A00-31136

AIAA 2000-2009

Computation of the sound radiated by a 3-D jet using Large Eddy Simulation

C. Bogey, C. Bailly and D. Juvé

Ecole Centrale de Lyon \& UMR CNRS 5509
France

6th AIAA/CEAS
 Aeroacoustics Conference 12-14 June 2000 / Lahaina, Hawaii

Computation of the sound radiated by a 3-D jet using Large Eddy Simulation*

Christophe Boged Christophe Baillyand Daniel Juve ${ }^{\ddagger}$
Laboratoire de Mécinique des Fluides et d'Aconstique
Ecole Centrale de Lyon \& UNR CNRS 5509
BP 16:3, 691:31 Ecully cedex, France.

Abstract

A Large Eddy Simulation (LES) of a subsonic: romed jet with a Mach number of 0.9 and a Reynolds number of 65000 is presented. The mumerical code is built using spexifoc texhmiques of Computational Aerodeonstics (CAA) in order to provide directly the radiated sound field on a computational domain including the acoustic far-field. The aim of this study is to show the feasibility of LES combined with C'A methods, to determine for a subsonice jet both the turbulent flow and the radiated acoustic: field with a high accuracy. The aerodynamic properties of the jet, such as meanflow parameters and turbulent intensities; are in very good agreement with experimental data. The sound field generated by the jet is obtamed directly in the simulation and investigated. Aconstic sources in the jet are located around the end of the potential core, eonsistently with experimental observations. Radiation directivity and sound levels are compared successfully with corresponding measuremonts.

1. Introduction

Reduction of jet moise requires reliable prediction methods accounting for all phenomena responsible for sound generation and propagation. Since acoustic: sources are found in turbulent regions, it is necessary to know precisely the aerodynamic field to identify noise generation mechanisms. Also properties of the acoustic fluctuations, such as the longrange propagation of sound waves, are greatly different from those of the aerodyuamic fied. Thus approaches specific to aeroacoustics have been developed.

[^0]Initially, hybrid approaches such as Lighthill's analogy ${ }^{1}$ have been proposed, consisting of two-step calculations separating noise generation and propagation. The aerodynamic field is determined in a first step, and introduced as aconstic source terms in a sound propagation method to obtain the noise radiation in a second step. ${ }^{2}$ This approach allows one to use methods well suited to the aerodynamic and acoustic calculations respectively. But it has also two failures restricting its application: the first, one is associated with the modelling of source terms, and the second one with the aconstic-flow interactions which are generally not included properly in the wave operator.

An alternative to hybrid approaches, linked to recent progress in mmerical simmation, is the direch calculation of somud from the resolution of the compressible Navier-Stokes equations. The objective is to determine both the aerodynamic field and the acoustic waves directly. The computed acoustic field is a priori exact because no aconstic model is used, and all flow effects on wave propagation are taken into account. However, this direct acoustic approach must face serions mumerical issues, ${ }^{3}$ owing to the great disparity of levels and length scales between the acoustic and aerodynamic fieds. This has led to the development of techniques specific to Computational AeroAcoustics (CAA), such as non dispersive and non dissipative numerical schemes, or non-reflective boundary conditions. The challenge is to implement them in Navier-Stokes simulations to compute both the turbulent flow and the radiated acoustic field.

The direct calculation of sound must also naturally meet the difficultios of three-dimensional flow simulations. Three approaches are commonly used to solve the Navier-Stokes equations. The first one, the Direct Numerical Simulation (DNS), consists in calculating all turbulent scales. It was applied suc-
cessfully by Freund et al. ${ }^{4.5}$ to determine the noise radiated by supersonic and subsonic round jets. Nevertheless, DNS is restricted to low Reynolds numbers, and turbulence modelling is necessary to simulate higher Reynolds number flows characterized by a wider range of scales. In Large Eddy Simulation (LES), only larger scales are calculated whereas the effects of smaller ones are assigned to a subgrid scale model. It is also possible to solve the unsteady Reynolds Averaged Navier-Stokes equations (RANS) using turbulence closures. Applications of these last two methods have been investigated respectively by Morris et al., ${ }^{6}$ with the calculation by LES of the radiation of a supersonic rectangular jet, and by Shen \& Tam, ${ }^{7}$ with the study of screech tones generation in a round jet using unsteady RANS. These approaches are still to be applied very carefully, because the modelling of a part of the turbulence is likely to modify aerodynamic sound sources.

In this study, a Large Eddy Simulation of a sub)sonic: round jet, with a Mach number of 0.9 and a Reynolds number of 65000 is performed. It is the natural continuation in 3-D of a preliminary work dealing with the computation of the sound radiated by a subsonic mixing layer using the Alesia code. ${ }^{8}$ The aim is, by making use of CAA methods in a Large Eddy Simulation, to obtain for a subsonic jet the aerodynamic flow properties as well as the radiated sound field, and to validate both of them by comparison with experimental data.

This paper is organized as follows. Governing equations and numerical techniques implemented in the Alfesia code are presented in section 2 . In section 3, we describe the jet characteristics and the simulation parameters. Next, aerodynamic results are shown in section 4. Then, the radiated acoustic field is investigated in section 5 . Finally, concluding remarks are given in section 6.

2. Numerical simulation algorithm

2.1 Governing equations

The full three-dimensional Navier-Stokes equations are written in a conservative form. In cartesian coordinates, we have

$$
\begin{aligned}
& \frac{\partial \mathbf{U}}{\partial t}+\frac{\partial \mathbf{F e}}{\partial x_{1}}+\frac{\partial \mathbf{F e}}{\partial x_{2}}+\frac{\partial \mathbf{G e}}{\partial x_{3}} \\
& -\frac{\partial \mathbf{E} \mathbf{v}}{\partial x_{1}}-\frac{\partial \mathbf{F} \mathbf{v}}{\partial x_{2}}-\frac{\partial \mathbf{G v}}{\partial x_{3}}=0
\end{aligned}
$$

The unknown vector \mathbf{U} is given by

$$
\mathbf{U}=\left(\rho, \rho u_{1}, \rho u_{2}, \rho u_{3}, \rho e\right)^{t}
$$

where $\rho, u_{1}, u_{2}, u_{3}$, and e are the density, the three velocity components, and the total specific energy respectively. Euler and viscous fluxes in the three coordinate directions are denoted by the subscripts \mathbf{e} and \mathbf{v}. System (1) is completed by the definition of the total specific energy for a perfect gas

$$
\rho e=\frac{p}{\gamma-1}+\frac{1}{2} p\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)
$$

where γ is the specific heat ratio, and p the pressure. Thus Euler fluxes are written as

$$
\begin{gathered}
\mathrm{Ee}=\left(\begin{array}{c}
\rho u_{1} \\
p+\rho u_{1}^{2} \\
\rho u_{1} u_{2} \\
\rho u_{1} u_{3} \\
(\rho e+p) u_{1}
\end{array}\right) \quad \mathrm{Fe}=\left(\begin{array}{c}
\rho u_{2} \\
\rho u_{1} u_{2} \\
p+\rho u_{2}^{2} \\
\rho u_{2} u_{3} \\
(\rho e+p) u_{2}
\end{array}\right) \\
\mathrm{Ge}=\left(\begin{array}{c}
\rho u_{3} \\
\rho u_{1} u_{3} \\
\rho u_{2} u_{3} \\
p+\rho u_{3}^{2} \\
(\rho e+p) u_{3}
\end{array}\right)
\end{gathered}
$$

and viscous fluxes as

$$
\left\{\begin{array}{l}
\mathrm{Ev}=\left(0, \tau_{11}, \tau_{12}, \tau_{13}, u_{i} \tau_{1 i}\right)^{t} \\
\mathrm{Fv}=\left(0, \tau_{21}, \tau_{22}, \tau_{23}, u_{i} \tau_{2 i}\right)^{t} \\
\mathrm{Gv}=\left(0, \tau_{31}, \tau_{32}, \tau_{33}, u_{i} \tau_{3 i}\right)^{t}
\end{array}\right.
$$

The viscous stress tensor $\tau_{i j}$ is defined by $\tau_{i j}=2 \mu S_{i j}$ where μ is the dynamic molecular viscosity, and $S_{i j}$ the deviatoric part of the deformation stress tensor given by

$$
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \frac{\partial u_{k}}{\partial x_{k}}\right)
$$

2.2 Numerical scheme

The numerical algorithm experimented to solve the 2-D Navier-Stokes equations ${ }^{8}$ is implemented in the 3 -D case. This high-order, non-dispersive and non-dissipative, scheme has shown in 2-D its capacity to compute the sound waves with accuracy, despite the difference of magnitude between aerodynamic and acoustic fields. It combines the DRP scheme of Tam \& Webb ${ }^{9}$ for space discretization with a fourth-order Runge-Kutta algorithm for time integration. A selective damping ${ }^{3}$ is also used to filter out short waves not supported by the scheme.

The mesh is non uniform, because different discretizations are rexuired in the acrodynmic near-field and in the aconstic far-field.

2.3 Boundary Conditions

The 2-D fommation proposed by Tam \& Dong ${ }^{10}$ is extended to the 3-D case. These bomadary conditions are built from the asymptotic solution of Eufer's equations in the acoustic far-field, and allow to minimize acoustic reflexions generated when fluctuations leave out the computational domain.

Into the inflow and the lateral sides of the computational domain, onty acoustic fluctuations are reaching the bommaries. Radiation boundary conditions; defined by the differential system governing the behaviour of aconstic perturbations in the farfield, are thus applied. They are written, in spherical coordinates: as

$$
\frac{1}{v_{g}} \frac{\partial}{\partial t}\left(\begin{array}{c}
p \\
u_{1} \\
u_{2} \\
u_{3} \\
p
\end{array}\right)+\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)\left(\begin{array}{c}
p-\bar{\rho} \\
u_{1}-\bar{u}_{1} \\
u_{2}-\bar{u}_{2} \\
u_{3}-\bar{u}_{3} \\
p-\bar{p}
\end{array}\right)=0
$$

where v_{n} is the acoustic group velocity; and $\bar{\rho}, \bar{u}_{1}, \bar{u}_{2}$, \bar{u}_{3} and \bar{p} are the mean densits; velocity components and pressure respectively. These mean quantities are computed during the simulation.
hato the ontfow, acrodymanic fluctuations convected by the flow are also leaving the computational domain. The first four equations are modified to enable the exit of vortical or entropic perturbations. The outfow boundary conditions are written as

$$
\left\{\begin{array}{l}
\frac{\partial p}{\partial t}+\overline{\mathbf{u}} \cdot \nabla(\rho-\bar{p})=\frac{1}{\bar{c}^{2}}\left(\frac{\partial p}{\partial t}+\overline{\mathbf{u}} \cdot \bar{\nabla}(p-\bar{p})\right) \\
\frac{\partial u_{i}}{\partial t}+\overline{\mathbf{u}} \cdot \nabla\left(u_{i}-\bar{u}_{i}\right)=-\frac{1}{\bar{p}} \frac{\partial(p-\bar{p})}{\partial x_{i}} \quad[i=1,2,3] \\
\frac{1}{u_{g}} \frac{\partial p}{\partial t}+\frac{\partial(p-\bar{p})}{\partial r}+\frac{(p-\bar{p})}{r}=0
\end{array}\right.
$$

where $\bar{c}=\sqrt{\gamma \bar{P} / \bar{\rho}}$ is the mean sound speed.
The efficiency of the boundary conditions is estimated with two test cases. ${ }^{11}$ The first case is a purely acoustic: problem with the propagation of a three-dimensional acoustical pulse in an uniform Mach 0.5 flow. Acoustic perturbations are leaving out the computational domain without significant, reflexions. In the second one, aerodynamic perturbations are considered with the convection of a vortex ring in a uniform Mach 0.5 flow. The exit of this
vortical structure generates weak spurious waves, but which are not negligible in comparison with the physical somd field characterized by small amplitudes. Similar results were found for the 2-D formalation of Tam \& Dong boundary conditions. ${ }^{11}$ A sponge zone is therefore implemented in the outflow direction to dissipate acrodynamic fluctuations before they reach the boundary, and to filter out possible reffected waves. ${ }^{3}$ It is based on the combination of grid stretching with the introduction of an artiticial damping term in system (1).

2.4 Subgrid Scale Model

The resolution of Navier-Stokes equations requires the calculation of all turbulent seales. These Direct Nomerical Simulations (DNS) are thos restricted to low Reynolds number flows.

To simulate flows at higher Reynolds number, a possibility is to compute only the larger structures; and to take into account of the effects of smaller soales via a subgride scale model. This method is referred to as Large Eddy Simulation (LES). A burbulent viscosity μ_{t} ensures dissipation of the smatler unresolved structures. Basically, μ is replaced by $n+\mu_{t}$ in system (1). Varions models have been built to determine an expression of this turbulent viscosity: To keep the problem as simple as possible for acrodynamics, we choose Smagorinsky's model ${ }^{12}$

$$
\mu_{t}=p\left(C_{s} \Delta_{c}\right)^{2} \sqrt{2 S_{i j} S_{i j}}
$$

where the Smagorinsky constant is taken to be $C_{s}=$ 0.18 , and the chamateristic grid length is

$$
\Delta_{q}=\sqrt[3]{\Delta x_{1} \Delta x_{2} \Delta x_{3}}
$$

3. Flow simulation

3.1 Flow parameters

The inflow axial velocity $u(r)$ of the jet is given by the following hyperbolic-tangent profile

$$
u(r)=\frac{U_{j}}{2}+\frac{U_{j}}{2} \tanh \left(\frac{r_{0}-r}{2 \delta_{\theta}}\right)
$$

where U_{j} is the inflow centerline velocity, δ_{θ} the initial momentum thickness of the shear layer, and r_{0} the jet radius.

The jet Mach number M_{j} is taken as 0.9 , and the fluid surrounding the jet is initially at, rest. The choice of this Mach number is justified by the amount of experimental studies available in the literature, providing both aerodynamic results, ${ }^{13}$ and acoustic
results. ${ }^{14-16}$ This Mach mumber allows also a high convection speed of turbulent structures, which reduces computation time. We can notice that the first munerical simulation of a subsonic jet to determine directly its radiated field involves a Mach number 0.9 jet. It is the DNS of a Reynolds mumber 36000 jet carried out by Freund.5

The jet Reynolds number, based on the jet, diameter and defined by $R e_{b}=U_{j} \times D / 1$, is equal to $\left.R e_{D}\right)=65000$. It, is higher than Roynolds numbers affordable in DNS, but still lower than values of practical interest, typically $R e_{D} \geq 10^{5}$.

The ratio between the initial jet radius and the intial momentum thickness of the shear layer is also an important parameter. 'Transition from laminar flow to a fully turbulent jet is greatly dependent on its value. In this study, the ratio δ_{0} / r_{0} is 0.05 , that enables the development of vortical structures in the shear zones, before turbulent, mixing occurs on the whole madial section of the jet corresponding to the end of the potentied core.

3.2 Numerical specifications

The computational mesh consists of $255 \times 187 \times$ 127 points in the three coordinate directions. Owing to computer limitations inherent in 3-D calculations, meshes are significantly stretched as represented in Figure !

Figure 1: Visualization of the $x-y$ and $y-z$ sections of the cartesian mesh grid. Only every sixth line in the three coordinate directions is shown.

Points are clustered radially in the jet, with 26 points in the initial jet radius. The minmum mesh spacing Δ_{0}, found around $r=r_{0}$, is chosen to be $\delta_{0}=1.6 \Delta_{0}$, so that there are about ten grid points in the intial shear. Outside the jet, mesh spacing increases rapidly, to reach a value of $\Delta y_{\text {max }}=0.4 r_{0}$ in the far-field. This mesh spacing $\Delta y_{\text {max }}$ allows an accurate sound propagation up to a frequency
corresponding to a cut-off Stronhal number $S t_{c}=$ $f_{c} \times D / U_{j} \simeq 1.1$

In the flow direction, mesh spacing is constant up to $x=20 r_{0}$, with $\Delta x=3 \Delta_{0}$. Then, meshes are stretched for the 40 last points with $\Delta x_{\text {max }}=$ $0.54 r_{0}$, in order to build up a sponge zone. Following the technique used in a previous study, ${ }^{8}$ an artificial damping term is progressively added in the sponge zone. It is only applied in the flow region using a radial weighting. Thus, the physical part of the computational domain extends in the axial direction up to $x=20 r_{0}$ for the aerodynamic field, and u,, $0 x=30 r_{0}$ for the acoustic far-field.

The mesh grid is refined enough to calculate ascuratly large turbulent structures. The subgrid scale viscosity is around 10 times the molecular viscosity; which is small compared to values usually found. That may prevent the subgrid model from being unsuited or from generating parasitic noise.

The time stepp is defined by $\Delta t=0.7 \Delta_{0} / c_{0}$. The selective damping is applied two times per iteration with a mesh Reynolds number $R_{\text {s }}=5$, to ensure the numerical stability of the simulation in presence of three-dimensional turbulence. The simulathon runs for 30000 iterations, the calculation of statistical means starting after 5000 iterations. Consequently, the simulation time corresponds to $22 \times$ $L x / c_{0}$, where $L x=30 r_{0}$ is the grid length in the axial direction. The computation is 15 hours long on a Nec $\mathrm{SX}-5$, with a CPU time of $0.3 \mu \mathrm{~s}$ per grid point and per iteration, and a CPU speed of 5000 Mifops.

3.3 Inflow forcing

The jet, is forced using a random excitation to obtain its natural development. Velocity fluctuations are added into the inflow to secd the turbulence in the jet. They are solenoidal in order to minimize the production of spurious acoustic waves. These vortical perturbations are generated by the following process.

First a vortex ring of radius r_{0} is built up near the inflow at, $x=0.8 r_{0}$. It has a longitudinal and and a radial velocity, but no azimuthal one. The $n^{\text {th }}$ spatial mode of the excitation is then obtained from this basic vortex ring by multiplying with the function $\cos (n \theta)$. In this study; the jet is excited using the first tenth modes.

This ring excitation is only applied in the shear layer, that is the most unstable region of the jet. In these shear zones, turbulent intensities generated by the forcing are around 3%, which is similar to intensities observed experimentally at, jet nozzle exits.

Thus, it allows to start properly the tramsition to thrbulence in the jet.

4. Aerodynamic results

4.1 Flow development

Figure 2 displays the vorticity fields provided by LES. The longitudimal vorticity field $e_{x y}$ shows that vortical structures are generated in the two shear layers, which grow initially rather independently. The shear zones begin to interact in the ricinity of $x=10 r_{0}$, indicating the end of the potential core of the jet. Then, a developed t.mrbulence is found downstream, illustrated by the transwersal vorticity fedd wyz and characterized by a typical three-dimensional mixing. We can also observe that aerodynamic fluctuations are dissipated by the sponge zone from $x=20 r_{0}$.

Figure 2: Snapshots of the vorticity field. Upper picture, $\omega_{x y}$ in the $x-y$ plane at $z=0$; bettom picture, $\omega_{y z}$ in the $y-z$ plane at $x=12 r_{0}$. Levels are given in s^{-1}.

4.2 Mean flow properties

Contonrs of the mean longitudinal velocity are shown in Figure 3 for velocities varying from $0.05 U_{j}$ up to $0.95 U_{j}$. The jet potential core, region of miniform velocity equal to U_{j}, can be seen. Its end is located around $x=10 r_{0}$, which is in agreement with experimental values. For exemple, Lau et al. ${ }^{13}$ have observed the end of the potential core of a Mach 0.9 jet at a distance of $10.4 r_{0}$ from the mozale exit.

Mean streamlines are also plotted in Figure 3. Surrounding fluid, initially at rest, is drawn madially to the flow direction, at a low speed of the order of $2 \% U_{j}$. Then the fluid is carried away in the jet.

It, is in accordance winh experimental descriptions of fluid entraimment mechanism, responsible for the increase of jet flow rate. ${ }^{21}$ The boundary conditions implemented in the simulation alow the incoming of fluid in the computational domain to feed the flow. This result is essential to obtain flow characteristics conform to experiments.

Figure 3: Visualization of mean flow: - : 10 contours of the moan longitudinal velocity defined from 0.05 to $0.95 U_{j} ;-\cdots$. 5 mean streamlines.

Figures 4 illustrates computed mean flow properties. In particular, the linear growth of differen: mean parameters is found in the jet region where turbulence is developed, which corresponds to the assumption of self-similar mean profiles.

In this region, the mean centerline velocity U_{c} follows a x^{-1} decay in the axial direction, which can be written as

$$
\frac{U_{c}}{U_{j}}=B \times \frac{D}{x-x_{0}}
$$

where x_{0} is the virtual origin, and B is the decay constant. Figure 4 (a) present.s the longitudinal evolation of the inverse of the mean centerline velocity normalized with the inflow velocity U_{j}. Its value is 1 in the potential core, and it grows linearly afterwards, confirming the x^{-1} decay of U_{c}. The constant B is 5.5 , with a virtual origin at, $x_{0}=0$. It is consistent. with measurements of Wygnanski \& Fiedler, ${ }^{17}$ Panchapakesan \&: Lumley ${ }^{\text {tN }}$ and Hussein et al.,19 as well as DNS results of Boersma et al., ${ }^{20}$ reported in Table 1.

$R e_{1}$	B	A	Reference
8.6×10^{4}	5.4	0.086	Wygnanski et al. ${ }^{\text {IT }}$
1.1×10^{4}	6.1	0.096	Panchapakesan et al. ${ }^{18}$
9.5×10^{4}	5.8	0.094	Hussein et al. ${ }^{19}$
2.4×10^{3}	5.9	0.095	Boersma et al. ${ }^{20}$
6.5×10^{4}	5.5	0.096	Present simulation

Table 1: Mean flow parameters obtained from different experiments, DNS, and present simulation.

In the same way; the half-width of the jet $\delta_{1 / 2}$, defined as the distance from the axis for which the

Figure 4: Longitudinal evolution of: (a), the inverse of the moan centerline velocity normalized with the inflow velocity U_{j} / U_{c}; (b), the half-width of the jet, normalized with the jet radius δ_{12} / r_{0}; (c), the mean flow rate normalized with the inflow rate Q / Q_{0}.
mean bongitudinal volocity is half the centerline velocity, grows linearly in the jet self-similar region as

$$
\delta_{1 / 2}=A \times\left(x-x_{0}\right)
$$

where A is the spreading rate of the jet. In Figure f(b), we show the longitudinal evolution of the jet. half-width normalized with the initial radius r_{0}. Its value is 1 as long as no vortical structures are created in the shoar layers, and then increases slowly at their appearance aronnd $x=6 r_{0}$. Afterwards; the jet spreads linearly in the turbulent region, with a rate A equal to 0.096 , that is in agrement with experimental and numerical data of Table 1.

Fimally, owing to the x^{-1} decay of the centerline velocity and to the linear spreading of the jet, the axial mean flow rate Q must also grow linearly as

$$
\frac{Q}{Q_{0}}=C \times \frac{x-x_{0}}{D}
$$

where Q_{0} is the inflow rate, and C is the entramment, rate. Figure 4 (c) displays the Iongitudinal evolution of the mean flow rate normalized with Q_{0}. This ratio grows regularly, since the entramment of the surrounding flaid occurs from the inflow of the computational domain. Nevertheless, the growth is linear only after the end of the potential core, with an entraimment rate C around 0.32 . Experimental values of the entraimment rates are rare in the literature, because they are difficult to measure. Ricon \& Spalding ${ }^{21}$ have however succeeded in determining the mass entrainment rates of jets between different, fluids. In the air-air case, they have found a rate of 0.32 , which is the same as that given by the simulation.

The mean velocity properties of the jet calculated by LES are therefore in very good agrement with corresponding data available in the literature.

4.3 Turbulent intensities

Turbulent intensities of acrodynamic perturbations provided by LES are now investigated. The longitudinal intensity $\sigma_{u u}$, radial intensity $\sigma_{v v}$ and azimuthal intensity $\sigma_{w w}$ are calculated in the $x-y$ plane at $z=0$, using velocity fluctuations u^{\prime}, v^{\prime} et w^{\prime}. They are written as

$$
\sigma_{u u}=\frac{\sqrt{\overline{u^{\prime 2}}}}{U_{c}} \quad \sigma_{v w}=\frac{\sqrt{\overline{v^{\prime 2}}}}{U_{c}} \quad \sigma_{w w}=\frac{\sqrt{w^{\prime 2}}}{U_{c}}
$$

The turbulent intensity $\sigma_{u v}$ is also defined by

$$
\sigma_{u v}=\frac{\sqrt{\left|\overrightarrow{u^{\prime} v^{\prime}}\right|}}{U_{c}}
$$

These intensities are nomalized with the local conterline longitudinal velocity: according to usual representation.

Radial profikes of the four turbulent intensities are shown in Figures 5 and 6 at five locations between $x=15 r_{0}$ and $x=20 r_{0}$ a as function of the nondimensional coordinate $\quad / /\left(x-x_{0}\right)$. Profiles are well superimposed, in agreement with the self-similat rity of fully turbulent jet. The mean profiles calculated between $x=15 r_{0}$ and $x=20 r_{0}$ are also ploted as solid lines. Results are very close to measuments, and mean calculated curves stand between two experimental profiles provided by Panchapakestu \& Lumley ${ }^{18}$ and be Hussein at al. ${ }^{19}$

Turbulence levels supplied by the LES are compared successfully with experimental data. In particular, the use of the Smagorinsky subgrid-stale model has not brought a too high dissipation of turbulent structures. This model is actually suited to the jet configuration, where the Boussinesq hypothesis is valid and fine turbulence is cutasi isotropic.

4.4 Turbulent spectrum

Turbulence is fully developed at the poim tocated at. $y=r_{0}, z=0$ and $x=16.8 r_{0}$. The turbubent kinetio energy spectrum $E\left(k_{1}\right)$ is then calculated at. this point, and \boldsymbol{y} loted in Figure 7. The Taylor hypothesis of frozen turbulence is applied to estimate $E\left(k_{1}\right)$ from the temporal spectrom $E(f)$. In pratetice, the usual relation $k_{1}=2 \pi f / \bar{u}_{1}$ is used.

The grid cut-off wave mumber k_{c}, is given by $k_{c}=2 \pi /\left(6 \Delta_{c}\right)$, where Δ_{c} is the local mean mesh spacing. It corresponds to the highest wave number well supported by the munerical algorithm, with 6 points per wavelength. As expected, the spectrum $E\left(k_{1}\right)$ decreases rapidly in the vicinity of k_{c}. The grid cut-off is also related to a Strouhal number $S t_{c}=2.5$, so that predominant sound sources, typ)ically found between $0.1<S t<1$ in a jet, will not, be affected significantly by the LES filtering.

The cut-off of the turbulent spectrum is located in the $k^{-5 / 3}$ inertial zone, where the kinctic energy is transfered from large structures to dissipative fine scales. That is one assumption of the Smagorinsky subgrid scale model.

5. Direct calculation of the acoustic field

5.1 Dilatation field

Figure 8 displays the dilatation field $\Theta=\nabla . u$ provided directly by LES. Dilatation accounts only for compressible fluctuations, and is also comected

Figure 5: Radial profiles of the turbulent intensities: (a), $\sigma_{u u}$; (b), $\sigma_{v v} ;(\mathrm{c}), \sigma_{w w} \times$, at $x=15.8 r_{0} ;+$, at $x=16.8 r_{0} ; *$, at $x=17.7 r_{0} ; \nabla$, at $x=18.6 r_{0} ; \Delta$, at $x=19.6 r_{0}$ - mean profiles calculated from $x=15 r_{0}$ to $x=20 r_{0} ;-\cdots$, experimental profiles obtained by Panchapakesan \& Lumley ${ }^{18}$; - -- , experimental profiles obtained by Hussein: Capp \& George. ${ }^{19}$

Figure 6: Rewlial profiles of the turbulent intensity $\sigma_{u n}$. See Pigure 5 for the meaning of various carves and symbols.

Figure 7: Turbulen, kinetice energy spectrum $E\left(k_{1}\right)$ in $\mathrm{dB} / \mathrm{Hz}$, at the point located at $x=16.8 r_{0}, y=r_{0}$ and $z=0$.
to the acoustic pressure onnside the flow region, where the meanflow is neghighe, by the fomula

$$
\Theta=\nabla \cdot \mathrm{u}=-\frac{1}{\rho_{0} c_{0}^{2}} \frac{\partial p}{\partial t}
$$

Dilatation is thms proportional to the time derivative of the acousiic pressure outside the jet. It.s use allows to elimimate the mean pressure field, and to filter very low frequency oscillations.

Figure 8: Snapshot of the dilatation field $\Theta=\nabla$.u in the acoustic region, and of the vorticity field $\omega_{x y}$ in the aerodynamic region, in the $x-y$ plane at $z=0$. The dilatation color scale is defined for levels from-90 i $90 \mathrm{~s}^{-1}$, the vorticity scale is the same as in Figure 2.

This figure demonstrates that the dilatation field is not contaminated by parasitic waves generated by the inflow excitation or by the exit of turbulent structures of the computational domain. Wave fronts are mamly coming from an origin located around $x=11 r_{0}$, in the region where the mixing layers are merging. It cam be noted that predominant, acoustic: sources are located around the end of the potential core. This agrees both with the results of the recent. DeiS performed by Freund ${ }^{5}$ and with the measurements of Chu \& Kaplan ${ }^{22}$ and Juve et al. ${ }^{23}$ using various source localization techniques. Moreover, the computed radiated field is more pronounced in the downstrean direction, in accordance with experimental directivities.

5.2 Pressure field properties

In order to determine the sound levels, the time evolution of pressure is recorded in the acoustic far-
fiedd, at different points along the bommdaries of the computational domain. Figure 9 plots the fluctuating pressure obtained during 4000 iterations at $x=10 r_{0}, y=24 r_{0}$ and $z=0$. Very low frequenty oscillations are visible, with an amplitude higher than that of physical waves. We suppose that these sparions osciliations are due to reflections coming from the outfow boundary. The sponge zone being built, up over only 40 points, the fow frequency waves supported by the maximum mesh spacing in the longitndinal direction may not be dissipated enough by the artificial damping term.

Figure 9: Time evolution of the fluctuating pressure recorded at the point located at, $x=10 r_{0},!/=24 r_{0}$ and $z=0$, during 4000 iterations.

This property is also observed in Figure 10, presenting the pressure spectrum in dB at the point considered in Figure 9. The spectrum increases rapidly t.o the low frequencies from a Strouhal mumber $S t \simeq 0.1$. This low frequency behavior was previously found in numerical studies of Zhang et al. ${ }^{2.4}$ and of Shieh \& Morris ${ }^{25}$ dealing with the computation of noise generated by flows past a cavity. Moreover, the spectrum decreases sharply around a Stronhal number of 1 , in the vicinity of the grid cut-off frecuency in the acoustic far-field. For $0.1<S t<1$, the spectrum appears actually as a typical jet moise spectrum with a peak around $S t \simeq 0.3$.

5.3 Sound pressure level

Following Zhang et al., ${ }^{24}$ the physical part, and the spurions low frequency part of the spectrum are distinguished to calculate the Sound Pressure Leved (SPL). The pressure spectrom is therefore integrated from a Strouhal number $S t=0.15$. The radiation of experimental jets concerns mainly a frequency range of $0.2<S t<1 .^{1.4-16,23}$ The sound contribution of the low frequency part of the physical radiated field,

Figure 10: Sound pressure level obtained from the pressure at the point defined in Figure 9, as function of Strouhal mmber $S t=f D / U_{j}$.
neglected in our calculation, is not predominant. By 1.his way, the computed SPl are very close to those obtained if the whole physical spectrum were integrated.

SPL are estimated at a distance of $60 r_{0}$ from the inflow, to enable the comparison with measurements taking the jet nozzle exit as origin of the directivity: The r^{-1} decay of acoustic waves is used from the somed sources located at $x=11 r_{0}$ to the different far-field recording points. Figure 11 shows the calculated SPL, and experimental clata for varwous Reyoulds manbers, reported in Table 2. The agreement between numerical sond levels and measurements is excellent.

M	Re $_{D}$	Referenco
0.9	5.4×10^{5}	Mollo-Christensen et al.
0.88	5×10^{5}	Lash 15
0.9	3600	Stromberg et al ${ }^{\text {m }}$
0.9	6.5×10^{4}	Present simulation

Table 2: Some jets with Mach numbers similar to the Wach number of the present simulation, for which the radiated sound field has been measured.

The acoustic level reaches a peak aromod an angle of 30°, and it decreases for angles closer to the jet axis, which can be attributed to flow refraction effects. Furthermore, the acoustic radiation is much more marked in the downstean direction, with upstream sound levels at least 10 dB inferior to the highest value obtained downstream.

The sound field provided by LES compares successfully with measurements in terms of directivity and levels. Despite the problem associated with the

Figure 11: Sound pressure level as function of angle θ measured from the jet axis; at, $60 r_{0}$ from the jet nozzhe. Experimental data by: + , Mollo-Christensen et al. ${ }^{14} ; 0$, Lush ${ }^{15} ; \times$, Stromberg et al.. ${ }^{16}$
spurious very low frequency oscillations, the madiated fieh is correctly calculated. Predominant noise generation mechanisms are well describel in the mumerical simulation. They seem to be relatively independent, of the Reynolds number, considering the similarity between the noise radiation of jets with very different. Revnolds numbers from 3600 up to 5.4×10^{5}.

(6. Conchusion

In this paper, a Large Eddy Simulation of a 3-D round jet with a Mach number of 0.9 and a Reynolds number of 6 g000 has been presented. The simulation is based on CAA numerical methods in order to compute directly the aerodynamic noise. Implementation and results of the calculation are presented.

Specific CAA techniques, such as the mamerical algorithm or the non-reflecting boundary conditions, initially developed to propagate accuratly sound waves using Linearized Euler's equations, are capable of solving the full Navier-Stokes equations in order to simulate turbulent, flows.

Acrodynamic properties of the jet, namely meanflow paraneters and turlulent, intensities, are in very good agreement with experimental data of the literature. The acoustic fied radiated by the jet is also directly given by the LES. Sound sources in the jet are found at the end of the potential core, as shown experimentally. The integration of the physical spectrum provides somd pressure levels and directivity reproducing well experimental results.

This study shows the feasibility of the direct calculation of the acoustic fied generated by subsonic:

Hows using IESS. The excellent, concordance with measuroments supports that aerodynamic and aconstic: mechanisms are well accounted for by our simulation. In that way; further works will investigate the generation mechamisms of jet noise.

Acknowledgments

Computing time is supplied by Institut, du Developpement et des Ressources en Informatique Scientificue (IDRRIS - CNRS). Financial support, is provided by Electricite de France, Direction des Etudes et. Recherches (P. Iafon).

References

${ }^{1}$ Liohthan, M..J. 1952, On sound generated aerodynamically - 1. General iheory, Proce Roy. Soc: Loudon: 211: Ser. A, 1107, 564-587.
${ }^{2}$ Bastin, F. LAMON: P. \& CANDEL, S., 1997, Computation of jet mixing noise due to coherent. structures: the phane jet case, J. Fhuid Mech., 335: 261-304.
${ }^{3}$ Thm; C.K.Wi: 1995, Computational aeroacoustices: issues and methods, ALAA Joumal, $\mathbf{3 3}(10)$: 1788-1796.
${ }^{4}$ Frbijd, J.B., Lele, S.K. \& Monn: P., 1998 , Direct simmlation of a Mach 1.92 jet and its somud field, AIAA Paper 98-2291.

5 FREUND, J.B. 1999, Acoustice sources in at turbulent jot: a direct mmerical simutation study; AIAA Paper 99-1858.
${ }^{6}$ Morris, P..l. Long, L.N. \& SGhembeger, T.E. 1999 , Parallel computations of high speed jet, noise, AIAA Paper 99-1873.
${ }^{7}$ Shen, H. © TAa, C.K.W., 1998, Numerical simulation of the generation of the axisymmetric mode jet screech tones, AMA Jommal, 36(10), 1801-1807.
${ }^{8}$ Bogey' C. Bahly, C. \& Juvé, D., 1999, Computation of mixing layer noise using Large Eddy Simulation, AlAA Paper 99-1871, accepted in the AIAA Journal.
${ }^{9}$ TAM, C.K.W. \& WEBr, J.C., 1993, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 262-281.

10TAM, C.K.W. \& Dong: Z., 1996, Radiation and outfow boundary conditions for direct computation of acoustic: and flow (listurbances in a nomumiform mean flow: J. Comput. Acons., 4(2), $175-201$.
${ }^{11} \mathrm{BOGEY}: ~ C ., ~ 2000$, Calcul direct du bruit aerodynamique et validation de modeles aconsticues hybrides. I'h. D. Thesis of Ecole Centrate de Laon, No. 2000-11.
${ }^{12}$ Smacomens y . I. S. 1963 , General circulationexperiment.s whith the primitive equations: I the basic experment, Won. Weath. Rev, 91, 99-163.
${ }^{13}$ Lalj, .J.C., MORR15, P.J. \& Fisher, M.J., 1979. Measurements in subsonic and supersonic free jets using a laser velocimeter, J. Fluid Mech.; $93(1)$, 1-27.

1. Mohlo-Chmstensfn, E., Kotmi, M.A. \& MAmTUCELI, J. J.R., 1964, Experiments on jet flows and jet noise far-field spectra and diredtivity patterns, J. Fluid Mech., 18, 285-301
${ }^{15}$ Lisish, PA., 1971, Measurements of subsonic jet noise and comparison with theory, J. Fluid Mech., 46(3), 477-500.
${ }^{16}$ Stromberg, J.L., MoLajghtin; D.K. \& Trowtr: T.R., 1980, Flow field and acoustic: properties of a Mach number 0.9 jet at a low Revnokls number, J. Somed Vib), $72(2)$, 159-176.
${ }^{17}$ WYGnanskt, I. \& Fiedler, H., 1969, Some measurements in the self-preserving jet, J. Fluid Merh.: 38(3), 577-612.
${ }^{18}$ Panchapakesan, N.R. \& Lumley, J.L., 1993, Turbulence measurements in axisymmetric; jets of air and helium. Part I. Air jet. J. Fhid Mech.; 246, 197-223
${ }^{19}$ Hussen, H.J. Capp, S.P. \& George, W.K. 1994, Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent, jet, J. Fluid Mech., 258, 31-75.
${ }^{20}$ Boersma, B.J., Brethouwer, G. \& NifuwSMADT, F.T.M., 1998, A mumerical investigation on the effect of the inflow conditions on a self-similar region of a round jet, Phys. Fluids, $10(4)$, 899-909.
${ }^{21}$ Ricou, F.P. \& Spalding, D.B. 1961 , Measurements of entrainment by axisymmetrical turbulent, jets, J. Fluid Mech., 11, 21-32.

22 Chu, W.'T. \& KAPIAN, R..E., 1976, Use of a spherical concave reflector for jet-noise-source distribution diagnosis, J. Acoust. Soc. Am., $59(6), 1268-1277$.
${ }^{23}$ Juvé, D., Sunyicit, M. \& Comte-Bellot, G. 1980, Intermittency of the noise emission in subsonic cold jets, J. Souml Vib), 71 (3), 319-332.
${ }^{24}$ Zhang, X., RONA, A. \& Lllley; G.M., 1995 Far-field radiation from an unsteady supersonic cavity flow, AIAA Paper 95-040.
${ }^{25}$ Shem: C.M. \& Monbis; P.J., 1999, Pamallel mumerical simulation of subsonic cavity noise, AAA Paper 99-1891.

[^0]: *Copyright © 2000 by the Authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.
 ${ }^{\dagger}$ Postdoctoral Student, Member AlAA
 ${ }^{\ddagger}$ Assistam Professor, Member AIAA
 ${ }^{5}$ Professor, Member AIAA

