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Preface

This publication contains the proceedings of the Fourth Computational Aeroacoustics (CAA)
Workshop on Benchmark Praoblems. In this workshop, as in previous workshops, the problems were
devised to gauge the technologica advancement of computational techniquesto calculate al aspects of
sound generation and propagation in air directly from the fundamental governing equations. A variety of
benchmark problems have been previously solved ranging from simple geometries with idealized acoustic
conditionsto test the accuracy and effectiveness of computational algorithms and numerical boundary
conditions; to sound radiation from a duct; to gust interaction with a cascade of airfails; to the sound
generated by a separating, turbulent viscous flow. By solving these and similar problems, workshop
participants have shown the technical progress from the basic challenges to accurate CAA calculationsto
the solution of CAA problems of increasing complexity and difficulty.

The fourth CAA workshop emphasized the application of CAA methods to the solution of
reaistic problems. The workshop was held at the Ohio Aerospace Ingtitute in Cleveland, Ohio, on
Octaober 20 to 22, 2003. At that time, workshop participants presented their solutions to problemsin one
or more of five categories. Their solutions are presented in this proceedings al ong with the comparisons
of their solutions to the benchmark solutions or experimental data. The five categories for the benchmark
problems were as follows:

Category 1—Basic Methods. The numerical computation of sound is affected by, among other issues, the
choice of grid used and by the boundary conditions. The first of three problems involves the issue of
aliasing where spatial resolution errors affect the computation of sound. Second, the interface condition
problem involves computing the propagation of sound through a surface of discontinuity. The third
problem considers the long-term stability and accuracy of boundary treatments.

Category 2—Complex Geometry. The ability to compute the sound in the presence of complex geometric
surfaces is important in practical applications of CAA. In this problem, complexity is achieved by
multiple placements of simple circular cylinders.

Category 3—Sound Generation by Interacting With a Gust. The practical application of CAA for
computing noise generated by turbomachinery involves the modeling of the noise source mechanism asa
vortical gust interacting with an airfoil. The two problems in this category involve asingle, thick airfoil
and a cascade of redistic stator vanes. Unlike the thick airfoil problem, the cascade problem has no
analytic solution. Its benchmark solution isitself numerically derived.

Category 4—Sound Transmission and Radiation. The first problem in this category isto compute the
sound transmitted through a turbulent shear layer without triggering a possible instability wave that may
form part of the solution. The second problem involves computing the interaction of a given sound source
with acomputed laminar shear flow. The solution to this problem is numerical with theinitial benchmark
solution computed by Barone and Lele.

Category 5—Sound Generation in Viscous Problems. Sound is generated under certain conditions by a
viscous flow as the flow passes an object or a cavity. In the first problem, an aeolian tone is generated as
the flow passes two nearby circular cylinders. Tones are generated in the second problem when the flow
passes over a cavity. In both problems, experimental data are provided for comparison to computed
solutions.
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These proceedings are available on CD—ROM in the portable document format or PDF. In
addition, the CD—ROM contains information related to all five categories of the benchmark problems
including the numerical results from the cal culations of the analytical and numerical solutions and the
experimental data. See the README file in the CD—ROM directory entitled “ caawksp4data’ for further
details.

Milo D. Dahl, NASA Glenn Research Center

Organizing Committee
Milo Dahl, NASA Glenn Research Center
Edmane Envia, NASA Glenn Research Center
Dennis Huff, NASA Glenn Research Center
Christopher Tam, Florida State University

Scientific Committee
The benchmark problems were proposed and
decided on by the following:

Professor Christophe Bailly, Ecole Centrale de Lyon, France
Professor Tim Colonius, California Institute of Technology

Dr. Milo Dahl, NASA Glenn Research Center

Dr. Jan Delfs, DLR, Germany

Dr. Edmane Envia, NASA Glenn Research Center

Professor Jonathan Freund, University of Illinois at Urbana-Champaign
Professor Thomas Hagstrom, The University of New Mexico

Dr. Brenda Henderson, NASA Langley Research Center
Professor Charles Hirch, Vrije Universiteit Brussel, Belgium
Professor Fang Hu, Old Dominion University

Dennis Huff, NASA Glenn Research Center

Professor Osamu Inoue, Tohoku University, Japan

Professor Soogab Lee, Seoul National University, Korea
Professor SanjivalLele, Stanford University

Dr. David Lockard, NASA Langley Research Center

Professor Reda Mankbadi, Embry-Riddle Aeronautical University
Dr. Eric Manoha, ONERA, France

Professor Philip Morris, The Pennsylvania State University
Professor Wei Shyy, University of Florida

Dr. Kenji Takeda, University of Southampton, United Kingdom
Professor Christopher Tam, Florida State University

Professor Frank Thiele, Technische Universite Berlin, Germany
Dr. Miguel Vishal, Air Force Research Laboratory, Wright-Patterson Air Force Base (WPAFB)

NASA/CP—2004-212954 iv



Table of Contents

PREFACE ...ttt ettt ettt et e e et et e e st e st e s e ese e b e eseensaseeseensa st ensenneensesees il
ORGANIZING COMMITTEE ..ottt sttt s v
BENCHMARK PROBLEMS ..ottt ettt ettt ettt e e e et e sseeneenee e 1
Category 1—Basic MEthOdS .......cc.oovuiiiiiiieciiccicce ettt ettt te e eb e b e e veesteesaeestaeeaaeennes 3

Problem 11 ATHASINZ.....cciiiiieiiieieeieeree st et ete ettt et e s e s b e et e esbeebeessaessaessaeesbeensaesseessaensaenssennnas 3

Problem 2: Interface TranSmiSSION. .......ccvervierierieerieiiesiieseesveeteeseesseessaessaessseesseesseesseesssesssensnes 4

Problem 3: Accuracy of Boundary Treatments ..........ccc.ecverveeiieiieenieeseeiie e e ereeveeeveesinesene e 6
Category 2—CompPIeX GEOMELIY .....ccuveeiriieiiiieeiieeeieeeieeeieeesreeeteeeebeesbaeessseeebeeessseesssesessseessseeennns 10
Category 3—Sound Generation by Interacting With @ GUSt .........cceeviiiiiiiiiiiiiiece e 13

Problem 1: Single Airfoil GUSt RESPONSE.......ccviiriiiiiiiieiieiierie ettt see 13

Problem 2: Cascade-Gust INLETACLION ........ccveriiriieiierieesieeie et seeste e eae e seeeseaeesseenseenseens 18
Category 4—Sound Transmission and Radiation ...........cccceveveeciieriienienieniesie e 23

Problem 1: Radiation and Refraction of Sound Waves through a 2—-D Shear Layer ................... 23

Problem 2: Trailing Edge Noise Problem............ccccveoiieriiiriiiiiiiiceeieesee e 25
Category 5—Sound Generation in Viscous Problems ...........c.cccveviiriiiiiiciiiniiiie e 27

Problem 1: Aeolian Tone Generation From Two Cylinders ...........ccceeveeiieiienieenieeie e 27

Problem 2: Sound Generation by FIow OVer @ CaVity ........cccvevvverieriienieeireieesiieseeeveeneeseenenens 28
ANALYTICAL SOLUTIONS ...ttt sttt sttt sttt et st nbe st eee e 29
ALIASING PROBLEM: CATEGORY 1, PROBLEM 1, ANALYTICAL SOLUTION

Christopher K.W. Tam, Florida State UniVersity........cccecveevieriierierienieeieesieeseesnesreesseesseesenenes 31
INTERFACE TRANSMISSION PROBLEM: CATEGORY 1, PROBLEM 2,
ANALYTICAL SOLUTION

Christopher K.W. Tam, Florida State UniVersity........ccecvrevieriierierieeieeieerieeseesnesveesieesseesenenes 33
EXACT SOLUTIONS TO CATEGORY 1, PROBLEM 3

Thomas Hagstrom and Igor Nazarov, The University of New MeXiCO ......cccvevvievreerieeniieineenenns 35
ACOUSTIC SCATTERING FROM MULTIPLE CIRCULAR CYLINDERS:
CATEGORY 2, PROBLEMS 1 AND 2, ANALYTICAL SOLUTION

Scott E. Sherer, Air Force Research Laboratory, Wright-Patterson Air Force Base.................... 39
SINGLE AIRFOIL GUST RESPONSE PROBLEM, CATEGORY 3, PROBLEM 1

James R. Scott, NASA Glenn ResSearch Center............ooovvuveiiiieiiiiiiiiieeeee e 45
BENCHMARK SOLUTION FOR THE CATEGORY 3—PROBLEM 2: CASCADE-GUST
INTERACTION

Edmane Envia, NASA Glenn Research Center............ooovvuuvviiiiiiiiiiieieeee e 59
ANALYTICAL SOLUTION: CATEGORY 4

Philip J. Morris and Anurag Agarwal, The Pennsylvania State University .........c.ccccceveeveeneneene 67

NASA/CP—2004-212954 v



EXPERIMENTAL RESULTS ..ottt sttt sttt st nae e 69

CATEGORY 5: SOUND GENERATION IN VISCOUS PROBLEMS, PROBLEM 2:
SOUND GENERATION BY FLOW OVER A CAVITY

Brenda S. Henderson, NASA Langley Research Center.............ccoovvveviiviieiieeiiecie e 71
CONTRIBUTIONS OF WORKSHOP PARTICIPANTS ... 79
CASCADE-GUST-INTERACTION PROBLEM ANALYSIS BASED ON LINEAR CFD
CALCULATIONS

Antonio G. Escribano, Adolfo Serrano, and Carlos Vasco, Industria de Turbo

PrOPUISOTES, S.A . .. oottt ettt ettt et e teestaestbessbeanbeesseessaesnseenseenseenseeseens 81

CATEGORY 3: SOUND GENERATION BY INTERACTING WITH A GUST, PROBLEM 2:
CASCADE-GUST INTERACTION

M. Nallasamy, QSS Group, Inc., R. Hixon, University of Toledo, S.D. Sawyer,

University of Akron, and R.W. Dyson, NASA Glenn Research Center...........ccccovveeveeiienienenn, 89

LINEAR UNSTEADY CFD ANALYSIS OF THE CASCADE-GUST INTERACTION
PROBLEM
John Coupland, ROIS-ROYCE PIC ...c.uiiiuiiiiiiiieiieieececcte ettt ettt eveeaveebeesaeeas 97

SIMULATION OF CASCADE-GUST INTERACTION BY USING GRID-OPTIMIZED
DISPERSION-RELATION-PRESERVING METHODS
Jonghoon Bin, Cheolung Cheong, and Soogab Lee, Seoul National University ....................... 107

COMPUTATION OF A SINGLE AIRFOIL GUST RESPONSE AND GUST-CASCADE
INTERACTION USING THE CE/SE METHOD
Xiao-Yen Wang and Ananda Himansu, Taitech, Inc., and Sin-Chung Chang and

Philip C.E. Jorgenson, NASA Glenn Research Center ..........ccccveveeiiieviienieenieeie e ere e 115
SOLUTION OF CATEGORY 3, PROBLEM 2, USING THE SPACE-TIME MAPPING
ANALYSIS (STMA) METHOD

Ray Hixon, Hixon Technologies, LLC........c.ccoioiuiiiiiiiiiiiiieeeeeeteeeee e 127

SPACE-TIME MAPPING ANALYSIS OF AIRFOIL RESPONSE TO IMPINGING GUST
Vladimir V. Golubev and Reda R. Mankbadi, Embry-Riddle Aeronautical University............ 135

SIMULATION OF AIRFOIL RESPONSE TO IMPINGING GUST USING HIGH-ORDER
PREFACTORED COMPACT CODE

Vladimir V. Golubev and Reda R. Mankbadi, Embry-Riddle Aeronautical University,

and Ray Hixon, University 0f TOIedO .......ccceovviiiiiiiiiiiiieiiecie ettt 141

RADIATION AND REFRACTION OF SOUND WAVES THROUGH A
TWO-DIMENSIONAL SHEAR LAYER
Christophe Bailly and Christophe Bogey, Ecole Centrale de Lyon ...........cccoovvivviiiiiiiinieennnnns 149

RADIATION AND REFRACTION OF SOUND WAVES THROUGH A 2-D SHEAR

LAYER: NUMERICAL SOLUTION
Anurag Agarwal and Philip J. Morris, The Pennsylvania State University .........c..cccceveeruennenne 155

NASA/CP—2004-212954 vi



NUMERICAL COMPUTATION OF THE RADIATION AND REFRACTION OF
SOUND WAVES THROUGH A TWO-DIMENSIONAL SHEAR LAYER
X.D. Li and J.H. Gao, Beijing University of Aeronautics and Astronautics, and
D. Eschricht and F. Thiele, Berlin University of Technology..........cccocevvivriieeciienienienienieee, 159

RADIATION AND REFRACTION OF SOUND WAVES THROUGH A
TWO-DIMENSIONAL SHEAR LAYER
Shi Zheng, Steve A.E. Miller, and Mei Zhuang, Michigan State University...........cccocceervvernnene 165

TRAILING EDGE NOISE BENCHMARK PROBLEM: HIGH FIDELITY FINITE
DIFFERENCE SOLUTIONS
Matthew F. Barone, Sandia National Laboratories, and Sanjiva K. Lele,
StANTOrd UNIVETSILY ...eeeiuiiiiiiieiiiieetie et siee et e eteeesite e s bt e etbeessbeeestaeessseeessseessseesssseesssesesseenssens 171

SIMULATION OF TRAILING EDGE SCATTERING BY USING ACOUSTIC/VISCOUS
SPLITTING METHODS WITH OVERSET GRID TECHNIQUES

Yonghwan Park, Jonghoon Bin, Cheolung Cheong, and Soogab Lee, Seoul National

UIIVEISIEY 1enveeetieeeiteeette e ettt e et ee e tteeeteeestbeeesbeeetbeessseeessseeasseeessseesssaeansseessseeenssaeassasansseensseesssenans 179

NUMERICAL SOLUTIONS TO THE FOURTH AND SECOND COMPUTATIONAL
AEROACOUSTICS (CAA) WORKSHOP BENCHMARK PROBLEMS
Wen H. Lin and Roy H. Loh, The Boeing Company .............ccccueeveeieevieenieniecie e ereeveesveeens 187

SPECTRAL ANALYSIS FOR AIR FLOW OVER A CAVITY
Z. Zhang, R. Barron, and C.-F. An, University of Windsor...........cccccoevuiiiiivienienieciecre e 197

COMPUTATION OF AEOLIAN TONE NOISE FROM TWIN CYLINDERS BY USING
GRID-OPTIMIZED DISPERSION-RELATION-PRESERVING SCHEMES WITH
IMMERSED SURFACE DIPOLE MODEL

Cheolung Cheong, Jewook Ryu, and Soogab Lee, Seoul National University.............cccveennee. 205

COMPUTATION OF TONE NOISES GENERATED IN VISCOUS FLOWS
Ching Y. Loh, Taitech, Inc., and Philip C.E. Jorgenson, NASA Glenn Research Center.......... 213

CATEGORY 5: SOUND GENERATION IN VISCOUS PROBLEMS, PROBLEM 1:
AEOLIAN TONE GENERATION FROM TWO CYLINDERS
R. Guenanff, E. Manoha, M. Terracol, and S. Redonnet, ONERA ...........cooovviiiiiviiiiiiiieee, 229

A HYBRID APPROACH TO TANDEM CYLINDER NOISE
David P. Lockard, NASA Langley Research Center............ccoeveviierienieiiienieeieeieeseesee e 235

SIMULATION OF MULTIGEOMETRY SCATTERING PROBLEMS AND THE
RADIATION AND REFRACTION OF ACOUSTIC WAVES THROUGH A SHEAR
LAYER WITH INSTABILITY WAVES SUPPRESSED
R. Ewert, J. Yin, and JW. Delfs, DLR .......coooiiiiiiiiiieieeeeeeeeeee et e e 241

HIGH-ORDER OVERSET-GRID SIMULATIONS OF ACOUSTIC SCATTERING
FROM MULTIPLE CYLINDERS
Scott E. Sherer and Miguel R. Visbal, Air Force Research Laboratory, Wright-Patterson
ATF FOTCE BASE ...ttt st et 255

NASA/CP—2004-212954 vii



CHARACTERISTIC INTERFACE CONDITIONS FOR MULTIBLOCK HIGH-ORDER
CAA IN COMPLEX GEOMETRY
Jae Wook Kim and Duck Joo Lee, Korea Advanced Institute of Science and Technology....... 267

CATEGORY 2: COMPLEX GEOMETRY
E. Manoha, S. Redonnet, R. Guenanff, and M. Terracol, ONERA ...........ccoooevvviviviiiiiiiiieeeee, 275

NUMERICAL STUDY ON PROPAGATION AND SCATTERING OF SOUND BY
TWO CYLINDERS
Alex Povitsky, University of Akron, and Tinghui Zheng and Georgios H. Vatistas,
CONCOTAIA UNIVETSILY 1euviervierireriieiieiieiieseesieesteeteeteesseessaesssesssesssessseesseesseesssesssessseessessseesseens 283

FREQUENCY DOMAIN CALCULATIONS OF ACOUSTIC PROPAGATION
David P. Lockard, NASA Langley Research Center...........cccoovvvevieeiiieiieiieeie e 291

THE APPLICATION OF “EMBEDDED SOLID” APPROACHES TO COMPUTATIONAL
AEROACOUSTIC PROBLEMS WITH COMPLEX GEOMETRIES
Yih-Pin Liew, Said Boluriaan, and Philip J. Morris, The Pennsylvania State University ......... 297

HIGH ORDER SPECTRAL VOLUME METHOD FOR CATEGORY 1, PROBLEM 1
AND CATEGORY 2 PROBLEMS
Z.J. Wang, Michigan Stat€ UNIVETISILY .......cc.eecvureriiieeriieiiiieesieeesieeesteessteeeseveessseeessseesseeessseesnns 305

ACCURACY OF SUPERGRID BOUNDARY CONDITIONS FOR INCIDENT
DISTURBANCES WITH A RANGE OF INCIDENCE ANGLES IN UNIFORM
AND SHEARED FLOWS
Tim Colonius, California Institute of Technology .........ccccovvvvviiiiiiinienierieee e 317

CATEGORY 1 BENCHMARK SOLUTIONS USING FDL2DI
Nathan B. Edgar, Arkansas State University, and Miguel R. Visbal, Air Force Research
Laboratory, Wright-Patterson Air FOrce Base.........cccovvviveiiiiiiinienieiieeie e 323

SOLUTION OF AEROACOUSTIC BENCHMARK PROBLEMS BY DISCONTINUOUS
GALERKIN METHOD AND PERFECTLY MATCHED LAYER FOR NONUNIFORM
MEAN FLOWS

Fang Q. Hu, Old Dominion UNIVETSILY .......c.eecvierieerierieiieeiieenieesieesnesaeesseesieessaessnesnseenseesseenens 335

SOLUTIONS OF CATEGORY 1 PROBLEMS USING HIGH-ORDER DIFFERENCE
METHODS AND PERFECTLY MATCHED LAYERS
Thomas Hagstrom and Igor Nazarov, The University of New MeXiCO .......cccceveeriinienienirenenne. 355

COMPUTATION OF THE ALIASING AND THE INTERFACE TRANSMISSION
BENCHMARK PROBLEMS BY THE DISPERSION-RELATION-PRESERVING SCHEME
Christopher K.W. Tam and Hongbin Ju, Florida State University...........ccocceeererieneninneenennnn. 371

DISCONTINUOUS GALERKIN METHOD FOR COMPUTATIONAL AEROACOUSTICS
Cheolwan Kim and Jang Yeon Lee, Korea Aerospace Research Institute...........cccccoeeveeveennn. 383

APPLICATION OF OPTIMIZED EXPLICIT SCHEMES TO CATEGORY 1, PROBLEM 1
Christophe Bogey, Julien Berland, and Christophe Bailly, Ecole Centrale de Lyon.................. 393

NASA/CP—2004-212954 viii



SOLUTION OF CATEGORY 1, PROBLEM 1, BY A SEMI-CHARACTERISTICS
METHOD
Johan B.H.M. Schulten, ACUSTICA NOVA .......cooviueiiiiiiiiiieieceeeee et e e e e 401

FASTADER: AN ARBITRARY HIGH ORDER SCHEME FOR LINEAR ACOUSTICS
T. Schwartzkopff and C.-D. Munz, Stuttgart UniverSity.........ccceeveevieeieevieerieenreesrecreereeveenes 409

HIGH ORDER AND HIGH RESOLUTION METHODS FOR A MODEL CAA
PROBLEM

John W. Goodrich, NASA Glenn Research Center...........cooovviiviiiiiiiiiieieiiiieee e 417
DEMONSTRATION OF ULTRA HI-FI (UHF) METHODS

Rodger W. Dyson, NASA Glenn Research Center.............ccevvveeiiiviienieiieiie e 423
B-SPLINE COLLOCATION

Jonathan B. Freund, University of Illinois at Urbana-Champaign ............ccceceeevveeiieneenvennenne. 431
SOLUTION COMPARISONS.. ... .ottt ettt ettt sttt seeseesessessensenseneeneens 435

CATEGORY 1, PROBLEM 1, COMPARISON WITH EXACT SOLUTION
Christopher K.W. Tam, Florida State UnivVersity........cccccuevvvieiierieniieniiesieereereesreesreesveeeve e 437

CATEGORY 1, PROBLEM 2, COMPARISON WITH EXACT SOLUTION
Christopher K.W. Tam, Florida State UnivVersity.........ccccvervuereriecreeriiesienienreereeieenseesenesnesnnens 451

SUMMARY OF SOLUTIONS TO CATEGORY 1, PROBLEM 3
Thomas Hagstrom, The University 0f NeW MEXICO ......cccverivrrriieriierierieeieeieesieesee e eseeeeeens 453

COMPARISON WITH ANALYTIC SOLUTION, CATEGORY 2—COMPLEX
GEOMETRY
Miguel R. Visbal, Air Force Research Laboratory, Wright-Patterson Air Force Base............... 457

CATEGORY 3, PROBLEM 1
James R. Scott, NASA Glenn ReSearch Center...........coovvviouiiiiiieiiieeieieeeeeee et e e e eeeanes 461

COMPARISONS OF THE SOLUTIONS FOR THE CATEGORY 3—PROBLEM 2:
CASCADE-GUST INTERACTION
Edmane Envia, NASA Glenn Research Center..........ccoovvvioiiiiiiiiiieiieieeeeeee et eeeeeanes 481

COMPARISONS: CATEGORY 4
Philip J. Morris and Anurag Agarwal, The Pennsylvania State University ..........ccccccveeveenenee. 491

SOLUTION COMPARISONS FOR CATEGORY 4, PROBLEM 2
Matthew F. Barone, Sandia National Laboratories, and Sanjiva K. Lele,
StANTOrd UNIVETSILY ..veeiiviiiiiiieiieeeiie et eeiee ettt e et e estte e s vt e etbeessbeeesaaeesssaeessseessseesssseessseeessesnssens 495

SOLUTION COMPARISON: CATEGORY 5, PROBLEM 1
Soogab Lee and Cheolung Cheong, Seoul National University.........cccecvververireeiveeneeneereennenns 499

NASA/CP—2004-212954 ix



Benchmark Problems






BENCHMARK PROBLEMS—CATEGORY 1
_______________________________________________________|

BASIC METHODS

PROBLEM 1—ALIASING

Compute the solution of the convective wave equation

ou ou

or M ox
on a uniform mesh with Ax=1 and the following initial condition,
t=0 u =2+ cos(ax)]exp[-(In2)(x /10)*]
Consider two cases
1) a=1.7
(i) o =4.6
Results to be reported are the spatial distributions of u at t=400 and t=800.

Note : If computation is done by methods other than finite difference, an
equivalent mesh size of Ax=1 should be used.

Contributed by Christopher Tam, email tam@math.fsu.edu
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BENCHMARK PROBLEMS—CATEGORY 1
BASIC METHODS

PROBLEM 2—INTERFACE TRANSMISSION

Y
incident wave
reflected wave
> 0
% fluid 1
O > N
fluid 2

transmitted wave

This problem is intended to test the discrete formulation and computation of sound
transmitted through a surface of discontinuity. Here the surface of discontinuity is
formed by the interface of two fluids with different densities and sound speeds as
shown in the figure. An incident acoustic wave at an angle of incidence 0 impinges on
the interface. Part of the wave is transmitted and part of it is reflected. For computation
purpose, we will use the following length, velocity, time, pressure and density scales.
Subscripts 1 and 2 indicate fluid 1 and 2.

length scale = L

velocity scale = g, (sound speed in region 1)

) L
time scale = —
q

density scale = p, (density of fluid in region 1)

— 2
pressure scale = p,q;

a=F£2, A=z

O 4

The governing equations for small amplitude disturbances in fluid 1 are

|
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%+(%+m)=0

a  \ox  ay
9y __9p

ot ox

M __9p

g dy

%4_ %_{_% =0
a  \aox  ay

The governing equations for small amplitude disturbances in fluid 2 are,

&La(é’_ﬂ)o

g \ax  ay
g2 _ 9P

ot ox
a2 _ 9P

g dy
%_}A%_{_% =0
g \ox  ay

The dynamic and kinematic boundary conditions at the fluid interface are,
Py = Dy Vi =V,

Now consider a plane wave at an incident angle 6 and frequency w given below

P 1
U, -Re -sinf e—iw(sin9x+cosﬁy+t)
2 —-cosf

1

p 1 lincidence wave

(Re = real part of.) Determine the intensity and direction of the transmitted and

reflected waves for the two cases with 8=20" and 65°. The frequency and other

parameters are @ =0.7, a =0.694 and A =1. Plot contours of p at intervals of 0.25 at
the beginning of a cycle.
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BENCHMARK PROBLEMS—CATEGORY 1
|

BASIC METHODS

PROBLEM 3—ACCURACY OF BOUNDARY TREATMENTS

Proposer: Tom Hagstrom
Goal: Detailed study of the accuracy of boundary treatments with a range of incidence
angles including shear and a sonic point.

Part 1: Uniform Flow We take the two-dimensional linearized Euler equations in dimensionless
form, first assuming a uniform base flow:

0
DA U-V)p+ T u=0, (1)
ou
E—F(U-V)u—i—Vp:O, (2)
0
£+(U~V)p+v-u:0. (3)
The base flow is given by:
Uy =03, Uy=04, (4)

and initial conditions, p(x1, z2,0), uj(z1,x2,0) and p(x1,z2,0) are provided which lead to propa-
gating sound, vorticity and entropy waves. The initial conditions are supported in z; € (—2,2);
that is

p(mla z2, 0)7 Uj($1, €2, 0)7p($17 €2, O) = 07 |l’1‘ > 2. (5)
We take the computational domain to be:
(1‘1,332) S (_272) X (07 1)7 (6)
with periodic boundary conditions in x3. That is we have the periodic boundary conditions:
p(z1,1,t) = p(x1,0,t), uj(x1,1,t) =u;(x1,0,t), p(x1,1,t) = p(z1,0,1). (7)

The solvers can use their favorite radiation boundary conditions or absorbing layers
at the inflow and outflow boundaries, xr; = +2.

The configuration of the problem is shown in Figure 1.

The problem is to solve up to t = 64, reporting relative L? errors measured on a uniform 129 x 33
mesh. The initial data and solution are 1-periodic in x5 and will be provided on a uniform 513 x 129
mesh. (People who wish to use a finer mesh can interpolate. We have found that the data on a
257 x 65 mesh is accurate enough to generate numerical solutions with 7 — 8 digits of accuracy.)
Full details on obtaining the initial and solution data and reporting results is given below.

We note that the difficulty of the problem, from the point of view of boundary conditions, is
that for late times sound waves incident on the boundary are produced by far away image sources,
and thus the angles of incidence become more and more glancing.

Part 2: Subsonic Couette Flow
For the second part we make the base flow subsonic Couette flow:

Uy =Mze, M=0.9, Uy=0, (8)
with the periodicity conditions replaced by the wall condition:
Ug = 0, xTro = 0, 1. (9)

|
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Periodic Boundary

Uniform flow

nflow Outflow
oundary Boundary

welaml

Initial Disturbance

Periodic Boundary

Figure 1: Computational Domain for Problem 1

Thus the governing equations are:

op op B
ou ou T B
Op Op
XL M, cu=0. 12
gD + Irzaxl +V-u=0 (12)

Again the solver may choose any method for specifying boundary conditions at inflow and
outflow, o = +2. The domain configuration for Problems 2 and 3 is represented in Figure 2.

Part 3: Transonic Couette Flow
The third example is the same as the second except that we use (8) with:

M =12 (13)

We note that the new features introduced in Problems 2 and 3 are the presence of shear and a
sonic point at the inflow and outflow boundaries.
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Wall Boundary

Couette flow

nflow " Outflpw
oundary Boundary

welaml

Initial Disturbance

Wall Boundary

Figure 2: Computational Domain for Problems 2 and 3

DETAILED PROCEDURES
Initial and solution data can be obtained from the URL:

http://www.math.unm.edu/~ hagstrom/CA AWorkshop

Each line of each file contains 8 numbers:
11 92 T1 T2 UL U2 P P

the first two are integer indices associated with a data point, the second two are the double precision
coordinates of the data point, and the last four are the double precision values of the fields. Each
file is identified by the subproblem: Prl,Pr2,Pr3, and the time: t00,t01,t02,t04,...,t64. Thus the
file Pr1.t00 contains the initial data for Problem 1 on the grid:

(71,1, %2:,), P14 = —2+ (i1 —1)/128, @2, = (ia —1)/128. (14)

Here 1 <i; <513 and 1 < iy < 129. Similarly, the file Pr3.t24 contains the solution of Problem 3
at ¢ = 24 on the coarser grid:

(T1,015T2,05)s P14 = =2+ (i1 —1)/32, w24, = (i2 — 1)/32, (15)
1<y <129, 1<is < 33. (16)

The times are:
t=1, ta=2, tp=4(k—2), k=3,...18. (17)

As the files are large and numerous, you may prefer to download the tarred versions, which are:
Prl.tgz, Pr2.tgz and Pr3.tgz.

|
NASA/CP—2004-212954 8



You may use any mesh you like for solving the problem, interpolating between your mesh
and the one on which I have given the data. Information which you should include in describing
your solution is:

(i.) The discretization method used.
(ii.) The grid and time step.

(iii.) The detailed treatment of the artificial inflow and outflow boundaries, including the number
of grid points used in any absorbing layers, absorption profiles, boundary condition orders,
etc.

(iv.) Relative Iy error data for all four fields at each of the eighteen time stations, ¢, computed
on the 129 x 33 mesh. Precisely:

1/2
( it Y1 (Pexact (1,41, 72,02 ) — Peomp (1,01, 902,1'27751@))2)
eolth) = 129 33 2 1/2 ’ (18)
( i1=1 Lasizg=1 pexact(wl,ilal?,izatk))
129 33 o\ 1/2
(Zilzl i9=1 (ul,exact (xl,il 5 .%'271'2 5 tk) - uLCOIﬂp(ml,il s $27i27 tk)) )
Cun(tk) = 129 33 2 1/2 ’ (19)
(22'1:1 ig=1 U1 exact (xLil y L2,ig tk))
1/2
( i1 =t (U.exact (T1i1 22,0, t) — U2,comp (P11 T2, tk))2>
Cus (tk) = 129 23 ) /2 R (20)
(Zh:l io=1 u2,exact (33‘171'1 y L2.ig tk))
1/2
( ’}1221 E5‘323:1 (pexaCt(xl,il)xQ,iz)tk) _pcomp(xl,il,l’zig,tk;))z)
ep(tk) = 7 (21)

129 33 2 . .
( i1=1 Laio=1 pexact(xlﬂl y L2,in5 tk‘))

Recall that the times are t; =1, to =2, tp, = 4(k —2), k=3,...,18.

Solutions as well as any questions concerning the problem should be emailed to me at:

hagstrom@math.unm.edu.

At the URL mentioned above there is also a README file with additional information and contour
plots of the solution fields at each time. PLEASE DO NOT HESITATE TO CONTACT ME IF
YOU HAVE ANY QUESTIONS OR DIFFICULTIES.

Happy solving!
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BENCHMARK PROBLEMS—CATEGORY 2
_________________________________________________________________|

COMPLEX GEOMETRY

Multi-Geometry Scattering Problem

The problem considered here is the scattering of sound generated by a spa-
tially distributed, axisymmetric, acoustic source from multiple rigid circular
cylinders. This case provides a stringent test of the ability of high-order CAA
codes to handle increasingly complex geometries. It also serves to examine
the performance of well-established low-order CFD codes, developed for com-
plex geometries, when applied to the simulation of aeroacoustic phenomena. In
addition, this problem provides a demonstration of numerical robustness, long-
time stability and suitability of far-field radiation treatments in the presence of
multiple scattering bodies.

The acoustic scattering problem is governed by the linearized Euler equa-
tions, which may be written in two spatial dimensions as

Op  Ou  Ov _
a+6_m @_0 (1)
ou Op
D T 2
ot Tor " @)
ov  Op _
a+8—y_0 (3)
Op Ou Ov
JE—— —_— _— = 4
6t+8w+8y s “)

The flow variables in the above expressions are fluctuating quantities and have
been non-dimensionalized by the following scales:

length scale = diameter of largest circular cylinder, D4z
velocity scale = ambient speed of sound, ¢
time scale = Dmee
Coo
density scale = ambient gas density, peo
pressure scale =  pooc2,

The time-dependent acoustic source term on the right-hand side of the energy
equation is assumed axisymmetric and is written in the source-centered coordi-
nate system as

o [z {2 .

where w = 8t and b = 0.2

Case 1

The first case, shown in Fig. 1, consists of two cylinders of unequal diameters
(D1 = 1.0,Dy = 0.5), with a co-linearly located source equidistant from the
center of each cylinder. In the (zs,ys)-coordinate system centered on the source,
the location of the cylinders are given by L; = (—4,0), L, = (4,0).

|
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D1=1 .0
D2:O.5

Figure 1: Geometry for acoustic scattering Case 1

Compute the time-averaged pressure < p? > along the surface of both cylin-
ders. Compute < p? > along the centerline between the two cylinders, to
the left of the leftmost cylinder and to the right of the rightmost cylinder, for
-9 < xg < 9. Provide details on both the spatial and temporal discretizations
employed. This includes: (a) the total number of grid points or elements used,
(b) the typical mesh spacing in the near field in terms of points per wave, (c)
the farfield boundary location, (d) the number of time steps per period of the
source, and (e) the total number of time steps used to achieved a fully time-
asymptotic solution.

Case 2

The second case, shown in Fig. 2, consists of three cylinders with diameters
Dy =1.0and D, = D3 = 0.75. The locations of the cylinders with respect
to the source are given by L; = (—=3,0), Ly = (3,4), L3 = (3, —4).

Compute the time-averaged pressure < p? > along the surface of cylinders 1
and 2. Compute < p? > along the centerline, to the right and left of cylinder 1,
for —8 < zg < 8. Provide details on both the spatial and temporal discretiza-
tions employed as specified above for Case 1.

|
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D2=O.75 A

D;=0.75

Figure 2: Geometry for acoustic scattering Case 2

Contributed by Miguel Visbal, email: visbal @vaa.wpafb.af.mil

|
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BENCHMARK PROBLEMS—CATEGORY 3
_______________________________________________________________|

SOUND GENERATION BY INTERACTING WITH A GUST

PROBLEM 1—SINGLE AIRFOIL GUST RESPONSE
James R. Scott
NASA Glenn Research Center

The purpose of this problem is to test the ability of a CFD/CAA code to accurately
predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-
dimensional, periodic vortical gust.

Consider the airfoil configuration shown in Figure 1. The airfoil has chord length ¢
and angle of attack a. The upstream velocity is

U = Ui + @ cos[k - (T —1Usot)] (1)

where & = (x1,x2) denotes the spatial coordinates, @ = (a1, az) is the gust amplitude
vector with a; = — e Uy k2/|E\, as = €Uy k1/|E|, k is the wave number vector, and € is a
small parameter satisfying ¢ < 1.

The governing equations are the 2-D Euler equations

%§+E%@)—F§WW)=O (2)
;%0%)+—§%@u2+p)+-£%@uv)= 0 (3)
G0+ an(oun) + S (pe? +p) = 0 (®)

% + a%[(Eter)u] + %[(Et+p)v] =0 (5)

where p, u, v, p and E; denote the fluid density, velocity, pressure, and internal energy per
unit volume.

Since the gust amplitude @ satisfies |@| < Uxo, one can alternatively solve the linearized
unsteady Euler equations

Dopl

'V U+ V- (poil) =0 6
D TPV VotV (potd) (6)
DO/II N = = / — — — . - ’

po(ﬁ‘i‘u-VUo)—i—on'VUo——vp (7)

D()S,
=0 8
o, 0
where % = % +Uy-V is the material derivative associated with the mean flow, @ = (u',0"),

primed quantities are the unknown perturbation variables, and “0” subscripts denote
steady mean flow quantities which must be independently solved for and are assumed
to be known.

|
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Nondimensionalize the Euler equations as follows:

T1,T2 by 3

U = (u,v) by Us

¢o (sound speed) by Us

p by  peo

p by  pecUZ
T by T

¢ by 52
w=kUyx by 2[{:‘”
k1, ko by 2

If solving the linearized unsteady Euler equations, nondimensionalize the mean flow vari-
ables as above, and the perturbation variables as follows:

= (u,v") by  Us
o by  poo
i by  peUZ
T’ by Ts
a by Ux

For the following two cases, solve the gust response problem for a Joukowski airfoil in
a two-dimensional gust with ko = k; for reduced frequencies k; = 0.1, 1.0, and 2.0. The

nondimensional upstream velocity is U = 1 + €@ cos(k -  — ki t), where @ = (a1, as) =
(—@, ?) Take e = .02.

For Case 1, the airfoil has a 12% thickness ratio, free stream Mach number M., = 0.5,
angle of attack a = 0?, and a camber ratio of zero.

For Case 2, change « to 2° and the camber ratio to .02.

The airfoil geometries can be generated as follows. Set

G=roe'? + (o (9)
where
CO/ = —€] + 7:62 (10)
is a complex constant. Letting z = x + i y denote the airfoil coordinates in the complex z
plane, the transformation
d? ’
z= (Cl + —) e @ (11)
G
transforms the (; circle defined by equation (9) into the desired airfoil shape.

For Case 1, use ro = 0.54632753, ¢; = 0.05062004, €3 = 0, d?> = 0.24572591, a = 0.
Discretize the (; circle in 6, starting from 0 and going to 27, and then apply equation (11)
to get the airfoil coordinates. The values # = 0 and § = 27 map into the trailing edge
point.

|
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For Case 2, use 9 = 0.54676443, ¢; = 0.05062004, e, = 0.02185310, d? = 0.24572591,
a = 0.034906585. Discretize the (; circle in 6, starting from 6 = — ( and going to
0 = 27 — (3, where § = 0.039978687, and then apply equation (11) to get the airfoil
coordinates. The values § = —3 and § = 27 — (3, map into the trailing edge point.

The above procedure for generating the airfoil geometries will generate a Joukowski
airfoil of chord length 2, situated very nearly between x = —1 and x = 1. The airfoil
geometries are shown in Figure 2.

For both Case 1 and Case 2, march the discrete equations in time until the solution

becomes periodic. On the airfoil surface, calculate the RMS pressure 4/ (p’)2. In the far

field, calculate the intensity (p’)? at the following three locations: (i) on a circle of radius
R = 2 (one chord length) centered about the airfoil center; (ii) on a circle of radius R = 4
(two chord lengths); (iii) on a circle of radius R = 8 (four chord lengths).

State whether the solution is from the Euler equations or linearized Euler equations.
Also state the grid dimensions for each calculation, the number of complete periods com-
puted, the CPU time per period, and the type of machine the calculations were run on.

email: James.R.Scott@nasa.gov

Problem Author: James R. Scott

Problem Submitted By:  Milo D. Dahl

|
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Figure 1 Airfoil in a two-dimensional, periodic gust.
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-0.25
-1 -0.5 0 0.5 1
Figure 2a Airfoil geometry for Case 1.
o )
025 | | | | |

-1 -0.5 0 0.5 1
Figure 2b Airfoil geometry for Case 2.

|
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BENCHMARK PROBLEMS—CATEGORY 3
_____________________________________________________________|

SOUND GENERATION BY INTERACTING WITH A GUST

PROBLEM 2—CASCADE-GUST INTERACTION

Geometry

The two-dimensional geometry, shown in Fig. 1, is the unrolled section of a
realistic three-dimensional fan outlet guide vane stator. The cascade has a gap-to-chord
ratio of d/c=2/3 with the inflow and outflow planes located at x_ =F3/2c. The airfoil

definition is given in the accompanying AscCII file and reproduced at the end of this note.

[l oA I TATE R ot oo s
*

“
\
Qutflow Plane

1.b¢c

) R\f\

Fig. 1 - Stator Cascade Geometry
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I nflow/Outflow Conditions and Gust Input

The mean (i.e,, time-averaged) inflow/outflow conditions are:

1
1, outflow condition: P, /P =0.92
=36

o) _—|| _'UI
11

i
. . i
inflow conditions:
1
|

where P and T are the normalized inflow plane mean stagnation pressure and mean

stagnation temperature. &; is the mean flow angle and P, the normalized outflow plane
mean static pressure. Assume the flow to be inviscid and isentropic throughout the
domain and that the reference conditions wused for normalization are
P, = 2116.8Ib, /ft?, T, = 519 °R.

The inflow gust (produced, say, by the wake of an upstream blade row) is given,
a the inflow plane, by

ag(y, t) :{a1 cos(kyy- Wt) +a, cos(2(kyy- Wt)) +ascos(3(kyy- w ))} €,
r§(y,t) =0, Py, 1) =0

& =cos(b)é, - sin(b)é,, b =44
13,=510"

w=%/4, k=1p/9, {a=310°
fa, =7"10"

where w is the fundamental reduced frequency?, k, is the transverse wavenumber?, and
a ’'s are the gust harmonic ampl itudes®.

! Frequency is normalized by the chord divided by the ambient speed of sound.
2 Wavenumber is normalized by the vane chord.

3 Gust harmonic amplitudes are normalized by the ambient speed of sound.
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Requirements

Solve the time-dependent inviscid flow equations for this geometry subject to the
specified inflow/outflow mean conditions and the fluctuating inflow velocity distortion.

@ Compute the unsteady solution until periodicity in pressure is achieved
by showing that at least two successive periods are identical®.
Periodicity must be achieved on both the airfoil surface and the
inflow/outflow boundaries.

2 Once periodicity is achieved, compute the pressure frequency spectra
on the reference airfoil on both the upper and lower surfaces at

x=(-0.25¢c, 0.00, +0.25c), on the inflow boundary at
(%) ={( 1.5¢, -0.%) ,(- 1.5¢, 0.0),(- 1.5¢, 030)} , and on the

outflow boundary a (x,y)={(L.5c, -0.3¢c),(L5¢, 0.0),(1.5¢, 0.3c)} .
Express the spectral results in dB using the standard definition
20 Iog( pr.m.s/ pref.) ' Where pra‘. = 20 rTPa..

3 Extract the harmonic pressure distributions on the inflow and outflow
boundaries (i.e,, on x=F1.5clines) at the fundamental frequencyw
and agpply a Fourier transform in y direction to identify the spatia
(i.e., mode order) structure of the pressure perturbations. Express the
result in dB for each mode order. Repeat the process for the
frequencies 2w and 3w .

Note: The benchmark solution to this problem will be computed using a frequency-
domain linearized Euler code called LINFLUX which has been extensively tested at
United Technology Research Center and NASA Glenn Research Center.

Contributed by Ed Envia, Ednane. Envi a- 1@asa. gov.

* The maximum difference between the spectra of two successive periods must be less than 1% at any of
the three input frequencies.

|
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Airfoil Section Data®

Suction Side
X y
. 5000000 -0.1901280
. 5002920 -0.1894140
. 5002540 -0.1884780
. 4999420 -0.1873940
. 4994300 -0.1862410
.4984710 -0.1845490
. 4961960 -0.1812740
. 4915950 -0.1757120
. 4836860 -0.1674000
. 4716500 -0.1560880
. 4550310 -0.1414710
. 4443170 -0.1324970
. 4334350 -0.1237260
.4201140 -0.1134380
. 4065630 -0.1034570
. 3959670 -0.0959786
. 3852400 -0.0886887
. 3743860 -0.0815891
. 3621360 -0.0738989
. 3497360 -0.0664518
. 3371910 -0.0592516
. 3234920 -0.0517603
. 3096350 -0.0445642
. 2956260 -0.0376667
. 2845230 -0.0324608
. 2733330 -0.0274428
. 2620600 -0.0226143
. 2507070 -0.0179772
. 2390860 -0.0134608
. 2273890 -0.0091454
. 2156200 -0.0050325
. 2037810 -0.0011236
. 1918560 0. 0025865
. 1798690 0. 0060908
. 1678230 0. 0093899
. 1557230 0.0124843
. 1435580 0. 0153764
. 1313440 0. 0180566
. 1190850 0. 0205178
. 1067840 0. 0227529
. 0944786 0. 0247549

® These coordinates are normalized by the vane chord.
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Pressure Side

X
. 5000000 -0
. 4993730 -0
. 4984500 -0
. 4973270 -0
. 4960960 -0
. 4942390 -0
. 4905490 -0
. 4840870 -0
.4741110 -0
. 4599970 -0
. 4410590 -0
. 4290580 -0
.4169740 -0
. 4024270 -0
. 3877700 -0
. 3764920 -0
. 3651540 -0
. 3537570 -0
. 3410850 -0
. 3283470 -0
. 3155440 -0
. 3017670 -0
. 2879220 -0
. 2740120 -0
. 2631260 -0
. 2522040 -0
. 2412460 -0
. 2302560 -0
.2191170 -0
. 2079460 -0
. 1967460 -0
. 1855160 -0
. 1742920 -0
. 1630430 -0
. 1517680 -0
. 1404710 -0
. 1291750 -0
. 1178570 -0
. 1065200 -0
. 0951624 -0
. 0837561 -0

y

. 1901280
. 1905700
. 1907420
. 1906820
. 1904450
. 1899110
. 1884920
. 1854640
. 1801880
. 1722870
. 1619740
. 1557100
. 1496080
. 1425270
. 1356790
. 1306010
. 1256600
. 1208550
. 1156980
. 1107070
. 1058820
. 1009010
. 0961104
. 0915107
. 0880571
. 0847192
. 0814972
. 0783912
. 0753706
. 0724691
. 0696870
. 0670250
. 0644907
. 0620746
. 0597753
. 0575911
. 0555260
. 0535799
. 0517589
. 0500690
. 0485073



[eNeololololeoNololololololololololNeoloNololololoNeololololeololololoNoloNeNoNe)

. 0821404
. 0697762
. 0573926
. 0436985
. 0299907
. 0162715
. 0025430
. 0111930
. 0249356
. 0386844
. 0524387
. 0661944
. 0799541
. 0937171
. 1074820
. 1212460
. 1350090
. 1487720
. 1625330
. 1759700
. 1894040
. 2028330
. 2162570
. 2287510
. 2412380
. 2537190
. 2661920
. 2809030
. 2956010
. 3102850
. 3225580
. 3348200
. 3470710
. 3614500
. 3758110
. 3965670
. 4101550
. 4180750
. 4253860
. 4306480
. 4434420
. 4562150
. 4689730
. 4817240
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. 0265503
. 0281647
. 0296234
. 0310812
. 0323960
. 0335834
. 0346593
. 0356362
. 0365136
. 0372880
. 0379556
. 0385130
. 0389579
. 0392878
. 0395006
. 0395944
. 0395694
. 0394264
. 0391659
. 0387987
. 0383201
. 0377299
. 0370281
. 0362742
. 0354237
. 0344771
. 0334347
. 0320815
. 0305956
. 0289773
. 0275219
. 0259744
. 0243354
. 0222929
. 0201246
. 0167648
. 0144220
. 0130020
. 0116572
. 0106702
. 0081752
. 0055715
. 0028954
. 0001831
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. 0723342
. 0609005
. 0494585
. 0361405
. 0228173
. 0094903
. 0038395
. 0171762
. 0305150
. 0438564
. 0572009
. 0705583
. 0839183
. 0972799
. 1106420
. 1240260
. 1374110
. 1507950
. 1641800
. 1772820
. 1903840
. 2034870
. 2165910
. 2288210
. 2410520
. 2532830
. 2655140
. 2799840
. 2944550
. 3089260
. 3210570
. 3331870
. 3453180
. 3596040
. 3738900
. 3945990
. 4081910
. 4161300
. 4234920
. 4290990
. 4422550
. 4554110
. 4685680
. 4817240

. 0470608
. 0457072
. 0444238
. 0429933
. 0416151
. 0402770
. 0389665
. 0376738
. 0364027
. 0351594
. 0339503
. 0327780
. 0316348
. 0305095
. 0293905
. 0282670
. 0271416
. 0260174
. 0248975
. 0238079
. 0227245
. 0216466
. 0205733
. 0195753
. 0185808
. 0175899
. 0166029
. 0154403
. 0142832
. 0131318
. 0121710
. 0112142
. 0102617
. 0091454
. 0080337
. 0064307
. 0053863
. 0047777
. 0042149
. 0037887
. 0027922
. 0017987
. 0008073
. 0001831



BENCHMARK PROBLEMS—CATEGORY 4
_________________________________________________________________|

SOUND TRANSMISSION AND RADIATION

PROBLEM 1—RADIATION AND REFRACTION OF SOUND
WAVES THROUGH A TWO-DIMENSIONAL SHEAR LAYER

The propagation of sound in a turbulent shear flow can be described by a solu-
tion of the linearized Euler equations. The base flow is assumed to be the long-time
average of the turbulent flow field. Viscous and nonlinear effects enter the problem
through their influence in determining the base flow. However, the linearized Euler
equations not only provide a solution for sound propagation, they also admit unstable
solutions and instability waves can be triggered. In the complete physical problem,
these instabilities contribute to the turbulence and are limited and modified by non-
linear and viscous effects. In that sense they are non-physical solutions, if the actual
problem to be solved is for sound propagation in a turbulent sheared flow. It should
be remembered that the inhomogeneous linearized Euler equations only represent a
mathematical model of part of the complete physical problem.

The purpose of this benchmark problem is to find ways to suppress the non-
physical instabilities but to retain that part of the solution associated with the sound
propagation.

The problem to be solved is very similar to the Category 5 problem at the Third
Computational Aeroacoustics Workshop on Benchmark Problems: “Generation and
Radiation of Acoustic Waves From a 2D Shear Layer.” The operating conditions have
been changed and, in the present problem, the required solution should only
consist of the acoustic part of the solution: not the instability wave that
is generated. The problem consists of an energy source inside a two-dimensional jet
that generates an acoustic wave that is refracted as it moves through the jet shear
layer. The benchmark problem requires the solution of the two-dimensional linearized
Euler equations to calculate the fluctuations associated with only the sound radiation
and refraction through the jet. The locations of the required output data and its
format are given below. The numerical solutions will be evaluated by comparison
with an exact analytical solution.

The linearized Euler equation for a parallel jet can be written as

L (%, %,w) U(x,t) = S(x) cos(w,t), (1)

|
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where
O py)g B +py)g 0 p 0
ou(y) 1 8
| = 0 z oy ’(11/)%'0 , U= u , S = 0 . (2)
0 0 ] T v 0
A(y) Oy
0 Vg VD o p Af)
(= % + ﬂ(y)a% , Ax) = Aexp|—(B,2* + Byy?)]
The mean flow variables are denoted by an overbar and are given by
oy - ujexp[—(In2)(y/b — h/b)’] y>h
1 ly—1 _ _ La(y) 1w —a(y)
—— = —wy) -y +—+ ——— 4
p(y) 3 ()~ w)i) pi Ui P U W
p = constant = 103330 m ™' kg s72 (5)

The parameters for the problem are given in the Table. M; = u;/a;, a; = (YRT;)Y2.

M, | T, [Tw| R Y T h b A B, B,
K | K | m?s2K™! m | m | kem 's73 m 2 m 2

0.756 | 600 | 300 | 287.0 | 1.4 0.0 13| 0001 |0.04m(2) ] 0.32n(2)

The source frequency w, = 76 rad/s. Note that this source frequency generates an
instability wave that can overwhelm the acoustic solution. Therefore, the numerical
scheme must filter out the instability wave.

The physical domain €2 is a rectangle with dimensions 2 = [—50, 150] x [0, 50]. A
symmetry boundary condition should be used along the z-axis.

Calculate p at the start of a cycle and p? along:

1. y=15 —50<az <150
2. y =50, —50<z <150
3. 1 =100, 5<y<50

Output data in ASCII text format with three columns: z, 3, and p or p2. Specify the
grid layout, memory used, CPU time, and the computational scheme (including the
boundary conditions) used for the numerical simulation.

Contributed by Philip J. Morris and Anurag Agarwal, email: pjm@psu.edu

|
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BENCHMARK PROBLEMS—CATEGORY 4
_________________________________________________________________|

SOUND TRANSMISSION AND RADIATION

PROBLEM 2—TRAILING EDGE NOISE PROBLEM

Consider a two-dimensional, compressible mixing layer flow formed by a splitter plate with a blunt trailing
edge. The lower stream has free stream Mach number M; = 0.6 with a boundary layer momentum thickness
07 at * = z7, while the upper stream has free stream Mach number My = 0.1 with momentum thickness
05 = 07 at * = x7. The splitter plate has width w* = 207 with a shape consisting of a flat plate section
capped by a super-ellipse at the trailing edge. With all lengths nondimensionalized by 67, the definition of
the splitter plate surface is:

2y 2 T \™

- R = — <z <

<w) _|_<1—|-AR) 1, AR<z <0 (1)
y::t% : x < —AR (2)

with aspect ratio AR = 2.5 and order m = 6. The Reynolds number based on the lower free stream

properties is Regr = eruafy 250, and the Prandtl number is Pr = 0.7. The governing equations are the
1

two-dimensional Navier-Stokes equations:

oU OF  0G _ oV, oV,

+ + 3a
ot Jdr Oy ox oy (32)
p ém [ v
U= " F=|"™ tp G = ;;uv (3b)
pv puv pv° +p
pE u(p + pE) Lv(p+ pE)
0 [ 0
M M
.= 7 1 Txx Vy _ 1 Try (3(3)
eoy Toy Reg: oo
UTge + VTay — 70z | UTay + UTyy — By
1 1
E=-T+ - (u? +2? 3d
5 + > (u® 4 v?) (3d)
where p is the density, u, v are the velocity components, p is the pressure, T is the temperature, F is the total
. . . . C . .
energy per unit mass, 7 is the viscous stress tensor, ¢ is the heat flux vector, and v = z* = 1.4 is the ratio

of specific heats. All variables are non-dimensionalized using reference length 6] and the following lower free
stream dimensional quantities: speed of sound ¢; = /(v — 1)C,T*, time 05 /c}, density p7, pressure p*{c*f,
temperature (y — 1)77, and viscosity pi. The following constitutive relations close the system

v—1

p:—T 4&
ol (4a)
oT oT
4z = _k£ Qy = _ka_y (4b)
(1o 20y (ou o) o 20 "
v =M\ 35z 30y v = H Oy Ox Y30y  30x
b=k = (b~ Y1) (1)

Steady State Solution

First find a steady, laminar solution to (3) for the given geometry and flow conditions. The rectangular
solution domain is given by —50 < z < 100, —100 < y < 100, with the trailing edge of the splitter plate at
the origin. The flow state at the inflow boundary at x; = —50 is approximated above and below the plate by

|
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solutions to the compressible boundary layer equations with zero pressure gradient. Free stream conditions
above the plate are To = T} and ps = p;. Boundary conditions on the plate surface are the no slip condition
u = v = 0 and the isothermal condition T\, = Ti. The steady solution is denoted U = [p pu pv pE|T.
Plot streamwise velocity profiles of @(y) at x = 5, x = 40, and = = 75, so that mean mixing layer solutions
may be compared.

Problem 1
Once the steady solution is obtained, solve the initial value problem of a pressure pulse superimposed on the
steady flow, with initial condition

0
_ 0
U(z,9,0) = U(z,y) +0.05 | |,

f(=.y)
y—1

([ [0

flz,y) =e ()

where U is the steady solution. The unsteady calculation is performed on the same domain as the steady
calculation over the time period 0 < ¢ < 1200. Give the disturbance pressure p’ = p — p along the line
y = —3 at times t = 200,400, ...,1200. Give the data at 401 points equally spaced along the interval
—50 <z < 150. Also give the disturbance pressure time history for 0 < ¢ < 1200 at (x,y) = (—30,1) and at
(z,y) = (50,50). Give data in time increments of At = 0.5. Each data set should contain ¢, z, y, p’ and be
saved in FORMAT (4 (1X,E15.6)).

Problem 2
Solve the initial value problem where a
plate. The initial condition is given by:

(1=t (1 (219) ™

4

‘vortex” is initiated upstream of the trailing edge below the splitter

U U
(7,9,0) =

v v

p p

(z,y) +

M, (z — o) exp (1‘[25]2>

([t aze (1 2]

where (x0,y0) = (—35,-8), M, = 0.1, 0 = 1, and r =
0 <t <1200, and give the same data as for Problem 1.

V(= 20)2+ (y — yo)?. Find the solution for

M
] Y
Y
tw
M

T =T

Contributed by Sanjiva Lele and Matt Barone, email: lele@stanford.edu.
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BENCHMARK PROBLEMS—CATEGORY 5
__________________________________________________________|

SOUND GENERATION IN VISCOUS PROBLEMS

PROBLEM 1—AEOLIAN TONE GENERATION
FROM TWO CYLINDERS

Aeolian tones, sound generation by flow over cylinders, are relevant to airframe and power
plant noise (heat exchanger, power transmission lines and chimneys). The purpose of this

problem is to test the ability of a CFD/CAA code to accurately predict sound generation by
viscous flows and sound propagation through interactions between acoustic wave & solid wall
and between acoustic waves & shear layers.

Consider the cylinder configuration shown in Figure 1. The Reynolds number Re., = 1.58 x 10*
based on inflow velocity U, = 24.5 m/s and cylinder diameter D = 0.955 cm are imposed on the
computation. It is known that the streets of regularly spaced vortices exist with laminar cores
over the range of Reynolds numbers from 65 to approximately 400. The range of Reynolds
numbers above which vortices with turbulent cores are shed periodically extends to
approximately 2x10°. The governing equations are the 2-D Navier-Stokes Equations. We are
interested in the acoustic waves emitted from unit span.

1) Calculate the Strouhal No. of vortex shedding from two cylinders.

2) In the far field, calculate the intensity (p')2 on the circle x’+y’= (100D)* at 46 = 3°, 0
measured from the x-axis.

3) In the near field, compute the intensity (p')2 on the circle x’+y’= (10D)” at 40 = 1°, 0
measured from the x-axis.

Ay
—>
> 1.5D
U
X
—>
1.5D
—> E

Figure 1

Contributed by Professor Soogab Lee : Email: solee@plaza.snu.ac.kr
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BENCHMARK PROBLEMS—CATEGORY 5

SOUND GENERATION IN VISCOUS PROBLEMS

PROBLEM 2—SOUND GENERATION BY FLOW OVER A CAVITY

Air flows over the cavity shown below with a mean approach flow velocity of 50 m/s.
The boundary layer that develops over the flat plate is turbulent with a thickness of 14
mm at the entrance to the cavity. Calculate the power spectra at the center of each cavity
wall and the center of the cavity floor. Experimental data will be available for
comparison.

50 m/s

28.6 mm — ‘<—
i 7.94 mm
-

15.88 mm

Contributed by Brenda Henderson, email : b.s.henderson@larc.nasa.gov
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Analytical Solutions






ALIASING PROBLEM: CATEGORY 1, PROBLEM 1
ANALYTICAL SOLUTION

Christopher K.W. Tam
Department of Mathematics
Florida State University

Tallahassee, FL 32306-4510, USA
tam@math.fsu.edu

The exact analytical solution of the convective wave equation,

&+ﬁ:0 (@D}
ok

satisfying initial condition =0

u=(2+cos ocx)exg{—(ln 2)(%TJ 2

u(x,1)=[2+cose(x—1)] exg{—(ln 2 xl_;t]zJ (3)

However, for Ax=1 and a=4.6 > x (case (b)) (3) is not the exact computational solution. Because « islarger than
7, the solution is subjected to aliasing. In solving the above initial value problem, the computer code has, first, to
sample theinitial condition (2). For a > r; i.e., waves with wavelength less than two mesh spacing, which isthe
Nyquist limit, the sampled initial condition is aliased into a wave with wavenumber (a—2 7). Thus the exact
computational solution for case (b) is

u(x,t)= [2 +cos[2r—a)(x- t)]] ex%—(}n 2)()61;; j J 4

To understand the origin of aliasing, let us assume that the mesh sizeis Ax and that the initial conditionat =0
is

—(In 2)[% j2+i0@x

u=f(x)=e (5)

where apAx islarger than 7 but lessthan 2z so that theinitial data represents ultra short waves located outside the
fundamental resolved wavenumber range of —z < @Ax < 7. Note that the real part of (5) isthe oscillatory part of (4).
Let ¢ (integer) be the index of the mesh points. On the mesh we have,

x=/lAx
and theinitia condition (5) is

2
—(an)[%j +iopAx/!

f(O)=e (6)
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Since oAx > z, we may write
OOAx=T+7. (7

But /@ = il27H&-ml = pi&-m)! Thereforeinitia condition (6) becomes, on the mesh

-(m)[%]zﬂ(s-n)e

f()=e (8)
In terms of continuous variable x, theinitial conditionis
2
—(m2) )+ 7 s
flx)=e (5] : )

The oscillatory part of (9) represents a wave with wave number

a_ﬂ_(%_z_”j
Ax Ax)’

Now the aliased wave lies within the resolved wave number range.

NASA/CP—2004-212954 32



INTERFACE TRANSMISSION PROBLEM: CATEGORY 1, PROBLEM 2
ANALYTICAL SOLUTION

Christopher K.W. Tam
Department of Mathematics
Florida State University
Tallahassee, FL 32306-4510, USA
tam@math.fsu.edu

Theincident wave is given as

|—u1—| [ —sing ]
\‘VJ-J =Re {_ cos 6A|£ia)(sim9x+cus®+r) . (1)
D incident 1
Thisisasolution of the governing equationsin fluid 1.
A _ b
ok ok
M _ I
ERE) 2
i(ﬁi} 0
ok o oy

The reflected wave must have the same x and ¢ dependence as the incident wave. It is easy to find that the
appropriate outgoing reflected wave solution of (2) is,

u —sin6
v =Re! Rl cos@ e—iw(s'irl&—c'0x®r+t) . (3)

1

1 reflected

where R isthe unknown amplitude.

The transmitted wave satisfies the governing equationsin the region occupied by fluid 2. The governing
equations are,

dy _ P

ad o

Fd: e

“a (4)
@M(@ﬂjzo

o E)

The transmitted wave must also have the same x and ¢ dependence as the incident wave. Thus, let
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1 (y)
v =Re ‘;(y) —io(sinbetr) . (5)

P1 L ansmitted p (y )
Substitution of (5) into (4), it iseasy to find upon eliminating # and v asingle equation for p

d?p
dv?

Y

+ @ (a—sin? 6)p=0 (6)

The outgoing wave solution is,
IA) —e iw(a—sinze)my (7)
Onfinding # and v from the governing equations, it is straightforward to determine that the transmitted wave s,
|_Lt2-| —sin9/015/2 'a)['&x 2V }
[VZJ =Re T —(0{—sin2 6) Jolp ety L (8)
transmitted

P2 1

where T isthe unknown wave amplitude.

The wave amplitudes of the reflected and transmitted waves are found by imposing the dynamic and kinematic
boundary conditions at the fluid interface, namely,

P1= P2, Vi=V2 ©)

(9) leads to the following relations
1+R=T (20)
—cos¢9+Rcos¢9=—%(a—sin2 6)1/2 (12)

On solving (10) and (11) for 7 and R, itisfound

T = 2cos @ (12)

cos 0+ 1 (a— sin® 6)1/2
a

R=T-1 (13)
Of interest to the present problem is when the incident angle islarge so that sin? > . Inthiscase, T isno

longer real suggesting that there is no transmitted wave or the incident wave istotally reflected at the interface. This
istruefor ¢=0.694 and 6 =65, which is one of the cases prescribed in this benchmark problem.
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Exact Solutions to Category 1 Problem 3

Thomas Hagstrom'! and Igor Nazarov
Dept. of Mathematics and Statistics
The University of New Mexico, Albuquerque, NM 87131
email: hagstrom@math.unm.edu, FAX: (505) 277-5505.

The goal of this problem was to provide a detailed study of the accuracy
of boundary treatments with a range of incidence angles including shear and a
sonic point.

There are three parts. In each we solve the linearized FEuler equations on a
prescibed domain: (—2,2) x (0,1) with initial conditions consisting of a pressure
dipole, entropy and vorticity disturbances. Here z; = 42 are the artificial
boundaries, the speed of sound is scaled to 1, and we solve up to t = 64.

PART 1
For part 1 the base flow is a uniform subsonic flow skew to the boundaries:
Uy =03, Uy =04 (1)

In addition, periodic boundary conditions are prescribed 5.
The exact solution is given by the following formulas:

P = P(:cl — U1t,.732 — UQt,t), P = D($1 — Ult,xz — Ugt,t),
u = U(.’El — Ult,l‘g — Ugt,t), v = V(.Z'l — Ult,afg — Uzt,t),

where ) ,
e t—Tik —pi(s=7i)
e
P(xy,29,1) = E B; E /_ md&
oo ;

i=1 k=—o00

D(ml,l’g,t) = P(xlax%t) +5 Z eiusrékv

k=—o00

top
U(zy,x2,t) = —/ a—(scl,x27s)ds+UO(m1,x2),
0o 0T1
top
V(z1,20,t) = —/ a—xz($1,$2,8)d8+vo($1,$2),
0
2 opP 7L 9P
Uo(z1, 22) :fl(xl)/ E(z,wg,O)dz—/ E(z,xg,O)dz,
2 2

Tz (2 9p
Vo(zr, 22) = —f{(fﬁ)/ / E(z,w,())dzdw.
0o J-2

ISupported, in part, by ARO Grant DAAD19-03-1-0146, NSF Grant DMS-0306285, NASA
Contract NAG3-2692, and BSF Grant 2002019. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the author and do not necessarily reflect
the views of ARO, NSF, or NASA.
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and
e = (x1— 21,)% + (22 — 22,)°,

T?‘Sk = (v — 561,5)2 + (zg — $275k)2,

07 T < -1.9
fiw) = 1— e (@R929° <1
1, x> 1.9.

The parameters B;, p;, T14, 2,4k, S, ks, £1,5, T2,5k are chosen so that, to
a high degree of accuracy (11 digits), the initial data is supported on (—2,2)
and the boundary conditions are satisfied. The integrals are evaluated using
a combination of Gaussian quadrature and endpoint corrected trapezoid rules,
again to high accuracy. The infinite sums are truncated after the point where
their contributions are below machine precision. We also note that the jump in
fi1 is approximately 4 x 10713,

Precisely we chose a dipole-like initial configuration for the pressure pulse:

T1=T2=-.95 wu =p =30, Bo=-B; =1,

11 =212 =01, xa10 =220 = 1/2.

and for the entropy pulse:
ps =12, S=1, 215=0, w350 =1/2.

To guarantee periodicity we have:

1
L2,k T2,5k = 5 +k, —oc0o<k<oo.

We note that similar solutions have been used to test boundary conditions
for the linearized Euler equations in [2] and for the scalar wave equation in [1].

PARTS 2 AND 3
In part 2 the base flow is given by the subsonic Couette flow:
Uy =Mz, M=09, Uy=0, (2)
and in part 3 by the transonic Couette flow:
Uy =Mz, M=12 U;=0. (3)

For these problems we replace the periodic boundary conditions by the wall
boundary condition, v = 0. The initial conditions are defined by the same
functions and parameters as part 1 except that the image source locations 2 ;i
are determined to guarantee compatibility with the wall conditions. For k > 0:

T2ik+l =2 — T2k, T2 —(k+1) = —T2ik,
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T2,5k+1 =2 —T25 Kk, T2.5,—(k+1) = —T2,5k-

In this case we don’t have a code which evaluates an exact solution. Instead
we use a well-resolved numerical solution on a sufficiently long domain to elimi-
nate the influence of the boundaries. Tha basic numerical scheme is identical to
the one we used to solve these and other benchmark problems, and is described
in more detail elsewhere in the proceedings. In time we use a standard 4th order
Runge-Kutta method with time step dt = 1/2000: 128,000 steps for the entire
solution. Space derivatives are calculated using an 8th order difference scheme
on a square grid with an extra point near the boundaries (added for stability).
Thus the mesh in the domain [—L, L] x [0,1] has (nx + 3) * (ny + 3) points
(ne =128 % 2% L, ny = 128; h, = hy, = 1/128)

The length of the domain is chosen so that reflection from the left and right
boundaries causing possible errors would not come before time ¢t = 64.0

L-2
M+1

+(L—2)>64.0

Hence, L = 44 for Problem 2 (M =.9), and L = 47 for Problem 3 (M = 1.2).
We note that this required 385,120 points in the transonic case. We have not
fully assessed the accuracy of this solution, but preliminary comparisons with
coarser mesh solutions suggests that it is accurate to more than three digits.

References
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the linearized Euler equations in Cartesian domains. SIAM J. Sci. Comput.,
24:770-795, 2002.

NASA/CP—2004-212954 37






ACOUSTIC SCATTERING FROM MULTIPLE CIRCULAR CYLINDERS:
CATEGORY 2, PROBLEMS1AND 2, ANALYTIC SOLUTION

Scott E. Sherer
Computational Sciences Center of Excellence
Air Vehicles Directorate, Air Force Research Laboratory
2210 Eighth Street
Wright-Patterson AFB, OH 45433-7510

INTRODUCTION

The main goa of this benchmark problem set is to assess the ability of computational algorithms to simulate the
aeroacoustic phenomenon of linear scattering with increasingly complex geometries. These algorithms may include
advanced high-order methods being extended to handle complex grid topologies, or mature structured and
unstructured approaches developed for intricate geometries that are either low-order or are being adapted to
incorporate high-order algorithms. For the problems considered here, the complex geometry does not arise from the
shape of the bodies, which are simple circular cylinders, but by the presence of multiple bodies in the computational
domain. This problem also provides a test of numerical robustness, long-time stability, and suitability of far-field
radiation boundary conditions for more realistic problems. The solution presented here is discussed in more detail in
Ref. 1, which is an extension of the single-scattering solution of Ref. 2. These references should be consulted for
more detail on the solution methodol ogy.

ANALYTIC SOLUTION

Because of the small amplitudes of the acoustic waves, linear scattering is assumed. The governing equations
are given by the linearized Euler equations

0_,0+@+@:O (1)
ot o0x oy

a_u+@zo (2)
ot ox

ﬂ+@:0 3
ot oy

@+@+@:S (4)
ot ox oay

The term on the right-hand side of the energy equation (Eq. 4) represents the spatially-distributed, time-periodic,
acoustic source present in the domain, and is specified in the problem statement as

—In2(x* + y?|| .
S= exp{% S n(a)t) (5)
where b =0.2,cc =871.

Decoupling the pressure from the velocity components in Egs. 2 through 4 above and assuming a time-periodic
pressure distribution results in the governing partial differential equation for the spatially varying pressure field ﬁ to
be given by the nonhomogeneous Helmholtz equation,

~In 2(x2 + y2)
b2

°p +w’p =-i a)exp{ (6)

NASA/CP—2004-212954 39



Because of the linear nature of the problem, the principle of superposition can be used to write the spatially varying

pressure field as the sum of the incident pressure and the scattered field from each of theM cylinders in the
collection,

M
p=p™+> p’ )
i=1
The scattered fields then each independently satisfy the homogeneous Helmholtz equation
?p’ +w’p’ =0 i=12,...M ®
and the incident field satisfies the nonhomogeneous Helmholtz equation,
, , ) R?
2 2 —
O°p"™ +w’p™ = —wuexp{—anF} 9)

whereR? = x? + y2 is the distance from the center of the source to some point in the domain. The rigid-body

boundary condition V [fi =0, applicable on the surface of each cylinder, may also be expressed in terms of
pressure and decomposed using Eq. 7 to yield the set of equations

ia_pls :_apinc
= dr, or.

S=a. J
rj=a

j=12,...M (10)

rj=a,

where 1 i istheradial distance from the center of each cylinder and a; isthe radius of each cylinder.

The incident pressure distribution was found by Morris (Ref. 2) using a Hankel transform method to solve Eqg. 9,
and may be expressed in the polar coordinate system of the axisymmetric source givenin Eq. 5 as

p™(R) = iwsz g exp{- il }ds (1)
2In29 (s - w") 4ln2
To find the scattered pressure distribution, Equation 8 may be solved through a straightforward separation of
variables technique for each of the cylinders. Written in the local (ri ,Hi )-coordi nate system, the scattered field
generated by cylinder i is given by
pe(r.6) =AHo(wr )+ X H (wr)[A, cos(ng ) + B, sin(ng)] i=12..M (12
n=1

where H  isthe Hankel function of thefirst kind of order N, and A, and B, are unknown coefficients.

The unknown scattering coefficients in Eq. 12 may be found through the application of theM boundary
conditions given in Eqg. 10. Thisis done by first applying a generalized form of Graf’s addition theorem (Ref. 3),
which allows for the incident field of Eq. 11 and the scattered fields of Eq. 12 to be written in terms of the local

coordinate system of cylinder | . The transformed equations are then differentiated with respect to r j and theM

boundary conditions of Eq. 10 are applied. The resulting expressions consist of infinite summations on both sides of
the equalities, with each term possessing a factor of cos(mej )or sin(mHj ) arising from the addition theorem

(Mis the dummy summation index variable). Equating like factors across the equality on a term-by-term basis and
truncating the infinite series at some finite value N results in a system of M [{2N +1) equations for the equal
number of unknown scattering coefficients. Thislinear system of equations may be written as

Z%=b (13)

where the matrix Z may be written in terms of M 2 submatrices of dimension (2N +1) x (2N +1) as
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Z11 Z12 ZlM
F=|%a %2 || Lo (14)
ZMl ZMZ ZMM
The off-diagonal submatrices Z;; (i # ]) may be further broken down by submatrix as
cCr|sr
Z. =L v - 15
i [S{j _CJ (i #]) (15)
The mM™ -row, N™ -column elements of these submatrices are given by
+ £m 7 (c9) =
[(C'S)ij m :7K gmin (16)
where
Kﬁ?ﬁf :(_1)mKi§fﬁr?+ iKiE(r:r;r?)_ (17)
and
"W cos(n+ myy,
K& ==H .. (aD;)|dpa(@a )= (wa)|C . ! 18
ijmn 2 mtn( IJ)[ m—1( ]) m+1( j)] %Sj(ni m)wij{ (18)
and
1if m=0
m=n (19)
2if m=1

In Eq. 18, Dij and 4[/”- are the polar coordinates of the center of cylinder j in the local coordinate system of cylinder
i . The submatrices Z ;j on the diagonal of Eq. 14 are themselves diagonal matrices of the form
Ho,

N
I

(20)

I
Hy |

where

n

H = %[H ra(ka)) —H . (k)] “

The solution and right-hand side vectors are expressed as
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AT
A
X, :
X B |
X=|-2| - X, = A (22)
_ By
X\, B,,
_BMi
and o
loi
I
B, :
- B _ | ¢
b={—2| - B ="M (23)
R 7
By 5
T
where

|9 = Ia)b E( ) j s?J (SL )[‘] —1(53- )~ ‘]m+1(Sa ) eXp|:_b282 }dSE{COS(maj) (24)

" 2In2 2 (s* - ) 4In2 sin(ma; )
and (L i a; ) gives the location of the center of cylinder | in thelocal coordinate system centered on the source.

Solving Eq. 13 for the unknown coefficients allows the individual scattered fields to be found from Eq. 12,
while the incident field is found from Eq. 11. Determination of the both the scattered fields (through Eq. 24) and the
incident field require the evaluation of an indefinite integral expression. Since closed-form solutions for these
integrals have yet to be found, they are evaluated numerically using the technique of Morris (Ref. 2). Inthis
approach, the variable of integration Sis replaced by anew variable T such that

S=7-i yexp[— B(r - a))ZJ (25)
where y = /10 and B =-In(1x107"°/ y)/ w*. The new path of integration is thus deformed below the real

axisaround the poleat S = ¢, alowing the integration to be performed using standard numerical techniques. Both

the numerical integration and solution of the linear system of equationsis done using the computer software package
Mathematica (Ref. 4), which alows for the accuracy of the numerical integration and the potential ill-conditioning of
the linear system to be controlled.

The analytic root-mean sgquared pressure distribution on the surfaces of the cylinders and along the centerline for
both benchmark problems are plotted in Figs. 1 through 4. Files containing this datain numerical form are available
by contacting the author, as well as the Mathematica notebook used to generate these results. This notebook may be
easily modified for other cylinder configurations or source parameters to provide additional test cases for
comparison.
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CATEGORY 3, PROBLEM 1

SINGLE AIRFOIL GUST RESPONSE PROBLEM

James R. Scott
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

The solution to this problem can be obtained by solving the linearized unsteady Euler equations. Let
the unsteady flow field be given by

U(Z,t) = Uy (&) + @(Z, t) (1)
p(Z,t) = po(Z) + P (2. t) (2)
p(Z,t) = po(Z) + p'(Z,1) (3)

s(%,t) = s, + 5" (T, 1) (4)

where the entropy s, is constant, and @, p’, p/, and s’ are the unsteady perturbation velocity, pressure,
density and entropy, respectively. Zero subscripts denote mean flow quantities which are assumed to be
known.

Substituting (1) — (4) into the nonlinear Euler equations and neglecting products of small quantities,
one obtains the linearized equations

Dyp’ / & —

Dt "’Pﬁ'Uo‘F6 (potl) = 0 (5)
Dy, == . -
po(DOt—i—wVUo)—i—p’ ,-VU, = —Vp (6)
D,s’
=0 7
=, 7)
where % = % + (jo .V is the convective derivative associated with the mean flow.

If the mean velocity U, can be expressed as the gradient of a potential ®,, then equations (5) - (7) can
be reduced to a single, non-constant coefficient, inhomogeneous convective wave equation (refs. 1,2)

1 Dy, 1

D, e ien_ Ll am
o) =9 (p,F0) = T (™), (8)

where the unsteady velocity is decomposed into a known vortical component @ and an unknown potential
component V¢,

iz t) = @' + V. (9)
The unsteady pressure is given by
D
v o= @l (10)

An unsteady aerodynamic code, called GUST3D (ref. 3), has been developed to solve equation (8) for
flows with periodic vortical disturbances. The code uses a frequency-domain approach with second-order
central differences and a pressure radiation condition in the far field. GUST3D requires as input certain
mean flow quantities which are calculated separately by a potential flow solver. This solver calculates the
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mean flow using a Gothert’s Rule approximation (ref. 3). On the airfoil surface, it uses the solution calculated
by the potential code FLO36 (ref. 4). Figures 1-2 show the mean pressure along the airfoil surface for the
two airfoil geometries.

In Figures 3 - 8, we present the RMS pressure on the airfoil surface. Each figure shows three GUST3D
solutions (calculated on grids with different far-field boundary locations). Three solutions are shown to
provide some indication of the numerical uncertainty in the results.

Figures 9 - 13 present the acoustic intensity. We again show three solutions per case. Note that no
results are presented for the k1 = ko = 2.0 loaded airfoil case, as an acceptable solution could not be obtained.

A few comments need to be made about the results shown.

First, since the last Workshop, the GUST3D code has been substantially upgraded. This includes imple-
menting a more accurate far-field boundary condition (ref. 5) and developing improved gridding capabilities.
This is the reason for any differences that may exist between the present results and results from the last
Workshop.

Second, the intensity results on the circle R = 4 C' were obtained using a Kirchoff method (ref. 6). The
Kirchoff surface was the circle R =2C.

Finally, the GUST3D code is most accurate for low reduced frequencies. A new domain decomposition
approach (ref. 7) has been developed to improve accuracy. Both the single domain and domain decomposition
approaches were used in generating the present results.
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Figure12.c Acoustic intensity oncircleR=4C,
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BENCHMARK SOLUTION FOR
THE CATEGORY 3—PROBLEM 2: CASCADE-GUST INTERACTION

Edmane Envia
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT

The benchmark solution for the cascade-gust interaction problem is computed using a linearized Euler code
called LINFLUX. The inherently three-dimensional code is run in the thin-annulus limit to compute the two-
dimensional cascade response. The calculations are carried out in the frequency-domain and the unsteady response at
each of the gust’s three frequency component is computed. The results are presented on modal basis for pressure
perturbations (i.e., acoustic modes) as well as velocity perturbations (i.e., convected gust modes) at each frequency.

INTRODUCTION

The periodic impingement of the wakes of arotor on a downstream stator is one of the principal sources of
turbomachinery noise and a significant contributor to the overall noise produced by modern aircraft engines. As such,
this source has been the focus of many analytical modeling efforts over the years, but with the recent emergence of
computational aeroacoustics (CAA) as aviable alternative, the emphasis has now shifted away from analytical
approaches to purely numerical ones. Naturally, asin the other aeroacoustic problems of engineering interest, the
success of CAA is predicated on the availability of efficient computational algorithms and robust boundary
conditions. In theory, a candidate algorithm must be able to handle the generation and propagation of sound wavesin
the presence of complex geometries, and through non-uniform media, with no dispersion or dissipation; the boundary
conditions must be able to handle the passage of the unsteady disturbances through the boundaries of the
computational domain with no reflection; and both of these requirements must be satisfied at frequencies of
engineering interest. The usefulness of CAA is, therefore, greatly dependent on the extent to which all of these
conditions are met, and its practicality is dependent on the resource requirements (hardware and CPU time) that must
be expended to achieve reasonably accurate solutions for design and analysis purposes. The proposed two-
dimensional benchmark problem was designed to address principally the question of usefulness. The issue of
practicality is best addressed using a three-dimensional benchmark problem, which is postponed until the next
workshop.

BENCHMARK SOLUTION

The solution for the benchmark problem was obtained using a code called LINFLUX which is based on a
linearized frequency-domain method for solving the three-dimensional inviscid unsteady flow equations. The method
has been extensively documented and validated using two- and three-dimensional test cases (see refs.1 through 4)
and so will not be covered here. LINFLUX isactually part of a collection of codes which also includes agrid
generation package called TIGER, a steady nonlinear inviscid flow solver called TURBO, and a set of processing
routines for generating the harmonic content of the incident disturbance (i.e., acoustic, vortical and entropic). The
information obtained from all three codesis used to run LINFLUX, which cal cul ates the acoustic response produced
by the incident disturbances on the blade row at specified harmonics of the rotor-stator blade passing frequency.

Computational grid

Since LINFLUX cannot be easily modified to run in two-dimensional mode, the cascade geometry was
“wrapped” around an annulus with a mean radius of R =5.7¢ and a hub-to-tip radius ratio of 0.996 (see Figure 1a).
Theresult isablade row that is, strictly speaking, three-dimensional, but owing to its extremely small spanwise
extent (only ~2.3% of the vane chord) would result in solutions that are effectively two-dimensional in nature
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depending only on the axial and tangential coordinates (see Figure 1b). Since the solution is computed in the
frequency-domain, only one passage of the blade row is needed when appropriate periodicity conditions are enforced
(see Figure 1c). To ensure sufficient resolution of the mean flow details and the response to the highest frequency
gust (i.e., reduced frequency of 9z /4), agrid with 301x81x7 pointsin the axial, tangential and radial directions was
created. The grid is packed near the airfoil boundaries and also in the vicinity of the leading edge (see Figure 1d).

(2)

Figure 1. Three-dimensional thin annulus representation of the two-dimensional geometry of the benchmark
problem (a). Hub-to-tip radiusratio is 0.996 (b) resulting in a solution that is effectively independent
of theradial coordinate. The passage grid, which has 301x81x7 pointsin the axial, tangential and
radial directions, isshown for theradial grid index =4 (c). Thegrid is packed near the airfoil
surfaces and in the vicinity of the leading edge (d).

Seady flow solution

The steady flow needed as input to LINFLUX was computed using the nonlinear Euler code called TURBO (see
ref. 5) on the grid discussed in the previous section. The computation was run to convergence as indicated on the | eft
side of Figure 2. The graph shows the convergence history of the error (residual) as a function of the iteration count.
The residual was reduced by five orders of magnitude after 25,000 iterations, but the iteration process was continued
afurther 10,000 steps to ensure convergence of al relevant flow parameters. On the right, the resulting Mach number
distribution after 35,000 iterations is shown.

For the purposes of the presentation, the x— 68 plane corresponding to the radial grid index = 4 is unrolled and
both the geometry and solution are duplicated. In this two-dimensional representation, x denotes the horizontal
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coordinate, and y=r¢ denotesthe vertical coordinate. Clearly the steady flow is uniform along the y-direction at
the inflow and outflow planes ( x = ¥1.5¢ ) except for the presence of athin wake downstream of the vane trailing
edge produced as aresult of numerical dissipation. The flow over the vane itself behaves as expected with steady
loading evident in the form of low Mach number values (corresponding to high pressure values) on the pressure side
and high Mach number values (corresponding to low pressure values) on the suction side of the vane.

Representative averaged flow quantities at the inflow and outflow planes obtained using TURBO are shown in
Table 1. It should be noted that the inflow plane flow angleis an input in TURBO. Using the isentropic flow
relations, the stagnation pressure and temperature at the inflow and outflow planes can be readily computed and
found to be equal to 1.00000 satisfying the other requirements specified in the benchmark problem.

log (error)

) T e

° P o ® @ L O O P O O O P P
B s o P 6 P P o o P P S

Iteration No.

Figure 2. Seady flow obtained using the TURBO code. Convergence history over 35,000 iterationsis
shown on theleft and the resulting M ach number distribution isshown on theright. Thereis
evidence of dight numerical dissipation in the form of a thin wake downstream of the vane

trailing edge.
Mach No. Satic Pressure Satic Temperature | Flow Angle (deg.)
Inflow Plane 0.44958 0.87049 0.96115 36.00*
Outflow Plane | 0.34704 0.92000 0.97648 171

Table 1. Seady flow quantities at theinflow and outflow planes of the computational domain after 35,000
iterations. Theflow variables are normalized by the standard conditions; pressure = 2116.2 |bf/ft2,
temperature = 519 °R, and the speed of sound = 1116.8 ft/s.

Unsteady flow solution

Using the steady background flow described in the previous section and the gust harmonic content given in
benchmark problem, LINFLUX was executed to cal culate the harmonics of the unsteady response produced as a
result of the impingement of the gust on the cascade. For each harmonic component of the gust (i.e., n =1 to 3), the
code was run until the residual level had reached the round-off error region. This required almost 20,000 iterations
for the first harmonic, little over 33,000 iterations for the second harmonic, and nearly 12,000 iterations for the third
harmonic. In every case, the size of the residual was reduced by at least six orders of magnitude.

Samples from the unsteady response are shown in Figure 3, 4 and 5. As before, the x— 6 plane corresponding to
theradial grid index = 4 is unrolled and duplicated. Thistime, however, the harmonic solution (for each n) is shifted
by exp (ijno) for the j™ passage, where o = 27B/V isthe so-called inter-blade phase angle and i is the square root

of -1. The quantity B/V denotes the relationship between the gust and cascade periods in the y-direction which, using
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the information supplied in the benchmark problem can be readily shown to equal 22/54 over a 2 period. Itis
convenient to interpret B and V as the blade and vane counts for the annulus problem. Then, in view of the Tyler-
Sofrin rule, m = nB — kV (where k is an integer), the modal structure of the response can be interpreted. The
computed unsteady field includes both acoustic and convective modes. The acoustic modes, which correspond to k =
0, k =1 or both, propagate at the speed of sound relative to the medium in both directions. The convective modes
always correspond to k = 0 and travel at the speed of the background flow (i.e., are convected by it). The pressure
field is comprised of acoustic modes only, while the velocity field includes both acoustic and convective modes, but
tends to be dominated by the latter. The dominant acoustic modes produced in response to each gust frequency are
listed in Table 2. The computed response is evanescent (i.e., cut-off) at the primary frequency, a deliberate design
feature of the benchmark problem. The conversion from the 3D mode ordersto the 2D wavenumbers is through the

relation k!*’ =m/R where the superscript (a) denotes the acoustic wavenumber.

Frequency Annulus M ode Order (3D) M ode Wavenumber (2D) Mode Type
m=+22 ki = +3.84 Evanescent

@ m=-32 k! =550 Evanescent
m=+22 k! = +3.84 Convected

o m=-10 lf(ya) =-175 Propagating
m=+44 k{” =+7.68 Convected

m=+12 k(¥ = +2.09 Propagating

3w m=-42 ki =-7.33 Propagating
m=+66 k! = +11.52 Convected

Table 2. The dominant unsteady response modesin the annulus and their two-dimensional transverse
wavenumber equivalents. The 2D wavenumber s are normalized by the vane chord. The acoustic
response at the primary frequency is cut-off. The convected mode wavenumber s (denoted by the
superscript (c)) are multiples of the input gust wavenumber 117/9.

In Figure 3 the response to the incident gust corresponding to the primary frequency w= 37 /4 isshown. The
real part of pressure perturbation is shown on the left, and the real part of the axial component of velocity
perturbation is shown on the right. The pressure and vel ocity perturbations are normalized by the inflow plane static
pressure and steady velocity which can be obtained from Table 1. The pressure response, which is cut-off at this
frequency, is dominated by two evanescent acoustic modes m = +22 and m = -32. The perturbation velocity field is
dominated by the convected gust and thus is mainly comprised of m = +22 convected mode. The incident gust is
distorted as it passes through the cascade. Note that the axial velocity perturbations are essentially out of phase
downstream of the vane leading edge, and thereisajump in axial velocity across the wake sheet downstream of the
trailing edge. It should be noted that the jump is not an artifact of the numerical dissipation discussed earlier, but a
feature of the physical problem.

NASA/CP—2004-212954 62



Figure 3. The computed response due to the gust at the primary frequency (i.e., @ = 3n/4). Real part of the
pressure perturbation is shown on theleft and real part of the axial velocity perturbation is shown on
theright. The pressureresponseis cut-off at thisfrequency and includes two evanescent acoustic
modes m = +22 and m = -32. The perturbation axial velocity field is dominated by the convected gust
and ismainly comprised of m = +22 convective mode.

Figure 4 shows the corresponding plots for the calculated response at twice the primary frequency. The pressure
field at this frequency is due to a single propagating acoustic mode m = -10 with the wave fronts clearly evident away
from the cascade especially at the exit plane. The axial velocity field is dominated by the convective mode m = +44
exhibiting twice as many wave fronts as that in Figure 1. Note the change in scale for both the pressure and vel ocity
plots.

Finally, Figure 5 shows the calculated response at three times the primary frequency. The pressure field at this
frequency is comprised of two propagating acoustic modes m= +12 and m = -42. The axial velocity field at this
frequency is due to the convective mode m = +66 exhibiting three times as many wave fronts as that in Figure 1.
Note the change in scale for both the pressure and velocity plots. The pressure wave fronts are not as clearly
discernable asin Figure 4 due to interference between two contributing acoustic modes.

Figure 4. The computed response due to the gust at the twice the primary frequency. The pressurefield is
entirely comprised of the propagating (i.e., cut-on) acoustic mode m = -10. The axial velocity
perturbation is dueto the m = +44 convective mode.
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Figure 5. The computed response due to the gust at three timesthe primary frequency. The pressureresponseis
comprised of two propagating acoustic modesm = +12 and m = -42. The axial velocity perturbation
field isdueto the m = +66 convective mode.

Computed spectra and mode information

In Tables 3 through 5 pressure levels for select locations in the domain are listed per requirements of the

benchmark problem. All levels are expressed in dB using the standard definition of sound pressure level (SPL) given
by 20 logio(pPrms/ Prer) Where pre = 20 pPa. The complete solution package, including both steady and unsteady parts
of the flow, is supplied on the workshop proceedings CD.

Frequency Suction Side SPL (dB) Pressure Side SPL (dB)
x/c=-025| x=000 | xc=+0.25 | x/c=-0.25| x/c=0.00 | x/c=+0.25
1 140.7 140.6 141.2 138.0 141.5 140.5
2w 128.3 118.4 121.0 128.6 1214 119.5
3w 104.1 107.5 92.8 104.5 103.0 97.6
Table 3. Acoustic pressure spectrum on the vane.
Frequency Inflow Plane SPL (dB) Outflow Plane SPL (dB)
y/c=-0.30 | »=0.00 | y/c=+0.30 | y/c=-0.30 | y/c=0.00 | y/c=+0.30
10 111.9 106.6 110.9 109.5 107.8 107.2
2w 113.2 119.3 116.2 119.6 1194 119.3
3w 105.6 105.4 103.7 99.7 98.4 1015

Table 4. Acoustic pressure spectrum at the inflow and outflow planes.

NASA/CP—2004-212954




Frequency Dg:ng?teﬁﬂcggic Inflow Plane SPL (dB) | Outflow Plane SPL (dB)
o m=+22 101.3 108.4
m=-32 113.0 83.8
2w m=-10 116.8 119.2
30 m=+12 97.6 95.6
m=—-42 88.1 98.0

Table 5. Acoustic pressure modal amplitudes at the inflow and outflow planes.
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ANALYTICAL SOLUTION: CATEGORY 4

Philip J. Morrisand Anurag Agarwal
Department of Aerospace Engineering
The Pennsylvania State University
University Park, PA 16802, USA

INTRODUCTION

The propagation of sound waves through non-uniform fluid flows can be described by the linearized Euler equations.
However, the linearized Euler equations also support instability wave solutions. For parallel mean flows, these are un-
stable eigensol utionsthat, for ajet, are the Kelvin-Helmholtz instability waves. Theseinstability waves can completely
overwhelm the acoustic-wave solution. Thus, in order to characterize the properties of the acoustic waves aone, it
is important to filter out the unwanted instability waves. The objective of this benchmark problem is to develop a
numerical schemethat captures only the acoustic wave solution of the linearized Euler equations.

ANALYTICAL SOLUTION

In this problem, atime-harmonic source is embedded in atwo-dimensional parallel jet. The linearized Euler equations
are solved in the frequency domain after assuming a time-harmonic response to factor out the time dependent terms.
The ensuing time-independent equations can be reduced to asingle third-order partia differential equation. The third-
order differential operator is the well known Lilley wave operator. The first step in the solution procedure is to apply
a Fourier transform in the streamwise () direction. This reduces the Lilley operator to the compressible Rayleigh
operator, which is a second-order ordinary differential operator. The final solution is obtained after integrating the
Rayeligh eguation in the cross-stream direction (y), and applying the inverse Fourier transform in 2. The inverse
Fourier transform is obtained by the Method of Steepest Descent. The analytical solution procedure is described in
detail in reference 1.
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CATEGORY 5: SOUND GENERATION IN VISCOUS PROBLEMS

PROBLEM 2: SOUND GENERATION BY FLOW OVER A CAVITY

Brenda S. Henderson
NASA Langley Research Center, Hampton, VA 23681-2199, Brenda.S.Henderson@nasa.gov

ABSTRACT

The discrete frequency sound produced by the flow of air at low subsonic speeds over a deep cavity was
investigated. A long aspect ratio rectangular cavity with a leading edge overhang that cut off %2 of the cavity opening
was placed flush with the top surface of a wind tunnel. The approach flow velocity was maintained at 50 m/s for the
benchmark problem although results are also presented for other conditions. Boundary layer measurements
conducted with a single element hotwire anemometer indicated that the boundary layer thickness just upstream of the
cavity was equal to 17 mm. Sound pressure level measurements were made at three locations in the cavity: the
center of the leading edge wall, the center of the cavity floor, and the center of the trailing edge wall. Three discrete
tones were measured at all three locations with corresponding Strouhal numbers (based on cavity opening length and
approach flow velocity) equal to 0.24, 0.26, and 0.41. The amplitudes of each tone were approximately equal at
each measurement location in the cavity. Measurements made at other approach flow conditions indicated that the
approach flow velocity and the boundary layer thickness affected the frequency characteristics of the discrete tones.

INTRODUCTION

The production of discrete frequency sound by the flow of air over a cavity occurs at low subsonic approach flow
speeds for many automotive applications such as those associated with car door gaps and sunroofs, and at high
subsonic or supersonic approach flow speeds for many aeronautical applications. The flow is often characterized by
complex oscillations of the shear layer, the production of discrete tones as well as broadband noise, and wave motion
(longitudinal or transverse) within the cavity. The flow and acoustic phenomena are often broadly categorized by the
cavity length (/) to depth (D) ratio, with values of //D below one indicating deep cavities and values of [/D greater

than one indicating shallow cavities (refs. 1 and 2). Experiments have shown (ref. 3) that the shear layer oscillations
associated with shallow and deep cavities are fundamentally different. The cavity wave motion may also be
significantly different for these two cases with longitudinal waves occurring for deep cavities and transverse waves
occurring for shallow cavities. While the resulting discrete frequencies produced by shallow cavities are often well
described by Rossiter’s equation (ref. 4), the frequencies produced by deep cavities may significantly deviate from
the values predicted by this early model. Helmholtz type resonances have also been observed for some cavity
geometries.

The broad range of flow and geometric parameters affecting the production of cavity tones makes the
development of general flow and sound production models somewhat difficult. Experimental investigations have
shown (ref. 5) that the amplitude and frequency of discrete tones are affected by the type of boundary layer (laminar
or turbulent) and the boundary layer thickness. The type of boundary layer also affects the appropriate scaling
parameters relating the boundary layer thickness and the Strouhal number of the discrete tones. The many
parameters governing the cavity mouth geometry can also have a significant impact on the resulting acoustic
production and flow field characteristics (refs. 6 and 7).

The cavity problem chosen for the 4™ Computational Aeroacoustics Workshop on Benchmark Problems is one
somewhat resembling the door gap of an automobile although slightly larger dimensions have been used for
experimental purposes. The approach flow is at low subsonic speeds but well above that associated with an
automobile. The purpose of the higher velocity is to ensure that a strong acoustic resonance is produced by the
numerical models and in the experiments. The geometry of the cavity mouth is similar to that of the door gap and
also introduces additional complication to the problem that may result in multiple types of flow resonances.
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BENCHMARK PROBLEM STATEMENT

Air flows over the cavity shown below with a mean approach flow velocity of 50 m/s. The boundary layer that
develops over the flat plate is turbulent with a thickness of 14 mm at the entrance to the cavity. Calculate the power
spectra at the center of each cavity wall and the center of the cavity floor.

U, =50 m/s

I
o

%* —~
D =28.6 mm Lz?mm

[=15.9 mm

Figure 1. The cavity geometry used for the benchmark problem. The microphone measurement locations are
indicated by ae .

EXPERIMENTS

The experiments were conducted in the 0.46 m x 0. 46 m test section of the recirculating wind tunnel at
Kettering University. The tunnel was equipped with silencers before and after the fan.

The Plexiglas cavity shown in Fig. 2 was placed along the upper surface of the wind tunnel and spanned the
entire tunnel cross section. End caps were placed at the outer edges of the cavity so that only the cavity mouth
remained open to the flow. Condenser microphones, 6.35 mm in diameter, were mounted in the center of the cavity
leading edge wall, the center of the cavity trailing edge wall, and the center of the cavity floor at a single cavity
cross-section. The resulting power spectra were obtained with an 8 Hz bandwidth FFT.

Boundary layer measurements were made with a single element hot wire anemometer traversed vertically near
the wind tunnel top surface at different axial locations in the test section. A continuous test section surface (no cavity
present) was used during the boundary layer studies. Although the benchmark problem statement called for a
boundary layer thickness of 14 mm, the boundary layer studies indicated that the thickness of the boundary layer at a
location corresponding to the cavity entrance was 17 mm when the approach flow velocity was 50 m/s. Additional
acoustic measurements were made for a second axial position in the test section 65 cm upstream of the original
cavity location. The boundary layer was thinner in this region of the test section. Measurements made at the second
location served to determine the sensitivity of the acoustic radiation to changes in the boundary layer thickness.
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Figure 2. Schematics of the wind tunnel test section with the cavity showing (a) the top view and (b) the side view.

RESULTS

The results for the benchmark problem as well as results for the same cavity with different approach flow
conditions will be presented in the following two sections. The additional results are intended to further clarify the
sensitivity of the resulting acoustic radiation to changes in the approach flow.

Benchmark problem

The power spectra obtained from the cavity measurements are shown in Fig. 3. The corresponding locations of
the microphones are also indicated on the plot. Three discrete peaks with frequencies equal to 1504 Hz, 1624 Hz,
and 2616 Hz are observed in the spectra. The corresponding Strouhal numbers are 0.24, 0.26, and 0.41, respectively,

where the Strouhal number is given by Uﬂ The sound pressure levels of the discrete peaks are approximately
o

equal at each location in the cavity cross-section.

It is not possible to determine the nature of the flow resonance associated with each discrete tone in Fig. 3 from
the spectral data. However, it is possible to perform some rough calculations and compare with other published data
to determine the likely type of resonance associated with the three peaks. If a cavity mode (longitudinal) coupled
with the shear layer oscillations in the cavity mouth, the first cavity mode would result in a resonant wavelength
equal to four times the cavity dimension, D, or a resonance frequency of 3016 Hz. The second mode would result in
a resonance frequency of 1508 Hz, a value remarkably close to that of the lowest discrete frequency in Fig. 3. The
second peak in the spectrum, 1624 Hz, produces a Strouhal number consistent with that measured by De Metz and
Farabee (ref. 5) for cylindrical deep cavities with approach flow velocities similar to those used in the present
investigation. In the experiments of De Metz and Farabee, the tone was attributed to the second cavity resonance
mode although phase measurements within the cavity were not made in the experiments. It is possible that the tone
at 1624 Hz is associated with a longitudinal cavity resonance for an effective depth less than 28.6 mm. The
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reduction in effective cavity depth could be due to the complicated cavity mouth geometry and the complicated shear
layer oscillations in this region of the flow.

The tone at 2616 Hz is most likely associated with an edgetone type resonance. The feedback criterion applied to
the cavity (refs. 8 and 9) is given by

N+p:J‘ dL L
f

where N is an integer, p is a fraction accounting for the delay between a particular phase of the flow disturbance and
the resulting acoustic wave (equal to % for the edgetone), u.,, is the convection velocity of the shear layer
disturbances, and c is the speed of sound. The above equation assumes that the sound is produced at the trailing
edge of the cavity. The first term on the right hand side of the equation accounts for the travel time of the shear layer
disturbances while the second term accounts for the propagation time of the acoustic wave from the sound source to
the leading edge of the cavity. Since the acoustic wavelengths are large compared to L, the second term may be
neglected. Assuming that N is equal to one and a value of % is used for p, the resulting calculated acoustic frequency
is equal to 2610 Hz when a convection velocity of 0.33U, is used for the shear layer disturbances. The value for the
convection velocity was obtained from the measurements of De Metz and Farabee. The calculated value is quite
close to the measured frequency of the third discrete peak in the spectra of Fig. 3.

Although Helmholtz type resonance has been observed in many cavity flows, calculations for the cavity geometry
used in the benchmark problem indicate that frequencies close to 1000 Hz would be observed in the spectrum for this
type of resonance. All of the measured discrete frequencies are all well above this value. Additionally, if the cavity
displayed three-dimensional affects, it would be possible to obtain wavelengths on the order of the width of the wind
tunnel test section (0.46 m). All of the measured discrete frequencies in the spectra correspond to wavelengths much
shorter than this dimension. It is, therefore, unlikely that either of these types of resonances were present in the flow.
However, additional measurements are necessary to determine the exact origin of each tone in the spectra.
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Figure 3. The power spectra obtained at the three microphone locations indicated in the figure.
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Results at other approach conditions

Cavity sound pressure level measurements were made for other approach flow velocities with the cavity located at
the same axial location in the test section as that used in the benchmark problem. Although sound pressure level
measurements were made at the three microphone locations indicated in Fig. 1, results will only be presented for one
microphone location since similar spectra were obtained at all three locations. The power spectra shown in Figs. 4
(a) and (b) were obtained for approach flow velocities equal to 45 m/s and 60 m/s, respectively. By comparing Figs.
3,4 (a), and 4 (b), it can be seen that multiple discrete peaks are observed in the spectra obtained with approach flow
velocities between 45 and 50 m/s, while and a single dominant peak is present in the spectrum obtained at an
approach flow velocity of 60 m/s. When a single discrete peak is present, the sound pressure level of the tone is
much higher than that associated with the dominant peak of the spectra when multiple tones occur. This result would
indicate that the energy is divided among the resonant modes when multiple tones are produced. This could have
implications for computational results that do not properly reproduce all of the resonance modes observed in the
experiments.
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Frequency (Hz)

(a)

0 1000 2000 3000 4000 5000 6000

Frequency (Hz)
(b)

Figure 4. The power spectrum obtained in the cavity for approach flow velocities equal to (a) 45 m/s and (b) 60 m/s.
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The power spectrum in Fig. 5 was obtained when the cavity was moved 65 cm upstream in the test section from
the location used in the benchmark problem. At this location in the tunnel, the boundary layer was thinner than 17
mm. The multiple peaks in the spectra of Fig. 3 are no longer present for the thinner boundary layer although the
approach velocity is equal to 50 m/s for both cases. Additionally, the peak sound pressure level in Fig. 5 is greater
than the peak sound pressure level in Fig. 3 indicating that boundary layer thickness affects both the frequency
characteristics and the amplitude of the dominant peak in the spectrum. De Metz and Farabee (ref. 5) found that the
Strouhal number for the dominant tone was affected by the normalized boundary layer thickness where the length of
the cavity mouth was used for the normalization. The results are consistent with the present experiments which
indicate that the Strouhal number increases with decreasing boundary layer thickness. The sensitivity of cavity tones
to boundary layer changes could have a significant impact on numerical models used to represent this type of flow.
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Figure 5. The power spectrum obtained in the cavity for an approach flow with a thin boundary layer and a velocity equal
50 m/s.

DISCUSSION AND RELEVANT CONSIDERATIONS FOR COMPUTATIONAL COMPARISONS

The intent of benchmark problems is to provide a means to test the ability of numerical schemes to properly
predict flow fields and acoustic radiation. As the flow fields become more complicated, experimental data may be
the only results available for comparison. However, it is important to understand the experiments and the sensitivity
of the flow field to changes that may occur during the experiment investigation. In many cases, the numerical
problem may be far more “perfect” than the real world experiment. In other cases, the models used in the numerical
schemes may lead to significant numerical errors that cause the results to deviate significantly from that observed in
experiments. Emphasis should be placed on the ability of the numerical scheme to predict trends observed in
experiments.

The ability to properly represent the boundary layer in the experiments and the numerical models was perhaps the
most difficult problem faced in this benchmark problem. Any small experimental error in the boundary layer
thickness measurement could easily be on the order of a significant fraction of the cavity mouth dimension due to the
small value of L. Additionally, the introduction of the cavity to the test cell could result in small imperfections that
lead to a thicker boundary layer than that measured for the test section without the cavity. The ability to properly
represent the boundary layer in a numerical scheme also presents a problem for this type of flow. Experiments have
shown that the tonal characteristics associated with cavities introduced in flows with laminar boundary layers are
significantly different from those associated with cavities introduced in flows with turbulent boundary layers. It is
only reasonable to expect that calculated frequency characteristics will also be affect by numerical turbulence and
boundary layer models.

For this type of flow, it may be sufficient to have a numerical scheme that predicts trends observed in the
experimental data. Since it is often difficult to obtain exact experimental values across facilities, it may be
unrealistic to expect an exact comparison between experimental data and numerical results. In the present
experiments, the peak sound pressure levels were quite similar at all three locations in the cavity for a given
approach flow condition. As the approach flow velocity increased, multiple tones disappeared and a single discrete

NASA/CP—2004-212954 76



peak was present in the acoustic data. If multiple tones were present in the spectra associated with a thick boundary
layer, thinning the boundary layer tended to lead to a single discrete peak. The Strouhal numbers for the dominant
peak were between 0.26 and 0.27 for all flow conditions investigated. When the approach flow velocity was equal to
50 m/s, the measured peak sound pressure level was between 116 dB and 123 dB. Perhaps a successful numerical
scheme is one that that successfully predicts the data trends noted above. A final test of the scheme should involve
comparing the computed flow field data to that measured by techniques such as particle image velocimetry.
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CASCADE-GUST-INTERACTION PROBLEM ANALYSISBASED ON
LINEAR CFD CALCULATIONS

Antonio G. Escribano, Adolfo Serrano, and Carlos Vasco
Industria de Turbo Propulsores, S.A., 28830, Madrid, Spain

ABSTRACT

A two-dimensional (2—-D) cascade-gust-interaction problem, known as the Fourth Computational Aeroacoustics
(CAA) Workshop on Benchmark Problems, Category 3, Problem 2 (ref. 1), is solved using a frequency domain
unstructured Euler solver. The numerical scheme uses a second-order central spatial discretization, and the
integration in time is done using a fifth-stage Runge-Kutta scheme. Two-dimensional nonreflective boundary
conditions are used at the computational domain inlet and outlet. Unsteady results for three different harmonics are
provided, and a mesh sensitivity analysis is carried out to determine the grid resolution required in the solver for this
type of calculation.

The code, known as MU?s”T-L, has been developed at Industria de Turbo Propulsores, SA (ITP), and is used in
production to compute turbomachinery unsteady flows due to either vibrating blades or vortical/potential gust
interactions between adjacent bladerows. The MU’S’T-L solver has been extensively validated against several 2-D
semi-analytical methods (ref. 2) where the fan/turbine blade geometries are replaced by flat plates. In this work,
MU?s"T-L code’s ability to deal with complex geometries like a fan blade is tested, and its results are compared with
the benchmark solution in a companion paper (ref. 1).

INTRODUCTION

Airfoil-wake interaction is one of the major sources of noise in aircraft engines. It is certainly the most important
in turbines, and in certain operating conditions, like approach, it is the dominant source in fan noise. This noise
source is still a phenomenon not fully understood and difficult to simulate with numerical tools. The great demand
for quieter technology, imposed by the actual noise legislation, is pushing industry to improve the accuracy of current
noise-prediction tools and to understand the physical mechanisms involved in noise-generation processes.

SOLVER DESCRIPTION

In MU’&T-L, unsteady results are computed as small linear perturbations of the mean steady flow. First, a
nonlinear solver, known as MU?sT, is used to get the mean steady flow. Then, the linear solver is used to compute
the unsteady perturbations in the frequency domain.

Both solvers, MU’S’T and MU’S’T-L, are Euler/Navier-Stokes hybrid unstructured and edge-based solvers that are
based on the same principles. The numerical scheme uses a second-order central spatial discretization with a blend of
second- and fourth-order artificial viscosity terms, with the standard scalar formulation based upon that of Jameson
et al. (ref. 3). Time integration uses a fifth-stage Runge-Kutta scheme. The analytically exact 2—D nonreflecting
boundary conditions based on Giles (ref. 4) are used at the inlet/outlet domain to prevent spurious reflections.

Two-dimensional hybrid unstructured grids are used in the calculations, and they are generated using an in-house
mesh generator that fills the computational domain with triangles using a Delaunay approach (ref. 5).

Several acceleration techniques are used in the calculations; the multigrid technique being the most effective. In
particular, in Euler calculations, a computational time speed up factor of about 10 times is achieved.

The Mu®T-L ability to cope both aeroelastic and aeroacoustic problems has been extensively tested and its
capability to reproduce analytical results in simple geometries, like flat plates, and in complex geometries, like
turbine blades, is demonstrated in reference 2.
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PROBLEM DESCRIPTION

To properly define a 2-D gust-interaction problem, three set of data are required:

Geometry: The geometry definition is given in the ASCII file (ref. 1). Figure 1 shows the airfoil shape along
with the inflow/outflow plane locations. A single passage computational domain (fig. 1) is used in the calculations for
both the steady flow calculation, where the flow is considered periodic at every passage, and for the unsteady linear
calculations, where a constant phase difference between adjacent airfoils is considered.

Boundary conditions for the mean steady calculations: As unsteady noise levels will be presented in
decibels, physical magnitudes, rather than dimensionless magnitudes, are required to set up the required mean flow
pressure level.

The ones used in the calculations are

Poiniet = 101353 Pa P .= 93244.7 Pa
TOinlet:288-3 K 'Y: 14
Olinler = 36° C, = 1008 Jul/KgK

where Py i inlet is the total pressure, Ty e 1S the inlet total temperature, O iy is the inlet flow angle, P . is the exit
static pressure, C, is the specific heat at constant pressure, and v is the specific heat ratio.

| 1.5¢ Y

1.5¢c

2/3c

Figure 1.—Geometry and calculation domain.

Boundary conditions for the unsteady linear runs: In gust-blade interaction, the parameters required to
define the linear calculations are the ones that define incoming vorticity wave at the inlet plane. These are

U'g = {al cos(ky,g y— a)t)+ a, cos(2(ky,g y— a)t))+ a, cos(3(ky,g y— a)t))}éﬁ [1]

€, = cos 8, —sin [, 2]

where ® = n - 31/4 is the reduced frequency normalized by the airfoil chord divided by the inlet speed of sound (n is
the harmonic number), K,y = n - 117/9 is the transverse wave number normalized by the airfoil chord, and the gust
amplitudes normalized by the inlet speed of sound are a; = 5 - 10’03, a=3- 10 and a=17- 10’04, for the first,
second, and third harmonic, respectively.

It is important to note that as pressure and density fluctuations cannot exist in pure 2—D vorticity waves, the
wake propagation angle B is fixed once the reduced frequency and the transverse wave number are specified. For the
conditions given above, the wake propagation angle turns out to be B = 44°.
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STEADY RESULTS

Steady results are presented in figure 2 where the Mach number distribution on the airfoil surface is shown. The
Mach number spike around the leading edge region in figure 2 indicates that for the conditions defined above, the
airfoil is facing positive incidence. Higher grid densities around this area are required to properly capture these local
mean-flow gradients.
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Figure 2—Mach number distribution on the airfoil number.

UNSTEADY RESULTS

Unsteady pressure amplitude (rms in decibels) on the airfoil surface and in the upstream and downstream
regions are presented in this section. Figure 3 shows the unsteady pressure distribution on the airfoil for the three
harmonics considered. As the harmonic number increases, the incoming vorticity wave amplitude is decreased and
the reduced frequency is increased, and as a consequence, the unsteady pressure levels on the airfoil surface decrease
from the first to the third harmonic.
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Figure 3.—Unsteady pressuredistribution over the vane for the three harmonics.
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Figure 4 shows the acoustic field radiated upstream and downstream by means of the unsteady pressure
distribution at the inflow and outflow planes. It can be seen that despite being the first harmonic, the one with higher
unsteady pressure levels on the airfoil, the second harmonic is the one with the higher noise levels at the
inflow/outflow planes.
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Figure 4—Unsteady pressure distributions at the inlet/outlet calculation domain for the three harmonics.

This can be easily explained when the unsteady pressure field in the upstream and downstream gaps is analyzed
in terms of acoustic modes. According to Tyler and Sofrin (ref. 6) the upstream and downstream acoustic propagation
can only take place in certain transverse wave numbers (acoustic modes) given by the following expression:

ko=nk  —k2E

y e Tdfe 3]

where the transverse wave numbers are normalized by the airfoil chord, n is the harmonic number, d/c is the pitch-to-
chord ratio, and k is any integer. Depending on its wave number, reduced frequency, and mean-flow Mach number,
the different acoustic modes will propagate (cut-on modes) or decay (cut-off modes) in the upstream and downstream
gaps. Table 1 lists the different acoustic modes that contain most of the acoustic pressure for the three harmonic
calculations and its cut-on/cut-off condition. Higher-order harmonics content very little acoustic pressure and they
are not considered. Unsteady pressure amplitudes smaller than 0.2 Pa (80 dB) at domain inlet/outlet are not
considered.

From table 1