# Aeroacoustics of new engine architectures

## in aeronautics

ARENA – Industrial chair ANR – Safran Aircraft Engines (ANR-18-CHIN-0004-01)



#### Future large engines (Ultra-High Bypass Ratio, UHBR) beyond 2025





#### **Objectives of ARENA**

Understanding and modelling of noise sources in new

ultra compact nacelle fan design high distortion pattern fan inlet interaction reduced fan rotation speed

More integrated config.

reduced fan/OGV spacing fan/OGV reduced count

### engine/wing/aircraft integration & interaction OGV & flowpath design (downstream distortion)

#### New ways to install the engines

Semi-buried engine with **BLI** (Boundary Layer Ingestion)



(NextGen ONERA Versatile Aircraft - NOVA)

High-mean flow distortion, and strong inhomogeneous turbulence ingestion

- engine architectures (UHBR and BLI). Investigations will primarily concern all key fan stage areas of noise generation mechanisms but other emerging sources will also be explored
- Understanding and modelling of the effect of the engine installation on engine **noise propagation** and radiation to the fuselage and to the ground in the far-field propagation
- Development of advanced measurements and analysis methods for investigating fan noise. A strong asset in the ARENA Chair proposal is the wealth of unique experimental facilities available at ECL





Phare2 facility (ECL), 1/3 scale

Architecture: modified aerial excitation to the cabin, modified radiation to the ground, additional struts

#### Experimental facilities

LP3 bench – modular installation (rotor/stator, inflow) conditions) to develop research work in laboratory, e.g. advanced in-duct modal detection using hundred pressure sensors with the aim of finally implementing these analysis tools in the Phare-2 facility





Subsonic and supersonic anechoic wind tunnel of the Center for Acoustics (LMFA, ECL)

#### LEAP-1B engine

#### Project organization



Subsonic stream: M = 0.5 in a 30 cm  $\times$  40 cm cross-section for investigating airfoil noise, and M = 0.8 in a secondary nozzle diameter D = 20 cm, for the simulation of flight effect on jet noise • Supersonic stream: fully expanded Mach number  $M_i$  ranges up to 1.59 (NPR of about 4.17)

#### WP4 Advanced MEASUREMENT and signal processing methods for INDUCT AEROACOUSTICS



#### Contacts

Christophe Bailly (Pr, ECL), christophe.bailly@ec-lyon.fr http://acoustique.ec-lyon.fr

Hélène de Laborderie (Safran Aircraft Engines) helene.de-laborderie@safrangroup.com