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Abstract

The goal of this work is to study some numerical solu-
tions of acoustic propagation problems using linearized
Eider's equations. The two-dimensional Euler's equa-
tions are linearized around a stationary mean flow. The
solution is obtained by using a dispersion-relation-preser-
ving scheme in space, combined with a fourth-order Run-
ge-Kutta algorithm in time. This numerical integration
leads to very good results in terms of accuracy, stability
and low storage. The radiation of a source hi a subsonic
and supersonic uniform mean flow is investigated. The
numerical estimates are shown to be in excellent agree-
ment with the analytical solutions. Next, a typical prob-
lem in jet noise is considered, the propagation of acoustic
waves in a sheared mean flow, and the numerical solu-
tion compares favorably with ray tracing. The final goal
of this work is to improve and to validate the Stochas-
tic Noise Generation and Radiation (SNGR) model. In
this model, the turbulent velocity field is modeled by
a sum of random Fourier modes through a source term
in the linearized Euler's equations. The implementation
of acoustic sources in the linearized Euler's equations is
thus an important point. This is discussed with empha-
sis on the ability of the method to describe correctly the
multipolar structure of aeroacoustic sources. Finally, a
nonlinear formulation of Euler's equations is solved hi
order to limit the growth of instability waves excited by
the acoustic source terms.

1. Introduction

Sound generation and propagation in a turbu-
lent flow is a very difficult numerical problem.1'2
Lighthill's analogy is one of the classical approaches

to solve it. Lighthill's wave equation3 is written as:

(1)dt2
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where Ty « puiUj. This wave equation is exact only
for an homogeneous medium at rest. The Green
function is required in order to obtain an integral
formulation. Hence, only simple geometric configu-
rations can be studied when the turbulent velocity
field is known or modeled. The case of the noise
generated in a duct obstructed by a diaphragm is
one of the most complex geometry investigated in
the literature.4 Furthermore, refraction effects are
not taken into account with (1).

The linearized Euler's equations are an alterna-
tive approach in computational aeroacoustics. Eu-
ler's equations are linearized around a stationary
mean flow, previously calculated by solving the Rey-
nolds-averaged Navier-Stokes equations. Then, a
turbulent source term is introduced in the linearized
equations. A first formulation has been used to
calculate a subsonic jet noise in the axisymmetric
case.5"7 In this Stochastic Noise Generation and Ra-
diation model, the turbulent velocity field was mod-
eled by a sum of random Fourier modes.

The goal of this study is to improve this approach
using a new algorithm, described in section 2. In
addition, the implementation of source terms in the
linearized Euler's equation is investigated. The case
of source radiation in a subsonic and a supersonic
uniform mean flow is studied in section 3. The an-
alytical solution is known for these cases. Section 4
deals with propagation in a sheared mean flow, and
the numerical solution is compared to ray-tracing. It
is shown in section 5 that the multipolar feature of a
source distribution is preserved in solving linearized
Euler's equations.8 Finally, a nonlinear formulation
is developed in order to limit the growth of instabil-
ity waves, which are also supported by the linearized

385



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

equations.

2. Numerical Algorithm

2.1 Governing equations
The density p', the velocity u' and the pressure

p' designate small perturbations superimposed on a
mean flow of density p0, velocity u<, and pressure p0.
7 designates the ratio of specific heats, and is taken
as 7 = 1.4 for air. The Euler's equation linearized
around a stationary mean flow, can be written as:

9U 3E dF
dt + dx + dy + ~ ^ '

where the unknown vector U and the flux vectors E
and F are given, for the two-dimensional case, by:

\

U = p0u

P

U0p0v

and

F = V0p0u
V0p0v'

J
The vector H contains mean flow gradient terms,

which are equal to zero when the mean flow is uni-
form:

\0
(Pou' + p'u0) ^ + (p0v' + p'v0) ^

(p0u' + p'u0) + (p0v> + p'v0)H =

/

The vector S represents possible unsteady sources
in the flow.

2.2 Numerical Scheme

All the variables are nondimensionalized with the
following scales: Az for the length scale, c0 for the
velocity scale, Ax/c0 for the tune scale, p0 for the
density scale and p0<?0 for the pressure scale, where
Aa; = Aj/ is the mesh step size and c0 the ambient
speed of sound. The 7-point stencil, dispersion re-
lation preserving (DRP) scheme of Tarn & Webb9

is used for the spatial flux derivations of the system
(2):

dt

These authors chose the coefficients9'1 ai of their
spatial discretization by requiring that the wave num-
ber k, provided by the finite difference scheme be a
close approximation to the expected wave number.
This optimized fourth-order scheme is better than
a non-optimized sixth-order scheme using the same
7-point stencil. Using the criterion |fc — k\ < 0.005,
the resolution for these standard central finite dif-
ferences (CFD) in terms of points per wavelength
is:

CFD second-order
CFD fourth-order
CFD sixth-order
7-pt DRP scheme

k < 0.30
k < 0.67
A: < 0.96
k< 1.16

A > 21.3
A>9.3
A>6.6
A > 5 . 4

In some cases it is necessary to remove spurious
numerical oscillations due to non linearities or mis-
matches with the boundary conditions or the initial
conditions. These short waves can be filtered by
an artificial selective damping proposed by Tarn &
Shen.10 The damping terms are added to the right
side of the system (2) to obtain:

S l=-3

where Rs is the mesh Reynolds number, which is
usually taken in the interval [5 ; 10]. The nota-
tion Rs = oo designates a calculation without arti-
ficial damping. The coefficients10'1 dj are chosen to
damp only the short waves and not the long waves
corresponding to an accurate resolution of the DRP
scheme. The Fourier transform of the damping func-
tion collapses to the Gaussian function:

exp[-ln2((/feAx--7r)/o-)2]

with a half-width a — 0.27T for the linearized Eu-
ler's equation. The time integration is performed by
through a four step Runge-Kutta algorithm for its
high stability limit and its low storage requirement.
The solution at time step n + 1 is obtained by the
following algorithm:

u?
u?

= U?'

= U? + a3A*K?
(3)

with:

a,
l=-3 l=-3

S*,
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i=-3

The coefficients a, are chosen to obtain a fourth-
order accuracy in time when the spatial operator
is linear.11 In this case, the stability limit corre-
sponds to a Courant-Friedrichs-Lewy (CFL) number
less than 1.73, and the accuracy limit is CFL < 0.73.
Two other time-integration schemes have been inves-
tigated15 in the case of a nonlinear propagation, but
the differences between these time schemes are too
small to be noticed.
2.3 Boundary Conditions

The boundary conditions are very important in
computational aeroacoustics1 (CAA). Indeed, becau-
se of the high quality of the solution, any distur-
bance of small amplitude can propagate in the com-
putational domain contaminating the numerical so-
lution. The boundary conditions of Tarn and his col-
leagues9'12 are implemented. The radiation bound-
ary condition for outgoing acoustic waves is based
on an asymptotic solution of the linearized Euler's
equations. In polar coordinates (r, 9), we have:

when r -» oo. V is the group velocity of wave prop-
agation in the radial direction defined by:

V = Uo.er + y c2 - (u0.e0)

For an outflow boundary condition, the pressure
disturbance is an acoustic fluctuation, which is not
the case for the velocity and density disturbances.
For these last two variables, Euler's equations are
used.9 This yields the following set of compatible
first-order differential equations:

du'——
Ot

dv1
—dt

3. Source radiation in a uniform mean flow

Several test problems can be found in the literature
to evaluate numerical algorithms in CAA.13'14 Some

1 dp1
-^~

Po OX

i dp'-£-po dy

problems have been investigated15 with the numeri-
cal algorithm (3). This section deals with the radia-
tion of a source in a subsonic and a supersonic mean
flow. The analytic solution is known for these two
problems. The source is implemented by using the
vector S in the system (2), which yields:

(4)

with Q = In 2/2. This value corresponds to the
smallest size of a source in order to perform a cal-
culation without damping, i.e. Rs — oo, in the sub-
sonic case. The amplitude is taken as e = 0.5 and
the angular frequency is w = 27T/30. The time step
is given by the condition At = I/ (1 + M), corre-
sponding to a CFL number of \/2 given that:

CFL = At(l
Ar

where M is the Mach number of the mean flow and
Ar2 = Aa;2 + Aj/2. The source is located at xs =
ys = 0 over the computational domain —200 <x,y<
200, yielding a regular mesh of 400 x 400 points.
Figure 1 displays the time evolution of pressure iso-
contours for a subsonic mean flow at M = 0.5. The
pressure profile along the axis y = 0 is plotted in
Figure 2, and is compared to the analytical solu-
tion obtained by a convolution product of the source
term with the 2-D Green function. The two acous-
tic waves propagate upstream and downstream at
the velocity 1 ± M with an apparent wavelength
\c = (l±M)\ where A = 30.

The supersonic case is also investigated. The cal-
culation can be performed without filtering but the
selective damping with Rs = 5 allows the removal
of small oscillations at the limits of the computa-
tional domain. Indeed, there is a discontinuity of
the boundary conditions due to the Mach cone de-
fined by Msin# = 1. Figure 3 shows the pressure
iso-contours for the case M = 1.5. The radiated
field is very different with respect to the subsonic
case. The two acoustic waves propagate now in the
downstream direction at the velocity Mil and in-
terfere with one another. For the value M = 1.5, the
angle of the Mach cone is in the right-hand corners
of the domain since the Mach angle is 9 K 41.8°.

The pressure profile along the axis y = 0 is plot-
ted in Figure 4, and is compared to the analytical
solution obtained by a convolution product.
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Figure 1: Harmonic source in a uniform subsonic
flow at M = 0.5. Pressure iso-contours every t =
45A*. —— 10-1,10-2,10-3, --— 10-4 and - - -
- 10~5.

Figure 3: Harmonic source in a uniform super-
sonic flow at M = 1.5. Pressure iso-contours every
t = 80At. —— HT1,10-2 ----- 10~3 and - - - -
io-4.

Figure 2: Harmonic source in a uniform subsonic
flow at M = 0.5. Pressure profile along the axis
y•= 0 at time t = 450. —— numerical solution, ——
- analytical solution.

Figure 4: Harmonic source in a uniform supersonic
flow at M = 1.5. Pressure profile along the axis
y = 0 at time t = 288. —— numerical solution, —
- analytical solution.
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4. Source radiation in a sheared mean flow

Refraction effects strongly modify the directivity
pattern of a source. As an example we consider the
radiation of a source placed on the axis of a fully
developed jet modeled by a Bickley profile:

Uo_
Co

0.5
cosh2 [(1 + V2) y/b] (5)

The half-width 6 of the jet is taken as b = 10.
The source term is given by expression (4). The
width of the source is a = In 2/9, the amplitude is
e = 0.01 and the angular frequency is u = 27T/9.
The wavelength of the source is of the same order
of magnitude as the half-width of the jet produc-
ing strong refraction effects. This corresponds to a
high frequency radiation since the Strouhal number
based on the jet diameter D = 2b and the velocity
u0 = 0.5c0 is St = 4.4. The same computational
domain is used, but the source is now located at
xa = —100 and ys = 0. The calculation is performed
with a CFL number of V2 and without the artificial
selective damping, i.e. Rs = oo. Figure 5 shows
the pressure field iso-contours. The radiation pat-
tern is strongly modified by the sheared mean flow
(5). The acoustic intensity reaches a peak in the
downstream direction near the angle 9 given by the
relation cosO = I/ (1 + M). For smaller angles, the
intensity decreases, and a shadow zone is observed.
In the upstream direction, acoustic waves are con-
fined in the jet flow. These results are hi agreement
with the geometrical approximation valid for high
frequencies. Indeed, the ray tracing equations16 can
be solved to obtain a reference solution:

duoj

at

I dt

These differential equations are integrated in time
with the following initial conditions at t = 0: x = xs,
and:

k0 ( cos#
+ I/.M I sin0k =

where v = k/fc is the unit vector normal to the wave
front, k0 = v/c0 and M = Uo/c0. The ray tracing is
displayed in Figure 6 showing that the radiation fea-
tures are well illustrated, and the waves fronts have
the same characteristic oval pattern. The final time
calculation corresponding to Figure 5 is 90 times the
tune of the source cycle, and the wavelength is A = 9.
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**$>

-100 100 200

Figure 5: Radiation of a source point hi a sheared
mean flow. Instantaneous pressure contours at time
t = 800. —— isolines from 0.001 to 0.02 (increment
0.001),-— isolinelO-4.

Thus, this exemple shows the steady behavior of the
numerical algorithm (3).

It is well known that three modes are supported
by the linearized Euler's equations, namely the acous-
tic waves, the entropy wave and the vorticity wave.
However the instability modes of the Bickley jet (5)
can not develop with the chosen value of the source
frequency. The amplification rate is plotted in Fig-
ure 7 as a function of the angular frequency. The
nondimensionalized frequency is too high in our case
since u}b/u0 & 14. This point will be discussed in
section 6 which is devoted to a nonlinear formula-
tion of the system (2).

5. Definition of a multipolar source

The multipolar feature of a source S in the sys-
tem (2) is clearly identified by writing the wave equa-
tion corresponding to the linearized Euler's equa-
tions. The linearized Euler's equations take the sim-
plified form:

(6)
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Figure 6: Ray tracing for the radiation of a point
source in a sheared mean flow (5). The angle of
the shadow zone given by cos# = I/ (1 + M), which
gives 9 « 48° is well illustrated. The wave fronts are
marked by the symbols •.

for an homogeneous medium at rest, and the associ-
ated wave equation is:

ay
a*2 = -V.S (7)

Thus, a dipole distribution Si = Fi in the wave
equation (7) is defined by:

dx = mFt dS = 0
v dxi Js

with:

I
whereas a quadrupole distribution 5t- = dTij/dxj is
defined as:

With regard to aerodynamic noise applications,
it is important to check that the resolution of lin-
earized Euler's equations preserves the multipolar
feature of the sources. Therefore, a dipole distribu-
tion Ft is investigated, given by:

= ecos sin (wi) and F2 = 0

Figure 7: Bickley jet profile (5). Spatial growth rate
-k{b as a function of the frequency ub/u0. The ve-
locity perturbation is described by the stream func-
tion * (x,y) = <j>(y) e*k(x-<*)^ where the wave num-
ber A; € C and the wave speed c € C . —— sinuous
mode, —— varicose mode.

where (x, y) €. [-5; 5] x R. A quadrupole distribu-
tion Tij in system (6), is defined such that:

\ 2 1_ fv\o / -2L.TI e—aV fl I— (-Ub ^2^ / ^ " I

x —e sin (wt)

in (x,y) € [-10; 10] x [-10; 10]. The angular fre-
quency is taken as u = 27T/60, the amplitude of the
source is e = 0.01 and the coefficient a is equal to
(ln2)/5. Figure 8 shows the density iso-contours:
the dipole directivity is well illustrated.

For the dipole distribution, the wave equation (7)
can be written as:

ay

when spatial derivatives of the source term (6) ap-
pear. Therefore, this problem is difficult for noise
generation17 since the size of the source domain has
the same order of magnitude as wavelength. A com-
parison between the calculated density profile along
the axis y = 0 and the analytical solution is plot-
ted in Figure 9 for two points in time. The exact
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solution is given by the convolution product p' =
— FI * dG/dx where the Green function is given by:

(8)

with x = (x,y), r = and HO designates
the Hankel function of order zero. The acoustic field
is calculated very accurately, without spirious oscil-
lations near the source domain. For these computa-
tions, the mesh Reynolds number of the damping is
Rs = 5. For the quadrupole distribution, the radi-
ated field is governed by the following wave equation:

Figure 10 displays the acoustic field radiated by
the quadrupole distribution where the expected di-
rectivity is again well shown. The analytical solution
takes the form of a sum of two convolution products:

, _ 6TXX ^ dG dTyy ^ 8G
P dx * dx dy * dy

where the Green function is given by expression (8).
Two comparisons between computations and the ex-
act solution are shown hi Figure 11. Unlike the
dipole distribution, small oscillations near the source
are present. Indeed, in the quadrupole distribution,
the source term hi the system (6) is not zero on the
boundaries. A last test has been carried out hi set-
ting the source term Si = dT^/dxj in the jet profile
(5). The half-width is taken as b = 20 and the center
of the source domain is xs = —100 et ys = 0. The ra-
diated pressure field (Figure 12) is strongly modified
by refraction effects with respect to the no-flow situ-
ation. However, the multipolar nature of the source
is again clearly identifiable.

6. Nonlinear propagation

A nonlinear fornulation has been developed in
order to saturate the growth of instability waves.
The linear propagation governing by equations (2)
becomes:

200

100

-100

-100 100 200

Figure 8: Dipole distribution Si = Ft. Density iso-
contours at time t = 640At. —— positive values,
from 0.001 to 0.011 with a step size of 0-001,
negative values.
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where the flux vectors containing all the nonlinear
terms are written as:

p0u 'z
p'u'

2p'u'u0 + p'u'2
p'u'v0 p0u'v'

p'u'

Figure 9: Dipole distribution Si = Ft. Two density
profiles along the axis #2 = 0 at times t — 560At and
t = 720At. ——numerical solution, —— analytical
solution.
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Figure 10: Quadrupole distribution Si =
Density isocontours at time t = 640At. posi-
tive values, from 0.001 to 0.011 with a step size of
0.001, —— negative values.

Figure 12: Quadrupole distribution Si = dTij/dxj
in the jet profile (5) at M = 0.5. Pressure iso-
contours at time t = 640At. —— positive values,
from 0.001 to 0.011 with a step size of 0.001, -----
negative values.

and
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0.015 -

0.010 -

0.005 -

0.000 -

-0.005 -

-0.010
-200 -100

Figure 11: Quadrupole distribution Si =
Two density profiles along the axis x% = 0 at times
t = 560At and t = 720At. —— numerical solution,
—— analytical solution.

p'v'
_ I p'u'v' + p'u'v0 + p'v'Uo + i

p0v 2p'v'v0
p'v'

'v'2

This kind of formulation has been used by Viswa-
nathan & Sankar18 and Morris19 et al.. The influ-
ence of nonlinear terms can be illustrated by the fol-
lowing example. If we assume that the perturbation
velocity has the form:

= 4> (y] with (k, c) € C ,

then the square of the perturbation amplitude A =
i/nj>* satisfies the equation:

dA
-jr- (10)

where c = CT + ify. Perturbations are unstable if the
imaginary part of the speed c is positive, i.e. c» > 0.
In order to include nonlinear effects, the equation
(10) is now replaced by:
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where b is a constant. The perturbation amplitude
is then given by the expression:

•/3e"

where /3 is an integration constant. Thus, the growth
of the velocity perturbation is limited by taking into
account nonlinear terms.

A symmetric hyperbolic tangent velocity profile
given by:

+ tanh y > (ii)

where the parameters H and 8g are taken as H = 9
and 50 = 1 is used as mean flowfield in order to ob-
serve development of instability waves. The equa-
tions (9) are solved with the numerical algorithm
given in (3). The mesh Reynolds number is Rs = 5
and the CFL number is taken as -\/2. The descrip-
tion of the computational domain and the source
term are identical to those provided in section 4.

Figure 13 displays the pressure profile along the
axis y = 0. By solving the nonlinear system (9) the
growth of the instability waves is limited. The time
evolution of the pressure profiles shows the wave
front deformation by nonlinear effects. It is to be no-
ticed that the nonlinear formulation does not change
significantly the radiated pressure field. The radial
pressure profile along the line x = xs is plotted in
Figure (14) for the linear and nonlinear calculations.
The difference between the two pressure fields is
given in the same figure. The relative variation does
not exceed 1%.

7. Concluding remarks

Computation sound propagation by solving the
linearized Euler's equations provides accurate solu-
tions with very good performances in terms of stabil-
ity, low storage and computation time. The multipo-
lar nature of the source is preserved by the numer-
ical scheme, a crucial point for aerodynamic noise
predictions. The growth of instability waves which
are supported by linearized's Euler equations, can
be limited by taking into account nonlinear terms
without altering the evaluation of sound waves. All
the results presented in this paper has been obtained
in a 2D geometry. An extension of this work to 3D
is under development to compute the noise radiated
by a subsonic jet.

-200 -100

0.0

-03. •

-0.6

= 400At
= 500At

t = 700At

-200 -100

Figure 13: Influence of the nonlinear terms. Pres-
sure profile along the axis y = 0 at different points
in time. The upper plot is obtained without the
nonlinear terms in solving equations (2). The lower
plot is obtained with the nonlinear terms in solving
equations (9).
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Figure 14: Nonlinear formulation. The upper plot
shows a comparison of the radial pressure profile
along the line x = xs at time t = 800A*: ——
with nonlinear terms, —— without nonlinear terms.
The lower plot shows the perturbation pressure iso-
contours obtained by atking the difference between
the two formulations. The radiated acoustic field is
not modified by taking into account nonlinear terms.
—— from 0.001 to 0.02 with a step size of 0.001, —
-- io-4.
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