

Advanced Control	. 23
Aerodynamically generated sound	. 46
Atmosphere and Ocean Dynamics	. 14
Autonomous microsystems	.39
Big Data challenges	.13
Building & Architecture training program	67
Characterization of surfaces and nanostructures	. 47
Climate Change and Geo-engineering	. 40
Combustion for propulsion	
Computer networks	.58
Construction materials	.33
Database systems	. 29
Deep Learning & Artificial Intelligence : an introduction	. 19
Diagnosis and Health Monitoring	. 22
Durability of materials and structures	. 38
Dynamics of biological human systems	. 41
Elastic Wave Propagation	18
Electric Power System	.62
Energy, Storage, Conversion	25
Enterprise Information Systems	. 42
Entrepreneurial coaching	.63
Entrepreneurial coaching	.65
Environmental Acoustics	12
External aerodynamics	.35
Fluid-Structure Interactions	.48
Fundamentals of turbomachines	8
General Acoustics: Acoustic sources and sound propagation	. 44
Green Computing	. 24
Human physiology and biotechnology	. 30
Introduction to nonlinear vibrations	. 11
Machine Learning and Data Mining	. 43
Mechanical assembly: architecture and geometry analyses	. 28
Mechanical behavior	. 57
Mechanics of Composite Materials and Structures	.55
Nanophotonics	9
Nanotechnologies	. 36
Nuclear Energy	.53
Numerical methods for computational fluid dynamics	7
Numerical methods for PDEs	. 59
Opertations Research	. 27
Physics of turbulent flows	10
Power plant turbine technology	. 16
Processing and analysing of visual and audio data	.32
Quantum information	.52

River Hydraulics 5	0
Secure embedded systems	0
Soft matter : nanosystems and biological interfaces	7
Soil survey and soil behaviour	7
Stability of mechanical systems	6
Statistical engineering1	5
Stochastic Processes 4	9
Structural dynamics 4	5
System identification and sparse decompositions	1
Tribology3	4
Uncertainties and heterogeneities in actual structures	1
Variational methods for PDEs6	6

SEMESTER 9 AT ECOLE CENTRALE DE LYON

During S9, students attend the following teaching units:

- ♦ UE Engineering professions (september-november)
- \diamond UE Engineering fields of applications(janvier-mars)
- \diamond UE General engineering modules (october-december)
- ♦ UE languages and Cultures.

UE "General engineering modules" (180h)

In this unit, the student must choose six courses (AF) among nearly fifty. In some conditions, a master course can be replaced by an AF (and vice-versa).

Note :

- ♦ MOD 9.1, 10.2, 10.4 and 11.3 are reserved for students in the métier ISBD.
- ♦ The MOD OUV (outside the slot) is intended for international students enrolled in Master's degrees.

Slot 1	Monday 8h-10h
MOD 1.1	Numerical methods for computational fluid dynamics
MOD 2.1	Big Data challenges
MOD 3.1	Elastic Wave Propagation
MOD 4.1	Green Computing
MOD 5.1	Human physiology and biotechnology
MOD 6.1	Nanotechnologies
MOD 7.1	Enterprise Information Systems
MOD 8.1	Fluid-Structure Interactions (in English)
MOD 9.1	Intrapreneurial coaching
Slot 2	Monday 10h15-12h15
MOD 1.2	Fundamentals of turbomachines (in English)
MOD 2.2	Atmosphere and Ocean Dynamics (in English)
MOD 3.2	Deep-learning and artificial intelligence: an introduction
MOD 4.2	Energy, Storage, Conversion
MOD 5.2	Uncertainties and heterogeneities in real structures
MOD 6.2	Matière molle : nanosystèmes et interfaces biologiques
MOD 7.2	Data Mining and Machine Learning
MOD 8.2	Stochastic Processes (in English)
MOD 9.2	Mechanics of Composite Materials and Structures (in English)
MOD 10.2	Intrapreneurial coaching

Slot 3	Tuesday 14h-16h
MOD 1.3	Nanophotonics
MOD 2.3	Statistique appliquée aux sciences de l'ingénieur
MOD 3.3	Systèmes embarqués sécurisés
MOD 4.3	Combustion for propulsion (in English)
MOD 5.3	Processing and analysis of visual and audio data
MOD 6.3	Durability of materials and structures (in English)
MOD 7.3	General Acoustics: Acoustic sources and sound propagation (in English)
MOD 8.3	Hydraulique fluviale (in English)
MOD 9.3	Stability of mechanical systems
MOD 10.3	Electric Power System
MOD 11.3	Entrepreneurial coaching 2
Slot 4	Friday16h15-18h15
MOD 1.4	Physics of turbulent flows
MOD 2.4	Power plant turbine technology
MOD 3.4	System identification and sparse decompositions
MOD 4.4	Opertations Research
MOD 5.4	Construction materials
MOD 6.4	Autonomous microsystems
MOD 7.4	Structural dynamics
MOD 8.4	Représentation et manipulation de données structurées
MOD 9.4	Comportement des matériaux
MOD 10.4	Entrepreneurial coaching 1
MOD 11.4	Variational methods for PDEs
Slot 5	Friday 13h30-15h30
MOD 1.5	Introduction to nonlinear vibrations
MOD 3.5	Diagnosis and Health Monitoring
MOD 4.5	Mechanical assembly: architecture and geometry analyses
MOD 5.5	Tribology
MOD 6.5	Climate Change and Geo-engineering (in English)
MOD 7.5	Aerodynamically generated sound
MOD 8.5	Quantum information
MOD 9.5	Computer networks
MOD 10.5	Ingénierie d'un objet de grande consommation
MOD 11.5	Building & Architecture training program

Slot 6	Friday 15h45-17h45
MOD 1.6	Environmental Acoustics (in English)
MOD 2.6	Reconnaissance et comportement des sols
MOD 3.6	Advanced Control
MOD 4.6	Database systems
MOD 5.6	External aerodynamics (in English)
MOD 6.6	Dynamics of biological human systems
MOD 7.6	Characterization of surfaces and nanostructures
MOD 8.6	Nuclear Energy
MOD 9.6	Méthodes numériques pour les EDP

Evaluation of the MOD UE

The MOD UE score is the average of the scores of 6 training actions. The UE is validated if each score is higher than 10.

Simulation numérique des écoulements

NUMERICAL METHODS FOR COMPUTATIONAL FLUID DYNAMICS

Lecturers: Fabien GODEFERD, Christophe CORRE

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

~~~~~~

The course aims at providing the students with a fundamental knowledge of numerical methods for flow simulation (CFD), insisting on the specifics of such methods, as well as a practical coding experience and application of these methods. The key learning outcomes are: overview of the development process of CFD codes, exploitation of existing codes currently in use for aerospace, energy, transportation engineering applications.

Keywords: Numerical simulation, classification of equations, characteristics, spectral methods, finite differences, finite volumes, finite elements

| Programme             | Boundary problems are first classified (PDE systems of hyperbolic, parabolic and elliptic types).<br>Various classes of solution methods are next reviewed:<br>- method of characteristics<br>- finite differences<br>- finite volumes<br>- finite elements<br>- spectral methods.<br>Their specific features, key advantages / drawbacks are analyzed along with examples of<br>industrial and research applications. |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Knowing the underlying principles of the most common numerical methods in use for flow simulation</li> <li>Deriving the discretized equations and building the associated solution algorithm</li> <li>Implementing / coding the numerical method and performing a verification and validation analysis</li> <li>Mastering the key ingredients of an existing CFD code (commercial or academic)</li> </ul>     |
| Independent<br>study  | Computer Labs : 3 x 4 hours.<br>Practical application (hands-on approach) of the numerical methods presented during the lectures<br>from a more theoretical viewpoint. Test-cases and problems are kept simple to allow for a<br>systematic analysis at a reduced computational cost.                                                                                                                                  |
| Affiliated<br>Masters | Acoustics<br>Space Propulsion<br>Fluid Mechanics & Energetics                                                                                                                                                                                                                                                                                                                                                          |
| Core texts            | <ul> <li>CHARLES HIRSCH. Numerical Computation of Internal and External Flows. ISBN: 978-0-7506-6594-0, 2007.</li> <li>CLIVE A.J. FLETCHER. Computational Techniques for Fluid Dynamics Vols. 1 &amp; 2. ISBN-13: 978-3540530589, 1997.</li> <li>JOHN P. BOYD. Chebyshev and Fourier Spectral Methods. ISBN-13: 978-0486411835, 2000.</li> </ul>                                                                       |
| Assessment            | Computer Lab Reports (3): $3 \times 20\%$ of the final grade<br>Final exam (2h + 1h for Master's students): 40%                                                                                                                                                                                                                                                                                                        |



#### Aérodynamique et Energétique des Turbomachines

# **FUNDAMENTALS OF TURBOMACHINES**

#### Lecturers: Alexis GIAUQUE, Pierre Duquesne

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language: 💥 |

# **Objectives**

The main objective of this course is to familiarize the students with the physical phenomena, mechanisms and basic computations behind turbomachinery flows.

Starting with aerodynamics and thermodynamics applied to turbomachinery, we will detail the main tools used in the design of turbomachines. More specifically, we will tackle the design of an axial compressor given a specific efficiency objective.

Practical work on a dedicated axial low-speed compressor test bench will be helpful to apprehend theoretical notions seen in class in a concrete case.

Tutorial sessions will be devoted to the design of an axial compressor given specific objectives.

Keywords: turbomachines, compressor, turbine, aerodynamics, energetics, compressibility

| Programme             | <ul> <li>Range of operation of turbomachines</li> <li>Characteristic curves (nominal point and range of operation)</li> <li>Usage of integral formulations for the fluid dynamics equations applied to turbomachines.</li> <li>Aero-thermodynamics analysis in 1D</li> <li>Real transformations in turbomachines, computation of losses.</li> <li>2D analysis in the circumferential plane: velocity triangles, load factors for compressors, correlations.</li> <li>2D analysis in the meridional plane: radial equilibrium.</li> <li>Introduction to unsteady and 3D phenomena</li> </ul> |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>learn the operating rules of turbomachines</li> <li>know how to design an axial compressor</li> <li>master compressible aerodynamics</li> <li>know how to analyze turbomachinery flows</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |
| Independent<br>study  | Design a subsonic axial compressor (in support of tutorial sessions)<br>Write a numerical program for the design of the compressor (matlab, python,)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Affiliated<br>Masters | Master's degree in Aerospace Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Core texts            | N. A. CUMPSTY. <i>Compressor aerodynamics</i> . Longman Scientific & Technical, 1989.<br>David Japikse, N. C. Baines. <i>Introduction to turbomachinery</i> . Concepts ETI, 1997.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Assessment            | Final exam, reports on the compressor design, reports after practical sessions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



#### Nanophotonique

## **NANOPHOTONICS**

#### Lecturers: Emmanuel DROUARD, Christelle MONAT

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Significant advances have been achieved in Photonics, for light emission, processing, transport and detection, with implications in a wide range of application areas. Progress related to fabrication, which leverage the microelectronics infrastructure and expertise regarding the realization of micrometer scale devices, has enabled the implementation of new concepts of integrated optics for the control of light, which are now commonly used. Current research is very active in the field of sub-micrometer devices, such as photonic crystals, and will benefit to key application areas: information and communications, biology, energy. The aim of this course is to give the physics background underpinning these new technologies, for further investigation in a more specialized literature.

Keywords: Birefringence, Optical Waveguide, Photonic Crystal, Non-Linear Optics

| Programme             | Light polarization<br>Planar guided optics<br>Integrated Optics & Fiber Optics<br>Photonic crystals and nanophotonics: basics and possible applications<br>Nonlinear optics: Kerr effect, frequency doubling, wavelength conversion. Illustrations: tunable<br>source, optical switch, frequency comb                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>to be able to describe the light propagation in a birefringent material</li> <li>to understand and to use the effects of the index profile and the wavelength on optical guided modes</li> <li>to understand and to be able to use the dispersion properties of micro-nanophotonics structures</li> <li>to understand the origin of the nonlinear optics phenomena and how they can be applied to optical signal processing</li> </ul> |
| Affiliated<br>Masters | Master NSE                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Core texts            | B.E. A. SALEH, M.C.TEICH. Fundamental of Photonics. Wiley, 2007.                                                                                                                                                                                                                                                                                                                                                                                |
|                       | RIGNEAULT H., LOURTIOZ JM La Nanophotonique. Hermes science publ. Lavoisier, 2005.                                                                                                                                                                                                                                                                                                                                                              |



## Physique des écoulements turbulents

# **PHYSICS OF TURBULENT FLOWS**

#### Lecturers: Christophe BAILLY, Christophe BOGEY, Simon PRIGENT

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Turbulence is involved in many technological applications in land transport, aeronautics and space (internal and external aerodynamics, combustion, aeroacoustics, vibroacoustics) and energy. It also plays a decisive role in natural environment (dispersion of pollutants) and geophysical flows (meteorology, climate). This course addresses the major issues of turbulence, and presents the physics of fundamental phenomena and their modeling. The course is based on numerous case studies, as well as the most recent results obtained by numerical simulations and experimental techniques

(Lectures may be delivered in english according to the audience; course material in English)

Keywords: turbulence, fluid dynamics, boundary layer, turbulence modelling, dynamics of vorticity, homogeneous and isotropic turbulence, Kolmogorov theory, numerical simulation of turbulent flows (DNS, LES, RANS), experimental techniques (HWA, LDA, PIV).

| Programme             | A short introduction to turbulent flow<br>Statistical of turbulent flow<br>Wall-bounded turbulent flow<br>An example of RANS model: the k-epsilon turbulence model<br>Dynamics of vorticity<br>Homogeneous and isotropic turbulence, Kolmogorov's theory<br>Numerical simulation of turbulent flow<br>Experimental techniques |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Mastering the basic concepts (turbulent production, boundary layer, vorticity, Kolmogorov))</li> <li>Overview of experimental and numerical techniques (state of the art)</li> <li>Skill in turbulence modelling</li> </ul>                                                                                          |
|                       | ♦ Skill in analysis of results (signal processing, development of simple models using Matlab)                                                                                                                                                                                                                                 |
| Independent<br>study  | Regular homeworks (4 exercices in a list of most than 10, freely selection) on modelling, analytical problems, bibliography, small scripts using Matlab,                                                                                                                                                                      |
|                       | 2 practical works (numerical simulation of a channel mean flow, and hot wire anemometer measurements in a turbulent round jet), and a small class (4h)                                                                                                                                                                        |
| Affiliated<br>Masters | Masters of Fluid Dynamics and Energy<br>of Acoustics<br>of Aeronautics                                                                                                                                                                                                                                                        |
| Core texts            | BAILLY C. & COMTE-BELLOT G <i>Turbulence</i> . Springer, 2015.<br>DAVIDSON P. A <i>Turbulence. An introduction for scientists and engineers</i> . Oxford University Press, 2004.<br>POPE S.B <i>Turbulent flows</i> . Cambridge University Press, 2000.                                                                       |
| Assessment            | Continuous assessment (4 homeworks, freely selection in a given list), practical works (in lab) and a small class.                                                                                                                                                                                                            |



#### Introduction aux vibrations non-linéaires

## **INTRODUCTION TO NONLINEAR VIBRATIONS**

#### Lecturers: Joël PERRET-LIAUDET, Fabrice THOUVEREZ

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

This course is an introduction to the main phenomena related to the problems of nonlinear vibrations. The minimum knowledge and rules useful to the engineer will be introduced to diagnose and treat these problems. Many examples from engineering problems will illustrate the course. We can mention the dynamics of frictional contacts (squeal noise), clearance systems (rattling), rotors dynamics and gear transmissions, bridges subjected to wind ...

Keywords: nonlinear vibrations, dynamics of systems, stability, bifurcations, nonlinear modes, principal resonances, super-harmonics, sub-harmonics, self-sustained vibrations, galloping, flutter phenomena

| Programme            | <ul> <li>* Generalities on nonlinear vibratory problems in engineering, classification of sources</li> <li>* Description and Analysis Tools, Nonlinear Modal Analysis</li> <li>* Loss of equilibrium stability and self-sustained vibrations (galloping phenomena, squealing)</li> <li>* Phenomena of nonlinear resonances (principal and harmonics)</li> <li>* Concept of strange responses (chaos)</li> <li>* Introduction to methods specific to the treatment of nonlinear phenomena</li> </ul> |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes | <ul> <li>detect and / or diagnose nonlinear vibration phenomena</li> <li>characterize the main kinds of vibration responses</li> <li>identify the main phenomena that lead to these dynamic responses</li> <li>model some nonlinear problems and use specific methods</li> </ul>                                                                                                                                                                                                                    |
| Independent<br>study | Study of vibro impacting systems.<br>Study of hertzian contacts under normal excitations                                                                                                                                                                                                                                                                                                                                                                                                            |
| Core texts           | <ul> <li>A. H. NAYFEH, B. BALACHANDRAN. <i>Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods</i>. Wiley, 1995.</li> <li>VIDAL, BERGÉ, POMMEAU. <i>L'ordre dans le Chaos</i>. Hermann, 1984.</li> <li>P. MANNEVILLE. <i>Instabilités, chaos et turbulence</i>. Ed. Ecole Polytechnique, 2004.</li> </ul>                                                                                                                                                                |
| Assessment           | Written Exam (50%)<br>Practical work (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### Acoustique Environnementale

# **ENVIRONMENTAL ACOUSTICS**

#### Lecturers: Marie-Annick Galland, Didier Dragna

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language: 💥 |

# **Objectives**

Noise is considered by the population as one of the main and most important nuisances. Taking into account acoustic constraints is therefore of primary importance in many fields, for example in building engineering or evaluation of transportation systems. This course presents basic notions in acoustics particularly suited to engineers working in related sectors. More specifically will be developed acoustics of rooms and industrial or public environments, outdoor sound propagation in an urban environment, as well as the various techniques used to control (usually reduce) sound levels: passive techniques (noise barriers, use of absorbing materials) or active ones (anti-noise). Subjective aspects will also be introduced with notions on sound perception, sound quality and annoyance.

Keywords: Acoustics, room acoustics, noise control, outdoor propagation, sound perception

| Programme             | <ul> <li>I- Basic equations and models in acoustics</li> <li>II- Sound perception: from deciBel scales to nuisances</li> <li>III- Room acoustics: modal theory and energetic approach (Sabine theory, ray tracing, reverberation time and quality indices)</li> <li>IV- Noise reduction and control: airborne sound insulation (single and double- leaf partitions), barriers, absorbing materials, active control</li> <li>V- Outdoor propagation: effects of ground, buildings, meteorological conditions,; sound maps</li> </ul> |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>♦ Develop a coherent approach for diagnosing a problem in environmental acoustics</li> <li>♦ Build a simplified model</li> <li>♦ Propose a technical solution and evaluate the margin of error.</li> </ul>                                                                                                                                                                                                                                                                                                                 |
| Independent<br>study  | Practical work:<br>- Room acoustics: measurement of reverberation time and sound quality indices in the cinema<br>room of ECL; numerical simulation with CATT-Acoustic software.<br>- Outdoor propagation: Sound map design and analysis; numerical simulation with SoundPlan<br>software<br>- Case study in noise control                                                                                                                                                                                                          |
| Affiliated<br>Masters | This set of lectures is one of the teaching units of the Master of Sciences in Acoustics (M2; see http://master-acoustics.ec-lyon.fr/).<br>It can also be taken as a teaching unit of the Masters in Aerospace Engineering, Mechanics or Civil Engineering,                                                                                                                                                                                                                                                                         |
| Core texts            | <ul> <li>A. PIERCE. <i>Acoustics, Introduction to its physical principles and applications</i>. Mc Graw -Hill, 1981.</li> <li>H. KUTTRUFF. <i>Room acoustics</i>. Spon Press, 2000.</li> <li>D.BIES, C.HANSEN. <i>Engineering noise control</i>. Spon Press, 2009.</li> </ul>                                                                                                                                                                                                                                                       |
| Assessment            | Written Exam (50%); Practical work (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



## Défis informatiques du Big Data

# **BIG DATA CHALLENGES**

#### Lecturers: Stéphane DERRODE, Emmanuel DELLANDREA

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

The quantitative explosion of data is at the origin of new orders of magnitude that impact the capture, storage, analysis and visualization of data. The outlook for the processing of big data is still partially unknown: prospective analysis (climate, marketing...), risk management (insurance, industrial, natural) or even medical (genomic, epidemiology) and security (fight against organised crime).

The proposed teaching will enable us to discover the main problems raised by the emergence of these data flows (storage, interrogation, analysis and visualization) and their commercial exploitation. The ethical and legal issues raised by the collection and use of these data will also be examined.

Keywords: Big Data, NoSQL, Hadoop, Open-data.

| Programme             | Introduction: the technical / economic / ethical issues of big-data<br>Open data and public data<br>Big Data analytics<br>Big data in companies: use-cases presented by professionals<br>TP #1 : Map-Reduce with Apache/Hadoop.<br>TP #2 : data visualization : OpenStreetMap.<br>TP #3 : Semantic Web (Resource Description Framework).                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Understand the economic, ethical and technical issues raised by big-data</li> <li>Use a map-reduce algorithm running under Hadoop</li> <li>Have a critical mind on new tools based on massive data</li> <li>The student must be able to deepen his / her skills on big-data</li> </ul>                                                                                                                    |
| Independent<br>study  | Deepen a topic by writing a summary note in groups of 4/5 (eg Big Data and startup, Data-<br>Centers).<br>- Bibliographical review of readings<br>- Interview of a big data scientist                                                                                                                                                                                                                              |
| Affiliated<br>Masters | Master of Science in Computer Science, University of Lyon                                                                                                                                                                                                                                                                                                                                                          |
| Core texts            | <ul> <li>PIRMIN LEMBERGER ET MARC BATTY. <i>Big Data et Machine Learning - Manuel du data scientist</i>. Dunod, 2015.</li> <li>RUDI BRUCHEZ. <i>Les bases de données NoSQL et le Big Data : Comprendre et mettre en oeuvre</i>. Eyrolles, 2015.</li> <li>JEAN-CHARLES COINTOT ET YVES EYCHENNE. <i>La Révolution Big data - Les données au coeur de la transformation de l'entreprise</i>. Dunod, 2014.</li> </ul> |
| Assessment            | The teaching will be evaluated by a classical exam and by the bibliographic review (autonomous work).                                                                                                                                                                                                                                                                                                              |



#### Dynamique de l'Atmosphère et l'Océan

# **ATMOSPHERE AND OCEAN DYNAMICS**

#### Lecturers: Richard PERKINS, Lionel SOULHAC

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language: 💥 |

# **Objectives**

The aim of this course is to provide students with an understanding of the basic processes governing the large-scale circulation of air in the atmosphere. Atmospheric flows are the result of the interaction between two major physical processes – heat transfer from the equator to the poles, and rotation of the earth. Because of the difference between the specific heat capacity of air and water, the ocean acts as a heat reservoir which can stabilize or destabilize the atmosphere. Heat transfer from the equator to the poles is accomplished through the combined action of atmospheric and oceanic flows, and this course therefore studies the thermodynamic and physical process involved.

Keywords: Atmosphere, ocean, heat transfer, humidity, moisture radiation, rotation, Rossby, Ekman, Richardson, Geostrophic, Clouds, currents, internal waves

| Programme             | Introduction: physico-chemical properties of the atmosphere and the ocean<br>Atmospheric thermodynamics: radiative exchanges, stratification and stability<br>The moist atmosphere: cloud physics<br>Stratified fluids: internal waves on density interfaces and in continuously stratified fluids<br>The effects of rotation: the equation of motion in a rotating system, geostrophic and quasi-<br>geostrophic winds, the thermal wind<br>Forced motion: the Ekman layer, Ekman pumping<br>Waves in rotating systems: the $\beta$ plane approximation, Rossby waves, the Rossby adjustment<br>problem<br>Large scale circulation patterns |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>At the end of this course students will be capable of calculating the evolution of the properties of a mass of air as it moves through the atmosphere.</li> <li>At the end of this course students will be familiar with the different types of internal waves in the atmosphere and ocean.</li> <li>Students will be capable of calculating the direction and strength of the geostrophic or quasi-geostrophic wind as a function of the pressure gradient</li> <li>Students will be able to explain the principal features of a meteorological chart.</li> </ul>                                                                  |
| Independent<br>study  | Examples sheets for each subject to apply the material covered in the lectures 3 design classes, covering aspects of the course in greater depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Affiliated<br>Masters | Sciences de l'Océan, Atmosphère et Climat (SOAC); Mécanique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Core texts            | GILL, A.E. <i>Atmosphere-ocean dynamics</i> . Academic Press, 1982.<br>FLEAGLE, R.G. & BUSINGER, J.A. <i>An introduction to atmospheric physics</i> . Academic Press, 1980.<br>HOLTON, J.R. & HAKIM, G.J. <i>An introduction to dynamic meteorology</i> . Academic Press, 2012.                                                                                                                                                                                                                                                                                                                                                              |
| Assessment            | Knowledge: Exam on the material covered in the course (40%); Skills: reports on the three design classes (60%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



Statistique appliquée aux sciences de l'ingénieur

## **STATISTICAL ENGINEERING**

#### Lecturers: Céline HELBERT

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

The course is divided into two parts. In the first part we introduce two classical statistic models : linear and logistic regression. The estimation and the prediction of theses models are presented. The second part focuses on the design and analysis of computer experiments from uncertainty quantification to bayesian optimization.

The aim of this course is also to provide training in data manipulation and practical implementation of the studied models. To do this, a substantial part of the course is oriented towards the implementation using R through the study of a large number of data sets.

Keywords: Linear regression, model selection, experimental design, logistic regression, computer experiments, sensitivity analysis, bayesian optimization

| Programme             | Chap 1: Linear regression: model, estimation, prediction, evaluation, model selection.<br>Chap 2: Experimental designs<br>Chap 3: Logistic regression<br>Chap 4: Gaussian process regression<br>Chap 5: Computer experiments<br>Chap 6: Sensitivity analysis and global optimization                                                               |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Knowing what probabilistic model is the most accurate for a given situation</li> <li>Knowing how to estimate and to predict the proposed probabilistic model.</li> <li>Being able to choose the relevance design of experiments.</li> <li>Knowing how to implement a linear regression, and a gaussian process regression on R</li> </ul> |
| Affiliated<br>Masters | Option MD/Filière MIR (highly recommended)<br>Master mention "Mathématiques appliquées, statistique" (mandatory)<br>Master mention "Statistique et économétrie" (mandatory)                                                                                                                                                                        |
| Core texts            | A. ANTONIADIS, J. BERRUYER, R. CARMONA. <i>Regression non linéaire et applications</i> . Economica, 1992<br>J.J. Droesbeke, J. Fine, G. Saporta. <i>Plans d'expériences, application à l'entreprise</i> . Technip, 1997<br>RASMUSSEN, WILLIAMS. <i>Gaussian Processes for Machine learning</i> . MIT Press, 2006.                                  |
| Assessment            | Written exam 1:30 (100%)                                                                                                                                                                                                                                                                                                                           |



#### Les turbines pour la production d'énergie

# **POWER PLANT TURBINE TECHNOLOGY**

#### Lecturers: Pierre DUQUESNE, Alexis GIAUQUE

| Lectures: 16 h | TC: 4 h | PW: 4 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

In this course, we pay attention to the different turbomachinery, alone or in association, used for energy production right now or in the near future. The available resources are analysed and are discussed dependent on the type, on the geometry and on the main dimensions of the different turbomachinery and their operating modes.

A part of the electricity produced with turbomachinery came from direct extraction of the energies of the wind (wind turbines), from the rivers (run-of-river turbines) or from the water head (hydraulic turbines). The last part of the production came from an association of different turbomachinery (compressor, turbine and heat source), often called gas turbines or steam turbines. These systems producing both heat and mechanical power (converted to electricity power)

Keywords: Energy production, hydraulic turbines, wind turbines, gas turbines, steam turbines

| Programme            | <ul> <li>Hydraulic turbines: geometries (impulse and reaction turbine, Francis, Kaplan, Pelton), energy transfer (Euler equation), efficiency, similitude law, cavitation phenomena.</li> <li>Wind turbines: geometries, size, blade numbers, power recoverable (Betz law), regulation.</li> <li>Gas turbine: introduction to energy production from a heat source, energy exchange in the different component (concepts of shaft work and stagnation variables), transformations graphical representation, components description.</li> <li>Steam turbines: Rankine's cycle, Hirn's cycle and improvement (reheat, extraction)</li> </ul> |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes | <ul> <li>Understand the energy production with turbomachinery</li> <li>Know how to design a hydraulic turbine</li> <li>Know how to design a wind turbine</li> <li>Know how to calculate the cycle of steam or gas turbine</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       |
| Independent<br>study | Explain the operation of a Pelton turbine, Gaz turbine or Wind turbine analysis from the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



#### Reconnaissance et comportement des sols

## SOIL SURVEY AND SOIL BEHAVIOUR

#### **Lecturers: Eric VINCENS**

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Any civil work or building change the natural balance of soils and this risk has to be taken into account with a deep knowledge of site conditions and suitable scientific tools.

The targets of this training course are :

- to bring to the students all necessary knowledge to draft a complete soil survey and lab tests programme for a specific site,

- to explain methodology and tools used for slope enad banks stability calculations,

- to introduce more sophisticated modeling methods used by geotechnical companies to analyse the soils behaviour.

#### Keywords:

| Programme             | Soil surveys (in situ and lab tests)<br>Slope stability<br>Experimental behaviour of soils (clays and sands)<br>Elastoplasticity for soils                                                                             |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Overview on geological, geomechanical and hydraulic models</li> <li>Ability to analyse slope and banks stability</li> <li>Understand the soil behaviour according to its nature</li> </ul>                    |
| Independent<br>study  | Lab courses "Visual identification of soils" and "clay identification"<br>"Shear test on sand". Lab report is expected for each session.<br>BE : Analysis of a hydraulic work (models, on site and lab tests, surveys) |
| Affiliated<br>Masters | Master de Génie Civil                                                                                                                                                                                                  |
| Core texts            | G. OLIVARI. Mécanique des sols. Polycopié ECL-SDEC, 0.                                                                                                                                                                 |
|                       | P. MESTAT. De la rhéologie des sols à la modélisation des ouvrages géotechniques. Editor2, 2000.                                                                                                                       |
| Assessment            | <ul> <li>Microtests: closed-book examination</li> <li>Lab Activities</li> <li>Final exam: closed-book examination</li> <li>Score: 2/3 exam + 1/3 activities (microtest+lab)</li> </ul>                                 |



#### Propagation des ondes élastiques

# **ELASTIC WAVE PROPAGATION**

#### Lecturers: Sébastien BESSET

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

In the field of Vibro-acoustics, the control of the behavior of structures is hampered by the difficulty of using the finite element method. In this way, wave propagation view is essential and conditutes the basis of many analytical methods used in industry. Its implementation in the field of transport has made it possible to optimize the vibro-acoustic comfort of vehicles. In the field of Civil Engineering, the calculation of the vibro-acoustic behavior of buildings has been made necessary by the evolution of standards of safety and comfort. On the other hand, wave analysis of aeroelastic or hydro-elastic problems reveals major dynamic phenomena such as shock waves, radiation and acoustic transparency of structures.

Keywords: Propagation, vibroacoustics, radiation, seismic, stratified media, fluid-structure coupling.

| Programme    | <ul> <li>I - Introduction: Propagation of a mono-dimensional medium - Harmonic waves - Power flow</li> <li>II - Wave analysis in solids: Propagation in a finite space - Propagation in a half-space - Waves in stratified media - Waveguide - Case of periodic media</li> <li>III - Vibro-acoustic analysis: Non-modal behavior of structures - Integral formulation - Energy methods - Static analysis of dynamic problems</li> <li>IV - Ground-structure coupling: Superficial foundations dynamics - Modeling of foundations by piles - Numerical simulation models</li> <li>V - Fluid-structure coupling: Propagation in pipes - Study of water hammers - Acoustic transparency and radiation of the walls</li> </ul> |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning     | ♦ Understanding the main vibro-acoustic phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| outcomes     | <ul> <li>Understanding vibratory energy exchanges between elastic media</li> <li>Learn shout the vibre accustic calculation tools used in machanical design</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | $\diamond$ Understanding the seismic design rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Independent  | Learning and deepening a part of the course through a bibliographic analysis and reflection on an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| study        | application problem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Affiliated   | MSc mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Masters      | MSc of civil engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | MSc acoustics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Core texts   | A. BEDFORD & D.S. DRUMHELLER, Introduction to elastic wave propagation, Wiley, 1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | F.E. RICHARD, JR HALL & R.D. Woods. <i>Vibrations of Soils and Foundation</i> . Prentice Hall, 1970.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | JAMES F. DOYLE. Wave Propagation in Structures. Spectral Analysis using fast discrete Fourier transforms - Second Edition. Springer, 1997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Assessment   | Technical study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A99699116111 | exams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



Apprentissage profond & Intelligence Artificielle : une introduction

# **DEEP LEARNING & ARTIFICIAL INTELLIGENCE : AN INTRODUCTION**

#### Lecturers: Liming Chen, Emmanuel Dellandréa, Alberto Bosio

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

By allowing breakthroughs supposed to be impossible until recently in a growing number of domains such as computer vision, speech recognition, autonomous driving or games, deep learning has revolutionized the artificial intelligence domain that has become one of the major pillars of our society. In this course, our goal is to introduce the basis of concepts and technics in deep learning.

Keywords: Deep learning, artificial intelligence, reinforcement learning, PyTorch.

| Programme   | <ul> <li>Introduction to machine learning and deep learning</li> <li>Classification/regression and gradient descent</li> <li>Computational graphs &amp; backpropagation</li> <li>Training deep neural networks</li> <li>Convolutional Neural Networks (CNN)</li> <li>CNN Architectures</li> <li>Deep reinforcement learning (Actor, Critic, Actor-Critic)</li> <li>Embedded Deep Learning</li> </ul> |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning    | ♦ Understanding deep learning principles.                                                                                                                                                                                                                                                                                                                                                            |
| outcomes    | ♦ Mastering technics to control learning processes.                                                                                                                                                                                                                                                                                                                                                  |
|             | ♦ Being able to deploy a deep learning approach with the PyTorch framework.                                                                                                                                                                                                                                                                                                                          |
| Independent | The deep learning principles introduced into the lectures will be implemented during the tree                                                                                                                                                                                                                                                                                                        |
| study       | practical sessions using the PyTorch framework and a GPU card for embedded applications.                                                                                                                                                                                                                                                                                                             |
| Affiliated  | Master of Computer Science of Lvon                                                                                                                                                                                                                                                                                                                                                                   |
| Masters     |                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                      |
| Core texts  | Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016.                                                                                                                                                                                                                                                                                                                      |
|             | BERT MOONS, DANIEL BANKMAN, MARIAN VERHELST. <i>Embedded Deep Learning Algorithms, Architectures and Circuits for Always-on Neural Network Processing</i> . Springer, 2019.                                                                                                                                                                                                                          |
|             | RICHARD S. SUTTON, ANDREW G. BARTO. <i>Reinforcement Learning: An Introduction (2nd Edition)</i> . MIT Press, 2018.                                                                                                                                                                                                                                                                                  |
| Assessment  | 50% savoir (written exam), 50% savoir-faire (evaluation of the assignments)                                                                                                                                                                                                                                                                                                                          |



#### Systèmes embarqués sécurisés

# SECURE EMBEDDED SYSTEMS

#### Lecturers: Cedric Marchand, David Navarro

| Lectures: 0 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

# **Objectives**

Today, embedded systems are everywhere whether in our pockets, homes or cars but also in industry, aeronautics or space industry. More and more of these systems are being used in applications where manipulated data are sensitive and need to be protected. In addition, the rise of connected objects, which are more and more numerous, have awaken ended users to security issues.

In this course, we will discuss the basic principles of security and their integration in embedded systems. The classic attacks as well as some countermeasures will be presented. Finally, specific areas such as counterfeiting or security in RFID systems will be addressed.

Keywords: Embedded systems, sécurity, cryptography

| Programme             | Definition of the concepts of embedded systems, security.<br>Introduction to embedded systems, microcontroller and FPGA.<br>Introduction to cryptography<br>Attacks and Countermeasures on Information Systems and Embedded Systems<br>Security primitives for electronics.<br>Specific area: the fight against counterfeit electronic products<br>Application area: Security in RFID systems |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Seize the security issues in the field of embedded systems</li> <li>Identify weaknesses and possible attacks on a system</li> <li>Know the basic mechanisms of security</li> <li>Propose solutions combining multiples basic securie blocks to improve the security of a system</li> </ul>                                                                                           |
| Independent<br>study  | BE : Software programming of an embedded system<br>TP1 : Programming standard encryption algorithm (AES) on STM32 embedded target<br>TP2 : Attack of the encryption algorithm thanks to the side channels (Challenge)                                                                                                                                                                         |
| Affiliated<br>Masters | Master EEEA, "embedded systems"                                                                                                                                                                                                                                                                                                                                                               |
| Core texts            | HANS DELFS, HELMUT KNEBL. <i>Introduction to Cryptography</i> . Springer, 2002.<br>Mohammad Tehranipoor, Cliff Wang. <i>Introduction to Hardware Security and Trust</i> . Springer, 2011.<br>LILIAN BOSSUET, LIONEL TORRES. <i>Foundations of Hardware IP Protection</i> . Springer, 2017.                                                                                                    |
| Assessment            | 70% Knowledge, 30% savoir-faire                                                                                                                                                                                                                                                                                                                                                               |



Identification des systèmes et décomposition parcimonieuse des signaux

#### SYSTEM IDENTIFICATION AND SPARSE DECOMPOSITIONS

#### Lecturers: Julien HUILLERY, Laurent BAKO

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

The understanding of physical phenomena coupled with the advancement of observation technologies, the needs of analysis, diagnosis and control of engineering systems make more and more use of experimental modeling. This modeling work is a prerequisite for the synthesis of control laws of dynamic systems or the analysis and processing of signals. The goal of this course is to provide advanced principles and methods of signal and system modeling. "System identification" aims to associate a mathematical model with a dynamic system on the basis of noisy data measured with sensors. The "sparse decomposition of signals" aims at a compact modeling of a signal via its decomposition in a dictionary.

Keywords: experimental modeling, system identification, parametric estimation, sparsity, dictionary of signals, timefrequency representations, compressed sensing, optimization

| Programme             | Part I: Systems Identification<br>Introduction to Signal and System Modeling: System Point of View<br>Concept of model structure: definition and examples<br>Estimation methods based on the minimization of the prediction error<br>Elements for the analysis: identifiability, persistence of excitation, frequency richness of a signal<br>Asymptotic properties of the estimators: consistency, convergence in distribution |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Part II: Sparse Decomposition of Signals<br>Introduction to Signal and System Modeling: Signal Point of View<br>Sparse decomposition of signals: principle and algorithms<br>Dictionaries of representation: time-frequency and wavelets<br>Compressed sensing: a new paradigm for measurement                                                                                                                                  |
| Learning<br>outcomes  | <ul> <li>Understanding the application issues of signals and systems modeling</li> <li>Construct and identify a model of system from experimental measurements</li> <li>To know the usual bases of representation of signals</li> <li>Determine a sparse representation of a signal</li> </ul>                                                                                                                                  |
| Independent<br>study  | The lectures are completed with 3 practical works under Matlab / Simulink:<br>BE 1: Implementation of identification methods on an example<br>BE 2: Sparse decomposition of signals<br>BE 3: Compressed Sensing                                                                                                                                                                                                                 |
| Affiliated<br>Masters | This course constitutes an optional course for the following masters:<br>- Parcours "Génie des Systèmes Automatisés" (GSA) du Master EEEA<br>- Parcours "Medical Imaging, Signals and Systems" (MISS) du Master IDS                                                                                                                                                                                                             |
| Core texts            | <ul> <li>L. LJUNG. <i>System Identification: Theory for the User (2nd Edition)</i>. PTR Prentice Hall, 1999.</li> <li>S. MALLAT. <i>A wavelet tour of signal processing, the sparse way</i>. Academic Press, 2009.</li> <li>S. BOYD AND L. VANDENBERGHE. <i>Convex Optimization</i>. Cambridge University Press, 2004.</li> </ul>                                                                                               |
| Assessment            | Knowledge (50%): 2h written exam<br>Practice (50%): 3 reports                                                                                                                                                                                                                                                                                                                                                                   |



Diagnostic et Sûreté de Fonctionnement

# **DIAGNOSIS AND HEALTH MONITORING**

#### **Lecturers: Emmanuel BOUTLEUX**

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

To detect failure before they appear is a big challenge for any kind of complex systems. From modern car full of automation (sensors, actuators, control/command strategies) to more-electric airplanes, from industrial power plant to robotics applications, methods are needed to inform that a failure or default as appeared, appears or will appear. That course will focus on automatic detection methods based on model-based approaches or artificial intelligence approaches.

Keywords: Diagnosis, health monitoring, identification, pattern recognition, FMECA

| Programme     | Context                                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|
|               | Fonctional approches like FMECA (Failure Modes, Effects and Criticality Analysis)                                                |
|               | Reliability<br>Diagnosis approaches                                                                                              |
|               | - model-based                                                                                                                    |
|               | - identification                                                                                                                 |
|               | - error detection                                                                                                                |
|               | -artificial intelligence                                                                                                         |
|               | - pattern recognition                                                                                                            |
|               | - clustering                                                                                                                     |
|               | - decision rules                                                                                                                 |
|               | Perspectives                                                                                                                     |
| La construire | A To varies shallonges and difficulties accessisted with health manitoring                                                       |
| Learning      | ♦ To realise challenges and unnounces associated with health monitoring ♦ To be able to applied pattern recognition techniques   |
| outcomes      | ♦ To be able to properly identify mathematical model for diagnosis purposes                                                      |
|               |                                                                                                                                  |
| Independent   | 3 times 4h BE using Matlab (good knowledge of Matlab is a must)                                                                  |
| study         |                                                                                                                                  |
|               |                                                                                                                                  |
| Affiliated    | GI, GSA                                                                                                                          |
| Masters       |                                                                                                                                  |
|               |                                                                                                                                  |
| Core texts    | Bernard Dubuisson. <i>Diagnostic, intelligence artificielle et reconnaissance des formes</i> . Hermès                            |
|               | Science Publications, Collection : ic2 prod, 2001.                                                                               |
|               | Bernard Dubuisson. <i>Diagnostic et reconnaissance des formes</i> . Traité des nouvelles technologies.<br>Série diagnosti, 1990. |
|               | ALAIN VILLEMEUR. Sûreté de fonctionnement des systèmes industriels. Edition Eyrolles, 1988.                                      |
| Assessment    | 50% based on BE average results                                                                                                  |
|               | 50% on final exam                                                                                                                |



#### Automatique Avancée

# **ADVANCED CONTROL**

#### Lecturers: Anton KORNIIENKO, Xavier BOMBOIS

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

For increasingly complex systems and increasingly tighter and contradictory performance specifications, the design of a controller achieving the best trade-off between these specifications must be tackled via an optimization problem. In LQ/LQG control, these specifications are recast into a criterion reflecting the trade-off between control performance and its cost. The drawback of this approach is that control performance can only be guaranteed if the model used for the design is an accurate representation of the system. The necessary robustness of the controller can be ensured via Hinfinity control, a generalization of classical frequency domain control. These two control approaches will be presented and compared. Examples will allow the students to use them in practice.

Keywords: LQ/LQG control, H2 control, Hinfinity control, multivariable control

| Programme             | The course will start by a recap on classical control methods and classical control performance specifications. We will then present the LQ/LQG control design approach and its generalization i.e. H2 control. Attention will be paid to the additional performance specifications that can be tackled with this specific control design method and to the different ways to achieve this control action (input-output approach or state-feedback with observer structure). Finally, the second advanced control design method (Hinfinity control) will be presented. This method allows to deal with similar performance specifications as LQ/LQG control, but can also tackle the robustness issues related to model uncertainty. |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>To be able to specify an optimization criterion for LQ/LQG control and for Hinfinity control based on a list of performance specifications</li> <li>To be able to design a controller using an advanced control method</li> <li>To be able to analyze the achieved closed-loop system and its control performance</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |
| Independent<br>study  | 3 exercise sessions:<br>BE1 : LQ/LQG Control<br>BE2 : H_infinity Control<br>BE3 : LQ/LQG vs H_infinity synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Affiliated<br>Masters | Mandatory MOD for Master EEEA, Control Systems Engineering Track (GSA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core texts            | <ul> <li>ALAZARD D., CUMER C., APKARIAN P., GAUVRIT M. ET F. <i>Robustesse et commande optimale</i> Cépaduès editions, 1999.</li> <li>KWAKERNAAK H <i>H2-Optimization – Theory and Applications to Robust Control Design</i>. Annual Reviews in Control, 26 (1), pp. 45-56, 2002.</li> <li>SKOGESTAD S. AND POSTLETHWAITE I <i>Multivariable Feedback Control, Analysis and Design</i> John Wiley and Sons Chischester, 2005.</li> </ul>                                                                                                                                                                                                                                                                                             |
| Assessment            | Open book exam (2h) : 50%<br>Evaluation of exercise sessions: 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### Green Computing

# **GREEN COMPUTING**

#### Lecturers: Sébastien LE BEUX, Ian O'CONNOR

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

This course focuses on the functionality, performance and energy efficiency of execution of applications on computating architectures. In this context we will addressed parallel hardware architectures (multi-core processors, SIMD machines), hardware resources of communications (bus and network) as well as the efficient deployment of applications on these hardware resources: task placement and mapping, hardware / software partitioning and compatibility between architectures and algorithms. Techniques for estimating energy consumption will be presented and will enable the estimation of the cost of memory access, computing and communication.

Keywords: Energy consumption in digital electronic systems, Low energy and power consumption techniques, Parallel computing architectures, Deployment of applications, algorithm architecture compatibility

| Programme             | Principles of hardware / software partitioning and processor sizing<br>Multi-core architectures and programming<br>Strategies for deploying tasks and reducing energy consumption<br>Energy cost of inter-core communication or distributed computing<br>Multi-level abstraction energy estimation of software execution |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Understand the origins and consequences of energy consumption in computing architectures</li> <li>Be capable of evaluating energy consumption in processors</li> <li>Be capable of optimizing the programming of algorithms on processors to minimize energy consumption</li> </ul>                             |
| Independent<br>study  | Study class: analysis of energy-efficient supercomputers (green500.org)                                                                                                                                                                                                                                                  |
| Affiliated<br>Masters | Master Electronics, Electrical Energy, Control (3EA)                                                                                                                                                                                                                                                                     |
| Core texts            | <ul> <li>M.T. SCHMITZ ET AL. System-Level Design Techniques for Energy-Efficient Embedded Systems.<br/>Springer, 2004.</li> <li>T.D. BURD ET AL. Energy-efficient microprocessor design. Kluwer, 2002.</li> </ul>                                                                                                        |
| Assessment            | 50% final test, 50% practical activities                                                                                                                                                                                                                                                                                 |



#### Energie Stockage-Conversion

# **ENERGY, STORAGE, CONVERSION**

# Lecturers: Guy STREMSDOERFER, Jean-Pierre CLOAREC

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

Keywords:

**Core texts** 

CEA. Memento sur l'énergie « Energy handbook ». CEA, 2015.



#### Combustion pour la propulsion

## **COMBUSTION FOR PROPULSION**

#### Lecturers: Mikhael GOROKHOVSKI, Alexis GIAUQUE

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language: 🐹 |

# **Objectives**

The combustion is a physical phenomenon of the thermal energy release from molecular bonds in fuels. Our objective is to understand this phenomenon. Which mechanisms of chemical transformations are essential in the combustion process, what is the physics of premixed and diffusion flames, how to stabilize those flames and how to characterize their turbulent regimes, all these questions are mainly answered during the courses. Additionally, we will analyze the acoustic nature and stability of flames. Another particular aspect of this courses concerns the physics of spray combustion. Among various applications, our main emphasis is put on the combustion process turbojet engines. The final discussion and practical exercising deal with detailed numerical simulation in the combustion chamber.

Keywords: Combustion, Fluid Mechanics and Heat-and-Mass Transferts, Explosions, Turbulent Mixing, Sprays, Chemical Kinetics, Energetics

| Programme  | <ol> <li>Introduction on combustion for aeronautics</li> <li>Essential kinetic mechanisms in combustion and pollutants formation</li> <li>Perfectly and partially stirred reactor: mixing/transport/chemistry interactions</li> <li>Premixed flames; propagation of turbulent premixed flames</li> <li>Laminar and turbulent diffusion flames; stabilization of flames</li> <li>Linear acoustics and stability in combustion</li> <li>Atomization, dispersion, evaporation and combustion in sprays</li> <li>Numerical simulation of combustion for the engineer in the aerospace industry</li> </ol> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Core Texts | R. BORGHI ET M. DESTRIAU. La combustion et les flammes. Editions Technip, 1995.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | K.K. KUO. <i>Principles of Combustion</i> . Wiley-Interscience Publication, 2005.<br>CHANG K. LAW. <i>Combustion Physics</i> . Cambridge University Press, 2006.                                                                                                                                                                                                                                                                                                                                                                                                                                      |



#### Recherche opérationnelle

# **OPERTATIONS RESEARCH**

#### Lecturers: Abdelmalek ZINE, Alexandre SAIDI

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

The aim of this course is to give students the methods and tools allowing them both to know how to mathematically pose a combinatorial optimization problem with continuous or discrete variables and to know how to identify the adequate tools for its resolution (optimization algorithms ).

This course will be illustrated by many concrete cases from engineering.

Thus, our goal is to make future engineers discover the attitude of mind that they must adopt in front of any real problem, therefore complex.

Keywords: Operational research, combinatorial optimization, continuous optimization, discrete optimization, decision support, constraint resolution, graph theory, complexity, NP-difficult problems, algorithms

| Programme             | Part I: Presentation of operational research and the goals. Optimization and Operational Research<br>Problems Know how to pose a problem, formalize it<br>Complexity theory, complexity classes                                                                                                                                        |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Part II: Continuous variable problem solving<br>Optimization without constraints and algorithms<br>Optimization with constraints and algorithms<br>Linear programming and simplex algorithm                                                                                                                                            |
|                       | Part III: Solving problems with discrete variables<br>Polynomial, approximation algorithms<br>Graph algorithms (shortest path and maximum flows), Dynamic Programming Heuristics and<br>meta-heuristics<br>Constraint programming                                                                                                      |
| Learning<br>outcomes  | <ul> <li>Mathematical modeling of optimization problems</li> <li>Create algorithms and numerically solve optimization problems</li> <li>Control the combinatorial complexity of optimization problems</li> <li>Choose an appropriate resolution algorithm, know how to specify a solution ("Mathematical Programming")</li> </ul>      |
| Independent<br>study  | Modeling and solving optimization problems using linear systems and constraint satisfaction systems (Practical work). Taking into account the complexity of combinatorial problems.                                                                                                                                                    |
| Affiliated<br>Masters | Master GI<br>All options may be concerned by the course                                                                                                                                                                                                                                                                                |
| Core texts            | <ul> <li>CH-E. BICHOT ET P. SIARRY. <i>Partitionnement de graphe</i>. Hermes, 2010.</li> <li>P. VENKATARAMAN. <i>Applied Optimization with Matlab</i>. Wiley, 2009.</li> <li>A. BILLIONNET. <i>Optimisation discrète : De la modélisation à la résolution par des logiciels de programmation mathématique</i>. Dunod, 2006.</li> </ul> |
| Assessment            | 2 hours written exam and Practical Work reports                                                                                                                                                                                                                                                                                        |



Analyse des assemblages : géométrie et architecture

#### **MECHANICAL ASSEMBLY: ARCHITECTURE AND GEOMETRY ANALYSES**

#### Lecturers: Bertrand HOUX, Didier LACOUR

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

# **Objectives**

Present methods and tools for analyzing the geometric quality of assemblies.

Mastering the architecture and geometry of assemblies is a major industrial objective. The geometrical quality of the parts and the architecture of the assemblies can have direct repercussions on the assembly capacity of the product, but also on the services it must provide.

This course presents the modern methods of assembly simulation by integrating the geometrical defects of their components. It thus identifies the theoretical concepts on which these methods are based, in order to understand their fields of application and their limits.

Keywords: Assembly, architecture, geometric specifications, ISO GPS standards, tolerancing, metrology, influencing analysis, assembly simulation, statistics

| Programme            | Quantification of the specifications and analysis of their influences on the assembly (sensitivities)<br>by torsors of small displacements.<br>Statistical Approaches, Monte Carlo.<br>Geometric Specification Methods, Geometrical Product Specification (GPS).<br>Algorithms used in three-dimensional metrology (numerical methods of association). |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes | <ul> <li>Knowledge of methods and tools for analyzing the geometric quality of assemblies.</li> <li>Write and interpret standardized geometric specifications.</li> <li>Analyze influences and contributions on a concrete model.</li> <li>Establish and implement a three-dimensional control strategy.</li> </ul>                                    |
| Core texts           | ANSELMETTI B <i>Tolérancement – Volumes 1 a 4</i> . Hermès - Lavoisier, 2010.<br>CHARPENTIER F <i>Mémento de spécification géométrique des produits – Les normes ISO-GPS</i> . AFNOR, 2015.<br>BOURDET P. & MATHIEU L <i>Tolérancement et métrologie dimensionnelle</i> . Cetim, 1999.                                                                 |
| Assessment           | 1 examen final (2h)<br>1 BE avec compte-rendu noté                                                                                                                                                                                                                                                                                                     |



## Systèmes de bases de données

# **DATABASE SYSTEMS**

#### **Lecturers: Liming CHEN**

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

Databases are at the heart of any information system that is nowadays omnipresent in our everyday life (work, organization, web, etc.). The aim of this course is to study the principles of programming relational and semi-structured databases that are the foundation of any application in the various information systems. It also discusses the implementation aspects of database systems such as concurrency control or query optimization.

Keywords: databases, structured data and non structured data modelling, data storage and access, relational languages, concurrency control, query optimization, integrity constraints

| Programme             | Introduction (relational models, schems, SQL, semi-structured models, XML)<br>Data models (entitty/relationship, relational, object)<br>relational languages (relational algebre, SQL, Datalog)<br>SQL Programming (PL/SQL, Embeded SQL)<br>Database systems and application Web (JDBC, PHP)<br>XML-WPath-Wquery-Xslt<br>transactions and concurrency control<br>Query optimisation<br>Integrity constraints<br>Olap and Data-mining |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Understand the major components of modern information systems</li> <li>Know how to make use of fondamental techniques and develop information systems and applications</li> </ul>                                                                                                                                                                                                                                           |
| Independent<br>study  | Three BEs are planned to develop a database system, extract data through SQL and develop a Web information system for a particular data management application.                                                                                                                                                                                                                                                                      |
| Affiliated<br>Masters | Master in computer science                                                                                                                                                                                                                                                                                                                                                                                                           |
| Core texts            | <ul> <li>H.Garcia-Molina, J.D.Ullman, J.Widom. <i>Database systems: the complete book</i>. Pearson Prentice Hall, 2002.</li> <li>Georges Gardarin. <i>Bases de données (http://georges.gardarin.free.fr/Livre_BD_Contenu/XX-TotalBD.pdf)</i>. Eyrolles, 2003.</li> </ul>                                                                                                                                                             |
| Assessment            | 40% fundamental knowledge, 60% know-how                                                                                                                                                                                                                                                                                                                                                                                              |



Physiologie humaine et biotechnologies

# HUMAN PHYSIOLOGY AND BIOTECHNOLOGY

#### Lecturers: Emmanuelle LAURENCEAU

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

# **Objectives**

The objective is to upgrade the basic knowledge in physiology and to enable understanding of the mechanisms of communication and regulation of the organism. Integration between the different functions will be tackled from concrete examples for biomedical applications based on the study of systems such as cardiovascular and immune systems. A second part will allow understanding the function of a living cell in its natural environment and to apprehend the potentialities of the cells and the biomolecules which compose them in the sectors of health. Emphasis will be placed on the link between structure, environment and ability to fulfill a biological function. The course will be illustrated by developments in molecular biology.

Keywords: cells, molecular biology, cardio-vascular and immune systems, biomedical applications

| Programme             | Organization of the living cell<br>Organization of the human body: Cardiovascular, immune systems<br>Basic biological mechanisms<br>Cells in their environment<br>Lab: Analysis of cells by optical microscopy and grouwth cell<br>BE: Pharmacology<br>BE: Analysis of cardiac function by imaging                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Know the basics in cellular and molecular biology</li> <li>Understanding the functioning of the human body and the structure-biological function relationships</li> <li>Understanding health sector issues</li> <li>Apply knowledge to problem solving</li> </ul>                                                                 |
| Independent<br>study  | To extend the course on the cardiovascular system and pharmaco-kinetics                                                                                                                                                                                                                                                                    |
| Affiliated<br>Masters | Master of Health Engineering (IDS)<br>Mandatory MOD for BIO speciallization of BIN Option                                                                                                                                                                                                                                                  |
| Core texts            | <ul> <li>ALBERTS BRUCE M. (COLLAB.) JOHNSON ALEXANDER (COLL. <i>Biologie moléculaire de la cellule</i>. Flammarion Médecine-Sciences, 2004.</li> <li>ÉTIENNE JACQUELINE. <i>Biochimie génétique, biologie moléculaire</i>. Masson, 2006.</li> <li>SILVERTHORN DEE UNGLAUB. <i>Physiologie humaine</i>. Pearson education, 2007.</li> </ul> |
| Assessment            | Practical evaluations (Lab, BE), final exam                                                                                                                                                                                                                                                                                                |



#### Aléas et hétérogénéités dans les structures

#### **UNCERTAINTIES AND HETEROGENEITIES IN ACTUAL STRUCTURES**

#### Lecturers: Francesco FROIIO, Eric VINCENS

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# Objectives

Solid and structural mechanics is usually taught in undergraduate courses based on the assumption of homogeneous materials and according to the deterministic approach as concerns the mechanical properties of materials and loading conditions.

However, real structures are subjected to loading conditions with inherent randomness. Further sources of uncertainty concern the mechanical properties of materials and result from the relevant fabrication procedures. How to deal with these elements of complexities while keeping the design procedure as simple as possible is the main topic of this course.

Keywords: Structural design, semi-probabilistic approach, eurocodes, non-homogenous cross-section elements, reinforced concrete

| Programme             | <ul> <li>Main sub-topics :</li> <li>characterisation of static loading conditions and of the mechanical properties of material, introduction to reliability of structures, partial safety factors</li> <li>A few models from structural mechanics</li> <li>Design of structural elements with non-homogenous cross section, limit state design</li> </ul>                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Understanding of i) the random variability of external actions and ii) of the sources of uncertainty in material charcterisation and structural modelling</li> <li>Practice of the European standards for structural design (eurocodes, semi-probabilistic approach)</li> <li>Practice of structural models as applied to real structures</li> <li>Limit state design of structural elements with non-homogenous cross-sections</li> </ul> |
| Independent<br>study  | Tutorial #1 : Snow loads and wind actions on real structures<br>Tutorial #2 : Bending moment diagrams for a reinforced concrete slab<br>Tutorial #3 : Limit state design of a reinforced concrete slab                                                                                                                                                                                                                                              |
| Affiliated<br>Masters | Master of Civil Engineering                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Core texts            | <ul> <li>JA. CALGARO. <i>Introduction aux Eurocodes : sécurité des constructions et bases de la théorie de la fiabilité</i>. Presses de l'École Nationale des Ponts et Chaussée, 1999.</li> <li>R. PARK, T. PAULAY. <i>Reinforced concrete structures</i>. John Wiley &amp; Sons, 1975.</li> <li>Y. SIEFFERT. <i>Le béton armé selon les Eurocodes 2</i>. Dunod, 2010.</li> </ul>                                                                   |
| Assessment            | Evaluation:<br>- Student report on Tutorial #1 (1/3 of the final score)<br>- Closed-book final exam ( 2/3 of the final score)                                                                                                                                                                                                                                                                                                                       |



Traitement et analyse des données visuelles et sonores

#### **PROCESSING AND ANALYSING OF VISUAL AND AUDIO DATA**

#### Lecturers: Mohsen ARDABILIAN, Emmanuel DELLANDREA

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

## **Objectives**

Images and sound data are part of our daily lives, but also mass produced in many industrial sectors. These particularly information-rich signals must be understood and mastered by analysis algorithms to define the useful parts. This task of analysis can be as simple as reading bar codes or as sophisticated as identifying a person and their affect from their face or voice. This course presents the algorithms and the analysis tools allowing the extraction of semantic and useful information, exploited in real applications. This approach is used in many fields such as robotics, medicine, security, industrial vision, internet, audiovisual, intelligent vehicle, etc.

Keywords: Image analysis, video analysis, audio analysis, feature, descriptor, shape, color, texture, classification, recognition, late fusion, early fusion, sparse representation, image processing, super resolution, big data

| Programme             | Search for image and sound by content<br>Evaluation of image/sound analysis and processing approaches<br>Image processing algorithms, super resolution<br>Audio processing algorithm<br>End-to-end image and sound analysis algorithms<br>Applications processed:<br>- Recognition of objects, of people<br>- Video structuring<br>- Image recognition<br>- Sound recognition |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Being able to apply the appropriate processing algorithms to a given context</li> <li>Being able to apply the appropriate analysis algorithms to a given context</li> <li>Evaluate processing and analysis algorithms or systems</li> <li>Know state of the art processing algorithms and analysis, as well as their principles</li> </ul>                           |
| Affiliated<br>Masters | Master 2 de recherche Informatique de Lyon                                                                                                                                                                                                                                                                                                                                    |
| Core texts            | <ul> <li>A. DIVAKARAN. <i>Multimedia Content Analysis: Theory and Applications.</i>. Springer, 2008.</li> <li>R. SZELISKI. <i>Computer Vision Algorithms and Applications</i>. Springer, 2010.</li> <li>R. O. Duda, P. E. HART &amp; D. G. STORK, <i>Pattern Classification</i>. Wiley Interscience, 2004.</li> </ul>                                                         |
| Assessment            | Final exam and BE mark                                                                                                                                                                                                                                                                                                                                                        |



# Matériaux de construction

# **CONSTRUCTION MATERIALS**

#### **Lecturers: Eric VINCENS**

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

# Objectives

This course presents the main materials used for construction, their manufacturing, production and characterisation. Their mechanical behavior will be adressed justifying the area of use and for each of them the selection criteria will be given according to encountered problems of durability.

Keywords: aggregates, bitumen, cement, concrete, steel, earth, stone

| Programme             | The main chapters are constituted of :<br>- Aggregrates<br>- Black products: bitumen, bitumen emulsions<br>- Binders: cement, plaster, lime<br>- Concrete: regular, high performance, fiber-reinforced, self-placing<br>- Wood<br>- Steel for construction<br>- Materials with low embodied energy : earth, dry stone<br>The use of these materials will be envisioned in relation to the industrial and normative context,<br>the key role of the environment that tends to affect both the physical and mechanical properties<br>of the material will be pointed out. |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>♦ know how to identify and characterize materials for construction</li> <li>♦ know the problems of durability of the materials in their environment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 |
| Independent<br>study  | Lab activities : 2*2h<br>- particle size analysis and size analysis by sedimentation<br>- activity of clayey soils in backfill : Methylen Blue test                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Affiliated<br>Masters | Master of Civil Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Core texts            | <ul> <li>G. DREUX. <i>Nouveau guide du béton et de ses constituants</i>. Eyrolles, 1998.</li> <li>H. DI BENEDETTO. <i>Matériaux routiers bitumeux 1 : Description et propriétés des constituants</i>. Lavoisier, 2004.</li> <li>JP. OLLIVIER, JM. TORRENTI, M. CARCASSÈS. <i>Propriétés physiques du béton et de ses constituants</i>. Lavoisier, 2012.</li> </ul>                                                                                                                                                                                                      |
| Assessment            | - Microtests: closed-book examination<br>- Final exam: closed-book examination<br>Score : 2/3 final exam + 1/3 activities (microtests+lab)                                                                                                                                                                                                                                                                                                                                                                                                                              |



## Tribologie : principes et applications

# **TRIBOLOGY**

#### Lecturers: Denis MAZUYER

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Keywords:

#### **Core texts**

G.W. STACHOWIAK AND A. BATCHELOR. *Engineering Tribology*. Butterworth-Heinemann, 2013. F.P. BOWDEN AND D. TABOR. *Friction and Lubrication of Solids*. Oxford University Press, 1954. J.M. GEORGES. *Frottement, Usure et Lubrification*. CNRS Editions, Eyrolles, 2000.



### Aerodynamique externe

# **EXTERNAL AERODYNAMICS**

### Lecturers: Julian SCOTT, Jérôme BOUDET

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language: 💥 |

# **Objectives**

Understand and describe the forces (lift and drag) induced on a body by flow. Identify the associated design parameters.

Formulate and apply flow models appropriate to aerodynamics.

Estimate the accuracy of predictions resulting from such models from a design perspective.

Keywords: Aerodynamics, Lift, Drag, Aeronautics, Aircraft, Lifting Surfaces.

| Programme             | <ol> <li>Flight dynamics. Piloting and control surfaces. Longitudinal flight equilibrium. Flight stability.</li> <li>Two-dimensional wing design. Essential elements of aerofoil theory. Thin aerofoil theory.<br/>Models: potential flow, panel methods.</li> <li>Lift and 3D effects. Lift/circulation relationship and its consequences for 3D flow. Elliptic<br/>loading and its generalisation. Models: lifting-surface and lifting-line theories.</li> <li>Drag control. Laminar and turbulent boundary layers. Parameters influencing transition.<br/>Components of drag on an aircraft.</li> <li>Compressibility effects. Mach number, shock waves. Transonic and supersonic aerofoils.<br/>Models: Prandtl-Glauert and Ackeret theories.</li> </ol> |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>♦ Understand the basic principles of aircraft flight.</li> <li>♦ Master the basic models of aerodynamics.</li> <li>♦ Dro design of lifting surfaces in aerodynamics.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | V Pre-design of lifting surfaces in aerodynamics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Independent<br>study  | Practical class: study of an aerofoil in a wind tunnel and comparison with numerical simulations.<br>Examples class: basic aircraft modelling: illustrations.<br>Examples class: geometrical design of an aerofoil satisfying a given specification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Affiliated<br>Masters | Aeronautics and Space Master<br>Mechanics Master (specialisation Fluid Mechanics and Energy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Core texts            | E.L. HOUGHTON, P.W. CARPENTER. Aerodynamics for Engineering Student. Butterworth-Heinemann, 2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | D.P. RAYMER. Aircraft Design: A Conceptual Approach. AIAA, 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | B.W. McCormick. <i>Aerodynamics, Aeronautics and Flight Mechanics</i> . Wiley, 1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Assessment            | Written exam (55%, "savoir").<br>Participation in and reports on examples and practical classes (45%, "savoir faire").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



#### Nanotechnologies

# **NANOTECHNOLOGIES**

#### Lecturers: Magali PHANER-GOUTORBE, Virginie MONNIER

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

# **Objectives**

Nanoscience and nanotechnology deal with understanding of the specific properties of structures at nanometric scale, as well as elaboration and characterization of these nanostructures. Nanotechnology allow to push the miniaturization limits and to develop new applications and new functionalities in micro- and optoelectronics, materials science, biology and medicine, energy and environment. This course will present the specific properties of nanostructures and nanomaterials, as well as imaging and elaboration tools at the nanometric scale. It will focus on the technological achievements that already exist or are likely to emerge in the near future.

Keywords: Physics of low dimensional systems, scanning probe microscopies, nanolithography, nanomaterials, nanoelectronics, nano-biotechnologies, nanotechnologie for energy and environment

| Programme             | Introduction to nanoscience and nanotechnology.<br>Application of nanotechnologies in usual and future objects<br>(smartphone, nanorobot, medical nanocapsule, for energy and environment)<br>Imaging and characterization tools of nanostructures.<br>Nano-lithography techniques.<br>Nanomaterials, nanowires and nanoparticles.<br>Nano-electronics, molecular electronics, single electron transistor.<br>Nanobiotechnologies: DNA and proteins microarrays, self-assembling and biology, biomimetic<br>structures.<br>BE creation of pedagogic videos on nanotechnologie<br>TP Elaboration of nanoparticles and observation by Atomic Force Microscopy |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>To control the issues of nanotechnologies in the fields of information technology, materials, medicine, biology, energy and environment.</li> <li>To understand the physical principles in low dimensional structures.</li> <li>To think at the future development of nanotechnologies</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |
| Independent<br>study  | Deepening of part of the course<br>Creation of pedagogic videos with the help of the pedagogical Pole work in group, presentation of<br>the videos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Affiliated<br>Masters | Possible equivalence for the master NSE and strong link with masters MISTE and EEEA<br>Recommended for the BIN option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Core texts            | <ul> <li>M. LAHMANI, C. BRECHIGNAC, P. HOUDY. <i>Les nanosciences. Tome 1: Nanotechnologies et nanophysique</i>. Editions Belin, 2004.</li> <li>M. LAHMANI, C. BRECHIGNAC, P. HOUDY. <i>Les nanosciences. Tome 2: Nanomatériaux et nanochimie</i>. Editions Belin, 2006.</li> <li>M. LAHMANI, C. BRECHIGNAC, P. HOUDY. <i>Les nanosciences. Tome 3: Nanobiotechnologies et nanobiologie</i>. Editions Belin, 2007.</li> </ul>                                                                                                                                                                                                                               |
| Assessment            | Evaluation of the practical activity.<br>Evaluation of the video activity<br>Final written exam (1 hour)<br>(50%.30%.20%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Matière molle : nanosystèmes et interfaces biologiques

#### **SOFT MATTER : NANOSYSTEMS AND BIOLOGICAL INTERFACES**

#### Lecturers: Denis MAZUYER

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

# **Objectives**

Keywords:

#### Core texts

P.-G. DE GENNES, F. BROCHARD, D. QUÉRÉ, GOUTTES, perles et ondes. Belin, 2001.

P. COUSSOT, PH. ANCEY, Rhéophysique des pâtes et des suspensions. EDP Sciences, 2000.

D. TABOR. *Gases, Liquids and Solids and Other States of Matter*. Third edition, Cambridge University Press, 1991.



Durabilité des matériaux et des structures

# **DURABILITY OF MATERIALS AND STRUCTURES**

#### Lecturers: Bruno BERTHEL, Michelle SALVIA

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language: 💥 |

# **Objectives**

In order to develop efficient, reliable and safe products, it is necessary to take into account the damage mechanisms of materials and parts. The topic of this course is how to predict the failure of materials under mechanical loading, taking into account the surrounding, in the field of carriage. Each class of materials having different failure process, damage mechanisms of each one are studied and formalized. This course contain theoretical lectures (fracture mechanics, fatigue,...) and practical works (fractography, acoustic emission,...).

Keywords: Fatigue, Fracture mechanics, Finite element method, Fractography, Acoustic emission.

| Programme             | Fracture mechanics: material features, stress singularities and energetic criteria.<br>Fatigue of materials: fatigue and endurance domains, factors affecting fatigue life, design against<br>fatigue and crack growth rate laws.<br>Multiaxial fatigue: definition and criteria.<br>Specificity of polymer and composite materials<br>Practical work on fractography: study of the fracture surfaces of parts and determination of the<br>cause of failure.<br>Practical work on the interest of the acoustic emission in the field of structural health monitoring<br>Practical work on the applications of the finite element analysis in failure analysis |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Identify the different damage and failure processes of materials used in the field of carriage and know how to study the fracture surfaces of materials.</li> <li>master the basics of fracture mechanics and fatigue of materials. Know how to use a multiaxial fatigue criterion.</li> <li>Know the specificities of composite materials and have notions on the field of structural health monitoring (especially in acoustic emission).</li> <li>apply what students have learned to explain a research problem and make a critical analysis.</li> </ul>                                                                                         |
| Independent<br>study  | Assignments consisting of preparing practical works, writing reports and analyzing a scientific article. All these activities are team-work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Affiliated<br>Masters | Semester 9, Aeronautical engineering option: possible choice<br>Master Aerospace Engineering: obligatory for M2 « Dynamic and Sustainability of Composite<br>Materials (DDC) » option<br>Master MISTE: equivalent to TC3- Mechanics and materials                                                                                                                                                                                                                                                                                                                                                                                                             |
| Core texts            | <ul> <li>D. HULL. <i>Fractography: Observing, Measuring and Interpreting Fracture Surface Topography</i>. Cambridge University Press, 1999.</li> <li>P. C. POWELL. <i>Engineering with polymers</i>. Chapman &amp; Hall, 1992.</li> <li>C. BATHIAS, A. PINEAU. <i>Fatigue des matériaux et des structures (Volumes 1 à 4)</i>. Lavoisier, 2009.</li> </ul>                                                                                                                                                                                                                                                                                                    |
| Assessment            | Pratical works (50%) + oral presentation (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### Microsystèmes Autonomes

## **AUTONOMOUS MICROSYSTEMS**

## Lecturers: Ian O'CONNOR, Pedro ROJO-ROMEO

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Keywords:

**Core texts** 

S. SENTURIA. *Microsystem Design*. Springer, 2000.

N. MALUF. An Introduction to Microelectromechanical Systems Engineering. Artech, 2004.



#### Changements climatiques et Géo-ingénierie

# **CLIMATE CHANGE AND GEO-ENGINEERING**

#### Lecturers: Pietro SALIZZONI, Louis Gostiaux, Richard PERKINS

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language: 💥 |

# **Objectives**

Although there is now general agreement that our climate is evolving at an increasing rate, there is little agreement about what should be done to slow down these changes, and it is now unlikely that a simple reduction in greenhouse gas emissions will have any significant impact. Climate change will affect all aspects of the engineering profession, and will need to be taken into account in every project. It may also become necessary to envisage direct intervention to modify the earth's climate, and various techniques have already been proposed. This course will provide students with a general overview of the mechanisms which determine the earth's climate, so that they can offer informed participation in the engineering projects that are likely to emerge in response to climate change.

Keywords: Climate change, greenhouse gases, carbon, paleoclimatology, global warming, oceans, atmosphere, meteorology, modeling, dynamical systems

| Programme             | <ul> <li>Introduction: Definition of climate, the principal processes, evidence for climate change<br/>Radiative transfer: solar radiation, atmospheric absorption, aerosols</li> <li>Climate modelling: modelling assumptions, input data, results, sensitivity to assumptions and<br/>input data.</li> <li>Carbon cycle: transfer processes, carbon capture and storage (sequestration)</li> <li>Climate reconstruction: historical evidence for climate change, measurement techniques</li> <li>Possible scenarii: influence of different processes, climate evolution</li> <li>Impact of climate change: Meteorological, agricultural, economic, and political</li> <li>Geo-engineering: the different techniques envisaged, reversibility, risks, consequences, practical</li> <li>difficulties</li> <li>The MOD 2.2 (DAO) provides complemntary notions to this MOD.</li> </ul> |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>At the end of this course, the student will understand the notion of climate and the processes which create it.</li> <li>Students will be able to evaluate critically the available evidence concerning climate change</li> <li>Students will understand the basis and the principles of climate modelling, the hypotheses used, and the data that are required</li> <li>Students will be aware of the likely physical, political and economic consequences of climate change</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |
| Affiliated<br>Masters | Science of the Ocean, Atmosphere and Climate (SOAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Core texts            | <ul> <li>SALTZMAN, B. <i>Dynamical Paleoclimatology</i>. Academic Press, 2002.</li> <li>BURROUGHS, W.J. <i>Climate Change A Multidisciplinary Approach</i>. Cambridge University Press, 2007.</li> <li>COWIE, J. <i>Climate Change Biological and Human Aspects</i>. Cambridge University Press, 2009.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Assessment            | Exam (50%) Reports on the 3 design class exercises (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Dynamique des systèmes biologiques humains

# **DYNAMICS OF BIOLOGICAL HUMAN SYSTEMS**

#### Lecturers: Didier DRAGNA

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

The human body is an extraordinary complex dynamic system, whose physical modeling is essentialy multidisciplinary. A large number of regulatory process aim at constantly monitoring the internal environement of the body, what is referred to as the homeostasis. In this course, physical modeling of human biologogical systems are presented. Some current applications in bioengineering (artificial heart, medical robotics and imaging) are introduced.

#### Keywords:

| Programme            | <ol> <li>Modeling of biological human systems</li> <li>Mechanical models:         <ul> <li>the neuro-musculoskeletal system</li> <li>strength of materials, rigid and flexible multibody systems, biomaterials.</li> <li>auditory system</li> <li>fluid mechanics, acoustics.</li> <li>2 Multiphysics models:                 <ul> <li>cardiovascular system</li> <li>heart mechanics, circulation, network analysis, articial heart.</li> <li>Medical robotics</li> <li>Medical imaging</li></ul></li></ul></li></ol> |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Independent<br>study | <ol> <li>Simulation of the motion with a multibody model</li> <li>Signal processing for an electrocardiogram</li> <li>Oral presentation and report on a research article.</li> </ol>                                                                                                                                                                                                                                                                                                                                   |
| Core texts           | <ul> <li>D. A. NEUMANN. <i>Kinesiology of the musculoskeletal system. Foundations for physical rehabilitation</i>. McGraw-Hill, 2002.</li> <li>L. WAITE. <i>Biofluid mechanics in cardiovascular systems</i>. McGraw-Hill, 2006.</li> <li>C. GUY ET D. FEYTCHE. <i>Introduction to the principles of medical imaging</i>. Imperial College Press, 2005.</li> </ul>                                                                                                                                                     |



#### Systèmes d'information en entreprise

# **ENTERPRISE INFORMATION SYSTEMS**

#### Lecturers: Romain VUILLEMOT

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

Information systems are essential in modern organizations as they implement the organizational processes of the organization and allow the circulation of information. The good health of organizations, from global groups to small businesses, is increasingly dependent on the performance of their information systems. It is therefore crucial for engineers and future managers to understand the functioning and organization of information systems even if they do not work directly there.

Keywords: Information systems, processes, urbanization, service-oriented architecture, big data, analytics, KPI, cloud computing, enterprise data management, CRM, ERP.

| Programme            | Chapter 1: Introduction<br>Chapter 2: Technical architectures and major constituents of the IS in business<br>Chapter 3: Projects, Costs and Standards of an IS<br>Chapter 4: Service Oriented Architecture, Cloud Computing and Big Data<br>Chapter 5: KPIs and Piloting an IS<br>Chapter 6: Trends and Impact of Big Data and AI in IT                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes | <ul> <li>♦ Définir et mettre en oeuvre des outils de mesures (KPI) de performances de SI</li> <li>♦ Utilisation d'un ERP et cas d'utilisation concrêts</li> </ul>                                                                                                                                                                                               |
| Independent<br>study | Study offices around a problem of urbanization of the information system.<br>Drafting of a briefing note on a topic of choice, linked to information systems (e.g. sustainable<br>development, etc.)                                                                                                                                                            |
| Core texts           | <ul> <li>CHRISTOPHE LONGÉPÉ. <i>Le projet d'urbanisation du SI</i>. Lavoisier, 2009.</li> <li>YVES CASEAUT, GÉRARD ROUCAIROL. <i>Urbanisation, SOA et BPM : Le point de vue d'un DSI</i>. Broché, 2008.</li> <li>JACQUES PRINTZ, YVES CASEAU. <i>Architecture logicielle : Concevoir des applications simples, sûres et adaptables</i>. Dunod, 2009.</li> </ul> |
| Assessment           | Knowledge assessment through examination (60%) and know-how through evaluation of the briefing note (40%)                                                                                                                                                                                                                                                       |



#### Introduction à la Data Science

# **MACHINE LEARNING AND DATA MINING**

#### Lecturers: Alexandre SAIDI

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

# **Objectives**

Coming from AI, Data Science is the process of using algorithms and methods to extract knowledge and from structured or unstructured data.

The discovery of "hidden structures" in the data makes it possible to create reliable models to make predictions and optimize the decision-making process.

This process follows a preparation-analysis-evaluation cycle of transactional data, signals, texts and images. Statistics methods and algorithms are used to extract patterns and trends in the data. After evaluation, these models are used to predict, predict, summarize, ....

This course introduces the methods and techniques used in data science to train Data Scientists.

Keywords:

**Core texts** 

U.M. FAYYAD & AL.. *From Data Mining to Knowledge Discovery in Databases*. Editor1, 1996. STAN MATWIN & AL.. *Challenges in Computational Statistics and Data Mining*. Jan Mielniczuk, 2016. I.H. WITTEN, E. FRANK. *Data Mining - practical ML Tools & Techniques*. Editor3, 2005.



Acoustique Générale : sources acoustiques et propagation du son

## **GENERAL ACOUSTICS: ACOUSTIC SOURCES AND SOUND PROPAGATION**

#### Lecturers: Vincent Clair, Didier Dragna, Gilles Robert

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language: 💥 |

# **Objectives**

This Acoustics course is focused on sources of sound and their propagation. The basics of acoustics, such as the linear acoustic equations and the quantitative evaluation of sound, are briefly presented before going further into the description of sources and their radiation in bounded or unbounded spaces. The sound radiated by vibrating structures and the acoustic propagation in inhomogeneous media are also discussed. The objective of the course is to provide the theoretical background required to approach a complex problem of sound generation and/or radiation. This course also provides a basis for students who might be interested in more specialised sub-domains of acoustics.

Keywords: Acoustics, sound waves, acoustic sources, acoustic radiation, duct acoustics, sound induced by vibrating structures, propagation in inhomogeneous media.

| Programme             | <ul> <li>I – Equations of linear acoustics (wave equation, acoustic energy, harmonic waves)</li> <li>II – Plane and spherical waves, Boundary conditions, Surface impedance</li> <li>III – Acoustic levels and spectral analysis (Decibels, power spectral density, weightings)</li> <li>IV – Acoustic propagation in ducts (duct modes, cut-off frequency, low frequency models)</li> <li>V – Sources (elementary sources, Green's function, source distribution)</li> <li>VI – Radiation from vibrating structures (boundary integral equation, Rayleigh integral)</li> <li>VII – Acoustic propagation in inhomogeneous media (geometrical and paraxial approximations)</li> <li>VIII – Further elaborations (thermo-viscous absorption, diffraction by rigid bodies)</li> </ul> |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Understanding of sound generation and radiation in classical configurations.</li> <li>Modelling and resolution of an acoustics problem.</li> <li>Communicating with experts in acoustics.</li> <li>Acquiring a theoretical basis to approach a specialized domain of acoustics.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Independent<br>study  | Two practical work sessions: 1) Measurement of the acoustic power of a source in anechoic and reverberant rooms. 2) Duct propagation near a sudden change of section. A small class on source localisation with an industrial partner (MicrodB).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Affiliated<br>Masters | Master of Science in Acoustics (mandatory course)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Core texts            | <ul> <li>A. D. PIERCE. <i>Acoustics: an introduction to its physical principles and applications</i>. The Acoustical Society of America, 1989.</li> <li>L. E. KINSLER ET AL <i>Fundamentals of acoustics</i>. John Wiley &amp; Sons, 1982.</li> <li>D.T. BLACKSTOCK. <i>Fundamentals of physical acoustics</i>. John Wiley &amp; Sons, 2000.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Assessment            | Knowledge: written exam of individual knowledge (50%)<br>Know-how: evaluation of the practical activities (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



#### Dynamique des structures

## **STRUCTURAL DYNAMICS**

#### Lecturers: Olivier DESSOMBZ

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# Objectives

Dynamic analysis of structures using modal synthesis and finite elements methods has found a large number of industrial applications (aeronautics, automotive, shipbuilding, railway, civil engineering). The main aim of this course is to present these methods in a general framework by conducting in parallel and in interaction a numerical approach and an experimental approach based on vibratory tests. The correction of models and the influence of damping are also discussed.

Keywords: Finite elements - modeling - numerical methods - numerical modal analysis - substructuring - modal synthesis - damping

# \*\*\*\*\*

| Programme             | <ul> <li>PART 1: MODELS FINISHED ELEMENTS</li> <li>Introduction</li> <li>Finite element discretization</li> <li>Modification of the global matrix formulation</li> <li>Standard Conservative Problems</li> <li>Spectral problem</li> <li>Temporal integration of the transient problem</li> <li>Case of rotating machines</li> <li>PART 2: OPTIMIZATION OF DYNAMIC BEHAVIOR</li> <li>Origin of dissipation</li> <li>Modeling of damping</li> <li>Introduction of damping materials</li> <li>Identification of damping matrices</li> <li>Modal synthesis</li> <li>Perturbation of dynamic models</li> <li>Link to design processes</li> </ul> |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes  | <ul> <li>Modeling a Finite Element Structure</li> <li>Use a general purpose finite element industrial calculation code</li> <li>Understanding the Fundamentals of Finite Element Methods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Independent<br>study  | Practical activities: 2 lab of 4h (experimental) + 4h design classes on software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Affiliated<br>Masters | Mechanical Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Core texts            | <ul> <li>JF. IMBERT. Analyse des structures par éléments finis (3ème ed). Cepadues, 1995.</li> <li>M. GERARDIN, D. RIXEN. Théorie des vibrations. Masson, 1996.</li> <li>L. MEIROVITCH. Computational methods in structural dynamics. Sijthoff Nordhoff, 1980.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |
| Assessment            | 50% Knowedge (Exam)<br>50% know-how (TP1 1/4, TP2 1/4, BE 1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



# Bruits d'origine aérodynamique

## **AERODYNAMICALLY GENERATED SOUND**

#### **Lecturers: Michel ROGER**

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Keywords:

**Core texts** 

GOLDSTEIN. *Aeroacoustics*. McGraw-Hill, 1976.



Caractérisation des surfaces et des nanostructures

#### **CHARACTERIZATION OF SURFACES AND NANOSTRUCTURES**

#### Lecturers: Fabrice DASSENOY, Maria-Isabel DE BARROS

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language:

# **Objectives**

Nanotechnologies are concerned with a very divided state of matter and an exacerbated role of the surfaces compared to the volume. The physicochemistry and the chemistry of the exposed surfaces are very important for applications. The first atomic layers present on the solids are particularly reactive in many processes.

This course proposes the study of the main techniques of characterization of surfaces and of low dimensionality structures. It will be illustrated by specific applications in the field of nanotechnology and biology.

Keywords: Surfaces, Interfaces, Nanostructures, Surface analyses, microscopy, Electron spectroscopies

| Programme            | <ul> <li>I - Chemical analysis of the surface of solids.</li> <li>Electron spectroscopies (photoelectron, Auger), ion spectroscopy (ToF-SIMS)</li> <li>Information on surface chemical bonds.</li> <li>II- Morphological analysis of the surface at a subnanometric scale</li> <li>Near-field microscopies (Tunneling microscopy, Atomic Force Microscopy, near-field optical microscopy) tunneling spectroscopy, measurement of interaction forces. Illustrations: (reconstruction of surfaces, single molecule, photonic crystals)</li> <li>III - Characterization of interfaces</li> <li>Analytical Transmission Electron Microscopy, electron diffraction, X-ray analysis and electron energy loss spectroscopy. Examples of applications (thin layers, colloids)</li> </ul> |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning<br>outcomes | <ul> <li>To know how to refer to good characterization techniques for the study and analysis of surfaces<br/>and nanostructures</li> <li>To know the basic principle of the main techniques of characterization of surfaces and<br/>nanostructures</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Core texts           | R. W. CAHN. <i>Materials science and technology : a comprehensive treatment</i> . VCH, 1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Assessment           | 2h test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### Interactions fluide-structure

# **FLUID-STRUCTURE INTERACTIONS**

#### Lecturers: Mohammed ICHCHOU, Gilles ROBERT

| Lectures: 16 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language: 💥 |

# **Objectives**

This lecture provides an insight into fluid-structures interactions problems encountered in many engineering cases. Precisely, two main objectives are drawn. The first objective of the lecture is to provides a relevant method to formulate a coupling problem between a fluid and a solid. The second considered objective is a presentation of several mechanisms in a step by step process to allow better understanding of phenomenons and their modeling. The nature of the fluid and the solid lead to different situation of academic and industrial interest as well.

~~~~~~

Keywords: Fluid-structure coupling, compressible fluid, incompressible fluid, added mass, coupled modes, radiation effects, coincidence, wall pressure

Programme	I- fluide-structure coupling classification II- Modeling and main mechanisms III- Inertai couplaging and elastic coupling IV- Dissipative couplaging dissipatif, radiation V- radiation of simple structures (unbounded and bounded) VI- Numerical modeling in the non converctive case,. VII- Fluide-structure coupling with convection.
Learning outcomes	 classify fluid-structure problems modeling of a variety of fluid-structure situations numericaly solve few fluid-structures problems characterisation of wall pressure
Independent study	Practical tests (experiments) and numerical excercices through a FEM code
Affiliated Masters	Acoustics Aeronautics and Space Mechanical Engineering
Core texts	H. JP. MORAND & R. OHAYON. <i>Fluid-Structure Interaction</i> . Wiley, 1995. E. de Langre. <i>Fluides et solides</i> . Editions de l'Ecole Polytechnique, 2002.

Processus Stochastiques : modèles et méthodes numériques

STOCHASTIC PROCESSES

Lecturers: Christophette BLANCHET, Elisabeth MIRONESCU

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language: 💥 |

Objectives

This course deals with modelisation using time continous processes. The goal is to present both theoritical and pratical aspects on Markov processes. It is more specifically for students of Mathematic, Actuarial and quantitative finance options and Masters. It is requiered to have followed a course on theory of probability (for example the course in S8 in Ecole Centrale de Lyon)

Keywords: Brownian Motion, Martingales, Ito calculus, Numerical simulations, Monte Carlo Markov chain methods

Programme	 Probability theory (Reminders) Stochastic processes, Brownian Motion Martingales Stochastic integral Stochastic differential equations Diffusion approximation (BE) Methods of Monte Carlo Markov Chains and sampling.
Learning outcomes	♦ Modelisation with time-continous Markov processes ♦ Ito calculus
	♦ Approximation of a diffusion. Practical aspects
	♦ Gibbs algorithme or annealing method; Practical aspects
Independent study	Preparatory works on BE's problems
Affiliated Masters	Option MD-MIR (advisable for an advanced program in applied mathematics) Master Econométrie et Statistiques Parcours GRAF (Mandatory) Master Mathématiques Appliquées, Statistique, Parcours Math en Actions (Mandatory).
Core texts	FRANCIS COMETS ET THIERRY MEYRE. <i>Calcul stochastique et modèles de diffusions.</i> . Série Mathématiques pour le Master/SMAI, Dunod, 2006.
	NICOLE EL KAROUI ET EMMANUEL GOBET. <i>Les outils stochastiques des marchés financiers</i> . Editions de l'Ecole Polytechnique 2011.
	BERNARD BERCU ET DJALIL CHAFAÏ. <i>Modélisation stochastique et simulation.</i> . Série Mathématiques pour le Master/SMAI, Dunod, 2007.
Assessment	All : a two-hour examination. Master Math en action et GRAF : one more one-hour examination

Hydraulique Fluviale

River Hydraulics

Lecturers: Richard PERKINS, Pierre BRUN

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language: 💥 |

Objectives

Since the dawn of civilization, mankind has exploited rivers as a resource to meet certain needs – for drinking water, for irrigation, transport and energy, for example – but also as a way of disposing of industrial and domestic waste. Consequently, mankind is obliged to coexist with rivers, in close proximity, and has had to learn to adapt to the natural variations that occur in the life of a river. The aim of this course is to provide students with an introduction to the different aspects of hydraulic engineering, through the development of simple models for the basic physical processes that occur in a free-surface flow. The two design classes and the lab class will enable students to put into practice some aspects of the material covered in the lectures.

Keywords: River, free surface, waves, floods, dams, sediment transport, erosion, specific energy, subcritical flow, supercritical flow, hydraulic jump, specific force, Chézy, Manning, Strickler, Froude, Shields

Programme	Introduction: hydrological cycle, river systems Uniform flow in open channels: critical depth, specific energy, specific force, the hydraulic jump. Gradually varied flow: flow resistance, uniform flow and the normal depth, flow regimes, surface profiles Unsteady flows in open channels: rapidly-varied flow, slowly varying flow, the method of characteristics, dam break flows, flood routing Hydraulic structures Sediment transport: movement of solid particles, bed forms – ripples, dunes and antidunes, erosion threshold, bed load and suspended load transport, cohesive sediments (muds).
Learning outcomes	♦ At the end of this course, students will be able to identify the flow regime, based on the depth and the flow rate. ♦ Students will be able to calculate the regression of a free surface flow to a shapes in shapes.
	Students will be able to calculate the response of a free surface flow to a change in channel cross-section
	Students will be able to calculate the propagation of a wave caused by a change in flow rate or water level.
	\diamond Students will be able to assess the stability of the banks of a channel.
Independent study	Examples sheets for each subject to apply the material covered in the lectures 1 lab class and 2 design classes, covering aspects of the course in greater depth
Affiliated Masters	Mécanique
Core texts	 CHANSON, H <i>The Hydraulics of Open Channel Flow: an Introduction</i>. Elsevier, 2004. VIOLLET, PL., CHABARD, JP, ESPOSITO, P & LAURE. <i>Mécanique des Fluides Appliquée</i>. Presses de l'ENPC, 1999. RAUDKIVI A 1 <i>Loose Boundary Hydraulics</i>. Balkema, 1998.
	NAODATAT, A.S. 2005C Doundary Hydraunos, Daikenia, 1990.
Assessment	Knowledge: Exam on the material covered in the lectures (60%) Skills: Lab report (40%)

Représentation et manipulation de données structurées

Lecturers: Daniel MULLER

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

Keywords:

Core texts

E. R. HAROLD, W. SCOTT MEANS. *XML in a Nutshell*. 3rd Edition - O'Reilly, 2004.
E. VAN DER VLIST. *XML Schema, the W3C's Object-Oriented Descriptions for XML*. O'Reilly, 2002.
J. E. SIMPSON. *XPath and XPointer, Locating Content in XML Documents*. O'Reilly, 2002.

Information quantique

QUANTUM INFORMATION

Lecturers: Ségolène CALLARD, Christelle MONAT, Haison NGUYEN, Jose PENUELAS

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

Objectives

Over the past two decades, the rapid evolution of quantum systems engineering has paved the way to new forms of processing and transmission of information. At the crossroads of quantum mechanics, computer science, information theory and engineering, the development of quantum computers allows to consider solutions to problems that seemed impossible to solve with a classical approach. The objective of the course aims at understanding the challenges linked to the developments of quantum information and at perceiving in what extent they can modify the current landscape of information processing.

Keywords: Qubit, superposition, entanglement, quantum cryptography, teleportation, quantum computer, photons, superconducting junctions.

Programme	 561/5000 1. Introduction, complexity of an algorithm, class of a problem, promises of quantum information limits. Quantum superiority. What can we solve with a quantum calculator? 2. Quantum mechanics, postulates, notion of Qubit, Cryptography 3 Two-Qubit system, intricacies-correlations, EPR paradox 4. Teleportation, indistinguishability, decoherence, limits. 5. Calculations: quantum gates 6. Quantum algorithms 7. Physical implementations: the qubit photon 8. The superconducting qubit, today's quantum computer today
Learning outcomes	 two or three potential areas of application for quantum computers and their advantages over classical computers. Explain the phenomena of quantum entanglement and decoherence Explain the principles of quantum cryptography andteleportation. Describe the evolution of a system of Qubits through a quantum logic gate and the usefulness of the main quantum algorithms.
Independent study	1 BE quantum calculations (IBM simulators) 1 BE a bibliographic research work of your choice with oral restitution in pairs.
Core texts	M. A. NIELSEN AND I. L. CHUANG. <i>Quantum computation and quantum information</i> . Cambridge University Press, 2016.
Assessment	2h exam without document (50%), Oral presentation + BE (30% + 20%)

Energie Nucléaire

NUCLEAR ENERGY

Lecturers: Yves ROBACH, Ségolène CALLARD

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

......

Nuclear energy represents a great technological and economic area, covering multidisciplinary skills and various jobs (project management, engineering, safety, ...). This module, that favours an industrial approach aims to give students both scientific and technical training in the various fields of nuclear energy. A wide part will be devoted to the study of current nuclear power reactors. This course will also provide an overview of the solutions to answer nuclear safety and people protection.

Keywords: Nuclear reactors, nuclear power plants, nuclear safety.

Programme	Basis of nuclear physics. Basis of neutronics. Reactor kinetics. Current nuclear reactor plants: Operation and control. Nuclear safety. Fuel cycle. Materials for nuclear engineering.
Learning outcomes	 To understand the scientific, economic and environmental issues of nuclear power. To understand the specificities of nuclear industry. To set nuclear energy regard to other energies
Core texts	JACQUES LIGOU. <i>Introduction au génie nucléaire</i> . Presses polytechniques et universitaires romandes, 1997. JOHN R. LAMARSH. <i>Introduction to nuclear engineering</i> . Addison Wesley Publishing company, 2013. PAUL BONCHE. <i>Le nucléaire expliqué par des physiciens</i> . EDP Sciences, 2002.
Assessment	Final written exam (2 hours). Tutorials evaluation.

Lecturers: Marie GOYON

| Lectures: 0 h | TC: 28 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Keywords:

Core texts

BROWN TIM. L'Esprit design: Comment le design thinking change l'entreprise et la stratégie. Pearson, 2014.
AKRICH M., CALLON M. ET LATOUR B. A quoi tient le succès des innovations?, Gérer et comprendre. Annales des Mines, 1988.
GAGLIO G. , Sociologie de l'innovation. PUF, 2012.

Mécanique des matériaux et structures composites

MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES

Lecturers: Michelle SALVIA, Olivier BAREILLE, Mohammed ICHCHOU

| Lectures: 12 h | TC: 0 h | PW: 8 h | Autonomy: 0 h | Study: 4 h | Project: 0 h | Language: 💥 |

Objectives

The aim of this course is the modelling of composite materials and structures which are classically considered in several sectors (aeronautic, naval and automotive industries among others). The focus is mainly on metallic/composite mechanical behaviour positioning. The lecture will provide key aspects connected to physical as well as modelling abilities of anisotropic and composite materials and structures. Both linear and non-linear mechanical responses of these materials is studied. For instance phenomena which are involved in composite carbon-epoxy parts are also investigated. This course aims to provide the basic knowledge and understanding of the mechanics of composite materials in order to permit their efficient use in design applications.

Keywords: anisotropic materials, laminate theory, sandwich, homogenization, dynamic behaviour, damage and Failure

Programme	Material and microstructure (2 hours) Material symmetry (2 hours) Engineering elastic constants (2 hours) Laminate theory (2 hours) Sandwich theories (2 hours) Multi-scale methods : homogenization (2 hours) Dynamical behavior (2 hours) Failure criteria (2 hours)
Learning outcomes	 composites types - composites behaviour - dynamics of composites homogenisation - failure modes
Independent study	Analysis of a scientific recent paper
Affiliated Masters	Aeronautics and Space
Core texts	CARL T. HERAKOVICH. <i>Mechanics of Fibrous Composites</i> . John Wiley & Sons, 2004. J.N. Reddy. <i>Mechanics of laminated composite plates</i> . CRC Press, 1997. D Gay, S V Hoa, S W Tsai. <i>Composite Materials: Design And Applications</i> . CRC Press, 2003.

Stabilité des Systèmes Mécaniques

STABILITY OF MECHANICAL SYSTEMS

Lecturers: Louis JEZEQUEL, Jean-Jacques SINOU

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

When designing structures and mechanical systems, it is imperative to control the risks of instability arising from many phenomena. Mention may in particular be made of the various couplings of a non-conservative nature related to the existence of friction or of contact between a moving elastic structure and a fluid or a solid. Moreover, the phenomena of buckling and blistering are increasingly dimensioning given the lightening of the structures associated with the use of new materials. In the fields of transport, civil engineering and energy, we can cite: brake noise, resistance to crashes, instabilities of rotating machines, risk of building collapse, stability of drilling systems. ...

Keywords: Stability, brake squeezing, fluid-structure, rotating machines, aeroelastic coupling, hydro-elastic coupling

Programme	I. General stability analysis II. Buckling of elastic structures III. Non-conservative elastic structures IV. Stability of gyroscopic systems V. Application to friction structures VI. Applications to structures coupled with flow
Learning outcomes	Develop a synthetic vision of the risks of instabilities of mechanical systems in the design phase.
	 Learn about computational tools to predict risks of instability. Understand the coupling phenomena at the origin of the instabilities.
Independent study	Learning and deepening part of the course. Bibliographic analysis and reflection on a problem of application.
Affiliated Masters	Mechanical Engeeniring
Core texts	 WANDA SZEMPLINSKA-STUPNICKA. The behavior of Nonlinear Vibrating systems Vol. 1. Fundamental concepts and methods : applications to single-Degree of freedom Systems. ROBERT D. BLEVINS. Flow-Induced vibration. ROLAND BIGRET. Stabilité des machines tournantes et des systèmes.
Assessment	Final Exam, Design Classes

Comportement des matériaux

MECHANICAL BEHAVIOR

Lecturers: Thierry HOC, Vincent FRIDRICI, Laurent BLANC, Bruno BERTHEL

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

Objectives

Performance and reliability constraints, associated with materials and processes optimization, require a fine knowledge and modeling of the mechanical materials behavior.

At the same time, modern simulations allow introduction of advanced behavior laws, that engineer must be able to select, identify and use appropriately.

This course aims to identify the hierarchical structure of these behaviour models, for different types of materials: metallic, biological, composites, polymers, ...

Particular attention will be paid to their identification and associated test methods. Microscopic mechanisms will be explored to explain macroscopic behavior.

Keywords: Mechanical behavior fracture and damage ; Materials: metallic, biological, composites, polymers ; Multiscale modeling.

Core texts

J. LEMAÎTRE, J.-L. CHABOCHE, A. BENALLAL, R. DESMO. Mécanique des matériaux solides. Ed. Dunod.
D. FRANÇOIS, A. PINEAU, A. ZAOUI.. Comportement mécanique des matériaux : volumes 1 et 2. Ed. Lavoisier.

Réseaux informatiques

COMPUTER NETWORKS

Lecturers: René CHALON

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

This course is presenting main concepts and protocols of computer networks. Design features and architectures of local area networks, medium and high speed networks as well as Internet protocols are systematically and methodically detailled. This conceptual and practical approach enables each one to better understand the current supply, the evolution and the prospect of present and future computers networks.

Keywords: networks, ISO model, Ethernet, Internet, IP, Wi-Fi, TCP, UDP, DNS, HTTP

Programme	Lecture : 1- Introduction: main concepts, ISO model ans TCP/IP architecture 2- Physical layer: physical medium and data transmission 3- Local Area Network: topology, Ethernet, Wi-Fi 4- Network layer: internet principles, IP protocol, addressing, routing, IPv6 5- Transport layer: TCP, UDP, SCTP 6- Application layer: client/server model, DNS, e-mail, FTP, World Wide Web Labs: 1- Detailed study of Ethernet with a netwok simulator 2- Detailed study of IP with a netwok simulator 3- Study of HTTP protocol
Learning outcomes	 ♦ To know computer networks concepts ♦ To analyse and design Ethernet local aera networks ♦ To analyse and design TCP/IP based networks
Independent study	Every student gets a personal licence of the network simulator for making the labs and designing his/her own network architectures
Affiliated Masters	Computer Science
Core texts	 G. PUJOLLE ET AL <i>Les réseaux</i>. Eyrolles, 2018. D. COMER. <i>Internetworking with TCP/IP - Volume 1, Principles, Protocols and Architecture</i>. Pearson, 2015. C. SERVIN. <i>Réseaux et Télécoms</i>. Dunod, 2013.
Assessment	50% knowledge: 2 hours written exam without documents 50% know-how: mean of lab marks (1/3 each)

Méthodes numériques pour les EDP

NUMERICAL METHODS FOR PDES

Lecturers: Grégory VIAL, Laurent SEPPECHER

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

We will present the most common methods to approximate solutions to partial differential equations. Rather than giving an exhaustive list of the most efficient methods used in industrial codes, we will describe the mathematical foundations for the setting and the analysis of the principal methods. Some of them will be implemented with Matlab.

Keywords: Numerical methods. Scientific computing. Partial differential equations.

Programme	Chapter 1. Basics on the theory of linear PDEs, and finite difference methods. Chapter 2. Finite element methods for elliptic problems Chapter 3. Numerical approximation for scalar conservation laws
Learning outcomes	 To identify the nature of a PDE and the main difficulties for its numerical approximation To learn the main categories of numerical methods To identify the behavior of the methods and their limitations To be able to implement the main methods for simple problems
Independent study	Implementation of numerical methods on simple but typical examples
Affiliated Masters	"Maths in action" "Finance and insurance"
Core texts	 A. ERN, JL. GUERMOND. Éléments finis : théorie, applications, mise en œuvre. Mathématiques et applications. Springer, 2002. B. DESPRÉS, F. DUBOIS. Systèmes hyperboliques de lois de conservation : Application à la dynamique des gaz École Polytechnique, 2005.
Assessment	Knowledge (60%) : 2H exam Practicals (40%) : matlab implementation

Ouverture socio-économique et culturelle

Lecturers: Florence MILON

| Lectures: 0 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Learning about the specific features of "the French engineer" and of the French corporate culture. Understanding and developing cross-cultural communication. Helping with the integration of foreign 3rd-year students.

Keywords: cultural awareness, cultural difference, cross-cultural communication, integration, communication, relations, French corporate culture

Programme	Foreign students and EML students (24 hours + forum) Theoretical approach to cross-cultural communication. Viewing cross-cultural films, multinational workshops on cultural topics. Analysing foreign-student integration (first contacts, problems faced) through questionaires, finding possible solutions. Surveys with French engineers. Meetings with a French engineer posted overseas and a French- based foreign engineer. Assisting with end-of-studies internship search (CV, cover letter, interview simulation) Organising an international evening (discovering various cuisines)
Learning outcomes	 ♦ Oral and written communication skills ♦ cultural and cross-cultural competences
Independent study	Cross-national pairwork (preparing the survey, writing a discovery report on a topic related to the professional field of choice)
Core texts	M. SAUQUET, M. VIELAJUS. <i>L'intelligence interculturelle, 15 thèmes à exploiter pour travailler au contact d'autres cultures</i> . Charles Léopold Mayer, 2014.
Assessment	CV, cover letter (foreign students only), interview, oral presentation of survey, discovery report.

Lecturers: Marie Goyon

| Lectures: 0 h | TC: 28 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Training innovative project managers adressing the challenges of tomorrow, systemic changes, whether in the environment, the economy or the social sector. Innovation that can respond to these cross-cutting issues cannot be focused on a mono-disciplinary approach.

The approach is centered on the project: learning by doing, DIY and DIWO: the students work in project groups on topics proposed by companies. This transdisciplinary project management approach is intended for future innovation professionals in the private sector or public institutions.

.....

Keywords: project management, innovation, design thinking, prototyping, empathy and fielwork methods

Programme	Design Thinking methodology Fieldwork and ethnography Prototyping Strategy Business development design Pitch / communication
Learning outcomes	 Creativity Critics and contexuatization, global issues understanding, innovation by meaning and sense making Management strategy ecosystemic analysis / actors visual mapping
Independent study	group work fieldwork
Core texts	 AKRICH M., CALLON M. ET LATOUR B., A QUOI TIENT LE. Brown T, L'Esprit design: Comment le design thinking change l'entreprise et la stratégie. Pearson Education, 2014. Crozier M. et Friedberg E., L'Acteur et le Systèm. GAGLIO G., SOCIOLOGIE DE L'INNOVATION, PUF, 2012.
Assessment	Project evaluation

Le système électrique

ELECTRIC POWER SYSTEM

Lecturers: Eric Vagnon

| Lectures: 16 h | TC: 0 h | PW: 4 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language:

Objectives

The electric power system is a major infrastructure of the modern countries. The deregulation of this sector during these last years has deeply modified its management in a large number of country in particular in Europe. Thus the objective of the course is on one hand to give the technical bases allowing to understand the operation of the electric system and on the other hand to present the organization of this one through the roles and the relations

between the different actors: producers, transmission system operators, energy balance responsible and consumers.

Keywords: power generation, power transmission, transmission system operator, consumption-generation balance, short and long term planning

Programme	Introduction: the electric system in the global energy context Generation/consumption balance Voltage planning The different actors of the electric system; their roles et their relations in the context of market dergulation Network planning Analyse of some system failures: blackout How does an energy stock exchange works ?
Learning outcomes	 To know the constraints and the technical or economic advantages of a large electric system To differentiate the role of the various actors of the electric system To define the actions allowing the management of the electric system To interpret and explain some evolutions observed on a network
Independent study	Analyse of transmissions cases - load-flow Simulation of an energy stock exchange
Affiliated Masters	EEEA: Electronique, Energie Electrique, Automatique Electronic, Electric Energy, Control
Core texts	P. Bastard et al. <i>Voyage au coeur du sytème</i> . Eyrolles, 1999. Persoz et al. <i>Planification des réseaux électriques</i> . Eyrolles, 1984.
Assessment	knowledge 70% know-how 30%

MOD Parcours Entrepreneur 1

ENTREPRENEURIAL COACHING

Lecturers: Sylvie MIRA BONNARDEL

| Lectures: 0 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Coaching for students working on their startup in order to help them understand customer's needs, define the value proposition, identify revenue streams and design the detailed business model. Conferences of experts (law, business angels, ...)

Keywords: Business model, value proposition, start up

Programme	Coaching on the start up project based on adapted topics such as law, intellectual property, finance, pitch
Learning outcomes	 Be able to identify market opportunities Be able to build the differenciate value proposition Be able to design a detailled business model canvas Be able to pitch the project
Independent study	Work on the start up project
Core texts	Osterwalder A., PIgneur Y Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. Willey, 2010.
	RIES E <i>The Lean Startup: How Constant Innovation Creates Radically Successful Businesses</i> . Penguin, 2011.
	MASTERSON AK Business Model Generation: The Blueprints Every Entrepreneur in Every Industry Needs Today to Achieve Maximum Profits. CreateSpace Independent Publishing Platform, 2014.
Assessment	Pitch in the middle and at the end of the course

Ingénierie d'un objet de grande consommation

Lecturers: Jose PENUELAS

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

The objective is to show to students who have not previously studied scientific studies the importance of engineering science and techniques for a known object: the CD. This course is an opportunity to introduce the multidisciplinary approach specific to the engineer by using the concepts and tools of physics, materials science, computer science, signal processing and automation Which coexist in the design and realization of a CD.

Keywords: Engineering, Material science, Physics, Signal processing, Computer science, Automation, Design science

Programme	 Overview Physics: the laser Material science applied to the CD The Fundamentals of Informatics Design Signal processing: from analog to digital Automatic control: the basic principles of control
Learning outcomes	 Understand the multidisciplinary nature of everyday objects design To learn fundamentals in the disciplines involved
Assessment	Depending of the experimental work (that includes design, physics & computer science = $1/3$), and the final exam (without document = $2/3$)

MOD Parcours Entrepreneur 2

ENTREPRENEURIAL COACHING

Lecturers: Sylvie MIRA BONNARDEL

| Lectures: 0 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Coaching for students working on their startup in order to help them to understand customer's needs, define the value proposition, identify revenue streams and design the detailed business model. Conferences of experts (law, business angels, ...)

Keywords: Business model, value proposition, start up

Programme	Coaching on the start up project based on adapted topics such as law, intellectual property, finance, pitch
Learning outcomes	 Be able to identify market opportunities Be able to build the differenciate value proposition Be able to design a detailled business model canvas Be able to pitch the project
Independent study	Work on the start up project
Core texts	Osterwalder A., PIGNEUR Y. <i>Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers</i> . Willey, 2010.
	RIES E. <i>The Lean Startup: How Constant Innovation Creates Radically Successful Businesses</i> . Penguin, 2011.
	MASTERSON AK. <i>Business Model Generation: The Blueprints Every Entrepreneur in Every Industry</i> <i>Needs Today to Achieve Maximum Profits</i> . CreateSpace Independent Publishing Platform, 2014.
Assessment	Pitch in the middle and at the end of the course

Méthodes variationnelles pour les EDP

VARIATIONAL METHODS FOR PDEs

Lecturers: Martine MARION

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

Variational methods, also called energy methods, are a major tool in the study of partial differential equations (PDEs) for linear and nonlinear problems. They rely on estimates of the solutions in well chosen functional spaces and the use of powerful methods borrowed from the theory of functional analysis.

The aim of this course is twofold :

- to study the tools in analysis underlying these methods

- to apply them to the study of stationary PDEs (elliptic problems) as well as unsteady problems.

Various problems borrowed from mathematical physics will be investigated.

Perequisites : it is recommended to have some background on Functional Analysis (at the level of the S8 course on this topic)

Keywords: Partial differential equations, weak solutions, linear and non linear problems, variational methods

Programme	Chapter 1 : Sobolev spaces - elements of distribution theory - trace and density theorems Chapter 2 : Linear elliptic problems - Variational methods - Variational methods - Eigenvalues problems Chapter 3 : Nonlinear elliptic problems - Weak topology - Galerkin method Chapter 4 : Parabolic problems - Vector valued functions - Variational formulation of a model problem
Learning outcomes	♦ To learn the analysis tools at the basis of the study of PDEs♦ To be able to apply them to actual problems
Affiliated Masters	Master program "Maths in Action"
Core texts	 H. Brézis. <i>Analyse fonctionnelle</i>. Dunod, 2005. L. EVANS. <i>Partial Differential Equations</i>. AMS, 1998. JL. LIONS. <i>Quelques méthodes de résolution des problèmes aux limites non linéaires</i>. Dunod et Gauthier-Villars, 1969.
Assessment	Knowledge (70%) : 2H exam BE (30%)

Parcours Bâtiment et Architecture

BUILDING & ARCHITECTURE TRAINING PROGRAM

Lecturers: Eric VINCENS

| Lectures: 16 h | TC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language:

Objectives

This course is only accessible to students in the "Structures" and Sustainable Building" sections of the "Civil Engineering & Environment "option. It aims to provide scientific and technical tools upstream to be able to grasp very quickly and be proactive in the part of the option project carried out in collaboration with ENSAL This course also allows you to advance certain courses to be able to be operational more quickly on the option project.

Keywords: frame structures; wood ; steel; comfort; thermal performance of buildings

Programme	 Frame structures (OUV + BD) Structures (OUV) Thermal comfort of the building (BD)
Learning outcomes	 know how to model a frame structure know how to determine and understand the flow of efforts in a structure know how to understand the existing structure and envelope interaction
Independent study	3 BE of 4h around frame structures including 1 with professional ROBOT software
Assessment	BEs noted face to face 1 final test without documents AF grade: 2/3 final test grade + 1/3 BEs grade

Ecole Centrale de Lyon

36, avenue Guy de Collongue 69130 Ecully +33 (0)4 72 18 60 00

www.ec-lyon.fr

L'École Centrale de Lyon est une École du groupe des Écoles Centrale.

@CentraleLyon