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Abstract

This paper deals with a Stochastic Noise Generation and Ra-
diation (SNGR) model to compute turbulent mixing noise.
Two problems must be solved in the framework of an acous-
tic analogy. First, a wave operator must be derived for sound
waves travelling in any mean flow. An expression of the source
term is then deduced by using the conservation laws of mo-
tion, and can be simplified with classic assumptions of aeroa-
coustics in the case of subsonic mixing noise. Secondly, the
knowledge of the turbulence velocity field is required to com-
pute this source term. Finally, the radiated acoustic field is
calculated numerically by solving the inhomogeneous acoustic
wave equation. In this study, the wave operator is the system
of the linearized Euler’s equations and the space-time turbu-
lence velocity field is generated by a sum of random Fourier
modes. This method is applied to the case of a cold round
subsonic jet at M = 0.86 and results are compared with avail-
able experimental data.

1. INTRODUCTION: PROPAGATION IN NON-
UNIFORM MEAN FLOW

The simplest wave equation that one can exactly derive
from the fundamental' conservation laws of motion is Light-

hill’s equation:2%2!
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where p, p, u, T and T are respectively the density, the pres-
sure, the velocity, the viscous stress tensor and Lighthill’s
tensor Tj; = pusu; + (p — ¢2p) 8 — 7i;. Here we assume the
medium external to the flow is homogeneous and at rest, ¢,
being the constant speed in this ambient medium. The free-
space Green function of this wave operator is known what ex-
plains the success of Lighthill’s analogy in many various stud-
ies.173:6,11714,26,29 However mean flow effects on the acoustic
waves propagation are not taken into account and they are
known yet to modify the aerodynamic noise spectrum and
directivity. Phillips?” replaced Lighthill’s equation by a con-
vected wave equation where a part of the mean flow effects
were included in the wave operator rather than in the source
term. Introducing the more useful variable = = ln p logarithm
of the pressure, Phillips’ equation reads:
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where v = ¢,/c, is the specific heats ratio. One sees that
the main source term for jet noise contains only components
of the velocity field unlike Lighthill’s source term. The free-
space Green function is known in the case of a plug flow.?
For high Reymnolds number, the viscous stress tensor can be
neglected. Furthermore, one assumes viscous dissipation and
heat conduction effects are negligible in sound generation and
propagation. Then in assuming a parallel sheared mean flow:
u; = U (z3) 61; + u!, Phillips’ equation (3) may be written in
the form:
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is the convective time derivation operator. Besides, one knows
that linearized Euler’s equations govern acoustic wave prop-
agation. So, the associated wave equation should be iden-
tical to the previous homogeneous equation. But it is not
the case.®?? Indeed, assuming a global isentropic relation
dp = c2dp, the wave equation derived from the linearized Eu-
ler’s equation is given by:
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In order to eliminate the term containing velocity fluctu-
ations of the wave operator, we must again apply the D/Dt
operator to the last equation. One finally obtains:
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This equation shows that Phillips’ wave operator does not
contain all the terms that appear in (5). On the other hand, in
the case of a sheared mean flow, the simplest wave equation for

the acoustic variable 7’ is a third order differential equation.
Lilley?? derived a third order wave equation from Phillips’
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equation with this idea. Thus, in applying the D/Dt operator
to Phillips’ equation (3), it follows:
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where the viscous contribution and the entropy fluctuations
are neglected. The free-space Green function of the Lilley’s
equation is unknown and it is difficult to solve numerically a
‘third order wave equation, unlike the linearized Euler’s equa-
tions. Moreover, in the case of a nonuniform mean flow, acous-
tic and hydrodynamic fluctuations can not be clearly sepa-
rated by a wave operator.”1%2431 So  computation of the
acoustic field by solving linearized Euler’s equations seems an
interesting way. An analysis of the acoustic analogy associ-
ated with linearized Euler’s equations has been developed.?
The following system of two first-order equations has been
retained:
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where the source term reads as follows:

The subscript o designates a value of the mean flowfield
and the subscript ¢ a value of the turbulent field. u’ and '
are the acoustic velocity and pressure. The left hand side of
(7) is the system of the linearized Euler’s equations around a
stationary mean flow (U,, po, p,). The right hand side of this
system is the acoustic source term, which is nonlinear in fluc-
tuating part of the velocity. However its time average is zero.
The previous system (7) is obtained with the three following
assumptions. Acoustic pressure fluctuations are isentropic,
the turbulent velocity is incompressible, and only the first or-
der interaction between the mean flow and the acoustic field
is retained. In other words, phenomena such as scattering of
sound by turbulence are assumed to be negligible.

Finally, to compute the sound field, one carries out the
three following steps:

(i) An aerodynamic calculation of the mean flow is
performed by solving the averaged Navier-Stokes
equations with a k — € turbulence closure.

(ii) A space-time stochastic turbulent velocity field is
generated as a sum of random Fourier modes.

(iii) The propagation system (7) is solved. In the left
hand side, one uses values of the mean flowfield
calculated in the first step as coefficients of the
two first-order differential equations, and on the
other hand, the acoustic source term S is calcu-
lated from the synthetized turbulent field.

Section 2 shows how one may synthesize a space-time tur-
bulent velocity field with suitable statistical properties. The
three steps are then carried out in section 3 in the case of a
high-subsonic jet.
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2. A SPACE-TIME STOCHASTIC TURBULENT
VELOCITY FIELD

A method to simulate a spatial stochastic turbulent veloc-
ity field has been developed by Kraichnan!® and Karweit.!6
One uses here this Fourier mode approach but a time evolu-
tion of the turbulent field u is introduced by writing that:

Ou

—+Uc.Vu=0

i + u
where U, is the convection velocity. In all this section, the
subscript ¢ which designates the turbulent velocity field is
omitted. Thus, the turbulent velocity field is given by the
following sum of N modes:

u(x,t) =2 i iin €05 [kn. (x — tUC) + ¥n + wnt] o (8)

n=1

where k, is the wave vector picked randomly on a sphere to
ensure a statistical isotropy at time zero. As a consequence of
the incompressibility of the turbulent velocity field, k.o, = 0
for each mode n. 1, is chosen with uniform probability to
obtain an homogeneous field, and w, is picked with gaussian
probability such as:

2
p(w) = exp (—?l:—‘z) with w, = 2#%

1
weV/ 2T
where k is the kinetic energy per mass unit and € the rate of
dissipation, that is to say the rate of transfert of kinetic energy
per mass unit and per time unit. These two local values of

the turbulent field allow to estimate the integral length scale
L:
poy ks/z
L= / Flr)dr~ 2=
o €
and a characteristic angular frequency w, ~ 2re/k. These two
scales must be associated to the more energizing structures of
turbulence. ‘Besides, the Karman-Howarth longitudinal cor-
relation function f (r) = u, (0,0,0) u, (,0,0) is related to the
energy spectrum E (k) for an isotropic turbulence by the fol-
lowing general expression: ‘
cos(kr)
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with u? = 2/3k. The amplitude % of each mode is determined
from a modified Von Karman spectrum to simulate the com-
plete spectral range:

) E(k)dk
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where k, = €/403/4 is the Kolmogorov wave number. The
parameters o and k. of the spectrum are determined from
the two integral relations which define k and e:

Uy

E(k) =
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A realization of the spatial distribution of the simulated
turbulent field at ¢ = 0 with N = 200 modes is plotted in fig-
ure 1. The size of the square domain is 4L. Figure 2 displays
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Figure 1: Spatial distribution of the simulated turbulent ve-
locity field at ¢ = 0 with N = 200 modes, k¥ = 900 m2.s~? and
€ = 1.5 x 10° m2%.573, The size of the square domain is 4L,
where L is the integral length scale.

the simulated correlation function f and the exact expression
(9). At time zero, the turbulent field is isotropic. As a conse-
quence, the Reynolds tensor %;u; is diagonal and the following
statistical moments verify:

=0

=3
P
Si = '3/2 =0 for the skewness factor,
(2
uf
T; = ——— =3 for the Kurtosis factor.

L @)
However, since the turbulent field is convected by the mean
flow, it is not frozen ard the peak of the cross correlation func-

tion f decreases with the time 7 of separation. One can show?
that the correlation function can be expressed as follows:

2

2
T Wy

2

Rii(r,7) =exp (— ) R;(r—7U,0)

where Ry (r,7) = u;(0,0)u; (r,7). The simulated longitudi-
nal correlation function f(r,7) = Ry (r,T)/u?, where 1 is
the distance and 7 the time of separation, is plotted in fig-
ure 3. The statistical average is performed over 64 space-time
realizations. With this modeling, the turbulent velocity field
exhibits a convective feature.

3. APPLICATION TO THE CASE OF A HIGH-

SUBSONIC JET

The model is now applied to the case of a free subsonic
jet at M = 0.86. The geometry is based on the experimental
configuration of Lush?® and results are compared to available
experimental data.?®%
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Figure 2: — Simulated longitudinal correlation function
f(r) = Ry (r,0,0) /u? — and —-— analytical expression.
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Figure 3: Simulated longitudinal correlation function f (r,).
The statistical average is performed over 64 space-time real-
izations where r is the distance and 7 is the time of separation.
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3.1 Aerodynamic results

In a first step, the mean flowfield is calculated as a numeri-
cal solution of the average Navier-Stokes equations associated
with a k — e turbulent closure. These calculations are carried
out with an axisymmetric compressible version of the ESTET
code developed by the “Laboratoire National Hydraulique”
of the “Direction des Etudes et Recherches d’Electricité de
France”. The computation domain has 20D in the axial di-
rection, with a diameter nozzle D of 0.025m. Comparisons of
the mean axial velocity, the self-similar radial profiles of the
mean axial velocity and the turbulence intensity have been
done??3 with experimental measurements.

3.2 Acoustic results

The calculation of acoustic propagation is performed on
a mesh of 551 x 701 points with a spatial step of Ax =
1.5x1073m to simulate a large range of turbulence wave num-
bers. Also the time step is At = 2.8 x 10~s corresponding to
a Strouhal number of S; = 2.8 for Lush’s configuration. This
computational domain allows to record the time pressure field
on a circle of radius R = 33D centered on the nozzle exit
plane (see figure 4). A sponge zone allows to eliminate all the
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Figure 5: Positive pressure contours at the last time step. One
observes the presence of instability waves near the jet axis.
The acoustic sources are located from 5D to 10D downstream
B . the nozzle.
waves (acoustic waves & instability waves) without feedback '
in the physical domain (non-reflecting boundary conditions).
The propagation equations (7) are solved with the axisym- : ' T d =t %«
metric version of the EOLE code developed by the “Direc-
tion des Etudes et Recherches d’Electricité De France”. The
method used in EOLE is based on a fractional step scheme
and relies on solutions of one-dimensional problems in terms
of a weak formulation.!® Numerical tests indicate that sound
wave propagation is calculated with little dispersion and dissi-
pation. Some applications to the propagation in hot jets show
that the effects of convection and refraction are retrieved in
the predicted sound field.!® The CPU time per iteration and
per node is of order of 1.8 x 10755 on a Cray C98.
Computation of axisymmetric propagation implies that a6k ]
the acoustic sources are completely correlated in the azimu-
thal direction. Indeed each source point represents an annular 2 22 24 26 28
set of points which are subjected to the same turbulent fluc-

Figure 4: Sketch of the acoustic computational domain.
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tuations. So, a directivity facifor is introduced and an overes- Figure 6: Pressure signal recorded for § = 90°, R = 33D.
timation of the intensity level is expected. :

To perform the acoustic propagation, in a first step the
mean flow field is projected on the acoustic mesh, where the
propagation calculation will be carried out. Then, the turbu- §00.0
lent domain which contributes to the radiated acoustic field is ,
identified as the set of points where the mean velocity gradi- 4000
ent and so the kinetic energy ‘are highest.>»3:¢ On this source ’
domain, the stochastic turbulent velocity field is generated
with the method described in section 2, and the source term
S is calculated. The two first order differential equations of
the system (7) are then solved.

Figure 5 shows the positive pressure contours of the last
time step. One observes instability waves near the jet axis
travelling at mean flow speed. Acoustic sources are close to
the jet axis from 5D to 10D downstream the nozzle, as showed
by the wave fronts. The acoustic pressure signal recorded for p— l | ) . |
8 = 90° is plotted in figure 6. At time zero, the initial acoustic " 00 05 10 15 20 o5 3
field is taken as zero in all the computational domain. There T (m S) .
is also a time delay corresponding in a first approximation

to R/c,. The same signal is recorded for § = 0° and is dis- Figure 7: Pressure signal recorded for 6 = 0°, R = 33D
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Figure 8: Acoustic directivity in dB (ref. 1072 W.m™?).
culated — . Measured: o Lush®® A Tanna.®

Cal-

played in figure 7. In this éase, the point is located on the
jet axis and after a time delay, one observes in a first time
an acoustic wave travelling at the speed U + c. Then, one
records instability waves travelling only at the speed U with
a higher amplitude. In fact, instability waves are generated
by interaction between the acoustic field and the nonuniform
mean flow. In the uniform mean flow case, it is possible to
show that the interaction between the acoustic field and the
mean flow does not produce non-acoustic pressure perturba-
tions. In other words, acoustic fluctuations can be separated
from the hydrodynamic fluctuations by a wave operator.

The acoustic intensity is plotted in figure 8. Refraction
and convection effects are observed on the acoustic intensity.
However the acoustic level is overestimated, and do not de-
creases’correctly when 6 increases.

CONCLUSION

The original feature of the present contribution is to com-
bine a stochastic turbulent field with modern computational
fluid dynamics methods to calculate the acoustic field. With
this approach, one takes into account the mean flow effects on
the acoustic waves propagation. Comparisons with available
measurements are very encouraging. However, some difficul-
ties remain concerning the axisymmetric calculation of the
propagation. Other tests are at present performed to validate
the stochastic turbulent velocity field, and more generally the
SNGR model. '
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