

plished by employing a one-equation k - l for the near-wall viscous sublayer and the standard k - e model for the rest of

the domain. The solver is second order accurate in space and first order accurate in time.

1

t
Figure 1. CFD Grid - Close up
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The two dimensional circular cylinder and surrounding domain are descretized using a grid such as shown in Fig.(1). The

Reynolds number based on diameter is 90,000. The physical domain extends 10 diameters upstream, 20 diameters down-

stream and 10 diameters above and below the body. Boundary layer spacing was used normal to the body with 40 points in

the boundary layer, and a near wall spacing sufficient to resolve y+=l (smallest spacing = O(10-SD)). Grid density was

increased to a spacing of 0.02D, and then held constant up to 4D downstream in the wake region to more adequately

resolve the vortices. There are approximately 40,000 points in the domain. Uniform flow boundary conditions were

applied on the inflow plane. A no slip condition was applied on the body with a Neumann boundary condition on pressure,

_p _ 2_)k
_n _--_ where k is the turbulent kinetic energy. For the outflow, top, and bottom boundaries, a radiation boundary

condition, Han et al 9, was applied for u, v and p and turbulence quantities.

Acoustic Solver

Lighthill's Acoustic Analogy: The governing equation for acoustic propagation based on Lighthill's Acoustic

Analogy _°'1_, is

2 dxidxj32_-_2 12 "-2
1 o_ p V2p _----¢--.(T,i) - p (2)

620 _t 2 c o
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where p is the pressure, co is the speed of sound, u) is the velocity in the j direction, and T O = 9uiu) + visous is the

Lighthill's stress tensor. Neglecting viscous terms and for linear acoustics, (p - Po) = (P - Po)C2oequation (2) becomes

2 22
1 _ P v2 p = _¢.._¢__(9uiuj) (3)

C_obt 2 _x,_xj

Non-dimensionalizing the variables, and applying Fourier transformation, leads to

v2_+ _ 2- 22M_p = _uiu (4)
3xi3x) I

where M** is the free stream Mach number and o_s is the Strouhal number. It is noted here that the Mach number in equa-

tion (4) is a free parameter and for a consistent formulation it should be small so that the incompressibility assumption is

valid for solving the flow. For the present work, the quadrupole noise was not computed. Hence the right hand side of

Equation (4) is zero. Equation (4) is transformed to general curvilinear coordinates and descretized using the FA tech-

nique. A first order Bayliss-Turkel boundary condition for the Helmholtz equation 12'13,

_r- ik- p = 0 (5)

where r is the radial distance, was applied on the far-field boundary. The Fourier transformed unsteady pressures from the

RANS simulations are applied on the body are applied as Dirichlet boundary conditions. Equation (5) is transformed into

computational coordinates, descretized to second order accuracy, and solved implicitly. The descretized form of (4) with

boundary conditions (5) constitute a non-positive definite complex system of linear equations. Conventional relaxation

methods like Gauss-Seidal and Line relaxation fail due to the non-positive definitiveness and hence Bi-Conjugate Gradi-

ent Stabilized (BICG-STAB), Vorst 14, is applied. The acoustic grid topology is shown in Fig.(2). The grid is a polar grid

with the far field located at 20 times the wavelength of the acoustic wave. There are 20 grid points per wave length with a

total of 400 grid points radially and 36 grid points in the 0 direction.

Lighthill -Curie Equation: The acoustic computations were also performed using the LighthiII-Curle I8 integral for-

mulation. The governing equation is given by

t , t" ,_, _,0P5
p(_r, t) = f __.L_|_k__2__ S|(ds)d z (6)

J 4r_c_J r ot )
-I

where c is the speed of sound, p(_r, t) is the acoustic pressure at _r and time t,n_ is the surface normal, Ps is the surface

pressure and _r is the position vector from the surface to the point of observation. The integral along the spanwise direc-

tion is neglected for the 2D simulation and l is set to the experimental value for the 3D simuIation.The acoustic pressures

are Fourier transformed to obtain the acoustic spectrum.

RESULTS

RANS Results

A baseline simulation was first performed using laminar boundary layer and turbulent wake configuration. The simu-
lation used 40,000 point grid and a non-dimensional time step of 0.005. Laminar and turbulent flow in the entire domain

were performed. There is no difference between the baseline and laminar flow results but the fully turbulent results show
little in common with available experimental data. It is therefore decided to use laminar boundary layer + turbulent wake

case for all further studies. Fig.(3) shows a partial time history of the force coefficients. It takes about 5000 iterations for

the initial transients to vanish. From the spectral plot it is clear that the lift coefficient varies with a Strouhal number of

0.204 with a total variation of approximately 2.0. The drag coefficient varies at approximately twice the frequency of lift

with total variation of 0.2. Since the acoustic pressures are driven by the time dependent variation of the pressures, it is

expected that the acoustic pressure at the Strouhal number of 0.2 will be significantly higher than any other frequency.

Fig.(4) shows time averaged Cp distributions around the circular cylinder for three computed cases and two experimental

cases. 0 =0 or 2n corresponds to the front stagnation point. The experimental data corresponds to a Reynolds number of
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Figure 3. Time Variation and Spectral Plots of Force Coefficients Computed for Baseline Case

10,000 (Laminar) l° and 500,000 (Turbulent) 4. There is a significant difference between the computed values dependinl

on whether the flow is laminar or turbulent but not much between the laminar and laminar boundary layer + turbulent

wake simulations. Computational results show good agreement with the experimental data for the laminar simulation and

for the turbulent case. No experimental data is available for the time variation of the pressures or force coefficients.

Table (I) shows the results of the time step and grid refinement studies. Three main parameters, namely, the lift varia-

tion, drag coefficient and Strouhal numbers are compared for the various simulations. Apart from the base line grid of

40,000 points, two other grids with 10,000 points (Coarse Grid) and 160,000 points (Fine Grid) were used for the grid

refinement studies. Time accuracy studies were performed by changing the time steps from the base line non-dimensional

time step of 0.005 to 0.01 and 0,001. The maximum timeste p for the fine grid was 0.001 and computations become unsta-
ble for any value greater• For the base line grid, there is a substantial change (30%) in the lift coefficient as the time step is

reduced while the drag shows much smaller variation. Strouhal number is relatively unaffected by the choice of time step
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A t=0.01 A t=0.005 A t=0.001

Coarse 0.96

Baseline 1.17 1.10 1.12

Fine Unstable Unstable 1.13

Drag Coefficient - Experimental Value = I. 15

A t=0.01 A t=0.005 A t=0.001

Coarse 0.60

Baseline 0.84 0.90 1.25

Fine Unstable Unstable 1.35

Half Amplitude of Lift Coefficient Variation

A t=0.01 A t=0.005 A t=0.001

Coarse - 0.36

Baseline 0.42 0.42 0.47

Fine Unsiable Unstable 0.43

Drag St. No. - Ex _erimental Value ---0.4

A t=0.01 A t=0.005 A t=0.001

Coarse 0.18 -

Baseline 0.21 0.21 0.21

Fine Unstable Unstable 0.22

Lift St. No. - Ex )erimental Value = 0.2

Table 1. Grid Dependency and Time Accuracy Studies

or the grid size. Grid refinement studies for a time step of 0.001 reveals that the baseline grid is adequate for resolving the

flow features and further refinement does not show any significant benefits.

Acoustic Results

The computed pressures on the body were Fast Fourier Transformed and applied as Dirichlet boundary conditions for

the acoustic solver. The acoustic solution is computed in the frequency domain so that each frequency constituted one

simulation. About 200 simulations for Strouhal numbers ranging from 0.0121 to 0.608 in steps of 0.003 were performed.

Fig.(5) shows the power spectra of the radiated sound at 0 =90 degrees over the Strouhal number range of 0.01 to 0.6.

The experimental data has been scaled according to the relation, Sr 2 = cons, where S is the spectrum, to arrive at the data

corresponding to a distance of 35D. The trends are captured correctly for a substantial portion of the spectrum. The exper-

imental data has a spectral resolution of 0.01 in Strouhal number compared to the computation bin size of 0.003. Compu-
tational Strouhal number of 0.204+0.003 compares well with the experimental value of 0.186+0.01 iT. The magnitude of

the sound pressure level corresponding to the dominant shedding frequency (0.204) is over predicted by 13 dB. Fig.(5)

shows the comparison between the Lighthill-Curle calculations and the experimental data. From the plot it is clear that
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there is at least 10 dB reduction due to the three dimensionality of the acoustic propagation. 3D acoustic results corre-

At = 0.01

__, :_ i_ 6 dB_ )_:_:_ i

At = 0.001

Turbulent Flow

Baseline - Laminar

Experiment

2D

3D

Baseline Simulations

Angle LA Results Lighthill-Curle

CI Cd C1 Cd

60 129.6 108.5 130.8 110.7

90 130.4 106.6 132.1 88.6

120 128.8 103.9 130.8 111,8

60 .......... 119.5 99.4

90 .......... 120.8 77,7

120 .......... 119.6 100.6

Experiment

CI Cd

117,1 90,0

Figure 6. Comparison of various simulations

spond to a cylinder of 25D span with a correlation of 1.0 across the span.

As noted before, three flow simulations were performed. Laminar flow and Laminar flow with turbulent wake did not

affect the results as shown in Fig.(6) and the solutions were found to be grid independent for the base line study of Lami-
nar flow with turbulent wake. The effect of turbulent flow and different time steps for the base line studies have consider-

able impact on the flow properties. The sound pressure levels for various cases are compared in Fig.(6) corresponding to

dominant shedding frequency. The time step reduction shows a change of -3dB from the baseline value. The table in

Fig.(6) summarizes the results from LAA and Lighthill-Curle simulations corresponding to 60,90 and 120 degrees.

CONCLUSIONS

Sound generated due to the flow over a circular cylinder at a Reynolds number of 90,000 was computed. The Strouhal

number associated with the primary shedding was captured quite accurately by the computations. Grid dependency stud-

ies were performed to demonstrate the convergence. Time accuracy studies were also performed and show a significant

change in the overall results due to the limitation of the first order time accuracy. Acoustic computations were performed

using the unsteady pressures to drive the LAA and Lighthill-Curle simulations.The computed noise levels compared rea-

sonably well with the experimental values. The trends are captured quite correctly by the computational solution. Sound

pressure level corresponding to the dominant shedding frequency is over predicted in the case of 2D simulation and 3D
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results show a reduction of 10 dB. It is demonstrated that the turbulent flow will produce much less cyclic variation lead-

ing to a change of -13dB. The present work underlines the need for benchmark experiments that provide more information

on the flow properties as well as the acoustic properties to help in ascertaining and refining the computations in both steps,
namely, source evaluation and acoustic propagation.
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A VISCOUS/ACOUSTIC SPLITTING

TECHNIQUE FOR AEOLIAN

TONE PREDICTION

c:,x-.B 9 7

¢/¢

D. Stuart Pope

Lockheed Martin Engineering and Sciences Company

Hampton, Virginia

INTRODUCTION

In an attempt to better understand noise generated by various airframe components such as landing gear and
antennas, a precursor problem was formulated in which noise due to the passage of a steady inflow around a
two-dimensional circular cylinder was examined using a viscous/acoustic splitting method. It is believed that

this preliminary problem will lead to wider application of the method to more complex geometries of interest.
Sample calculations illustrate that separate treatment of the associated hydrodynamics and acoustics leads to
better understanding of the noise generation process, easier management of the overall computational effort,
and provides results that agree well with experimental work.

Problem Description and Geometry

Consider a two-dimensional cylinder of radius G immersed in a steady, uniform flowfield of velocity Uo (see

figure 1). The flow Reynolds number(based on cylinder diameter and Uo) is taken to be 20,000. Associated

with this flow is the well-known yon Karmann vortex street which occurs in the cylinder wake due to

alternating vortex shedding from the top and bottom cylinder surfaces. The formation and subsequent motion
of these vortex structures generate noise often referred to as Aeolian tones at a characteristic Strouhal number

of approximately 0.21. The goal of this work is to properly model the generation of these vortices, accurately
track their motions, and predict their associated noise for distant observers.

Viscous/Acoustic Splitting Method

For several reasons, Hardin 1 has proposed treating the acoustic calculation separate from the hydrodynamics

by regarding the total primitive fluids quantities p,u,v,p as composed of an incompressible mean flow and a

perturbation about that mean. It can be shown that while the perturbations represent in the nearfield the
difference between the fully compressible flow and the assumed incompressible mean fow, they are, in the
farfield, purely acoustic(see Hardin for details). By splitting the problem in this fashion, separate methods

may be used to calculate the perturbations and the mean flow. This has advantages both in terms of gridding
and in application of appropriate boundary conditions. In addition, this allows greater flexibility in the
independent choice of solution method. In particular, the method can be illustrated by in'st considering the
governing continuity and momentum equations for the cylinder flow just described:

+ +v" =o
3t 3r r o38 r
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We also assume that for low-speed flows, the isentropic relation between pressure and density may be used:

(9P = c2 _P

C,2 -.. _P

P

The total variables are now decomposed into incompressible mean flow quantities(which are, in general, time
varying) and perturbations:

u=U+u"

v=V+l/

p=P+p'

P =Po +p"

In terms of these quantities, continuity becomes

(op"_ _(ou"_ (9p'_ p (ov' v (9p" pU"+p( (oU I (OVU)
(97*;Orr*U_*Ygg+rgg+ ; - k(9"+7Tff+Y) =°

Noting that the terms in parentheses are identically those of the incompressible continuity equation and sum to
zero, we obtain

(op" ['-SY s'_S((Ou' l Ov" % ) + u (op" +-_=0v(oP'(gt _P,,u, +.uv + (gr r (90

Similar treatment of the momentum equations leads to

(ou" (ou" v (ou' v "2 , (OU v' (oU 2 Vv"

_- u--_r + =(ot r (90 r + u --_ + r 030 r

= vL'_r_+r-ffO÷ Y 3"_ "7 ?'_ l+-p't, (ot (or r"_ r +

up" ('(92U 1 (OU 1 (92U U 2 (OV) 1 (op'
+ .__/'_-'}-+--_+

l+p _, (or r (or r _ (902 r 2 r 2 -_ l+p' (or)
and
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Finally, the relation between pressure and density becomes

• t

ap'=:_ 0e
Ot ,gt Ot

These expressions constitute four equations in the four unknown quantifies p',u',v',p'. The incompressible

terms which also appear are determined separately and act as forcing functions to the equations. Prior to
solving, the above equations are first made nondimensional. The perturbation quantifies are

nondimensionalized by cylinder radius, ro, the ambient speed of sound co, and incompressible density, po.

The incompressible terms are treated similarly, but freestream velocity Uo is used in the nondimensionalization

rather than Co. The resulting expressions are

Mo_P'+O+p')_+(MoV+U')aP'+
Ot or Or

l+p' o_" MoV+V'op' O+p')u'
4 ÷ =0

r 00 r 00 r

OU t P

Mo --_- + (Mo U + u' ) _o_r "l MoV+V' aup _Mo(u,OU. vpaU
r c?O _. dr r c)O

o<) (ov+vov _Mo(OauP+IOu p 1 O2u p u p 2 pPM2.

=-ff_t,-g;rr_ r-_+ : O: : :-_ l+P'k-_- Or

,gV ) 1
M_p p (o_2U X c)U 1 B2U U 2 Bp"

-I Re(1 +pP)_, Or' +---÷r_r r _00 _ ? ?_ l+p'Or

r ) r

V OU V _

) +r O0 r

3¢ p Ov p Mo V + V" OV" . ., ( , OV . v' OV . Uv' . Vu" ) . uPvp
Mo -_t + (Mo U + u )-_r 4 r O0+M°LuT+7-_+r+rJ _ r

Mo ( O_v p 1 oarp 1 O2v , v" 2 OuP_ pPMo' ( OV + _ cgV V cgV UV _

=Re_,Or 2 +r"_+r 2 _ 7+'_ 00) l+pPl_o')t "Tr+TN+-;-) +
Mo2p" (O=V IOV 10=V V 20U'_ 1 o')pp

÷Re(l+pP)_'_rSrJ+r'Or-r +r ` 005 r' +7-_J-r(l + p p) c)O

and lastly,

0p' =c2 ap' aP-5;- -57- M_W

where
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In the above equations, M o refers to the freestream Mach number and Reynolds number is based on cylinder i
radius. All variables are considered nondimensional throughout the remainder of this work.

Incompressible Mean Flow Calculation _ "
The forcing terms appearing in the above equations may be found by any convenient method. In this work, --
since the flowfield is two-dimensional, a vorticity-stream function approach is used. The governing equations -

are, in nondimensional variables [

/o _2 1 o_ 1 o32 1"_r2 +r'_-"_ 4 r 2 _'_2 I/f=-f_

_.3 1( O3210 .il °_2]
1 31/z _9 1 c_V f_ = +
r c90 cgr r o3r Re[,o_r 2 r-_r r 2o_02 "

and

The effects of viscosity strongly dominate the character of the incompressible flowfield. These effects are

especially important at the cylinder surface and their accurate calculation requires a fine grid. A coordinate
transformation is employed which finely spaces grid points at the cylinder surface while sparsely spacing
points in the farfield. This transformation is

r=e°¢

0
_=_

a

where a = ln(r_._), rm_ being the outer boundary of the computational domain. In these coordinates,

transformed equations for V and _ may be solved on a uniformly spaced _, r/grid, yet the surface grid point

clustering necessary in the physical domain can be realized. The transformed equations are

where

(_: _2

•_- +-_2 )V = -E 2f_

o_go_ o_g3"_ 1 (0 2 o__h

E = ae *¢.

Note that an additional relation is required to specify P which appears in the perturbation equations. This

relation can be found by differentiation of the momentum equations and adding the two. The result is, in
transformed coordinates,
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The solution procedure is initiated by assuming that the flowfield is everywhere both potential and irrotational.
Thus, at t = 0,

,,,rO,-(r )inO
_(r, O) = 0

1_)P(r,O)=Po 2r 4 I- cos20-lsin20
r

where Po is nondimensional ambient pressure given by

1
Po =-7-_-._

These potential flow conditions are maintained throughout the simulation at the outer boundary which is far
from the cylinder. At the cylinder surface, the no-slip conditions

qt(1,rl)=0

(l 02_/f/(1,r/)=- -E2b-_),..

C_)1,_ _-C 'RIE 031y ,l@_-'2"@'ilJl,,1

are imposed. The vorticity transport equation is advanced in time at interior points using a 'donor cell'

method 2 in which finite differencing of the advection terms is chosen in such a way as to ensure the transfer of

information in the locally windward direction. Hence, vorticity is advanced to time step n + 1 via

+ At FU_wQ_-U_,Dw -U_st"ls
_L "q +,,_a,,A,1' ]

where
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and

1(:,.i- + - )u.. 2A¢ 2A "

o -_ _2,',_, u_>O
"'E _ On

--i+i.),ufE < 0

' n

o -, f2_-_'i' u_,_O

--w - f2" uoe < 0• i,j,

_ = I f_'_'o" u'm> 0
l.--i,j+1,U_v < 0

" n -

f_.j__, u_ > 0
f_s

O,',s' u_s< 0

After obtaining updated values n+_[2i. s at all interior points, the poisson equation for V_._._ is solved using

successive over-relaxation(SOR), i.e.,

where

I_i.;1 = (I -- 0)) l_/,j +
+1 2 +1 2 2 n+l

2(1+]3 2)

fl=
At/

and coisa relaxationparameter which can be chosen arbitrarilytospeed convergence so long as 0 < co< 2 is

maintained.The super_riptk intheabove equationreferstothe SOR i_rates_f_rationcontinues_til -
+1 •

successiveiterates_,.,_and _.j differby lessthan some specifiedtoleranceover the entireflowfieldwhich is

thenconsideredconverged.

The finalstepinobt_hag theincompressiblesohtion atthenew time stepconsistsof soiutionof thepoisson

equationforpressureusinga cyclicreductionalgorithmtosolvea setof simultaneouslinearequations.The
SOR approach justdescribedcould alsohave been used.

Perturbation Flow Calculation

Having obtained the mean flow in terms of I/_,_._ and /_._', a different algorithm can be used to solve the

perturbation equations at the new time step. In this work, a second-order explicit MacCormack predictor-
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corrector method was chosen. It is important that the algorithm selected minimize damping and dispersion in
order to accurately capture the acoustic waves. The effects of viscosity on the perturbations can be shown to
be almost negligible so that for this calculation, a stretched grid is not required. Rather, a grid uniform in both
radial and azimuthal directions is chosen. The incompressible terms necessary for the perturbation equations
are simply interpolated from the stretched onto the uniform grid. The perturbation equations may then be
solved by first derming the viscous and incompressible contributions to the perturbed velocity temporal fluxes

au" 1 =mo(_2u" 15"-u" 1_2u" u"
at j_+_- ggel,gT"r=+TT _ r=gO= r2

M_p'(a2U l gU 1 g2U U

r 2 50)

r 2 aO)

where

--2 • --,, --2 •

(av') _Mo(Sv lay 1 5v v'---+-=-.
.&.,._.,.,,_ Re Lar r ar r_ 5O" "_ r 50)

+Mop'(aW+l_ _a_v v+2_
7('_'r a rar +7"_ r = 7a0J

p =l+p'

so that the predictor step may be written

(o_p'_ * 1 r_ca,. _av, ,.a _a¢+v_-a¢]"=--- p --+---+-- +
_, et Ji., Mo[_ & r ao r ) ar r aO Ji4

av" _&" u'v" . ( ,av v av w'+Vu']
_T+r-_-_+7+Mo_.U -_--r +r-_-_+ r r j

,,=p'(av±r, aV V_V UV_ 1 cgp" i.(av')
-'"" 7(,-g"-_"gT+7gg+7) r_ Or . at .,,i.,.+_,,_

(o ,y =c4ep,y -wf Y
at Ji.i I, at )i.i o k, at )J.i

i./
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followedby

_o,L _-(p,);,+('P ] A,
• k at ),a

(u,,:,= At

ij

(v,)7,=(v,):,+(_v,]"_
• \ at )_a

(P')7, =(P')_, +(aP')" At
• ' _.at ),.j

i
i

L

=

_t_n+l 1

(v),., =_

u,],,+, 1

1

(v,);;'=_

( ,,.+, 1
P )_._=

' • n+l

(0%+(o';+(°P') A,]
"'" kat),a J

(au"f +1 ](u,).,.,+(u')b+I,_J,.,"'

(v'L +(v'),.,+ at ,.,

( aP" y+lAt].(P'ITj+(P')[, +k_ ),.,

Perturbation Boundary Conditions
At inflow, a radiation condition is applied which is expressed nondimensionally by

1 aA(O) at

r ;l
a+l]. I
a--;2s,__,I

Lp'J

=0

where A(0) = Mo cos 0 + _/1 - Mo2 sin 2 0. PracticaUy, this condition is implemented using a one-sided

difference
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In these expressions, the notations 8r' 60' & refer to one-sided differences while expressions _rr"_'O

denote centered differences. A corrector step is next implemented in which the terms

_ ,_ ,__, at ),,i _,at ),,_ _,at ),,j are computed in the same manner as in the predictor step. However, in ,

this computation, one-sided differences are performed in the sense opposite to their application in the predictor
step, i.e., if forward differences were used in the predictor, backward differences are used in the corrector and
vice versa. Also, bracketed terms in the corrector expressions are evaluated using the * quantities rather than [

level n quantities as in the predictor step. The updates for level n + 1 are written finally as



i

where # = p', u',v',p'. At the outer computational boundary, conditions obtained by Tam and Dong 3 are

applied. Although these conditions were originally derived for steady nonuniform flow, they are used here
with slight modification arising from the unsteadiness of the mean flow. Nondimensionally, they are written

+ u-_-_x+ = Mo + Mo + _ + _o_, v_ -g;

ova' ova' _o_'
""°--_-+_-_x + Ox M: otv-_-= or' 2o_

_' _/_' _0_' 0p' OV
M°_+u-L;+v-_-= ay M: o--7

1 Op'FOp" p' M2oOP
A(0) 0t -_-r+2--;= A(0) at

where an overbar denotes that the quantity is Cartesian rather than polar. The relation between the two is

fi" = u'cos0 - v'sin 0

7' = u'sin 0 + v'cos 0.

Also needed in the above are the relations

_0_=cosO__O sinO O
Ox Or r O0

O O cosOO

= sin O_rr 4 O0r

Once again, one-sided differences are used in the implementation so that Cartesian velocity components are
first updated according to

(-,r+_ __1(@' 8v+__, __,_"
u,._-(_'L Motax+M:_ "W+VTyj,.,A'

(_,r+, __(@' o<-V__, _<_,';
v.,.j =(v')7.,Mot@+M;7-i-+"T;+"-ffyJ,.,'_,

which is then followed by conversion of these values to the polar updates
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')""' '-"'"u .i,i = t u )i.j COS

(vr+, = (-,,¢,+, _, ,.-, .-i.i - u -i4 sin O + (v)i.s cos O

In application, radiation conditions are applied when tr[2 _<0 <3 n:]2 while the outflow conditions are used

when - rr]2 < 0 < zr]2.

At the surface of the cylinder, we require that the total velocities u,v obey the no-slip condition. Since we also

enforce U,V = 0 in the mean flow calculation, it is then required that both u',v" = 0 on the surface. These

values are substituted into the governing equations to obtain surface conditions for both p' and p':

or,

at," c, O,o" . 5,9t'W = at-m-g;

O"r+'= 7,.,,,., (p,),t J A,

# M, ,,.+, +(c, ,,,
tP h,s = (P'),",s t, at ° 6t J,,i

Results

A sample problem was chosen in which a circular cylinder of diameter 1.9 cm is immersed in an oncoming

uniform stream of 3,to= 0.2. Observers are placed 70 cylinder radii away from the cylinder's Center at

azimuthal locations of 0 = 60 °, 90 °, 120 °. After nondimensionalizing the problem geometry, a stretched grid

of 146 x 91(radial x azimuthal) grid points with rm_=75 was used in the mean flow calculations. With this

grid, nondimensional Ar varied from 0.03 next to the cylinder surface to 2.2 at the outer computational

boundary. Azimuthal spacing was constant at 0.0698. Both grid and At refimement studies were done and
confirmed the adequacy of the grid and good convergence for the incompressible calculations with a time step

of At=.01. Prior to acoustic computation, the mean flow calculations are allowed to evolve until transients no
longer appear. Typical flowfield snapshots of this condition appear in figure 2. In order to monitor the
evolution of the mean flowfield, an additional nearfield observer was placed just aft in the cylinder wake and
incompressible quantities monitored. These time histories appear as figure 3 and indicate that indeed, the
periodic shedding had achieved the desired regularity during the accompanying acoustic calculations.

The acoustic calculations were performed on a 401 x 91 uniformly spaced grid( Ar=0.185, A0=0.0698)

using the same At=0.01. The perturbed quantities monitored at the nearfield observer appear as figure 4 and

clearly illustrate the presence of transients due to the initial condition p',u', v', p'=0. However, these quantities

eventually assume regularity. Figure 5 shows time histories of p' for the additional three farfield observers

and contain transient behavior. Note that in the nearfield, the dominant frequency in this time history is twice
that associated with the farfield observers, which is as expected.
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Finally, the latter portions of the perturbation pressure histories were extracted(to eliminate the transients
which dominate the early half of the history) and spectral analyzed. Figure 6 gives the SPL in dB for these
observers as a function of frequency. The calculated SPL shows agreement with experimental data(figure
7).This sample calculation required approximately 20 hours of CPU time on a DEC-Alpha machine wherein
97% of the CPU was dedicated to this task.

Conclusion

The viscous/acoustic spfitting method has been implemented and shows acceptable agreement with
experimental data for the problem selected. This approach allows the investigator wide latitude in
independently choosing particular methods appropriate to each portion of the problem which may have
competing consideration in terms of numerics, efficiency, or application of boundary conditions. Though not
shown here, comparisons of the acoustic formulation results show excellent agreement with simple problems
having analytic solutions which gives hope for wider application of the method to more complex and realistic
problems associated with airframe or automobile noise. The major difficulty encountered in this work was in
the application of Tam and Dong's outflow conditions(derived for steady flow) at boundaries where the flow
was unsteady. In particular, a very long-term weak instability manifests itself and eventually destabilizes the
calculations. Development of robust conditions for these boundaries is a pressing need and offers opportunity
for future study.
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ABSTRACT

The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a

cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric

SPECTRUM TM finite element solver is used for the analysis. The far field sound pressure

is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the

surface of the cylinder. The sound pressure level at a location 35 diameters away from the

cylinder and at an angle of 90 ° with respect to the wake's downstream axis was found to have

a peak value of approximately 110 db. Slightly smaller peak values were predicted at the

60 ° and 120 ° locations. A grid refinement study suggests that the dynamic model demands

mesh refinement beyond that used here.

I. Introduction

In the past few years, there has been a resurgence of interest in performing large-eddy

simulations (LES) of flows of engineering interest. There are two roles for LES to play in the

computation of complex flows. First, it can be used to study the physics of turbulence at

higher Reynolds numbers than can currently be achieved with direct numerical simulation

(DNS), and can aid in the testing and improvement of lower order engineering turbulence

models. Second, it is hoped that LES can be used as an engineering tool rather than as

a research tool. Although it remains expensive, it may be the only means of accurately

computing complex flows for which lower order models fail.

The dynamic subgrid-scale (SGS) modeling concept was introduced by Germano et al.lfor

LES of incompressible flows and has attracted a lot of attention in the LES community during

the recent years. The main advantage of the dynamic model over other models used in the

past is that it requires little prior experience with the type of flow being considered. The

model (dynamically) adjusts to the flow conditions by employing the resolved large-scale

information to predict the effects of the small scales.

In this study, the far-field noise due to a high Reynolds number flow over a cylinder is

predicted numerically using the SPECTRUM TM finite element solver. First, the LES method

with the dynamic model is used to compute the turbulent flowfields. The results from the

CFD analysis are then used in Lighthill-Curle's 4 acoustic analogy equation to predict the
sound pressure level at several locations.
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II. Numerical Method
A. Flow Analysis

The unsteadyflow calculationswere all performed using the SPECTRUMTM...... finite ele-

ment solver. The LES method was employed to compute the velocity and pressure-turbulent

fields assuming incompressible flow conditions. In LES one computes explicitly only the

motion of the large-scale structures. The effects of the small-scales are not captured but are

modeled. The governing equations for the large eddies are obtained after filtering the conti-

nuity and momentum equations. The filtering operation (denoted by an overbar) maintains

only the large-scales and can be written in terms of a convolution integral,

3

=/n I] c ,(xi ' ' ' "- '- '- '
l*

--f(xl,x2,x3) -- xi)f(xl,x2, x3)axlax2ax3, (1)
i=1

where f is a turbulent field, Gi is some spatial filter that operates in the i-th direction and

has a filter width Ai, and D is the flow domain.

The effects of the small-scales are present in the filtered momentum equation through

the SGS stress tensor

= - (2)

and require modeling. The dynamic SGS model introduced by Germano st al., 1 and later

refined by Lilly, 2 is used in this study. The model is based on Smagorinsky's 3 eddy-viscosity

SGS model. The model constant, however, is allowed to vary in space and time, and is

computed dynamically, as the simulation progresses, from the energy content of the smallest

of the resolved large-scales. This approach for calculating the model constant has been found

to substantially improve the accuracy and robustness of the LES method, since the model

constants adjust dynamically to the local Structure of the flow and do not have to be specified

a priori. In addition, it has been found that the dynamic model provides the correct limiting

behavior near solid boundaries, and adjusts properly by itself in the transitional or laminar

regimes. Although it can not properly predict backscatter, it allows for some reverse energy

cascade.

Dynamic modeling is accomplished with the aid of a second filter (referred to as the test

filter, G) that has a filter width Zx, in the i-th direction (A_ > A_). The model parameteri-

zation for the SGS stresses is given by

r_j = -2ag_j, (3)

1 (a___Vs a-qS-'_ and S =where ut = C_2S, A = _/AxAyAz, Sij ---- _ \Oa:, q- Oxl]'

coefficient is computed from
(£ijMo}

C(x,y,z,t)- (MpqMpq} '

where ^ denotes test-filtered quantities, A _/A1A2 3, and

The model

(4)

A AA

f-'o = u_uj - ui uj , (5)

A A A

_lij -_- --2_2"SM-Sij -}- 2A 2_-_-_ij , (6)
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In the implementation of the model in the SPECTRUM solver, negativevaluesfor the eddy
viscosity,pt, are allowed, as long as the total viscosity (ttT= ?7 +ttt) is non-negative. This

restricts the amount of energy back-scatter allowed, but avoids numerical instabilities due

to anti-dissipation. A top-hat filter is employed for the test filtering.

The filtered equations of motion for the large eddies are numerically solved using a

segregated solution strategy. In this approach, the equations for pressure and velocity are

solved in an uncoupled fashion in that within each time step, the pressure is at first held

fixed (in the first equation group or stagger) and an iterative solution is obtained on the

velocity variable. This is followed by a stagger in which the velocity is fixed and a solution

is obtained for the pressure. The velocities are then updated to reflect the pressure solution.

B. Aeroacoustic Predictions

A simple acoustic model was employed to predict the sound pressure level at points away

from the cylinder. This prediction was based on the Lighthill-Curle acoustic analogy. 4 A

rigid body surrounded by a fluid acts as a dipole source and the sound pressure for this

source at a given distance away is given by

p(ri,t)- 1 f-iri0ps4rcc r 2 Ot d5', (7)

where ni is the surface normal, ri is the vector from the surface to the point of observation,

p_ is the surface pressure (obtained from the LES), and dS' is the differential surface area.

The speed of sound, c, is approximated here in meters per second from c = 331 +0.6T, where

T is the temperature in degrees Celcius.

In addition, since only a part of the cylinder was modeled along the spanwise direction

(see section III for details), the sound pressure level radiated from the portion of the cylinder

outside the computational domain was calculated as proposed by Kato et al.S:

" + 10109 , (s)

where L and Ls is the length of the actual cylinder and of the simulated domain, respectively,

and 5PLs is the sound pressure level radiated from the simulated domain. Also, Lc, is an

equivalent coherent length defined such that the pressure fluctuations on the surface of the

cylinder can be assumed to be in the same phase angle within Lc, and in a completely

independent phase outside Lc.

III. Results

Several LES were conducted on different finite element grids using the dynamic model to

simulate the near wake of a circular cylinder. The diameter of the cylinder, D, was 0.019m,

and the Reynolds number (based on D) was 90,000. The computational domain employed

in the first LES (case 1) was 20 cylinder diameters long along the streamwise x-direction,

10 diameters long along the y-direction and 2 diameters long along the spanwise z-direction.

The large eddies of the near wake structure are known to be typified by a length scale of

about half diameter. Therefore, the modeling of only 2 diameters of the cylinder's length is

expected to be sufficient for the LES. The cylinder was placed 5 diameters from the inlet
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boundary. A top view of the numericalgrid is shownin figure la. The spanwisediscretization
uses8 elementsplacedat a uniform spacing.A closeview of the grid around the cylinder is
also shownin figure la. The total number of elementsusedin this caseis 31,000. A larger
computational domainwasusedin the other two cases, which was 70 cylinder diameters long

along the st reamwise x-direction, 40 diameters long along t,he y-direction and 2 diameters

long along the spanwise z-direction. The cylinder was placed 20 diameters from the inlet

boundary. Cases 2 employed 44,970 of elements (14 elements along the span), whereas case

3 used 244,980 elements (30 elements along the span). Top views of the finite element

grids for these cases are shown in figure 1. This figure includes also a magnification of each

grid in the vicinity of the cylinder. The following boundary conditions were employed: A

uniform velocity profile was imposed at the inlet boundary (g = U_, _-Y= _ = 0). A no-slip

condition was imposed at the surface of the cylinder, a traction-free condition was applied

at the outlet boundary, and a slip condition was applied at the side boundaries. In order to

facilitate tile aeroacoustic analysis, the time step was kept constant (At = 0.00001 seconds).

In cases 1 and 2 the velocity and pressure fields were initially set to be uniform based on

their freestream values. The initial transients, however, were eliminated by allowing the flow

to convect throughout the computational domain before employing any of the data in the

aeroacoustic analysis. In order to save on computational effort, case 3 was initiated after

interpolating a solution from the coarse grid simulation of case 2.

Figures 2 and 3 show instantaneous contour plots of the pressure field and of the x-

component of the velocity, respectively, for all three cases at a time approximately equal to

one shedding period. The near wake structure and patterns of vortex shedding are clearly

visible. As expected, the quality of the results improved with grid refinement. Contours of

the y- and z-components of the velocity are shown for case 3 in figure 4. The existence of

three-dimensionality in the flowfield due to turbulence is evident (figure 4b). The ability of

the dynamic model to turn itself off in the laminar regions and adjust the eddy viscosity

based on the local turbulence level is shown in figure ,tc.

Finally, the predicted sonnd pressure levels for all cases are compared in figure 5. It should

be noted that the length correction, described in section IIb, increased the peak noise level

by about, 15% (this correction is included in the results of figure 5). Also, the equivalent

coherent length, Lc, was set equal to three diameters, as suggested by the experimental

findings of Schmidt G for Re=90,000 flow around a cylinder. Three microphone locations are

considered, located at 35 diameters away from the cylinder's centerline and at a 60 °, 90 ° and

120 ° angle with respect to the wake's downstream axis. In all cases, the peak of the noise

spectra is slightly higher at the 90 ° location. For cases 2 and 3, this peak is about 110 dB and

occurs at a frequency of approximately 5.50 Hz. Higher noise levels, however, are predicted

for case 1. This is believed to be mainly due the fact a smaller in size computational domain

was used in this case (see figure 1), which may have amplified the amount of vortex shedding,

and, consequently, the noise level, becanse of the slip condition applied at the side walls.

The peak of this spectrum is approximately 120 dB at a frequency of about 750 Hz. The

most striking future of the results from the three meshes is the change in frequency with the

mesh used. In fact, the Strouhal number based on the primary shedding frequency for case

1 is about 0.198, while the Strouhal number for cases 2 and 3 is about 0.13. The expected

value is about 0.2. Because of these discrepancies, some of these calculations were repeated

using all three meshes and the Smagorinsky SGS model with a Smagorinsky constant equal
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to Cs = C 1/2 = 0.1. These LES gave more consistent results with shedding frequencies

corresponding to Strouhal numbers of about 0.2 (results from these computations are not

presented here due to space limitations). So, it is possible that the meshes used here are

too coarse for the dynamic model and hence have produced inconsistent results. We plan to

investigate this issue more thoroughly in the future.

IV. Conclusions

The far-field sound due to vortex shedding in the turbulent wake of a Re=90,000 flow

around a cylinder is predicted based on Lighthill-Curle's Acoustic Analogy concept. The

history of the fluctuating pressure at the surface of the cylinder, required by the acoustic

analysis, was obtained by conducting LES using the dynamic SGS model. Several numeri-

cal grids were used, the finest of which contained a total of about 245,000 finite elements.

The maximum sound pressure level at a distance of 3,5 diameters away from the cylinder's

centerline was found to be equal to 105 dB, 110 dB and 108 dB at the 60 ° , 90 ° and 120 °

angle location, with respect to the wake's downstream axis, respectively. The meshes used,

however, may not be sufficiently fine for the dynamic SGS model, as is suggested by incon-

sistencies in the results found as the grid was refined.
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Figure 2. Contours of the instantaneous pressure fields after one shedding period; a) case
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Figure 3. Contours of the x-component of velocity after one shedding period; a) case 1, b)

case '2, and c) case 3.
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SUMMARY

Low dispersion finite volume schemes have been developed to combine the dispersion matching

characteristics of classical dispersion relation preserving schemes with the flexibility and ease of

applicability of finite volume schemes. In this study, three types of low dispersion finite volume

schemes are applied to a series of problems selected from the first and second NASA/ICASE work-

shops in computational aeroacoustics for benchmark problems. Our schemes are cast in a general

framework designed to account for advection of the main flow field by permitting upwinding at

the cell interfaces. The application of these schemes to the linear problems of acoustics is also

straightforward. The low dispersion finite volume schemes presented here are designed to be fourth

order accurate in space. However, these schemes are easily extended to higher spatial orders. For

the first workshop, results are presented for problems in Categories 1, 2, and 4. We also present

results for Categories 1 and 4 of the second workshop. Comparisons are made with exact solutions

where available.

INTRODUCTION

Aerodynamic noise prediction and control are gaining increased attention from the aerospace

research community. This shift in emphasis is motivated by society's demand for quieter aircraft,

quieter not only in the sense of propulsion noise, but in the sense of aerodynamic noise as well.

Aeroacoustic noise is particularly difficult to resolve computationally. The numerical "noise"

created by the solution of the main flow field tends to overwhelm subtle acoustic waves. 1 As a

result, higher order numerical schemes are needed to preserve the physics of the acoustic field. Low
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dispersionfinite volume (LDFV) schemeshavebeen developedfor this purpose. Theseschemes
are easily implementedin upwind, finite volume solvers. Engenderedwith the characteristicsof
flux splitting methods, LDFV schemes do not require the addition of artificial viscosity. By using

the finite volume discretization method, LDFV schemes handle arbitrary geometries easily, and

boundary conditions are easily implemented. Below, three versions of the LDFV method are

applied to a number of aeroacoustics problems, The basic LDFV methods we discuss are fourth

order accurate in space, and in time, our equations are integrated by using second and fourth

order Runge-Kutta schemes.

NUMERICAL SCHEMES AND SOLUTION PROCEDURE

The LDFV discretization procedure is best illustrated through a simple model problem, the

linear wave equation in one dimension

Oq Oq

By dividing a one-dimensional domain into cells, we may write

(1)

Oq) qi+l/2 -- qi-1/2 _ qR -- qL= - /xz Az (2)

The variables qR and qL may be endowed with upwind character through the use of asymmetric

stencils. For instance, we may construct a five-point upwind formula for qR. In Figure 1, consider

the stencil centered at i + 1/2.

C-1 Co C+I C+2 C+3

i--1 i i+l i-}-2 i+3

Accordingly,

Figure 1: Stencil Representation for qi+l/2

where

3

qR = qi+u2 = _ Cj q({i+l/2 + Aj_), (a)
j=-I

Aj_ = (-2 +j) A_. (4)
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Naturally, a left upwinded formula can be derived at i + 1/2 for use with flux splitting schemes.

Moreover, we can derive centered formulas, without upwinding, for qi+l/2 by using the same

procedure. Centered LDFV formulas are useful with certain linear acoustics problems. The dis-

cretization involving qi+l/2 and qi-1/2, given in equation (2), is also suited for use with linear

problems. For flux splitting schemes, we create both left and right upwinded formulas for q_+1/2

at each cell interface. These formulas serve as upwind interpolants similar to those used in Van

Leer's Monotone Upwind Schemes for Conservation Laws (MUSCL). However, LDFV schemes are

designed to improve numerical dispersion and dissipation performance as well as increase accuracy.

Type 1 LDFV Scheme

The Type 1 LDFV scheme requires optimizing the coefficients cj in equation (3) in order to

preserve the dispersion relation for q. The optimization procedure is conducted in the compu-

tational plane. Therefore, for nonuniform grids, the order of accuracy is quoted formally. This

statement is true for all versions of the LDFV method. By taking the Fourier integral transform

of equation (3), we have

3
_Num
,+,/2= cj exp(i A  ). (5)

j=-i

To grant the best dispersion matching performance, equation (5) should remain as close as possi-

ble to unity through the range of aA_. Type 1 optimization attempts to satisfy this requirement

using a weakly constrained least squares procedure. By applying least squares directly to equation

(5), we can obtain an individual dispersion relation corresponding to each coefficient cj. We.can

combine each of these relations with a set of Taylor-series-based accuracy equations; the resulting

system is determinate and easily solved. Hence, we obtain a set of coefficients cj for each of these

systems. By using (5), each set of the cj can be analyzed graphically to determine its dispersion

performance.

Type 2 LDFV Scheme

The Type 2 LDFV scheme exploits an algebraic decomposition of the classical Dispersion Re-

lation Preserving (DRP) finite difference stencil. 3 This procedure concentrates DRP optimization

on the difference in a given flow property across a cell interface. That is, we optimize Aq at the cell

interface as opposed to q. This strategy has its advantages for linear problems and for non-limited

flux difference splitting schemes.

a__ aT2 a:_i a0 %_

• . c;-a, Co , c-t1 c-t2 c-t3qi+l/2

c.+3 c_2 _1 Co: c-1
i--3 i--2 i--1 i i+l

; -- qi-1/2
i+2 i+3

Figure 2: Stencil Decomposition
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Recall that flux differencesplitting schemesare driven by a numerical flux generatedby using
the differencesin characteristicwave propertiestaken acrossa cell interface. As is shownabove,
the symmetric DRP stencil developedby Tam and Webbcanbe decomposedinto two asymmetic
upwind stencils. The stencil expressionfor qi+l/2 has the same form as equation (3). The

decomposition relation is alone indeterminate for the coefficients cj. We can make this relation

determinate by including a set of Taylor-series-based accuracy constraints for qi+l/2. As a result,

we have created a set of upwinded interpolation formulas that are accurate in terms of both q and

Aq.

Type 3 LDFV Scheme

Obtaining the Type 3 LDFV coefficients also involves optimizing the dispersion relation for

qi+l/2. The Type 3 interpolation expression has the same form as equation (3). Again the

optimization is performed in the computational plane using equation (5). To determine the cj,

we use a strong, constrained least squares analysis. We begin by writing a set of Taylor-series-

based accuracy equations for the stencil ( 3); one less equation is necessary than the number of

coefficients. Alone these equations form an indeterminate system, so we choose one coefficient,

say Ck, and solve the now determinate system for the cj, i.e.,

cj = cj(ck), k _: j. (6)

These relations for cj are used in the least squares analysis of (5). The coefficients are obtained

through solution of the equation

d f,_/2 ^Num
dak J-_/2 qi+1/2 -- 112 d(aA_) = 0. (7)

The coefficients for the Type 1, 2, and 3 LDFV schemes are given in Table 1 for our basic five

point stencil.

Table 1" LDFV Coefficients

I LDFV-1 LDFV-2 LDFV-3

c_1 :0.0325305

Co 0.442622

Cl 0.742317

c2 -0.182378

c3 0.0299695

-0.0185071

O.407362

0.763958

-0.175972

0.0231596

-0.0413084

O.477734

0.680649

-0.147266

0.0211916

Discretizing the Linearized Euler Equations

Since many of our chosen aeracoustics problems occur in two dimensions, we will briefly discuss

discretization of the linearized Euler equations. This system of governing equations is well-suited

for modeling linear acoustics. We begin with the nonlinear Euler equations
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where F and G are flux vectors, and

cgq OF OG

0-7+ 7x + 0_ = 0, (8)

q = (p, pu, pv, e) T.

To linearize (8), as suggested by Hardin 4, we assume that acoustic fluctuations may be modeled

as small perturbations on the main flow field, so

q=q+4, 4 << _2.

Also, we make use of the quasi-linear form of the flux vectors, i.e.,

(9)

OF _ A Oq. OG _vvOx Ox' -_y - B v '

where A and B are flux Jacobian matrices given by

(10)

OF OG
A=--" B=--.

cgq' cgq

By using (10) and (11) in equation (8) and by applying (9), we can show that

(11)

0c] 0(Aq) + a(/?_]) + 04 0(/[4) c3(/_) _ 0, (12)
57 + a--Z- a--T _ + a--T- + ag

having neglected terms of the second and higher orders. The first three terms represent the Euler

equations for the main flow field, so the sum of these terms is identically zero. The remaining

terms are the linearized Euler equations

&j a(.44) + 0(/?_) _ 0; (13)
o-Y+ a---Z- ay

,g, and/? depend strictly upon the main flow field propertiesP To perform a spatial discretization

of (13), we integrate (13) over a given cell area and apply the divergence theorem.

O_ Jc_u Jo(ceu)

The boundary term can be discretized as follows.

+ [_3)4" ridS = O. (14)
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Cell

0 fc 4dV + _ (-Af_ +/)fiy)4AS' = 0. (15)
Ot ell Sides

-Anx +/)fly is a diagonalizable matrix suitable for upwinding 6, i.e.,

(Aa_ + Bf_)4 = C+4L+ C-4R. (16)

C + is the upwind matrix for "right" traveling waves in the nonlinear flowfield. Accordingly, it is

used with the left upwinded 4L. C- and 4R are quantities associated with the remaining upwind

direction. Hence, the semi-discrete form is

d(4ce.) 1 Ce*l
dt - Vcell _ (C+qL + C-4R)AS.

Sides

(17)

Temporal Discretization

Equation (17) must be integrated in time to render a numerical solution. To accomplish this

integration, we recognize that (17) is in the form

5D
-" = n(0). (is)
Ot

Equation (18) may be numerically integrated in time by using the two-step Runge-Kutta scheme

4 p = q n + AtRn;

4 (_+1) 1 , _ p) z_tpv= i(q +4 + 2"°"
(19)

Of course, higher order Runge-Kutta schemes may be used in lieu of (19). Hirsch is a suitable
reference for these methods. 6

Discretization of the Navier-Stokes Equations

The laminar Navier-Stokes equations are applied in the vortex-shedding noise problem, so we

will briefly discuss their two-dimensional form here. In vector form, these equations can be written

Oq OF OG OR OS (20)-b-i+ _ + _ - ox + o_

The left side of (20) is identical to the Euler equations; however, vectors R and S contain viscous

and heat conduction terms. This system is solved in full nonlinear simulation. The advective

terms are solved using Roe's flux difference splitting and LDFV interpolation. The viscous/heat

conduction terms are discretized in finite volume form using classical DRP formulas for differentials

occurring in the stress terms and in Fourier's Law. A four-stage Runge-Kutta scheme is used for
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temporal integration of the semi-discrete form.

RESULTS AND DISCUSSION

The First Workshop

Results for the first workshop are submitted in this report, because the work on LDFV schemes

did not begin until after the publication date for the first workshop. For the linear wave equation,

Figure 3 contains the time 100 results for all three types of LDFV schemes. Clearly, the Type 1

and 3 results are poor, because neither Type 1 nor 3 optimization is tied to to the spatial differ-

encing operator. The Type 2 results are excellent, because the Type 2 scheme optimizes Au at

the cell interface. In fact, on uniform grids, the Type 2 LDFV scheme algebraically reduces to the

classical DRP scheme.

The spherical wave equation was also solved in Category 1. Our results are computed for an

angular frequency of w = 4" As with the preceding problem, the space derivatives are discretized

as in (2). The numerical results are presented at time 200 in Figure 4. All of the LDFV schemes

outperform the MacCormack and upwind schemes in the solution of this problem. 7 The Type 2

solution demonstrates the best performance among the LDFV schemes. Still, the Type 1 and 3

schemes show some improved dissipative performance while limiting group velocity errors.

For the Category 2 submission, we have solved the nonlinear Euler equations in one dimension.

The system is initiated by a Gaussian pressure pulse. In Figure 5, the results are compared with

an upwind scheme of the fifth order. A limiter was used to remove oscillations from the solution.

The Type 1 and 3 LDFV schemes perform very well, comparable with the fifth order upwind

solution. On the other hand, the Type 2 solution, omitted from Figure 5, does not perform well

when used with the limiter. The Type 1 and 3 solutions capture the shock wave very well except

near the discontinuity where small oscillations exist. These oscillations may be removed through

the use of an improved limiting strategy for the stencil.

The reflection of a Gaussian acoustic pulse from a wall in a uniform flow was chosen as a

problem from Category 4. The solutions for this problem at times 60 and 75 are shown in Figures

6 and 7, respectively. The linearized Euler equations are used in this problem, so the Type 2 LDFV

scheme performs best. In fact, this scheme performs comparably well to MacCormack's method. 7

The Type 1 and 3 schemes perform well on the smoother sections of the pulse; however, these

schemes are more dissipative near the pulse extrema. Still, the Type 1 and 3 solutions perform

better than the upwind scheme almost everywhere along the pulse profile. 7 By examining a series

of Type 2 LDFV solutions in time, it becomes apparent that the quality of the solutions improves

with time. This behavior is a desirable trait of algorithms for computational aeroacoustics (CAA).

The Second Workshop

The problems specified within the second workshop have presented an opportunity for testing

the LDFV schemes on curvilinear geometries. Problems 1 and 2 are appropriate for study since
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they are easily cast on polar grids. Before solving Problem 1, our LDFV solver was validated for

the interaction of a plane acoustic wave with a rigid circular cylinder. The time t = _ numerical

solution, calculated in two dimensions, is compared against the exact solution in Figure 8. A 41

by 63 grid was employed for the calculation along with At = 0.01. The comparison between the

exact and numerical solutions is quite good although the solution quality does fluctuate in time.

In this case, all of the LDFV schemes outperform the MUSCL scheme.

All three LDFV schemes were used to compute solutions for Problem 1, the scattering of pe-

riodic acoustic waves generated by a Gaussian source term in the linearized Euler equations. The

grid used for this problem is 153 by 159; it has uniform spacing in the azimuthal direction. Radi-

ally, the grid stretches in the region adjacent to the body but then adopts uniform spacing in the

midfield and farfield. The minimum radial spacing is 0.01, and At = 0.005. Graphical snapshots

of the pressure field are presented in Figures 9 and 10 for solution times 5.0 and 7.5, respectively.

The Type 2 LDFV scheme was used to generate these solutions. The mean-squared pressure plots

for the farfield are given in Figure 11.

Problem 2 is an initial value problem; unlike the system in Problem 1, the nonhomogeneous

terms are set equal zero. In this case, a Gaussian pressure wave is initiated in the field at time zero.

As the solution evolves, .the pulse reflects from the cylinder and propagates out of the domain.

The grid specification and time step are identical to those used for Problem 1. All three LDFV

schemes were used to solve Problem 2. Snapshots of the acoustic field calculated by the Type

2 scheme are presented in Figures 12 and 13 for solution times 5.0 and 7.5. The pressure time

history plots for the Type 1, Type 2, and Type 3 solutions are presented in Figures 14, 15, and

16, respectively.

The Category 4 problem involved the greatest expenditure of computing resources and time

among all of the workshop problems. In order to reduce the computer memory and time re-

quirements as much as practicable, we have diverged from the problem specifications by selecting

Reynolds number 200 and 5000 for our simulations. Also, our calculations are performed using

dimensionless quantities at Mach 0.2. The flow solver is a compressible, laminar Navier-Stokes

code that employs Roe's flux difference splitting scheme with fourth order LDFV interpolation in

space. The temporal integration routine uses a fourth order Runge-Kutta scheme. This program

has been validated using archival data on this geometry; the validation information will be pub-
lished elsewhere.

The calculations for both Reynolds numbers were performed on cylindrical grids. A 95 by 125

grid was used for the Reynolds number 200 case. For the Reynolds number 5000 case, a slightly

larger grid was used with dimensions 95 by 136. In both cases, the first radial increment is set

at 0.01. The initial stretching ratio is 1.08, but in the nearfield, the stretching ratio is increased

additively by 0.001 at each successive radial increment. The radial grid is progressively stretched

until the radial increment exceeds 0.25; the increment is then held constant through the midfield

and farfield. For the Reynolds number 200 case, acoustic sampling is conducted 23 diameters away

from the cylinder, and for the Reynolds number 5000 case, samples were taken 25 diameters away

from the body. In both cases, acoustic sampling is performed at locations above the cylinder and

in the cylinder wake. Nonreflecting boundary conditions are implemented in the farfield to pre-
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vent reflected numerical waves from damaging the solution. The calculations were performed on

a CRAY-YMP with two processors. The program is optimized for vector processing and executes

at 195 MFLOPs. A further computational increase in speed is obtained through autotasking. In

order to resolve the power spectral density for the radiated noise to ASt = 0.003, an average of

113 CRAY CPU-HOURS is required for each Reynolds number.

For the calculation at Reynolds number 200, a vorticity field plot is provided as Figure 17.

The power spectral density (PSD) for acoustic pressure squared taken above the cylinder is given

in Figure 18. The vortex-shedding frequency is captured correctly, and a harmonic is predicted at

twice the fundamental frequency. Figure 19 contains the wake spectrum at this Reynolds number.

A single wake tone is predicted at St = 0.39.

The power spectral density (PSD) for the simulation at Reynolds number 5000 is subject to a

large amount of numerical noise. The extraneous noise may be caused by poorer grid resolution

for this Reynolds number. Finer grids are usually employed for higher Reynolds numbers, because

the excessive dissipation caused by coarse grids can damp smaller motions significantly. As a

result, numerical noise may begin to create spurious fluctuations of the same order as the acoustic

fluctuations of interest. Still, the vortex-shedding frequency is captured well at the sampling

point above the cylinder. The simulation also reveals a peak at St = 0.13. There is some

experimental evidence supporting the existence of a peak in this Strouhal number range; however,

the experimental data was taken, naturally, for a turbulent flow. 8 Due to the presence of turbulent

fluctuations, this peak is not clearly resolved throughout the spectra for the range of experimental

Reynolds numbers. At Reynolds number 5000, the experimental data does nonetheless indicate

a peak in this range. The wake spectrum for Reynolds number 5000 is given in Figure 21. This

spectrum predicts a strong peak at St = 0.1 with a strong one-third harmonic. As with the

preceding spectrum, there is a great deal of numerical noise present, so the positions of the

peaks in these spectra are subject to question. Still, the results of this analysis show that LDFV

schemes can be used for predicting the vortex-shedding noise produced by bluff bodies and complex

configurations. This method is also useful for higher Mach number flows.

CONCLUSIONS

The low dispersion finite volume schemes have been demonstrated for a number of aeroacoustic

problems selected from the first and second computational aeroacoustics workshops for benchmark

problems. These schemes possess the dispersion relation matching characteristics of classical

dispersion relation preserving schemes while retaining the flexibility and versatility of finite volume

schemes. The viability of these schemes has also been demonstrated for a first principles analysis

of vortex-shedding noise. The low dispersion finite volume techniques can readily be retrofitted

into many current finite volume flow solvers.
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OVERVIEW OF COMPUTED RESULTS

Christopher K.W. Tam

Florida State University

One distinctive feature of the CAA Workshops on benchmark problems is that all

participants are required to submit a set of their computed data to the Scientific Committee for

comparisons with the exact (nearly exact) solutions or experimental measurements. The

purpose of the comparisons is to provide a measure of the quality of the numerical results.

Also it is hoped that the comparisons would offer feedback to the participants to encourage

improvements on their computational algorithms.

The benchmark problems of the First CAA Workshop were designed mainly to test the

dispersion, dissipation and anisotropy characteristics of the computational schemes. They are,

therefore, somewhat idealized and simple. The benchmark problems of the Second CAA

Workshop are more realistic and hence more difficult and challenging. The first three

categories of problems are formulated to test the design and implementation of boundary

conditions. They include open boundary conditions (radiation condition) wall boundary

conditions and radiation boundary conditions in ducted environments. Based on the

submitted data and their comparisons with exact (nearly exact) solutions, it appears that

significant advances in the development of numerical boundary conditions for CAA have

been made over the last few years. The Category 4 problem is the first benchmark problem

involving viscous flow. Viscous flow problems, by nature, have multiple length scales. They

are much more difficult to solve computationally. Perhaps, because of the intrinsic

complexity of the problem, all the contributors have chosen not to compute the radiated

sound directly. Direct computation of the radiated sound remains a challenge for the future.

The Scientific Committee wishes to thank the following individuals for their time and

effort in carrying out the comparisons on its behalf.

Category 1.
Problems 1 & 2.

University.
Problems 3 & 4.

Category 2.

Konstantin A. Kurbatskii and Christopher K.W. Tam, Florida State

Philip J. Morris, Penn State University.

Problem 1. Philip J. Morris, Penn State University.

Problems 2. Konstantin A. Kurbatskii and Christopher K.W. Tam, Florida State

University.

Category 3.

Problems 1, 2 & 3. Kenneth C. Hall, Duke University.

Category 4.

Problem 1. Jay C. Hardin, NASA Langley Research Center.

The Committee also wishes to thank Dennis L. Huff (NASA Lewis Research Center) for his

contribution to the formulation of the Category 3 problems.
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Category 1, Problem 1

Konstanfin A. Kurbatskii and Christopher K.W. Tam

......... I ......... I ......... +......... I ..... '"'1 ,+T ...... I ........ +I `++

110 -10 6.0 [, ........ I ......... , ......... I ......... l ....... q-_

10-
2.5

0

iA
_i° :- _ 4.0 [rP.5 i!ii!++ ii r_ _-

...... +i,'!.
0.5 _ 1.o

\. ..........,\
0.0

90 100 110 120 1250 14o !50 16o 170 180

O,degree

--_ solution by Baysal and Kaushik
(r=5.0), ......... exact.

90 loo 11o 12o _,.,_ 14o L_O 160 _ 1SO
O,degree

solution by Fung
(r=5.0), ......... exact.
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2.5

2.0 _
t0

0,5 _

0.0 _ ....... ,......... l ......... I ......... J......... ,........
90 loo 1_o 12o 13o _o tso leo _ 1so

& degree

solution by Hayder
(r=11.4423), ......... exact.

3.0

i0-'o

2.5

2.0

r p2
1.5

1,0

0.5

0,0 ....... I ......... I ......... I ......... t ......... I ......... I ......... I.,,,_j,ul .........

9o loo 11o 12o _ _o tso 1so 17o _so
0, degree

solution by Hu

(r=11.6875), ......... exact.
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2.0

1.5

1.0

0.5 _

0.0 ....... ' ......... I......... I ......... , ......... ,......... ,......... t......... ,,,,
9o lOO 1to _ _ _o '_o leo rm _so

0, degree

solution by Hixon

(r=l&0), ......... exact.
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i0-Io
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40.0

r p2

50.0

20.0

10.0

0.0
90 lOO _o 12o 13o _4o 15o 16o 17o 1so

0, degree

solution by Elm and Roe
(r=9.0), ......... exact.
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r p2

1.5
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0.5

0.0
90 1oo i_o 12o 13o _o t5o 18o f/o mo

0,degree

solution by Kopriva

(r=15.0), ......... exact.
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2.0

r p2

1.5
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0.5

90 +,oo _o ",2o +30 mo 15o im 'rio IBO
0, degree

solution by Tam

(r=15.0), ......... exact.

3.0 3.0 ................................................................................

i0-;o i0-+o

2.5 Z5

lo 2.0
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0, degree e, degree

solution by Morris Hsi solution by Zhuang

(r=5.0), ......... exact. (r=7.5), ......... exact.
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Category 1, Problem 2

0.05

0.00

-0.05

0.05

0.00

-0.05

0.05

0.00

-0.05

C

6.0 6.5 7.0 7`5 8.0 8.5 9.0 9.5 10.0

t

solution by Atkins,
............ exact.

0.05

0.00

-0.05

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.05

C

6.0 6,5 7.0 7.5 8.0 8-5 9.0 9.5 10.0

t

solution by Baysal,
............ exact.

354



0.05

0.00

-0.05

0.05

Kt)
0.00

-0.05

0.05

0.00

-0.05 ,llllll, hll+,llllh, llllllJ 11 tl 'l_lllhl'll ,lllhl II tlIIIIlIIIIIIIlllLLU.LLI+

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Djambazov,
............ exact.

0.05

0.00

-0.05

0.05

Kt)
0.130

-0.05

0.05

0.00

-0.05

C

_LU.._LU+ll/.l.lt Ull LZ.L_ IJ.l J I h i + I £ t+ Lt li_limiltEl U il l£JUJl £ i I l I £ t I J i J I £ I i

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10+0

t

solution by Hayder,
............ exact.

0.05

0.00

-0.05

0.05

p(t)

0.00

-0.05

O.O5

0.00

-0.05

[-\ B

"-..,....."

C
....'"-,,

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

t

solution by Fung,
............ exact.

10.0

0.05

0.00

-0.05

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.05 .U.I._II/_LIIII/IJJ.|U I l J 11 I 1] l [l I tluJhl I IJmJ lJJJ £ £J 11 ] I 11 I I I I lJ 11 tl ill I t

6.0 6.5 7.0 7,,5 8.0 8.5 9.0 9.5 10.0

t

solution by Hixon,
............ exact.

355



0,05

0.00

-0.05

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.05

C

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Hu,
............ exact,

0.05

0.00

-0.0,5

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.05

C

LU_LdJ

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Kopriva,
............ exact.

0.05

0,00

-0.05

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.0.5

C

6.0 6,5 7.0 7.5 8.0 B.5 9.0 9.5 10.0

t

solution by Kim and Roe,
............ exact.

0.05

0.00

-0.05

0.05

p(t)

0.00

-0.05

0,05

0.00

-0.05

C

6.0 6,5 7.0 7.5 B.O 8.5 g.o 9.5 10.0

t

solution by Lin,
............ exact.

356



0.05

0.00

-0.05

0.05

Kt)
0.00

-0.05

0.05

0.00

-0.05

/"\ A

",../

B

%......

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 I0.0

t

solution by Morris Hsi,
............ exact.

0.05

0.00

-0,05

0.05

p(t)

0.00

-0.05

0.05

0.00

-0.05

C

i.JLi[zJl IliiiilJli_ zli_uJJ21_ J_ Iilib iLxllz _ izulllllllliuJJJLu i_uJ_.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Tam,
............ exact.

0.05

0.00

-0.05

0.05

p(t)

O.O0

-0.05

0.05

0.00

-0.05

C
/'--.

%.......

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Radvogin,
............ exact.

0.05

0.00

-0,05

0.05

Kt)
0,00

-0.05

0,05

0.00

-0.05

C

LLLLLLLLhJ_ l ,,,,, I ......... I _L[.LLLLLLLLLLU_ LLUlLLLLU _, _bJJ_J_.uJ.u_u_.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

t

solution by Zhuang,
............ exact.

357





SOLUTION COMPARISONS. CATEGORY 1: PROBLEMS 3 AND 4. CATEGORY 2: PROBLEM 1

Philip J. Morris*

Department of Aerospace Engineering

The Pennsylvania State University

University Park, PA 16802

CATEGORY 1: PROBLEM 3

Only Ozyoruk and Long submitted a complete solution to the axisymmetric sphere scattering

problem. The agreement between the numerical and exact solution is very good. Only one example

solution is shown below. Other solutions, with different grids and Kirchhoff surface definitions gave

similar agreement.

CATEGORY 1: PROBLEM 4

Only Shieh and Morris submitted a solution for the three-dimensional sphere scattering problem.

The comparison between the numerical and exact solutions is shown in the contributed paper.

CATEGORY 2: PROBLEM 1

Four groups contributed solutions to the problem of sound radiation from a distributed source

inside an open-ended, cylindrical duct. The agreement between each of the numerical solutions is

good, with only minor differences in both the low and high frequency cases. Some differences occur

between the numerical solutions and the model problem solution, particularly at high frequencies.

This is likely to be due to the use of a point, rather than a distributed, source in the model problem.

The fine structure of the interference between the scattered fields outside the cylinder is captured

very well by the numerical solutions.

*Boeing/A. D. Welliver Professor of Aerospace Eng;neeriug
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CATEGORY 3.

Kenneth C. Hall
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Figure 1: Nondimensional pressure loading on air-

foil, w = (r = 57r/2 (Fang Hu, Problem 1). Note,

pressures are normalized by the gust velocity vg.

In all cases, the dashed line is the "exact" LIN-

SUB solution, while the solid line is the submitted
numerical solution.
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Figure 3: Nondimensional pressure loading on air-

foil, w = (7 = 57r/2 (Fang Hu, Problem 3).
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Figure 2: Nondimensional pressure loading on air-

foil, co = G = 57r/2 (Fang Hu, Problem 2).
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Figure 4: Mean square pressure upstream (z = -2)

of cascade, co = e = 57r/2 (Fang Hu, Problem 2).

367



cr
<

2o
c_.

/

/ \
/ \

/ \
/ \

°0.00 0.20 0.40 0,60 0.80

7

1.00

Figure 5: Mean square pressure downstream (x =

3) of cascade, w = a = 57r/2 (Fang Hu, Problem
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Figure 7: Nondimensional pressure loading on air-
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Figure 9: Mean square pressure upstream (x = -2)

of cascade, w = a = 13Ir/2 (Fang Hu, Problem 2).
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2) of cascade, w = a = 57r/2 (Lockard and Morris,
Problem 2).

Figure 10: Mean square pressure downstream (x =

3) of cascade, co = a = 137r/2 (Fang Hu, Problem
2).
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Figure 11: Nondimensional pressure loading on air-
foil, co = a = 57r/2 (Lockard and Morris, Problem

2).
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foil, w = a = 1371-/2 (Lockard and Morris, Problem

2).

¢5

a
tu

23 .

_°
el

P,
°
15

° 0.00 0.20 0.40 0.60 0.80 1.00

Y

Figure 16: Mean square pressure downstream (x =

3) of cascade, w = a = 137r/2 (Loekard and Morris,

Problem 2).
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Figure 17: Nondimensional pressure loading on air-

foil, w = a = 5rr/2 (Tam, Problem 2).
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SOLUTION COMPARISONS: CATEGORY 4

Jay C. Hardin
NASA Langley Research Center

Hampton, VA 23681

The Category 4 problem was proposed as an example of the technologically important
class of massively separated flow noise generators. Since the CAA community is presently
being asked to attack such sources, it was deemed appropriate to include one as a
benchmark problem. Such flows are viscous, turbulent, and the source of the sound arises

from the dynamics of the flow itself. Thus, no exact solution is available for this category.
However, for the Aeolian tone produced by a cylinder in a uniform flow, a substantial
amount of unambiguous experimental data exists, albeit much of it for higher Reynolds and
Mach numbers than the problem proposed.

The Mach number of the flow in this benchmark problem was chosen because many
of the technologically important applications (automobiles, aircraft on landing approach,
high speed trains, etc) have Mach numbers in this range. The Reynolds number chosen
was taken as a compromise--high enough to be realistic and for which good quality data
existed, yet low enough that one could resolve most of the important scales without too fine
a grid. In hindsight, it might have been better to specify a higher Reynolds number, as the
flow is still transitional at Re--90,000 whereas the turbulent models have been developed
for fully turbulent flows.

The inherent challenge of this problem lies in choosing the numerical approach within
the limits of the computational facilities available. The flow is experimentally found to be
three dimensional with a finite correlation length in the spanwise direction. However, a
3-D Direct Numerical Simulation (DNS) at a Reynolds number of 90,000 is out of the
question due to the range of scales which must be resolved in three directions. Thus, one
must fall back on an approach such as Large Eddy Simulation (LES) or Reynolds Averaged
(short-time) Navier-Stokes (RANS) to reduce the range of scales which must be resolved.
This leads one into the realm of turbulent modeling, such as the Dynamic Sub-Grid Scale
(DSGS) model, in order to retain the effect of the sub-grid scales on those resolved. Even
this approach is very computationally demanding. One is tempted to reduce the
dimensionality of the problem to two, as the geometry is two-dimensional. However, one
runs into two problems: First, turbulence is inherently three dimensional and the use of
turbulent models in two dimensions is problematic. Second, a 2-D acoustic field falls off

like r 1/ 2 with distance in the farfield rather than r as would be the case in 3-D.

In addition, there is the question of compressibility. Does one compute a
compressible flow solution in which the flow and acoustic fields can be solved
simultaneously? Or, noting the low Mach number requested, does one break the problem
into two parts, solving first for the flowfield (either compressibly or incompressibly) and
then using an acoustic analogy, i.e. Lighthiil (Helmholtz in the frequency domain), Curle,
or Ffowcs Williams-Hawkings (FW-H) which integrate the flow induced pressures over
the surface of the cylinder, or the acoustic/viscous split (A/VS), which solves a forced set
of Euler equations, for the acoustic field?
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In theevent,all of thecontributorschoseto breaktheprobleminto two parts.
However,their otherchoicesvariedconsiderably.Thefollowing tablecomparesthe
approachesemployed:

Contributor

Brentneret al

Kumarasamy
et al

Pope

Spyropoulos
andHolmes

Flow Solver Re Turbulent Acoustic
Model Solver

1,000
2-DComp.and 10,000 k-co 2-Dand3-D
Incomp.RANS 90,000 FW-H

2-D Incomp. 90,000 k-e 2-DHelmholtz
RANS 3-DCurie

2-D Incomp. 20,000 None A/VS
DNS

3-D Incomp. 90,000 DSGS 3-DCurle
LES

Table 1: Comparisonof Contributor'sApproaches

The3-D acousticsolutionswith 2-D flow solutionswereachievedby assumingthe2-D
flow solutionto bevalideverywhereoverthefinite spanof the3-D acousticintegral. Of
course,theamplitudeof theresultingnoisepredictionsis verymuchdependentuponthe
spanassumed.

Theexperimentaldatafor thiscaseindicatesthattheAeoliantoneoccursata Strouhal
numberof 0.1846whichcorrespondsto afrequencyof 643Hz. Theamplitudeat 0 = 90

degrees and r/D=35 is approximately 11 ldB. Spectral shapes obtained by all the
contributors are shown in their respective papers, while their predictions of the frequency
and amplitude of the Aeolian tone are shown in the following table:

Contributor

Brentner et al

Kumarasamy et al

Pope

Spyropoulos and Holmes

Peak St Peak Level (dB)

0.234-0.296 120

0.204 120.8

0.219 2-D

0.158 110

Table 2: Aeolian Tone Predictions

Only 3-D noise calculations are shown in this table due to the problem with the fall-off of
the 2-D calculations. The amplitude predictions are sensitive to the assumed span of the
cylinder. Assignment of a span to the experimental data is not straightforward due to the
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presenceof thewind tunnelwalls. Thevariationin theStrouhalnumberpredictionsof
Brentneret al dependedupontheturbulentmodelemployed.

All of thecontributorsfoundtheexpecteddipoledirectivitypatternwithpeakat 0 =90
degrees and all predicted a reasonable spectral shape out to the maximum Strouhal number

requested of 0.6. Thus, the DNS, LES and RANS approaches all seem to retain the
relevant scales. The variation of the peak Strouhal number predictions is somewhat
disappointing, but may be due to the transitional nature of the flow. Further work by
Brentner et al indicates that, at higher Reynolds numbers where the flow is fully turbulent,
the predictions produced by the various turbulence models coincide. The variation in the

amplitude predictions is not of as much concern due to the ambiguity of the cylinder length
and the inherent bias and uncertainty of spectral estimates near peaks.
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INDUSTRY PANEL PRESENTATIONS AND DISCUSSIONS

N. N. Reddy

Lockheed Martin Aeronautical Systems

Marietta, GA 30063

The workshop organizers invited representative from aircraft and automobile

industry to organize an industry panel to participate in the workshop. The purpose

of the panel is to present and discuss the needs for the computational aeroacoustics

and provide guidance to the researchers and scientists by identifying the important

issues related to acoustic technology.

The following representatives attended the workshop and participated in the

panel discussions moderated by N. N. Reddy.

Thomas Barber

Philip Gliebe
Mahendra Joshi

N. N. Reddy
Rahul Sen

Gary S. Strumolo

Agnes Wozniha

United Technologies Research Center

G E Aircraft Engines

McDonnell Douglas Aerospace

Lockheed Martin Aeronautical Systems

Boeing Commercial Airplane Group

Ford Research Laboratory

Boeing Helicopters

Ed Hall of Allison Engine Company, Ram Janakairaman of McDonnell

Douglas Helicopter Systems, and Donald Weir of Allied Signal Engines were also

invited but unable to attend the workshop. Mahendra Joshi presented the

computational aeroacoustic needs from the airframe manufacturer's point of view,

Philip Gliebe presented from aircraft engine manufacturer's point of view, and Gary

Strumolo presented from automobile point of view. The following paragraphs

summarizes the noise issues and how Computational Aeroacoustics can help in

understanding the noise sources and some of the complex issues.

NOISE SOURCES

The noise generation mechanisms of a typical turbofan is shown in Figure 1.

Fan generated noise propagates through engine inlet and fan exhaust. The turbine

and combustion noise propagates through primary nozzle. In addition, there are jet

mixing noise from fan jet and primary core jet. The relative importance of these

sources as a function of bypass ratio is shown in Figure 2. It is clear that as bypass

ratio increases, the turbomachinery noise dominates over the jet noise. Some of the

noise reduction features that are currently practiced are shown in Figure 3.
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The airframe noise sources that are generated by the aerodynamic flow
interacting with the aircraft surfaces during flight are illustrated in Figure 4. The

interaction between wing and flap, landing gear and flap, and jet exhaust and flap
are also important sources. The relative strength of these sources depends on the

flight speed, the geometry, and the relative position of the components.
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Figure 4. Airframe Noise Sources
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Some of noise sources are complex, because of the wake flow from one

component interacting with the other component will influence the noise source. For
example, the flap noise may depend on the leading edge slat configurations.
Recently some progress was made in development of CAA to understand wing/flap
sources. The numerical simulation of 2-D wing/flap configuration shown in Figure 5
illustrates the location of sources and their propagation characteristics.
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Figure 5. Numerical Simulation of 2-D Wing/Flap Noise

(OASPL Contours)

NOISE GENERATION PROCESS MODELING - CAA ROLE

Computational Aeroacoustics (CAA) will be extremely helpful in resolving
physical modeling issues which seemingly escape resolution by theoretical and

experimental methods. CAA models with appropriate boundary conditions for
turbomachinery noise, jet noise and airframe noise in conjunction with experiments
will be useful in developing accurate noise prediction methods and viable noise

reduction concepts. CAA will also enhance the understanding of the wind noise in
the automobiles. The mean flow characteristics from CFD may be utilized in

developing CAA models.
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