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Abstract

The goal of this paper is to investigate the acoustic field
generated by the flow over a cavity using two different
and complementary numerical methods. First, a Direct
Numerical Simulation (DNS) of the 2-D compressible
Navier-Stokes equations is performed to obtain directly
the acoustic field. Second, this reference solution is com-
pared to solutions provided by hybrid methods using
the flowfield computed inside the cavity combined with
an integral formulation to evaluate the far-field noise.
Two integral methods are studied: the acoustic analogy
of Ffowcs Williams and Hawkings (FW-H) and a wave
extrapolation method based on FW-H equation. Both
show a good agreement with DNS but the first one is
more expensive owing to an additional volume integral.
The extrapolation method from a surface is more effi-
cient and provide a complementary tool to extend CAA
near-field to very far field. These methods help the anal-
ysis of wave patterns, by separating the direct waves
from the reflected ones.

1. Introduction

The computation of flow noise is a challenging
problem insofar as there are large disparities be-
tween fluctuations in the flow and in the sound field.
Energy radiated through the acoustic farfield is in-
deed smaller than the one of the aerodynamic near-
field by O(M4), and the involved length scales are
very different between the eddy scale and the acous-
tic wavelength. The propagative nature of sound
differs also greatly from the vortical behaviour of
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the flow. That's why approaches specific to aeroa-
coustics have been developed. The first group of
approaches separates the aerodynamic calculation
and the noise propagation problem in order to ap-
ply at each step the most appropriate method. Ba-
sic difficulties in these so-called hybrid methods are
the modelling of the source terms from aerodynamic
fluctuations and the ability of the wave operator to
include complex acoustic-flow interactions. One of
the first theories on aerodynamic noise generation
was given by the acoustic analogy of Light hill.1 It
was extended by Ffowcs Williams and Hawkings2

(FW-H) to take the effects of solid boundaries into
account. This powerful analytical tool can be used
in connection with numerical methods to evaluate
noise radiation. Another relevant issue is the use
of a surface integral formulation, like Kirchhoff's or
porous FW-H methods, for prediction of the acous-
tic field. These two approaches have similar an-
alytical insights based on Green function formal-
ism and suffer both from the limitation of the ob-
server in a uniform flow. Linearized Euler Equa-
tions (LEE) can provide a more complete propa-
gation operator for acoustics in non-uniform me-
dia. The coupling of these equations with a Navier-
Stokes equations solver was demonstrated by Fre-
und3 but offers only poor gain compared to direct
calculation. Bailly et al.4 have introduced source
terms in LEE with success for different free shear
flows. The main difficulty is the modelling of the
source terms in more complex configurations. We
propose here to study numerical issues of two in-
tegral formulations: the Ffowcs Williams-Hawkings
analogy and a wave extrapolation method (WEM)
from a surface, sometimes called the porous FW-
H integral method. However these two hybrid ap-
proaches do not account for the aero dynamic-acous-
tic coupling and they lack the modelling of the non-
uniform flow effects.
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Turning to account the fact that both fluctu-
ations are solutions of compressible Navier-Stokes
equations, it is possible to obtain acoustic and aero-
dynamic fields in the same calculation. However,
owing to the great disparities between these two
quantities, in classical CFD (Computational Fluid
Dynamics), acoustics is either not resolved accu-
rately or not resolved because of the numerical sche-
mes used and inadequate grid cell size or time step.
Moreover, reflections due to the boundary conditions
can shade the physical acoustic wave field. That's
why specific algorithms and appropriate boundary
conditions have been developed. We then talk about
CAA (Computational Aero Acoustics). The CAA
codes essentially rest upon high order explicit sche-
mes minimizing dispersion and dissipation of acous-
tic waves. These choices are numerically expensive
but it is the price to make the aerodynamic flow and
the acoustic field coexist. CAA has already been
able to reproduce sound radiation from free flows
like a 3-D round jet5 with qualitatively and quanti-
tatively good agreement with experimental data.

In this paper we focus our attention to imping-
ing shear layer, which gives rise to intense coherent
oscillations as well as associated noise radiation in
a wide range of applications.6 The chosen test case
is a 2-D rectangular cavity, as well for its geometri-
cal simplicity as for its relevance to many practical
concerns. However, geometrical simplicity does not
imply flow simplicity, and cavity flows provide an
assortment of interesting theoretical questions and
experimental observations. The cavity flow, char-
acterized by a severe acoustic environment within
and outside the cavity, arises from a feedback loop,
locked in by the geometry and the flow characteris-
tics. Despite numerous prior investigations, there re-
main some central questions which must be adressed
if an understanding of the self-sustained mechanism
is to be achieved. We hope that aeroacoustic sim-
ulations can provide a new tool to investigate how
the deformation of flow structures, their interactions
with the upstream edge, the dynamic of the sepa-
rated shear layer, the internal recirculating flow or
the changes of flow regime with changing geometry
and flow parameters are related to the intense radi-
ated noise.

The aim of this paper is to study two integral hy-
brid methods with direct computation as reference
and to evaluate their practical interest and comple-
mentarity. In particular, for the case of cavity flow
it is shown how these different tools can help us to
analyse the radiated acoustic field. In the first part
of this paper, we shall present the direct computa-

tion of Navier-Stokes equations for a two-dimensio-
nal rectangular cavity with aspect ratio of 2, pay-
ing particular attention to the comparison between
these numerical results and Krishnamurty's exper-
iments.7 In the second part, we shall describe the
two integral methods based on FW-H equation and
compare the results to the DNS. We shall show how
these simulations can help the understanding of the
nature of the acoustic radiations.

2. Direct computation of cavity noise

2.1 Introduction

Despite the amount of numerical studies pub-
lished on cavity flows, few deal with radiated noise.
Initial attemps have been made in supersonic cases.
These first CFD computations of compressible cav-
ity flows used the two dimensional unsteady RANS
(Reynolds Averaged Navier-Stokes) equations with a
turbulence model.8 The effectiveness of such mod-
els for separated flows remains an open question.
Slimon9 et al. have found that RANS simulations
show a strong sensitivity to the choice of turbulence
models. Tarn et al.10 showed that the results are
affected by high values taken by the turbulent vis-
cosity. They even noticed better results for the es-
timation of the time-averaged surface pressure field
with a zero-equation turbulence model. That's why
Rona and Dieudonne11 preferred to study laminar
flow motion. The absence of an eddy viscosity and
a second-order algorithm give a moderate dispersion
and dissipation. However, this choice, as well as the
one of a relaxation length, is often made on an ad-hoc
basis. To compute the broadband nature of cavity
noise at high Reynolds numbers, it is important to
take account of the turbulent mixing. Zhang12 de-
veloped an approach coupling the unsteady RANS
equations and a k - u model including compressibil-
ity corrections. But all these applications were per-
formed with supersonic flows, simplifying the prob-
lem.

The first computations of acoustic radiation from
a cavity with a subsonic grazing flow have been car-
ried out recently by Colonius13 et a!., and Shieh
& Morris14 using 2-D Direct Numerical Simulation
(DNS) at a Reynolds number based on cavity depth
Rep ~ 5000. These simulations show a transition to
a new flow regime when the ratio L/60 of the cav-
ity length over the momentum thickness becomes
large. This mode is characterized by the shedding
of a single vortex which occupies all the cavity. The
periodic ejection of this structure is associated with
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an increase of the cavity drag. A similar transition
was noted in the experiments of Gharib & Roshko15

in a water tunnel. The new regime was called wake
mode because of the drag increase. However, the
presence of the wake mode has not been seen in ex-
periments of compressible cavity flows at subsonic
speeds. The same numerical bifurcation has also
been noted by the authors.16 Does it result from
the very low Reynolds numbers imposed by DNS or
from the two-dimensional approach? To investigate
higher Reynolds numbers (Rep — 2 x 105), Shieh &
Morris17 applied CAA tools to solve unsteady RANS
with a turbulence model: the one equation Spalart-
Allmaras turbulence model and Detached Eddy Sim-
ulation have been implemented. The transition to a
wake mode is still observed, indicating that it could
be related to the 2-D behaviour rather than to the
Reynolds number. When the cavity length is large
compared to the thickness of the incoming boundary
layer, Najm & Ghoniem18 show in the same manner
that the recirculation zone takes the form of a large-
scale eddy that breaks away and migrates down-
stream, overshadowing the role of the usual smaller-
scale vortices. However, this too strong recirculating
flow is fed by the two-dimensional inverse cascade of
energy. Vortex stretching, necessarily 3-D, should
modify significantly the turbulent mixing between
the clipped part of the shear layer and the corre-
sponding counter-rotating vortex produced by the
conservation of vorticity at the downstream edge.
This turbulent mixing would prevent untimely tran-
sition to wake mode. In our 2-D simulation, a short
aspect ratio and a relatively thick incoming bound-
ary layer are chosen to ensure the shear layer mode
of oscillations.

We try to reproduce numerically Krishnamurty's
experiment7 with the same dimensions as in the ex-
periment. The latter studied the acoustic radiation
from two-dimensional rectangular cavities cut into a
flat surface at low Reynolds numbers. The acoustic
fields were investigated by means of Schlieren obser-
vations, interferometry, and hot-wire anemometer.
The measurement used a cutout spanning the 4 by
10 inch transonic wind tunnel and ending by a mov-
ing plate to obtain cavities of various length L, the
depth D being the same for all of them, fixed at
0.1 inch. We present here the simulation of the case
where the length-to-depth ratio is 2 (L = 5.18 mm
and D — 2.54 mm) where the boundary layer ahead
of the cavity is laminar and the freestream Mach
number is 0.7. The Reynolds number based on cav-
ity depth is Re& = 41000. The choice of a high
subsonic speed is interesting because the frequency

increases slightly with Mach number and the cavity
is no more compact relatively to the acoustic wave-
length. Moreover, the test case is more relevant for
integral methods because mean flow effects on sound
propagation become important.

2.2 Numerical methods

Governing equations

A Direct Numerical Simulation (no model) of
the 2-D compressible Navier-Stokes equations is per-
formed. The conservative form of these equations in
a Cartesian coordinate system can be written as:

dU (9Ee <9Fe

dt dxi dx2

(9EV <9FV

8x2
= 0

where:

U =

Ee =
Fe =

Fv = (0,721, 722, Ml 721 + U2T22 + £2)*

The quantities p, p, HI are the density, pressure,
and velocity components, while e and h are the to-
tal energy and total enthalpy per mass unit. For a
perfect gas,

h = e + p/p
p = rpT

where T is the temperature, r the gas constant, and
7 the ratio of specific heats. The viscous stress ten-
sor nj is modelled as a Newtonian fluid and the heat
flux component ^ models thermal conduction in the
flow with Fourier's law:

+ _ k
3 IJ dxk J

dT

where // is the dynamic molecular viscosity, a the
Prandtl number, and cp the specific heat at constant
pressure.

Algorithm

When the above equations are solved numeri-
cally, it is imperative that, as the frequency is var-
ied, neither the wave amplitude nor its propagation
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speed be altered by the numerical scheme. That's
why, following the work of Bogey,19 high order al-
gorithms are implemented. The equations are ad-
vanced in time using an explicit 4th order Runge-
Kutta scheme.

The Dispersion-Relation-Preserving scheme de-
veloped by Tarn and Webb20 is used to obtain spatial
derivatives. A selective damping has also to be intro-
duced in order to filter out non physical short waves
resulting from the use of finite differences and/or
treatment of boundary conditions.

Q 4

Figure 1: Computational grid for cavity L/D = 2
(shown every other ten points). •: data sampling lo-
cations for directivity evaluation. ( — — — ): location
of the progressive additional sponge zone.

Boundary treatment

This is the second key point of an aeroacous-
tic simulation. We need nonreflecting conditions to
avoid spurious reflections which can superpose to
physical waves. To this end, the radiation boundary
conditions of Tarn and Dong,21 using a polar asymp-
totic solution of the linearized Euler equations in the
acoustic far-field, is applied to the inflow and upper
boundaries. At the outflow, we combine the out-
flow boundary conditions of Tarn and Dong, where
the asymptotic solution is modified to allow the exit
of vortical and entropic disturbances, with a sponge
zone to dissipate vortical structures in the region
where the shear layer leaves the computational do-
main. This sponge zone, represented in figure 1, uses
grid stretching and progressive additional damping
terms. Bogey et al.22 have shown its efficiency in
situations where large amplitude non linear distur-
bances must exit the domain without significant nu-
merical reflections.

Along the solid walls, the nonslip condition ap-
plies. The wall temperature Tw is calculated using
the adiabatic condition. We keep centered differenc-

ing at the wall to ensure sufficient robustness using
ghost points. This overspecification at the wall can
generate spurious high-frequency waves which are
eliminated by artificial damping.

Numerical specifications

The computational mesh, displayed in figure 1, is
built up from nonuniform Cartesian grid with 147 x
161 points inside the cavity and 501 x 440 outside,
highly clustered near the walls. The minimum step
size corresponds to A?/^n = 0.8 in order to re-
solve the viscous sublayer. The computational do-
main extends over 8.5D vertically and Y1D hori-
zontally to include a portion of the radiated field.
The upstream and downstream boundaries are suf-
ficiently far away from the cavity to avoid possible
self-forcing. The spacing between two points reaches
a value Aymax = 2.9 x 10~5 m in the cavity and
Aymax = 5.6 x 10~5 m in the acoustic region.

The initial condition is a polynomial expression
of the laminar Blasius boundary layer profile for a
flow at Mach 0.7. The initial boundary layer thick-
ness at the cavity leading edge is SQ ~ 0.2D; it
corresponds to a ratio L/60 ~ 50, where L is the
cavity length and SQ the momentum thickness. The
freest ream air temperature T^ is 298.15 K and the
static pressure p^ is taken as 1 atm.

Owing to the strong anisotropic computational
mesh, we have a very stiff discretized system. For
explicit time marching schemes, an extremely small
time step has to be used in order to satisfy the
stability CFL criterion: A£ — 0.7 x A^^/COO =
6.06 x 10~9 s. The mesh Reynolds number of the
selective damping is chosen as RS = 4.5. This ar-
tificial dissipation is applied a second time near the
walls and especially near the two edges.

The computation is 4 hours long on a Nee SX-5,
with a CPU time of 0.4 //s per grid point and per
iteration.

2.3 Results and discussion

Far-field results

Figure 2 gives a monitored pressure history at
x/D = —0.04 et y/D = 2D in the beginning of the
acoustic region. The flow reaches a self-sustained
oscillatory state after a time of about 25D/t/oo but
is still irregular until 65D/[/oo- During the first pe-
riod, the natural cavity modes grow in amplitude
and saturate. Then transient is going on during the
time needed by the recirculating flow to get installed
in the cavity.

The corresponding sound pressure level spectrum
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Figure 2: Pressure history versus time at x/D = —0.04
and y/D = 2D.
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Figure 3: Spectrum of pressure fluctuations at x/D
—0.04 and y/D = 2D versus the Strouhal number St

is depicted in figure 3. It displays one principal
peak at St= 0.68, which corresponds to the periodic
impingement of coherent structures at frequency j3.
Several secondary peaks are observable. The peaks
at St= 1.39 and St= 2.14 are the first 2/3 and sec-
ond 3/3 harmonics of principal frequency /3. The
low-frequency component at /3/2 (St= 0.38) can be
associated with a low-frequency modulation by the
recirculating zone, which alters periodically the av-
erage trajectory of the incident vortex. Most of
the noise energy is concentrated at the resonant fre-
quency and its first harmonics. A Schlieren visu-
alization, corresponding with vertical gradients of
density, shows the structure of the radiated field
in figure 4(a). Two wave patterns are visible for
the positive gradients (dark), which interfer during
propagation. Their strong upstream directivity is
characteristic of high speed convection by the free
stream. These radiations are in qualitatively good
agreement with the Schlieren picture of Krishna-
murty (fig. 4(b)). The experimental Strouhal num-
ber of oscillations is St= 0.71, corresponding to an
error of 5% on the frequency /3 found in our simu-
lation. The Rossiter semi-empirical formula23 pro-
vides St= 0.71 for this configuration with always two
vortices in the shear layer.

Krishnamurty7 measured the intensity of acous-
tic radiation through interferometry. He found that
the acoustic field could be very intense with values
greater than 163 dB. These high intensity levels are
also found in the present simulation, with a magni-
tude of sound pressure levels about 160 dB.

Q 4

Figure 4: Schlieren pictures corresponding to transver-
sal derivative of the density: (a) present simulation, (b)
Krishnamurty's experiment.7

Near-field results

The near-field is now investigated to try to iden-
tify the noise generation mechanism, and in partic-
ular to determine the origin of the two waves pat-
terns noted previously. Figure 5 presents the vor-
ticity field over one period of well-established self-
sustained oscillations. In figure 5(a), the shear layer
is seen to reattach at the trailing edge and two vor-
tical structures can be identified in the shear layer.
The first one is just shed from the leading edge sepa-
ration. This rolled-up vortex travels downstream in
the next pictures, growing with convection. The sec-
ond structure is located just upstream of the down-
stream edge. As it impinges the edge (fig. 5(b)), the
incident vortex is clipped at its centre. Part of the
vortex spills over the cavity and is convected down-
strean, increasing the thickness of the reattached
boundary layer. The other component is swept down-
wards into the cavity creating recirculating regions
(fig. 5(c)). In figure 5(d), the vortex generated
at the leading edge in the first picture arrives at
the trailing edge, sustaining the vortex impingement
process.

The corresponding time matched pressure field is
depicted in figure 6. It is not easy to identify origins
of noise generation because three different patterns
are superposed. The first one is associated with the
two coherent structures evolving in the shear layer.
Low pressure regions in the shear layer identify vor-
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(c)

(d)

Figure 5: Instantaneous vorticity contours at four times
during one cycle. 16 contours between uiD/Uoo = —10.5
and 1.36: (——— ) negative contours, (——— ) positive
contours. Zoom in and around the cavity.

3 4

Figure 6: Instantaneous pressure contours at four times
during one cycle. 22 contours between —104 and 104

Pa: (——— ) positive contours, (---•---- ) negative contours.
Zoom in and around the cavity.

tices, separated by high pressure regions. The two
low-pressure centers are clearly visible in fig. 6(d).
The first one is associated with the vortex roll-up
at the leading edge. The second one corresponds
to the second vortex convected by the flow before
it impinges the upsteam edge. The second pressure
pattern represents the recirculating flow in the cav-
ity. As seen in the vorticity snapshots, a principal
recirculation zone is located in the second half of
the cavity, corresponding with the low pressure re-
gion inside the cavity, identifiable in fig. 6(b) et 6(c).
This large-scale region is not a single vortex but is
actually made up of several smaller vortices, aris-
ing from the clipping process, and its central region
is vorticity free. Endly, the third group of pressure
waves is the acoustic radiation generated by the flow.
Figure 6 shows the birth of a positive pressure wave
in the impingement process. The previously gener-
ated wave, located at the leading edge in fig. 6(a),
escapes from the cavity in fig. 6(d). In the latter

picture, the pressure wave seems to result from the
superposition of two acoustic radiations. It is yet
difficult to identify the two sources in the presence
of interferences. This point will be discuss again in
the next part.

3. Validation of integral methods

3.1 Introduction

In the present simulation, the acoustic part of
the mesh represents more than the half of the to-
tal number of grid points, corresponding only to
6 cavity depths. In order to ensure the six points
per wavelength required by Tarn & Webb's sten-
cil for the smallest acoustic wavelength present in
the computational domain (occuring here when a
direct acoustic ray interfers with the reflected one),
we have an acoustic cut-off Strouhal number Stc =
fminL/Uov = L/(6A2/acousMoo) ~ 21. A reason-
able calculation can then include only few wave-
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lengths whereas realistic problems require observers
at a distance of about two or three orders of magni-
tude greater than the cavity length. For these dis-
tances, it is certainly not discerning to perform a
direct acoustic calculation.

The integral methods, instead, permit one to ob-
tain the acoustic pressure at any points of the field,
with a computational time independent of the ob-
server distance. Typical calculations are carried out
in two steps: an aerodynamic code based on CFD/
CAA algorithms is used to evaluate the flow field,
and then an integral formulation is applied to propa-
gate the pressure disturbances in the farfield. Nume-
rous integral methods are nowadays available. They
rest upon two principal physical backgrounds: first,
the acoustic analogies which split the computational
domain in an aerodynamic region, where source ter-
ms responsible for noise generation are built up, from
an acoustic region governed by a linear wave equa-
tion; second, the wave extrapolation methods which
allow the evaluation of the far-field once some quan-
tities are known on a control surface. From a phys-
ical point of view, it is important to notice that the
extrapolation methods like Kirchhoff's formula are
valid for any phenomena governed by the linear wave
equation like optics, acoustics or electromagnetism
while the acoustic analogy is based on the conser-
vation laws of mass, momentum, and energy and is
thus dedicated to aeroacoustics.

Recent advances in integral methods were essen-
tially developed for the reduction of helicopter rotor
noise24 and have been recently applied for the pre-
diction of jet noise.25'26 Zhang, Rona, and Lilley27

have used Curie's spatial formulation to obtain far-
field spectra of cavity noise but no validation were
proposed.

3.2 Acoustic analogy
The acoustic analogy was proposed by Lighthill1

and was extended by Curie28 and Ffowcs Williams
and Hawkings2 to include the effects of solid sur-
faces in arbitrary motion. The FW-H equation is
an exact rearrangement of the continuity equation
and Navier-Stokes equations into the form of an in-
homogeneous wave equation with two surface source
terms and a volume source term. The use of general-
ized functions to describe flow quantities permits one
to embed the exterior flow problem in unbounded
space. An integral solution can thus be obtained by
convoluting the wave equation with the free-space
Green function.

A serious restriction is that the observation re-
gion is assumed at rest. It is difficult to extend

the propagation operator to include more complex
flows. Only the case of a uniform flow is satis-
factorily treated. Ffowcs Williams and Hawkings
proposed the use of a Lagrangian coordinate trans-
form assuming the surface is moving in a fluid at
rest. Goldstein29 preferred to take the convection
effects in the wave equation. In the same man-
ner, in the case of a motion with constant velocity
UQO = (t/i,0), the application of the Galilean trans-
formation from the observer position (x,£) to (77,?),

r]i = Xi + Uit, t — t

leads to the convected FW-H equation30:

JL (3(77,+ (i)
where the modified source terms including convec-
tion can be written as:

fij = p(ui - Ui)(uj - Uj) + [p - clop] 8ij - nj (2)
dfFi = [p00UiUj+p8ii-nj]

Q = \-P~U*}

(3)

(4)

H is the Heaviside function and the function / = 0
defines the surface E outside of which the density
field is calculated. / is scaled so that df/drjj — %,
the j-component of the unit normal vector pointing
toward the interior of E. For a rigid body, we have
simplified the surface source terms using the non-
penetrating condition un — u.n = 0.

For bidimensional geometries, it is more conve-
nient to resolve this equation in the spectral do-
main.30 The frequency domain formulation avoids
the evaluation of the retarded time in three-dimen-
sional problem, which can be a critical point. The
gain over the time-domain applications is enhanced
in 2-D because of the weaker properties of the Heav-
iside function which replaces the Dirac function in 2-
D Green functions. Whereas the Dirac leads to a re-
tarded time expression removing the temporal inte-
gration, the Heaviside function can only change the
upper limit of the integration to a finite value, the
lower limit remaining infinite. The spectral formu-
lation removes this time constraint by solving FW-
H equation harmonically. With application of the
Fourier transform

-fJ — c
(x,t)e~iujt dt (5)
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equation (1) becomes

(6)

where M« = Ui/Coo. A Green function for this in-
homogeneous convected wave equation is obtained
from a Prandtl-Glauert transformation of the 2-D
free-space Green's fonction in the frequency domain:

i(Mk(rll-yl)/!32

= — e

where r2 - (771 - yi)2 + /32(r?2 - 2/2)2, #Q2) is the

Hankel function of the second kind and order zero,
and /3 = v 1 — M2 is the Prandtl-Glauert factor,
M< 1. The integral solution of equation (6) is then
given by:

r ~
Jf=o
r .• I iu

Jf=0

J J f>0

^G(rj\y)

y)

(7)

In 2-D, the volume integral is restricted to the
surface So (/ > 0) including the aerodynamic sources
Tij and the surface integrals are calculated on the
solid lines which represent rigid boundaries. We ap-
plied the spatial derivatives on the Green function to
avoid the evaluation of derivatives of aerodynamic
quantities. It is formally equivalent to the trans-
formation in temporal derivatives as performed by
DiFrancescantonio31 or Farassat and Myers.32

3.3 Wave extrapolation method

This kind of methods permits one to solve lin-
ear wave propagation problem once some flow quan-
tities are given on a closed fictitious surface sur-
rounding all the sources. The most famous one is
the Kirchhoff 's method which makes a parallel with
electromagnetism by using KirchhofFs formula. The
main advantage with respect to acoustic analogy ap-
proaches is that only surface integrals have to be
evaluated because all non linear quadrupolar sources
are enclosed in the control surface. The problem is

thus reduced by one dimension, which is particularly
interesting in a numerical point of view. However,
this approach suffers from the restriction that Kirch-
hoff's surface must strictly be in the linear acoustic
region. Brentner and Farassat33 and Singer34 et al.
show some misleading results when Kirchhoff's for-
mulation is applied respectively to a hovering rotor
blade and to the flow past a circular cylinder by
using a control surface too close to the sources or
crossing a shear layer.

A very clear analysis given by Brentner24 shows
that a wave extrapolation method based on the FW-
H equation is relatively unaffected by the placement
of the integration surface unlike Kirchhoff's formula-
tion. We note FW-H WEM the Wave Extrapolation
Method based on the FW-H formulation (7) by ne-
glecting the volume integration (quadrupole source
term Ty). This FW-H WEM can combine the flex-
ibility of the Kirchhoff's method and the physical
insights of the FW-H equation.

FW-H and Kirchhoff formulations solve the same
physical problem, the differences between the two
writings being due to some choices made in the deriva-
tion process. In particular, the volume term of the
Kirchhoff's formula include strictly all nonlinear as-
pects whereas a part of these aspects is moved in
the dipole and monopole surface integrals in FW-H
formulation. As a result, the two formulations work
well when the control surface is in the far-field region
but if it lies in a not-fully linear region, the Kirch-
hoff's results are erroneous and the FW-H WEM
is more efficient. This method is sometimes called
porous FW-H because it coincides with the applica-
tion of FW-H analogy on a fictitious porous surface.
The analytical developments are the same that those
of FW-H analogy but the non-penetration condition
un — 0 is no more required, and, in order to obtain
correct results, one has to allow a fluid flow across
S.

For a two-dimensional problem with uniform sub-
sonic motion, FW-H WEM is given by equation (7)
without the volume integral:

- I i
Jf=0

with the two source terms:

Q^^-p^jL

) W )G( i j | y )dE (8)

•H-rii]^- (9)3 n Ox, v '

(10)
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3.4 Numerical implementation

I D • — - — • — - — • — • — .•—- — -.--
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Figure 7: Schematic of the different line and surface
sources for evaluation of integral formulations.

The fact that the FW-H equation can be the ba-
sis for either an acoustic analogy or a wave extrap-
olation method permits us to develop a single code.
The choice of the method is made by neglecting
the volume integral or imposing the non-penetration
condition.

From an algorithmic point of view, there is al-
most no difference between the two approaches con-
sidered here. The first step is the recording of the
aerodynamic quantities during one period of the DNS
computation, using the pseudoperiodic behaviour of
the oscillations in the cavity. The acoustic time step
is 40 times the DNS time step corresponding to 131
points per wavelength. The variables (ui,u<2,p,p)
are recorded on three fictitious lines of the meshgrid
for wave extrapolation method, and on the walls of
the cavity and the surface around it for the acoustic
analogy application as reported in figure 7.

Then the source terms are calculated and trans-
formed in the frequency-domain using the Fourier
transform defined by (5) for the positive frequen-
cies. The contribution of the negative counterpart
is equal and can be taken in account by doubling
the final result. The integrals are then evaluated
for each point of an acoustic meshgrid. This regu-
lar cartesian grid of 176 x 184 points covers a area
of (-5£>;5£>) x (-1D;8£>), corresponding with the
main part of acoustic domain of DNS. Endly, an in-
verse Fourier transform is used to recover the acous-
tic signal in time-domain.

3.5 Results of porous FW-H

The extrapolation is performed from three lines
spanning the longitudinal direction, of 501 points.
The first line LI is chosen in the acoustic region at
y = ID where a Kirchhoff's method would also have
been applied. The second line L2 is in the near-
fied region at y = 0.5.D, and the third line Z/3 is
still closer to the shear at y = O.2.D. The results of
integration over LI, L2, and L3 with source terms
defined by (9), and (10), and with M^ = 0.7 in

Figure 8: Pressure field calculated at the same time by
(a) FW-H WEM from LI, (b) FW-H WEM from L2, (c)
FW-H WEM from L3, (d) DNS.

the observer domain are compared in figure 8. The
three pressure fields obtained are consistent with the
DNS. The contour plots are sharper when the sur-
face is farther from sources. This is confirmed by the
pressure profile of figure 9, and by the overall sound
pressure directivity of figure 10. The three profiles
predicted by the FW-H WEM are in good agreement
with the DNS result. The small differences could be
attributed to the fact that not all of the quadrupolar
sources are taken into account when the integration
surface is too close to the walls.

3.6 Results of FW-H analogy

When we apply FW-H analogy, the surface inte-
grals are evaluated on the physical rigid walls of the
cavity (solid lines of figure 7). The good results of
porous FW-H method on L3 placed at y - 0.2£> in-
dicates that the volume sources above this line would
be negligible. In the present evaluation, the chosen
volumes are depicted in figure 7: 52 is the surface
inside the cavity, and 5i the surface above it. S\ is
ID high, and extends from — 2D to 5L> in stream-
wise direction. However, the evaluation of volume
integrals of Tij are sensible to truncature effets, es-
pecially in the streamwise direction where the source
terms decrease slowly. It is due to the presence of ad-
vected vortices, ejected from the cavity during the
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Figure 9: Pressure profile along the line x-2D=-y ob-
tained by: ( - - - - ) FW-H WEM from LI, ( • • • • • • )
FW-H WEM from L2, (- - - ) FW-H WEM from
L3,

60 80 100 120
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Figure 10: Overall sound pressure level as function of 9
measured from streamwise axis, evaluated on the sensors
reported in figure 1. Same legend as fig. 9

clipping process, in the reattached boundary layer
on the downstream wall.

To obtain the volume integral part of the radi-
ated sound field, we add the contributions of Si and
52 (figure 11 (a)). The surface integration is per-
formed on cavity walls with source terms defined by
(3) and (4), with MOO =0.7. The result is depicted
in figure ll(b). Following reflection theorem of Pow-
ell,35 we can argue that volume integrals represent
the direct radiated field, and surface integrals show
essentially the reflected part of the field due to cavity
walls. By summing the volume and surface contri-
butions (fig. 12(a)), we reconstruct the total sound
field in reasonably good agreement with the DNS
reference solution of figure 12(b). Figure 13 shows
that the pressure profile along the line x + y = ID
is consistent with direct calculation.

Figure 14 presents the temporal evolutions of the
pressure over one period using the three methods.
DNS results show a very stiff slope for the temporal
evolution, which indicates a non-linear propagation.
The two integral formulations time traces have a si-
nusoidal shape. The non-linear effects are indeed
not taken into account in integral methods since the

Figure 11: Pressure field obtained corresponding to: (a)
volume integral part of FW-H analogy, and (b) surface
integral part of FW-H analogy.

volume integral is neglected in FW-H WEM and the
volume integral does not include all the non-linear
region in FW-H analogy.

Figure 12: Pressure field calculated at the same time
by (a) FW-H analogy (surface + volume integrals), (b)
DNS reference solution.

The FW-H analogy provides more informations
than the WEM but is more expensive in CPU time
because of the evaluation of volume integral (surface
integral in 2-D) whereas wave extrapolation methods
need only surface integral (line integral in 2-D). For
example, the computation time needed by the FW-
H WEM is around 13 minutes, whereas the FW-H
analogy requires 17 hours, on a Dec a computer. For
the purpose of comparison, the DNS would take 320
hours on this machine.

FW-H analogy allows a better understanding of
the structure of the radiated field than WEM. In
particular, the direct and reflected sound field can
be separated. These two fields at the same frequency
give an interference figure where the two waves pat-
terns are still distinguishable in our case because the
cavity is not compact at the oscillation frequency
(L/A = 0.47).
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Figure 13:
tained by: (

Pressure profile along the line x-2D=-y ob-
- - - ) FW-H analogy, (——— ) DNS.

For a finer analysis, a 3-D simulation should be
carried out. The recirculation zone inside the cavity
is indeed characterized by a three-dimensional tur-
bulent mixing, even if the development of the shear
layer is almost two-dimensional. Such a study is un-
derway.
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5. Conclusion

In a first part, a direct calculation of the sound
radiated by a flow over a 2-D rectangular cavity is
carried out. To this end, a DNS is performed us-
ing CAA numerical methods. This approach is ex-
pensive but is able to give all the interactions be-
tween flow and acoustics and provides a powerful
tool to determine noise generation mechanisms. The
directly computed sound field is consistent with cor-
responding results of Krishnamurty's experiments.

The results of DNS are then successfully com-
pared to two hybrid methods which use the DNS
aerodynamic quantities to solve integral formulations
based on FW-H equation. The wave extrapolation
method using FW-H equation is relatively unaffected
by the location of the control surface and can be an
interesting complementary tool to extend CAA near-
field to the very far-field. Acoustic analogy is less
efficient because volume integrations are costly and
sensible to truncature effects. Nevertheless, it al-
lows a separation between direct and reflected sound
fields, which is usefull for the analysis of radiation
patterns.
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