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The current work describes the application of high-order numerical
techniques to single or multiple overset curvilinear body-fitted grids,
demonstrating the feasibility of direct computations of noise radiated
by flows around complex non-Cartesian bodies. Flows of both physical
and industrial interest can be investigated with this approach. We first
rapidly describe the numerical techniques implemented in our curvilinear
simulations. The explicit high-order differencing and filtering schemes are
presented, as well as their application to the curvilinear Navier-Stokes
equations. We then present brief results of various 2-D acoustic sim-
ulations. First the flow around a cylinder, and the associated acoustic
field is described. The diameter-based Reynolds number ReD = 150
is under the critical Reynolds number of the onset of 3-D phenomena
in the vortex-shedding. Simulation results can thus be meaningfully
compared to experimental measurements. A case of acoustic scattering
is then examined. A non-compact monopolar source is placed half way
between two differently sized cylinders. A complex diffraction pattern is
created, and resulting RMS pressure data are compared to the analytical
solution. Finally the noise generated by a low Reynolds number laminar
flow around a NACA 0012 airfoil is presented.

1 Introduction

The development, over the past twenty years, of high-fidelity numerical methods, has opened whole new perspec-
tives in the domain of numerical simulations. Indeed such methods have allowed the simultaneous pursuit of two
highly desirable and slightly contradictory goals, that of lowering error in terms of dispersion and dissipation,
and that of reducing the necessary number of discretization points per wavelength.

It has thus become possible to simulate complex phenomena with high and quantified accuracy. This is
of particular interest in the field of Computational Aeroacoustics (CAA), where several orders of magnitude
separate the energy and wavelengths of propagative acoustic fluctuations from those of the flow features, and
where large propagation distances are often encountered. The demands on the accuracy of the numerical schemes
as well as on their capacity to cope with a small number of points per wavelength are therefore particularly
stringent. Both explicit schemes, such as Tam and Webb’s DRP scheme1 or more recently those proposed by
Bogey and Bailly,2 and implicit schemes such as Lele’s Padé-type,3,4 have been shown to meet the above criteria
and have been successfully applied to aeroacoustic simulations.

High-order schemes typically require large stencils, and are therefore generally implemented on structured
grids. Complex curved geometries, while relatively easy to treat thanks to unstructured methods, are often
impossible to mesh with a structured cartesian grid without resorting to extrapolation techniques5 and their
associated problems for the implementation of solid boundary conditions.

This difficulty can be overcome by the use of curvilinear transformations combined with overset multiple grid
techniques, often referred to as Chimera techniques.6 Such methods have sparked considerable interest over the
last few years, and recent simulations have shown the feasibility of multiple grid high-fidelity simulations, in the
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3 NUMERICAL ASPECTS
fields of fluid mechanics and electromagnetics, and also more specifically in that of aeroacoustics, for example
by Delfs et al. who used such methods to examine interactions between a vortex and an airfoil trailing edge.7

In this article we focus on aeroacoustic Navier-Stokes simulations, and describe our implementation of ex-
plicit high-order methods and overset grid techniques applied on curvilinear grids, as well as present results for
three different configurations.

2 Curvilinear equations

High-order Large-Eddy Simulaions (LES) simulations having proven their value in the study of noise-generation
mechanisms in unbounded flows, we are developing similar methods for more complex curvilinear geometries.

The full Navier-Stokes equations are solved on a computational grid which is obtained from the body-fitted
grid by applying a suitable curvilinear coordinate transformation. The 2-D transformed equations can be written
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T , J = |∂(ξ, η)/∂(x, y)| is the Jacobian of the geometric transformation between the

physical space (x, y) and the computational space (ξ, η), Ee and Fe are the inviscid fluxes and Ev and Fv the
viscous ones, given by the following expressions
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In the above equations, ρ refers to the fluid density, u and v to the velocity components in the x and y
directions, and p to the pressure. Taking into account the perfect gas law, the total specific energy et is given
by et = p/[(γ − 1)ρ] + (u2 + v2)/2. The heat term q is given by Fourier’s law, and the components of the stress
tensor τ are those of a viscous Newtonian fluid.

3 Numerical aspects

3.1 Differencing, filtering and time integration techniques, boundary conditions

A body-fitted grid is first created around the object of interest. Grid construction is performed with care, in
order to obtain grid lines of maximal regularity.

Spatial differencing in the interior part of the computational grid is performed with a high-order eleven-
point explicit finite-difference formulation, optimized in the wavenumber space for perturbations of more than
4 points per wavelength, thus ensuring very low dispersion and dissipation. Information on the properties of
the differencing formulations as well as on the optimization parameters can be found in Bogey & Bailly.2 The
partial derivatives of the transformation’s Jacobian matrix are also calculated with the above scheme, using the
expression

Ji,j =
(−1)i+jJ−1

j,i

|J−1|

for a 2-D transformation. Care must be taken to ensure that metric identities imposing the commutative
properties of partial differentials are respected.8,9 Close to solid boundaries, differencing is performed with
lower order stencils, first with the traditional centered 7-point DRP1 stencil and then with centered and finally
non-centered 5-point fouth order stencils. A no-slip solid-wall boundary condition is applied by imposing
u = v = 0 at the boundary, and also ∂p/∂n = 0 thanks to a one-sided 5-point stencil.

Time integration is performed with an explicit 6-stage Runge-Kutta algorithm developed by Bogey et al.2

It is optimized in the wavenumber space, to minimize both dispersion and dissipation for angular frequencies
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3 NUMERICAL ASPECTS
up to ω∆t = π/2, and is implemented in low-storage form. Stability is guaranteed up to angular frequencies
verifying ω∆t = 1.25× π.

The very low dissipation exhibited by the numerical algorithm means that high-frequency numerical insta-
bilities of various origins are not naturally damped over time. In this work, these unwanted oscillations are
eliminated with a low-pass filter. The main desired property for the filter is high selectivity. To this end, an
eleven-point explicit optimized filter2 is used on the interior of the transformed domain every few time steps.
The frequency of the filtering depends on the smoothness or quality of the computational grid, and varies in the
simulations presented here from every time step for the airfoil to every five time steps for the cylinder flow. The
relative dissipation of the filter is inferior to 5× 10−3 up to four points per wavelength, and rapidly increases to
one for grid-to-grid oscillations. This very high selectivity allows the use of a small filtering coefficient, typically
inferior to 0.1 inside the computational domain.

Close to boundaries, the centered high-order filters described above cannot be used. Unfortunately, boundary
conditions tend to generate spurious high-frequency oscillations, rendering some form of filtering necessary.
Previously, lower order centered filters were used, inducing higher dissipation and dispersion close to solid
boundaries. To alleviate this problem, non-centered 11-point highly selective filters were designed by Berland
et al.10 which make it possible to maintain filtering quality at boundaries. More information on these filters, as
well as the individual coefficients, can be found in ref.10

3.2 Overset grid techniques

The use of curvilinear body-fitted grids is often not sufficient to allow high-fidelity simulations around complex
objects. The development of multiple overset curvilinear grid techniques is therefore of great interest regarding
the generalization of complex aeroacoustic simulations, especially when multiple bodies are involved. With this
approach, each object or in some cases part of an object, is first surrounded by a structured body-fitted grid.
The grids either overlap each other sufficiently to ensure that the whole physical domain is covered, or are
embedded in an underlying cartesian grid that spans the entire area of interest. During the simulation, the
boundary points in the overlapping zones are updated by interpolating their values from those of the donor
grid.

The quality of the interpolation depends essentially on the precise knowledge of the receiving point coordi-
nates with respect to the donor grid, and on the chosen interpolation method. Generally, donor and receiver
points are not coincident, so the receiver point coordinates with respect to the donor grid are not known per se.
They must be calculated with care, especially when high-order interpolation is subsequently used. The inter-
polation method adopted here is described for a 2-D application, but can be generalized to three dimensions.
Indeed, the interpolated value at a receiving point P is obtained thanks to N + 1 successive interpolations in
perpendicular directions on the donor grid, as shown on Figure 1 for a 2-D case. N is the stencil size of the
interpolation.
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Figure 1: 2-D interpolation method. Coordinates Pξ and Pη of the receiving point P with respect to the
underlying donor grid are used to perform successive 1-D interpolations parallel to ξ and η grid lines.
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4 TEST CASES
First, interpolation is carried out in the η direction with the Pη coordinate, to calculate the values at the N

intersection points of the line D with the η grid lines. The value at the point P is then interpolated from the
N values previously calculated, with the Pξ coordinate. In order to speed up the overall interpolation process,
coordinates of the receiver point projected on the donor grid, as well as those of the N intersection points are
calculated at the end of the grid generation phase and stored for quick retrieval during the simulation. Never-
theless, the current implementation of high-order Lagrangian interpolation remains computationally expensive
and slow.

Different single-dimension interpolation techniques have been examined, and in particular cubic splines and
Lagrange polynomial functions of varying orders. Figures 2 show a comparison beetween four interpolating
functions: Lagrange polynomials on eleven and seven points, and spline functions on six and four points. The
local error function for the wavenumber α = 2π/λ corresponding to the wavelength λ is defined by

E1/2(α) =

(

∫ λ

0
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f̂α(δx) − fα(δx)
)2

δx

)
1

2

where f̂α(x) represents the interpolated value of fα at point x, and fα(x) = sin(αx). While the interpolation
error certainly diminshes with the interpolation order, it is interesting to note that the six-point spline out-
performs the seven-point Lagrange polynomial for wavenumbers verifying α∆x > 0.85, that’s to say for waves
discretized by less than 7.4 points per wavelength.
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Figure 2: Interpolation function comparison. four-point spline, six-point spline,
seven-point Lagrange polynomials, eleven-point Lagrange polynomials.

The precision required of the interpolation depends on the simulation being carried out. For example
in acoustic scattering simulations such as the two-cylinder diffraction problem described later in this work,
errors generated at the grid interfaces by the interpolation process are simply propagated away and therefore
result in roughly of the same order of error on the calculated pressure field. On the other hand, in cases
where inhomogenous flow crosses the interpolation interface, relatively small interpolation errors can lead to
unacceptably large modifications in the radiated pressure field.

4 Test cases

4.1 Cylinder at a Reynolds number of 150

The first test case is that of the flow around a cylinder. As the current simulation code is 2-D, a very low
Reynolds number ReD = U∞D/ν of 150, where D is the cylinder diameter, was chosen in order to remain below
the onset of three-dimensional behaviour in the wake, which seems to appear11 between Reynolds numbers of
160 to 180. This should enable a reasonable comparison between experimental flow results and the present
numerical simulation.
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4 TEST CASES
The upstream Mach number of the flow around the cylinder is M∞ = 0.33, and the cylinder diameter

D = 2 × 10−5 m. The radial step at the cylinder wall is D × 0.01, and the grid dimensions are 500 points in
the radial direction by 300 points in the azimuthal direction. An ten-point overlap in the wake region is used to
impose a periodic condition in the azimuthal direction. The five points of overlap at each azimuthal extremity
of the computational grid thus allow the use of the eleven-point differencing and filtering scheme around the
entire grid circumference.

Various flow characteristics are compared to those given by previous numerical and experimental studies of
low Reynolds number cylinder flows.
The Strouhal number, which characterizes the frequency the von Kármán vortex street behind the cylinder, is
found to be 0.184, in perfect agreement with other values as is shown on Figure 3.

Figure 3: Comparison of our calculated Strouhal number with various experimental and numerical
studies, extracted from Posdziech and Grundmann.12 : present simulation.

The mean drag coefficient CD of 1.32, illustrated on Figure 4, shows good agreement with both experimental
data13,11 and recent numerical studies.14,15,12 Likewise, the RMS lift coefficient C ′

L of 0.37 compares favorably
with numerical simulations performed by both Zhang and Kravchenko.

Finally, velocity profiles in the cylinder wake compare perfectly over a large downstream distance to those
given by an autosimilar analytical solution for a plane wake, as illustrated on Figure 4.1. The physics of the
cylinder flow thus appear to be correctly captured by the present simulation.

Thanks to the high precision and low dissipation of the numerical scheme, the radiated pressure waves are
preserved over the entire computational domain, as it can be seen in the Figure 5. The acoustic radiation
is almost perfectly dipolar, with negligeable a quadrupolar contribution, as expected for a low-Mach number
cylinder flow.16 Our radiation levels have not been verified, for lack of experimental acoustic results at such a
low Reynolds number, and because of the difficulty in reproducing a properly 2-D configuration.

The theory of vortex sound applied to the æolian tone problem by Crighton17 and Howe18 shows that the
dipolar acoustic radiation is created by the diffraction of quadrupolar aerodynamic sources in the near cylinder
wake. With this view in mind, Figures 6 , 7 and 8 represent the evolution over one period Tp of the near-cylinder
vorticity field, pressure field and a source term proposed by Powell19 and defined by

S = ρ∞∇.(ω′ × v′)

where ω′ = ω − ω is the fluctuating vorticity and v′ = v − v is the fluctuating speed. It should be noted that
only the non-linear part of the original formulation is considered here. A distribution of quadrupolar nature
can be seen in the cylinder wake, centered roughly one cylinder diameter downstream from the cylinder edge.
The intensity of S farther downstream in the cylinder wake diminishes rapidly.
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4 TEST CASES

Figure 4: Evolution of the drag coefficient with the Reynolds number .
—: Henderson (1995), B: Zhang et al (1995), �: Thompson et al (1996), ◦: Persillon et Braza (1998), 4:
Kravchenko et al (1999), •: Posdziech et Grundmann (2001), current work
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4 TEST CASES

Figure 5: Instantaneous pressure field around a cylinder at a Reynolds number of 150 and Mach
number of M∞ = 0.33 Distance is rendered non-dimensional by the cylinder diameter D. Pressure colour
scale is between -200 and 200 Pa.
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4 TEST CASES

Figure 6: Vorticity around the cylinder plotted over one period of the vortex shedding. Colour scale
is between −3× 107 and 3× 107, and the domain shown spans −D to 5D in the x direction and −3D to 3D in
the y direction. The time-step between two snapshots is Tp/9.

8



4 TEST CASES

Figure 7: Source term S = ∇.(ρω′
× v′). Its opposite is plotted over one period of the vortex shedding.

Domain shown spans −D to 5D in the x direction and −3D to 3D in the y direction. The time-step between
two snapshots is Tp/9.
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4 TEST CASES

Figure 8: Fluctuating pressure around the cylinder plotted over one period of the vortex shedding.
Colour scale is between −1000 and 1000 Pa, and the domain shown spans −20D to 20D in both x and y
directions. The time-step between two snapshots is Tp/9.

10



4 TEST CASES

Figure 9: Two cylinder diffraction problem. Snapshot of the fluctuating pressure field over the entire
computational domain, and a closer view of the pressure field around the larger left cylinder. Pressure colour
scale is between −10−6 and 10−6 Pa.

4.2 Diffraction by two cylinders

The second test-case presented here is the diffraction of sound by two circular cylinders of different diameters,
as presented in the proceedings of the 4th CAA workshop.20 All distances are rendered non-dimensional by
the larger cylinder’s diameter D. The smaller cylinder’s diameter is half that of the larger, and the separation
between the two cylinders is 8D. The sound source is a non-compact monopole located half way between the
two cylinders, whose expression is given by

S = sin(ωt) exp

(

− ln 2
x2 + y2

b2

)
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4 TEST CASES
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Figure 10: Grid construction for two-cylinder diffraction. A circular grid is built around each cylinder,
and the resulting overlap zone is used to allow communication between the two grids.

where b = 0.2 is the gaussian half-width of the source and ω = 8π its angular frequency with a time-scale of
D/c∞. A highly complex pressure diffraction pattern is generated by this configuration, providing a challenging
test for the curvilinear solver. It should be noted that the test-case difficulty is greatly dependent on the type
of simulation. Indeed, to obtain errors of less than one percent of maximum diffracted RMS fluctuations, a
linearized Euler solver need only ensure a dynamic range of around 1 × 10−7, i.e. one hundredth of the RMS
fluctuations amplitude, whereas a non-linearized solver must achieve a dynamic range that is five orders of
magnitude higher. This test-case is therefore a severe challenge for our non-linearized solver.

Figure 9 shows a snapshot of the instantaneous pressure field around the two cylinders.
The overset grid approach presented above was used to perform the simulation. A circular grid was built

around each cylinder, with a central zone where both grids overlap, as shown on Figure 10. Grid sizes were 700
points in the azimuthal direction by respectively 360 and 400 points in the radial direction for the larger and
smaller cylinder. This corresponded to a spatial discretization of eight points per wavelength on average, with
tighter spacing close to the cylinders. The interpolation zones thus created contained roughly 5700 points for
each grid. Simulation time was of the order of 2.5 hours per 1000 iterations on a 2GHz Intel Xeon processor, one
period of the monopolar source requiring 140 iterations. The RMS results presented underneath were calculated
over 5 periods, after an initial 140 periods of simulation, corresponding roughly to 20000 iterations.

The different interpolation functions mentioned above were examined. Four-point spline interpolation yielded
poor results, resulting in overly low and slightly displaced RMS pressure maxima. Six-point splines and seven-
point Lagrange polynomials both showed very similar results, considerably better than those obtained with
four-point spline interpolation. However, errors of slightly less than 5% remain on the calculated RMS pressure
field. The RMS pressure values along the horizontal y = 0 axis are plotted on Figure 11.

Additional simulations were subsequently performed with eleven-point Lagrange polynomials, to ascertain
the origin of the remaining errors. A simulation with interpolation based on eleven-point Lagrange polynomials
was undertaken on an identical grid, and yielded identical results, indicating that the residual errors in the
spline simulation were not due to the choice of spline interpolation. Another simulation with the same spline
interpolation and with smaller mesh sizes yielded improved results. Having checked that this improvement
was not linked to the inside numerical scheme, it was deduced that the calculation of the interpolation point
coordinates with respect to the donor grid was majoritarily responsible for the remaining discrepancies in the
calculated RMS data. The current coordinate calculation relies on bilinear interpolation, so in the future we
will examine the benefits of using bicubic interpolation, which should already substantially reduce coordinate
calculation imprecisions.

4.3 Noise generated by an airfoil in a laminar flow

Finally we show an example of the calculation of the noise radiated by a NACA 0012 airfoil in a laminar flow.
The airfoil chord c measures 8 mm and the radial step at the boundary wall is 5 × 10−4c.

The computational grid has 1000 points in the azimuthal direction and 200 in the radial direction, and is
of C-type,21 with an overlap in the wake zone. Careful attention was payed to grid construction to minimize
oscillations in the Jacobian matrix coefficients. Indeed it is well known that high-order difference schemes
inevitably generate oscillations when they are applied to sudden discontinuities.22,9 The trailing edge is a
particularly sensitive grid zone since such discontinuities for terms such as ∂ξ/∂x cannot be avoided with
resorting to a relatively costly interpolation technique. To minimize problems in the vicinity of the trailing
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4 TEST CASES
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Figure 11: RMS pressure on the horizontal axis between the two cylinders. — analytical solution
by Visbal and Sherer (to appear in J. Acoust. Soc. Am.), + simulated values.

edge, radial (η) grid lines are not perpendicular to the airfoil boundary, which allows us to impose a continuous
variation for three of the four terms in the Jacobian matrix. Only ∂η/∂x remains necessarily problematic. Grid
smoothing is performed, to reduce differences in size between upstream meshes, which are large because of the
very small radius of curvature at the airfoil leading edge, and the considerably smaller downstream meshes.
Moreover, during the simulation explicit high-order filtering with a larger coefficient than over the rest of the
computational domain removes the spurious high-frequency oscillations generated by the discontinuous fourth
Jacobian term. Figure 12 shows the central portion of the final grid around the airfoil.

−0.01 0 0.01 0.02

−0.01

0

0.01

Figure 12: Central grid around a NACA 0012 airfoil.

So far we have limited our simulations to relatively low Reynlods numbers. The chord-based Reynolds
number of the simulation presented here is around Rec = 60000, at a Mach number of M∞ = 0.33. This low
Reynolds number generates a steady and regular flow structure around the airfoil, with a von Kármán-like
vortex-street in the wake zone. As expected, the resulting acoustic radiation is strongly dipolar, with a marked
upstream directivity. Figure 13 presents a snapshot of the instantaneous fluctuating pressure field around the
airfoil.
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5 CONCLUSIONS AND FUTURE DEVELOPMENTS

Figure 13: Fluctuating pressure field around a NACA 0012 airfoil at Rec = 60000 and M∞ = 0.33
Pressure colour scale is between -300 and 300 Pa.

5 Conclusions and future developments

A high-fidelity curvilinear solver with multiple overset grid capability has been shown to give good results for
various 2-D aeroacoustic simulations, both with and without flow. The simulated flow around a cylinder at a
very low Reynolds number is in very good agreement with experimental and numerical studies, and acoustic
radiation is preserved over the entire computational domain. Acoustic scattering by a two-cylinder layout
compares favorably with analytical results. Finally a low Reynolds number flow around an airfoil is presented.

Numerical resolution is performed with eleven-point explicit optimized finite-difference schemes and low-pass
filters, combined with an explicit six-step low-storage optimized Runge-Kutta algorithm. Non-centered high-
order filters are used near computational boundaries. Different interpolation methods have been implemented
and tested for the overset grid communication process, with six-point spline showing promising results. The
acoustic scattering simulation showed the importance of accurately calculating the coordinates of receiving grid
points with respect to the donor grid. To this end, bicubic interpolation will be tested for the coordinate point
calculation.

Our main goal now is to complete the development of the 3-D solver to allow the realistic simulation of
complex high Reynolds number flows. It will maintain the general structure of the current code based on the
resolution of the curvilinear Navier-Stokes equations with high-order explicit spatial and temporal schemes, and
will rely on overset grid techniques to be able to examine multiple bodies of complex geometries.

Acknowledgements

This work was undertaken with the financial support of Electricité de France, Direction Recherche & Dévelop-
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