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Abstract

Lighthill’s equation is used to compute the noise pro-
duced by subsonic flows. The objective is to show that,
although this equation is based on a wave equation in
a medium at rest, meanflow effects on sound propaga-
tion, included in Lighthill’s source term, can be prop-
The
source terms are evaluated from the unsteady compress-

erly taken into account by numerical approches.

ible flow motion equations, which provide also a refer-
ence sound field. By this way, all mean flow - sound
waves interactions are included into the source terms.
Two-dimensional cases are first considered with the ra-
diation of a monopole in a sheared mean flow and with
the sound generated by a mixing layer. They show that
mean flow effects on propagation are correctly predicted
with Lighthill’s equation. The sound produced by pair-
ings of axisymmetric vortices in a three-dimensional cir-
cular jet with a Mach number of 0.9 and a Reynolds
number of 65000 is then investigated. Solving Lighthill’s
equation provides an acoustic radiation quite consistent
with the sound field obtained directly from LES.

1. Introduction

The theory formulated by Lighthill in 1952 is
considered as the starting point of modern aeroa-
coustics. It relies on an analogy between the full
non linear flows and the linear theory of acoustics.
The conservation equations are rewritten to form the
following inhomogeneous wave equation
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where p is the density, ¢g is the ambient sound speed
and T}; = pusu; + (p - cﬁp) d:; — Ti; is known as the
Lighthill stress tensor, u;, p, 75; being the velocity
components, the pressure and the viscous stresses
respectively. Lighthill’s equation is exact since no
approximation is made. Its classical interpretation
consists in regarding the aerodynamic noise as so-
lution of a wave equation in a fictitious medium at
rest. The sound generation is attributed to the right-
hand side of the equation, with a source term based
on the Lighthill stress tensor. This tensor is reduced,
in unheated flows at high Reynolds numbers, to the
Reynolds stresses pu;u;. Practically, by using Green
function of the wave equation, the solution of equa-
tion (1) is written as an integral on a region encom-
passing all sound sources. The integral solution of
Lighthill’s equation has first allowed to establish, by
a dimensional analysis, the scaling law of the acous-
tic power for a subsonic jet as the eight power of the
jet velocity. It can also be used to determine directly
the noise, but this requires an accurate estimation
of the sound sources, through Tj;.

The method for predicting noise using Lighthill’s
equation is usually referred to as an hybrid method
since noise generation and propagation are treated
separately. The first step consists in using data pro-
vided by numerical simulations to form the sound
sources. The second step then consists in solving
the wave equation forced by these source terms to
determine the sound radiation. The main advantage
of this approach is that most of the conventional flow
simulations can be used in the first step. By this way,
the mean turbulent parameters of flows computed by
solving the Reynolds Averaged Navier-Stokes equa-
tions (RANS) with a k — ¢ turbulent closure can be
introduced in a statistical source model? to obtain
the acoustic intensity.® It is naturally more conve-
nient to use the unsteady flow parameters to eval-
uate directly Tj;. It has been done successfully to
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compute the acoustic field generated by turbulent
flows, using the data obtained by solving the un-
steady RANS,* by Large Eddy Simulation (LES)7
or by Direct Numerical Simulation (DNS).8?

However, one important difficulty of Lighthill’s
equation is that there is not a complete separation
between aerodynamics and acoustics. The wave op-
erator being a classical wave equation in a medium
at rest, all interactions between flow and acoustic
waves are included into the right-hand side of the
equation, namely in the source term. Further devel-
opments have so been carried out to put some mean
flow effects on sound propagation into the wave op-
erator, by Phillips'® and Lilley*! particularly. Lilley
has combined the flow motion equations to obtain
a wave operator based on a third-order differential
equation accounting for effects of a unidirectional
sheared mean flow on sound propagation.'? The use
of the Linearized Euler Equations (LEE) as wave op-
erator has also been proposed because all mean flow
effects on propagation can be included into the LEE
for general flows and geometries.!3

To compute noise using Lighthill’s equation when
interactions between flow and acoustic waves are sig-
nificant, basically for high Mach number flows, it
is necessary to evaluate the source term accuratly
since it contains these interactions. This implies
that the simulation providing source terms must be
compressible. The only exception is found for a
uniform mean flow where a convected Green func-
tion can be used. In the general case, equation (1)
must be integrated on the smallest region includ-
ing both sound sources and flow - acoustics inter-
actions. The two contributions of the source term
are moreover clearly identified in the Lighthill tensor
T;;. Sound generation by turbulence is associated to
the terms quadratic in velocity fluctuations, whereas
mean flow effects on wave propagation, namely re-
fraction and convection, are associated to the terms
linear in fluctuations. These two parts of Lighthill’s
tensor are classically called the self-noise and the
shear-noise** respectively.

The motivation of this study is to investigate
the computation of the sound by solving Lighthill’s
equation for subsonic flows, and to show that inter-
actions between mean flow and acoustic waves are
properly taken into account provided that they are
included into the right-hand side of the equation.
The source terms are formed from data obtained
by solving the unsteady compressible flow equations.
The acoustic field is also directly found by this way
and it constitutes a reference solution to compare
to the result given by Lighthill’s equation. Three
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cases are considered. The first one is purely acous-
tic and concerns the propagation in a sheared mean
flow of the sound generated by a monopolar source.
The second one involves a two-dimensional mixing
layer excited to control the first vortex pairings,®
which generate an acoustic radiation at a fixed fre-
quency. The third one is a circular three-dimensional
jet excited to force the development of axisymmetric
vortices, whose pairings produce a sound field clas-
sically associated to axisymmetric sources. In the
three cases, equation (1) is integrated on a region
containing all sound sources, extending in the direc-
tion of the observer as far as there are mean flow ef-
fects on sound propagation. Results are compared to
solutions provided directly by the flow motion equa-
tions or given by the hybrid method using LEE, in
order to study the contribution of the part of the
Lighthill tensor associated to propagation.

This paper is organized as follows. Effects of a
sheared mean flow on the radiation of a monopolar
source are investigated in section 2. The sound field
generated by a mixing layer is studied in section 3.
Next, in section 4, the noise generated by pairings of
axisymmetric vortices in a subsonic jet is calculated.
Finally, concluding remarks are given in section 5.
The frequency domain solution of Lighthill’s equa-
tion used in this study for two-dimensional geome-
tries is presented in Appendix A.

2. Propagation of the sound radiated by a
monopolar source in a sheared mean flow

2.1 Definition

We first consider an acoustic monopole placed in
a sheared mean flow, as illustrated in Figure 1.

Y
60/2

T (y)

Os

Figure 1: Sketch of the monopolar source S located
in the sheared mean flow @ (y).

The domain extends from -30 up to 50 meters in
the two coordinates directions. The mean flow is a
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shear layer between a medium at rest and a uniform
flow with a velocity equal to half the mean sound
speed ¢o. Its expression is given by the hyperbolic-
tangent profile

aly) =2 {1 + tanh @3‘”

where the vorticity thickness is taken as d,, = 20m.

A Gaussian monopolar source is introduced at
the point (0, —30m) where the mean flow is negligi-
ble. To define a purely acoustic problem, two source
terms are added into the equations governing pres-
sure and density respectively, by the following way

op
i

b _ — -% sin (wt) exp [—In(2) (z* + ¢*) /b?]
ot g

where the pulsation w is fixed so that the wavelength
is A = 18m, the amplitude is ¢ = 1Pa and the Gaus-
sian half-width is b = 3m. The amplitude is weak
enough to have a linear sound propagation. The vor-
ticity thickness of the shear layer and the acoustic
wavelength are also very close. So, both convection
and refraction effects on propagation will occur.

= ... + esin (wt) exp [~ In(2) (2* + ¢?) /b]

2.2 Reference solution provided by Euler’s
equations

The propagation of sound waves can be com-
puted using the full Euler equations. In this purely
acoustic case, these equations are solved to provide
both a reference solution and the source term of
Lighthill’s equation. A uniform mesh is used with
constant grid size Az = Ay = lm and the time step
is At = ¢p%x2/3 s. The pressure field given by Eu-
ler’s equations is presented in Figure 2. Effects of
the mean flow on sound propagation are clearly vis-
ible. Circular wave fronts are significantly deformed
in the upper part of the domain.

To estimate more precisely the modification of
sound propagation induced by the sheared mean flow,
the simulation is also performed without the pres-
ence of mean flow. The pressure field obtained by
this way is subtracted to the previous field to obtain
the pressure field shown in Figure 3. This one is only
attributed to the mean flow effects on sound prop-
agation. The interations between flow and acoustic
waves are not so weak since its amplitude is of the
order of the amplitude of the incident radiation.

2.3 Resolution of Lighthill’s equation

Lighthill’s equation is now solved using the fre-
quency-domain integral solution (6) given in Ap-

-Z3

-a0
-a0

-23 0 23 a0
b

Figure 2: Monopolar source in a sheared mean flow.
Pressure field obtained by solving Euler’s equations.
The color scale is defined for levels from -3x 1072 to
3x107% Pa.

Figure 3: Monopolar source in a sheared mean flow.
Difference between the two pressure fields obtained
by solving Euler’s equations with and without the
mean flow respectively. Only the domain y > —25m
is shown. The color scale is the same as in Figure 2.
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pendix A. The Lighthill tensor T;; = pusu; is eval-
uated from the Euler simulation carried out with
the sheared mean flow. It is stored every time steps
during an acoustic period, with 27 recordings. The
source region is the whole domain so that all mean
flow - sound wave interactions are integrated.

The pressure field obtained by this way is pre-
sented in Figure 4. It corresponds very well to the
field of Figure 3. The agreement between the two
fields is shown more quantitatively in Figure 5 with
the pressure profiles at y = 30 m. In this case where
fluctuations are only acoustic and small enough so
that the propagation is linear, the only contribu-
tion of Lighthill’s tensor is related to mean flow
- acoustics interactions. They are well accounted
for in Lighthill’s equation to provide all effects of
the mean flow on propagation of the incident sound
waves. The same result has been recently shown in
a similar configuration for the volume integral of the
Ffowes Williams & Hawkings equation.'®

25

sl
X

Figure 4: Monopolar source in a sheared mean flow.
Pressure field obtained by solving Lighthill’s equa-
tion. Only the domain y > —25m is shown. The
color scale is the same as in Figure 2.

3. Sound field generated by a mixing layer

3.1 Definition and reference solution

This second application involves a subsonic mix-
ing layer between two uniform flows at U; = 40 and
Uy = 160 m.s™!, with a Reynolds number based on
the initial vorticity thickness §,(0) equal to Re, =
12800. This flow has been simulated by Large Eddy
Simulation (LES) in a previous study. All the details
of the simulation can be found in Bogey et al.® The
mixing layer is forced at its fundamental frequency
fo'S and its first sub-harmonic frequency fo/2 to fix
the location of vortex pairings around x ~ 704,,(0).
By this way, the sound field generated by the first

¢)2001 American Institute of Aeronautics & Astronautics or Published with
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Figure 5: Monopolar source in a sheared mean flow.
Pressure profiles at y 30m obtained by solv-
ing: Euler’s equations (difference between
the pressure fields obtained with and without mean
flow), — — — Lighthill’s equation.

vortex pairings is investigated. It shows an acous-
tic wavelength A, = 51.50,,(0), corresponding to the
pairing frequency f, = fo/2 and to the pairing pe-
riod T}, = 330 iterations of the LES.

A reference acoustic field is provided directly by
LES on a domain extending from 0 up to 200 4,,(0)
in the axial direction and from -300 4,,(0) up to 300
8.,(0) in the transerve direction. It has been previ-
ously compared to results given by applying a three-
dimensional solution of Lighthill’s equation.® It has
also allowed to validate the expression of source terms
used in the hybrid method based on LEE.!3

In this configuration, mean flow - acoustic inter-
actions are important, particularly owing to the two
uniform flows. The source term used in Lighthill’s
equation must provide both sound generation and
mean flow effects on propagation.

3.2 Resolution of Lighthill’s equation

Lighthill’s equation is solved in the frequency-do-
main as shown in Appendix A, using source terms is-
sued from LES data. The source terms are recorded
every 30 time steps during 2640 iterations, i.e. dur-
ing 8 pairing periods. They are known on the whole
computational domain to account for all mean flow -
sound wave interactions. Furthermore, to study the
two contributions in Lighthill’s tensor, two source
terms are considered. The first one, Tié = pu;u;-
where v} are the velocity fluctuations, corresponds
to the self-noise and provides only the sound gener-
ation by turbulence. The second one, T-tj = pU;ly,

2,

corresponds to the complete Lighthill’s tensor.
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3.3 Pressure fields

The pressure fields obtained by solving Lighthill’s
equation on the whole domain using source terms T3,
and T}; are presented in Figures 6(a) and 6(b) re-
spectively. They are strongly different, both in terms
of wave front pattern and directivity.

Waves fronts obtained using Ti]; are quite circu-
lar, centered on the region of pairings. Directivity
of the sound radiation is well marked into the down-
stream direction, especially for the low-velocity flow
in the lower part. The radiation pattern calculated
using T,,;tj displays waves fronts significantly ovalized
by the two uniforms flows. The directivity is also
modified and is now pronounced for rather large an-
gles from the downstream direction, around § = 60°.

Integrating Lighthill’s equation on the whole ob-
servation region using the complete Lighthill ten-
sor allows to account for mean flow effects on sound
propagation, even in this flow configuration with two
surrounding uniform flows.

{a)

(b

300

w/h (D)

200
X8 (0)

200

x5 (0]

Figure 6: Sound generated by a mixing layer. Pres-
sure fields computed with Lighthill’s equation by us-
ing source term: (a) Ti’; and (b) T§;. The color scale
is defined for levels from -8 to 8 Pa.

3.3 Dilatation fields and comparison

To compare the sound field given by Lighthill’s
equation with results provided by LES and by the
hybrid method based on LEE, the dilatation © =
V.u is used. Dilatation is connected to the acoustic

3
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pressure by the relation

1 8p

o=- %
pocé Ot

(2)

in a medium at rest, pg and ¢p being the ambient
density and sound speed, and by

B 1 [op op’'
9= poc? <8t +Ul§x>

in a uniform flow of velocity Us;.
The dilatation fields provided by Lighthill’s equa-
tion with source terms T, and T}; are thus calcu-

®3)

1,

lated using relations (2) and (3) respectively. They
are shown in Figures 7(a) and 7(c) and compared
with results given by other prediction methods.

The dilatation field obtained with Ti];- is beside
the dilatation field of Figure 7(b) given by LEE
solved without the presence of mean flow. There is
a good agreement between the two fields. The direc-
tivities are the same, both are well marked into the
downstream direction. Wave fronts are in phase and
have similar amplitude. This is shown more quan-
titatively in Figure 9 with the dilatation profiles at
z = 1306,,(0). The two methods applied, Lighthill’s
equation forced with Ti);- and LEE solved without
mean flow, combine a wave operator in a medium
at rest with source terms corresponding only to the
sound generation, the so-called self-noise, that ex-
plains the accordance between the two results.

The dilatation field obtained by solving Light-
hill’s equation with T, is compared to the dilata-
tion field of Figure 7(d) directly provided by LES.
The two fields agree very well. The directivities are
affected in the same way by the mean flow with a
preferred radiation for angles from the downstream
direction around # = 80° in the low-velocity flow,
and 6 = 60° in the high-velocity flow. The modifica-
tions of the wave front pattern are also the same. It
is confirmed by Figure 8 plotting the dilatation pro-
files at z = 1306,(0), around 606, (0) downstream
the sound sources, in a region where the wave fronts
are significantly deformed by the mean flow. The
two profiles superimpose, demonstrating the very
good agreement in phase and in amplitude. There-
fore, by solving Lighthill’s equation with the com-
plete Lighthill tensor, all interactions between flow
and sound waves are properly taken into account.

This application shows that it is possible, using
Lighthill’s equation, to compute the sound gener-
ated by a turbulent flow accounting for mean flow
effects on sound propagation, if these interactions
are correctly included in the Lighthill tensor.
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Figure 8: Sound generated by a mixing layer. Di-
latation profiles at 2 = 1304,,(0) obtained by solv-
ing: LEE without mean flow, — — —

Lighthill’s equation using Ti’;.
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Figure 9: Sound generated by a mixing layer. Di-

Figure 7: Sound generated by a mixing layer. Di-
latation fields obtained at the same time: by solving
Lighthill’s equation using (a) Ti]; and (c) T, (b) by
LEE without mean flow, (d) by LES. The color scale
is defined for levels from -1.5 to 1.5 s71.

latation profiles at = 1304,,(0) obtained:
by LES, — — — | by solving Lighthill’s equation us-
ing T};.
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4. Sound field generated by a circular jet
excited axisymmetrically

4.1 Definition and flow simulation

The third application of this paper involves a
three-dimensional computation. A circular jet with
a Mach number of 0.9 and a Reynolds number of
6.5 x 10* is simulated by Large Eddy Simulation.
The ratio ro/dp is 20, where 7y is the initial jet ra-
dius and dy is the momentum thickness of the shear
layer. In a previous study,'” the jet was forced into
the inflow randomly both in space and time, to in-
vestigate its natural turbulent development and the
corresponding generated acoustic radiation. In this
study, it is excited axisymmetrically, at the funda-
mental frequency fo and the first sub-harmonic fre-
quency fo/2 of the initial hyperbolic-tangent veloc-
ity profile. By this way, vortex rings are created in
the shear layer. They merge at a fixed location at
the frequency fp, = fo/2 to form a larger vortex ring.

LES is carried out using the ALESIA code,!”
built up with numerical methods specific to aeroa-
coustics in order to compute directly the acoustic
field. In the code, the Smagorinsky subgrid scale
model is used. All the details of the simulation can
be found in Bogey.'® The cartesian mesh grid con-
sists of 127 x 177 x 127 points, with 28 points in
the jet radius. It extends up to x = 22r in the axial
direction, and up to y = 22r( in the y direction to
study the acoustic radiation in the upper z — y sec-
tion. Meshes are moreover significantly stretched
from z = 8rg in the axial direction, in order to
damp the aerodynamic perturbations downstream.
Finally, the simulation runs for 1.2x10* iterations.
The pairing period corresponds to 7, = 300 itera-

“tions.

Four snapshots of the vorticity w, regularly spa-
ced over a period T}, are shown in Figure 10. Pair-
ings of vortex rings occur around z = 4.5rg every
T,. There are no other pairing downstream and the
created vortex ring is dissipated in the sponge re-
gion. Collision of vortex rings constitutes a classical
sound source.'® The sound generated in the jet by
this mechanism is now investigated.

4.2 Sound field computed by LES

The dilatation field ©® = V.u directly provided
by LES is presented in Figure 11. Dilatation is here
proportional to time derivative of the acoustic pres-
sure as © = —(9p'/0t) [ (poc]). Wave fronts are
visibly coming from the pairing region around x =
4.5rg. The predominant wavelength corresponds to
the pairing frequency with A, = 6.6r5. The noise

7
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Figure 10: Circular jet excited axisymmetrically.
Snapshots of the vorticity field w, in the z — y plane
at z = 0, at four times separated of T,/4. Vorticity
contours are [2,3,4,5,6,7]x10% s71.

generated by the excitation into the inflow is non
negligible but it is small compared to the sound field
produced by pairings.

The sound field has an angle of extinction around
6 =~ 80° from the jet axis. It is given more precisely
in Figure 12 with the directivity of the acoustic ra-
diation. This particular directivity is inherent in
excited jets and it is not found for natural turbulent
jets. To illustrate this, the sound pressure levels cal-
culated for the jet excited with a random noise are
also shown in Figure 12. For comparison, levels are
normalized at a distance of 60ry from the region of
sound generation. Levels in the two cases are of the
same order, but the directivities are basically differ-
ent.

The directivity found in this study is classically
attributed to the radiation of axisymmetric quadru-
polar sources. It has been investigated theoretically
for a compact source using Mohring’s analogy?%-2!
and Lighthill’s analogy.®?? The directivity of an
axisymmetric quadrupole, compact in the radial di-
rection, is given by the function 3cos?6 — 1. Two
angles of extinction of the sound field are thus pre-
dicted for 8 = 55° and 8 = 125°. This directivity
pattern has been found experimentally by Bridges &
Hussain,?! by exciting a Mach 0.08 jet with discrete
frequencies, with an angle of extinction for § = 70°.
It has also been found recently in axisymmetric sim-
ulations, by Bastin?? for a Mach 0.58 jet and by
Mitchell et al.® for Mach 0.4 and Mach 0.8 jets. In
these numerical studies, angles of extinction are in
the range 8 = 60° — 70°.

In the present study, the angle of extinction of
the sound field is 8 ~ 80°. The discrepancy with
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Figure 11: Circular jet excited axisymmetrically.
Snapshot of the dilatation field in the acoustic re-
gion, and of the vorticity field w, in the flow region,
in the z—y plane at z = 0. The dilatation color scale
is defined for levels from -90 to 90 s, the vorticity
scale for levels from -6x10° to 6x10% s71.
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Figure 12: Circular jet excited axisymmetrically.
sound pressure levels at 60ry from the pair-
ing region as function of angle # measured from the
jet axis, — — — levels generated by the jet ran-
domly excited, at 60rg from the end of the potential
core.
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the theoretical angle and with experimental or oth-
ers numerical results can be explained by our jet
parameters. The sound source is first not fully com-
pact in the radial direction since A, = 6.6r¢. The
jet velocity is also very high with a Mach number
of 0.9. Thus, one can expect that the flow affects
strongly the propagation of sound waves. Finally,
the parasitic radiation associated to the excitation
can be suspected, because its effects are larger where
the amplitudes of sound waves are small, near the
angle of extinction.

4.3 Resolution of Lighthill’s equation

A time-domain solution of Lighthill’s equation,
built up from a three-dimensional Green function, is
solved to compute the noise radiated by the jet. This
integral formulation involves time derivatives, and it
is more accurate than the integral formulation with
space derivatives.® Its far-field expression is written

as
1 ' T
= — t——|d 4
4mg/ (y, c()) y (4)
The tensors Ti]; = puzu

Yy
wh and T = pusu; are
recorded every 10 aerodynamic time steps, during
2400 iterations corresponding to 8 pairing periods.
Every points in the axial direction, and every sec-
ond points in the two other directions are taken
from the LES mesh grid. The source volume V),
is such that ro < z < 20.5r¢ and —3.4rg < y,z <
3.4r¢. It is large enough to contain the whole region
where there are mean flow - sound waves interations.
These interactions are indeed negligible outside the
jet, where the mean axial velocity is very small as

shown in Figure 13.

riT; 82Tij
at?

P (x,t) =

11

12

Figure 13: Circular jet excited axisymmetrically.
Mean axial velocity at z = 0: 9 contours defined
from 0.1xU; to 0.9xU; with a constant increment
of 0.1xUj, where Uj is the jet exit velocity.

The two kinds of source terms (1/c2) 62Ti’; /Ot?

and (1/¢5) 8*T}; /0t* are displayed in Figures 14 and

15 respectively. There is no significant truncation of
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the source terms at the boundaries of the source re-
gion. Moreover, the two radial source terms based
on Tyy are very similar, whereas the axial and cross
source terms based on 11 and Tis are quite differ-
ent, the larger differences being found for the axial
source term. The mean flow effects on wave propa-
gation, essentially induced by the axial velocity, are
therefore very small perpendicularly to the jet axis,
but increase significantly closer to the axial direc-
tion.

. €Y
3
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3
ii i ; ;‘;‘ j«"a«i%*:“@wﬂ;}” ‘ s
1 ,
()
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1 4 7 10 13 16 19
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Figure 14: Circular jet excited axisymmetrically.
Source terms used in Lighthill’s equation, shown at
2=0: (a) (1/c}) 0T /0, (b) (1/cF) O°T, /08,
(¢) (1/c3) 82T], /02 . The color scale is defined for
levels from -10'° to 10*Y kg.m=3.s72,

To compare the sound field predicted by Light-
hill’s equation with the LES result, the time evolu-
tion of pressure is determined during a period T}, at
points located in the acoustic far-field at 60ry from
the pairing region, for angles in the range 30° —120°.
The sound pressure levels obtained by this way are
shown in Figure 16. The two directivities found us-
ing Ti’; and Titj are similar for 8 > 80° but are quite
different for smaller angles. The acoustic radiation
computed using Ti’;, the self-noise alone, is well pro-
nounced in the downstream direction, whereas the
sound field computed using Tfj is marked for an an-
gle around € ~ 40°. This angle is also found in
the LES sound field. It can be attributed to re-
fraction effets of sound waves by the flow. Solving
Lighthill’s equation using the complete Lighthill ten-
sor has thus allowed to provide the good directivity,
with both the angles of maximum and minimum ra-
diation. Levels given by Lighthill’s equation are also
consistent with the LES solution near the angle of

9

€)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

i

13

Figure 15: Circular jet excited axisymmetrically.
Source terms used in Lighthill’s equation, shown at
2=0: (a) (1/cf) 8°T} /0t?, (b) (1/cf) O°TY,/0t*,
(c) (1/c3) 8°T%,/0t%. The color scale is the same as
in Figure 15.

extinction. The agreement is however not so good
in the downstream direction with a significant dif-
ference between the direct calculation and Lighthill’s
prediction. At this time, we have no explanation for
this disagreement.
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Figure 16: Circular jet excited axisymmetrically.
sound pressure levels at 60rg from the pair-
ing region given by LES, —-—- levels obtained
with Lighthill’s equation using Ti’;, — — — levels
obtained with Lighthill’s equation using T};.

5. Conclusion

This study shows that Lighthill’s equation is able
to provide aerodynamic noise, accounting for mean
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flow effects on sound propagation. This equation
being based on a wave equation in a medium at
rest, the Lighthill tensor in the right hand-side must
contains properly both the sound generation and all
flow - acoustics interactions. This implies that the
data used to build up the source term must come
from compressible simulations where the sound field
is correctly calculated. Neverthelesss, most of prac-
tical applications use conventional simulation codes.
It is therefore generally more convenient to apply
Lighthill’s theory to predict the noise for flows at low
Mach numbers, where mean flow effects on propaga-
tion are small. For flows at very low Mach numbers,
the direct computation of the sound is moreover dif-
ficult owing to the very poor efficiency of sound gen-
eration, and Lighthill’s equation can easily be solved.
For flows at higher Mach numbers, it seems however
more natural to use hybrid methods with wave op-
erators including mean flow effects, for example the
linearized Fuler equations.

Appendix A: Integral solution of Lighthill’s
equation in two dimensions

To obtain a time-domain solution of equation (1)
for a two-dimensional geometry, we consider the 2-D
free-space Green function®® G (x,y,t — 7), verifying
the wave equation

82
(—8?—0§V2> G=6(x-y)d(t—1)
and written as
H({t—1—1/co)

2w/ (t — 7)2 —r2/ck

G(XaY7t"T) =

where r = |x — y| is the distance from the source
to the observer. A solution of equation (1) is given
by the convolution of the Green function with the
source term S;; = 82T;;/8y;0y; of Lighthill’s equa-
tion. Therefore, the solution is

oo
P, 1) = / Glx,y,t - 7)Si; (y,7) drdy
—

and can be written, owing to the properties of the
Heaviside function, as

Si; (y,7)

,( ) 1 t T‘/Co
oo [ ]
2me Sy J oo (t—7) -—7’2/0

where Sy is the source region. Evaluating this ex-
pression is difficult because the lower limit of the

drdy
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time integral is infinite, and a truncation of the time
integration in numerical simulation can lead to in-
accuracies.

To avoid theses difficulties, two-dimensional prob-
lems are commonly solved into the frequency do-
main®4?® where the wave equation is expressed in
the form of a Helmholtz equation. By applying the
Fourier transform F such as ¢ (x,w) = Flo(x,1)],
equation (1) becomes

W+ V) pxw) = -5 (x,w)  (5)

The two-dimensional Green function associated to

this equation is
1 2) {wr
S il
dcg° ( co >

where H(SZ) is the Hankel function of the second kind
and order zero. A solution of equation (5) is found

by convolution with the Green function and is given
by

@(x,y,w) =

_./S @(X7y7w)‘§i\j (Y7w) dy

For an unbounded fluid, the differential operator in
SZJ can be applied to either G or T” Thus

) = - [ T r,) S ey, dy ©
P X, g Y, By, Y y

Y

This is the solution of Lighthill’s equation practically
used in this work for two-dimensional problems.
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