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A large-eddy simulation (LES) of the flow around a NACA0012 airfoil at a chord-based
Reynolds number of 5.0 × 106 and a Mach number of 0.22 is performed, and its results
are compared with experimental data. The airfoil is placed without incidence to the
turbulence-free incoming flow. The boundary layer in this configuration is expected to
be initially laminar, and to transition to a turbulent state along the second half of the
airfoil chord, and as such constitutes a challenging test-case for LES computations to repro-
duce. The LES calculation is performed with a parallel code resolving the full compressible
Navier-Stokes equations on structured curvilinear grids with optimized explicit high-order
finite-difference schemes and filters. A preliminary two-dimensional simulation and a full
three-dimensional simulation are performed for the same airfoil configuration. The two-
dimensional simulation shows substantial discrepancies with available experimental data.
On the other hand, flow results from the three-dimensional simulation compare favorably,
and the LES is shown to capture boundary layer dynamics reasonably well. These results
are a first step towards the development of the direct computation of noise emitted by a
high-Reynolds-number airfoil.

I. Introduction

Over the past ten years, large eddy simulations have been shown to succeed in calculating increasingly
complex flows, up to the point where LES is becoming a useful tool for industrial design processes. However,
lifting devices such as airfoils are still computationally challenging, due to the occurrence of complex flow
behaviours such as laminar to turbulent transition and boundary layer separation. Furthermore, capturing
the unsteady flow sufficiently precisely to preserve the radiated noise is harder still, and consequently to
date most attempts at calculating the noise radiated by a three-dimensional lifting device have resorted
to an acoustic analogy to obtain the acoustic far field. The direct computation of the noise radiated by
airfoils remains an interesting goal. Indeed it can not only provide a reference useful for improving less
computationally demanding prediction methods, but can also help to shed some light on noise generation
processes.
The demands on the accuracy of the numerical approach used to perform a direct noise computation, as
well as on its capacity to cope with a small number of points per wavelength, are particularly stringent,
because of the many orders of magnitude separating acoustic energies and wavelengths from their flow
counterparts. Both explicit schemes, such as Tam and Webb’s DRP scheme1 or those proposed more recently
by Bogey and Bailly,2 and implicit ones such as Lele’s Padé-type schemes,3, 4 have been shown to meet the
above criteria and have been successfully applied to direct aeroacoustic simulations. High-order schemes
typically require large stencils, and are therefore generally implemented on structured grids. Complex curved
geometries, while relatively easy to treat thanks to unstructured methods, are often impossible to mesh with
a structured cartesian grid without resorting to extrapolation techniques5 and their associated problems for
the implementation of solid boundary conditions. This difficulty can be overcome by the use of curvilinear
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transformations combined with overset multiple grid techniques, often referred to as chimera techniques.6

Such methods have sparked considerable interest over the last few years, and recent simulations have shown
the feasibility of multiple grid high-fidelity simulations, in the fields of fluid mechanics and electromagnetics,
and also more specifically in that of aeroacoustics, for example by Delfs et al. who used such methods to
examine interactions between a vortex and an airfoil trailing edge.7

Airfoil trailing-edge noise has been the subject of much research, from a theoretical point of view as well
as both experimentally and numerically. Many theoretical models have been proposed, often based on
Lighthill’s analogy.8–11 Experimentally, various methods have been employed to measure trailing-edge noise
and to separate it from extraneous noise sources: Schlinker12 used a directional microphone to study the TE
noise resulting from an airfoil with untripped boundary layers at zero angle of attack, while Yu and Yoshi13

and Brooks and Hodgson14 identified TE noise thanks to cross-correlation analyses.
The computational study of airfoil trailing-edge noise is more recent than its analytical and experimental
counterparts. Singer et al.15 generated for instance vortices just upstream of the trailing edge of an airfoil in
an inviscid flow, and used the resulting unsteady CFD data as an input to the FW-H equation to obtain the
acoustic field. Lummer et al.7 examined the radiation emitted by individual vortices crossing a sharp trailing
edge, by resolving both linear and non-linear disturbance equations around a Joukowski airfoil. Wang and
Moin16 performed an LES around an asymmetrically beveled trailing edge and applied an integral form of
the Lighthill equation to obtain the far acoustic field. Manoha et al.17 used the Linearized Euler Equations
and a three-dimensional Kirchhoff formulation to propagate near-field data resulting from an LES around a
NACA0012 airfoil at 5◦ incidence and at a chord-based Reynolds number of 2.86× 106.
Direct noise computations have the advantage, with respect to the hybrid methods presented above, of
yielding all relevant flow and acoustic quantities in a single computation. Furthermore they have the potential
to alleviate many of the difficulties inherent to experimental trailing-edge studies. The effect of the upstream
turbulence level, for example, is considerably easier to study numerically than experimentally, as is the effect
of wind-tunnel geometry on boundary layer development and thus on radiated noise.
In the present work, a three-dimensional parallel simulation code resolving the curvilinear compressible
Navier-Stokes equations on structured grids with high-order optimized finite difference schemes and explicit
filters, is used to study the flow around a NACA0012 airfoil, with the aim of performing a direct noise compu-
tation. The airfoil is placed at zero incidence to the uniform upstream flow, and has a chord-based Reynolds
number of 500,000. In these conditions, the boundary layer is expected to transition from an initially laminar
state to a turbulent state a little upstream from the trailing edge of the airfoil.18 Consequently, the boundary
layers crossing the trailing edge are turbulent, and trailing-edge noise is thus generated. This constitues a
difficult test-case for the LES solver, since the transition to turbulence in the boundary layer is expected to
be very sensitive to parameters such as numerical accuracy, grid discretization and sub-grid-scale treatment.
The paper is presented as follows. After a brief description of the curvilinear equations, numerical aspects
including the numerical algorithm, boundary conditions and parallelization are detailed. A preliminary two-
dimensional direct simulation of the flow and acoustic field around a NACA0012 airfoil at a Reynolds number
of 500,000 and a Mach number of 0.22 is then presented. Its flow results are shown to differ substantially
from experimental data. Finally we describe a three-dimensional LES of the same airfoil configuration. Mean
flow values and boundary-layer transition locations are shown to compare favorably with experimental data.

II. Curvilinear equations

High-order LES simulations having proven their value in the study of noise-generation mechanisms in un-
bounded flows, we are developing similar methods for more complex curvilinear geometries.
The full Navier-Stokes equations are solved on a computational grid which is obtained from the body-
fitted grid by applying a suitable curvilinear coordinate transformation. The three-dimensional transformed
equations can be written

∂

∂t

(
U
J

)
+

∂

∂ξ

{
1
J

[ξx(Ee −Ev + qx) + ξy(Fe −Fv + qy) + ξz(Ge −Gv + qz)]
}

+
∂

∂η

{
1
J

[ηx(Ee −Ev + qx) + ηy(Fe −Fv + qy) + ηz(Ge −Gv + qz)]
}

+
∂

∂ζ

{
1
J

[ζx(Ee −Ev + qx) + ζy(Fe −Fv + qy) + ζz(Ge −Gv + qz)]
}

= 0
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where U = (ρ, ρu, ρv, ρw, ρet)T , J = |∂(ξ, η, ζ)/∂(x, y, z)| is the Jacobian of the geometric transformation
between the physical space (x, y, z) and the computational space (ξ, η, ζ), Ee,Fe and Ge are the inviscid
fluxes and Ev, Fv and Gv the viscous ones, given by the following classical expressions

Ee =




ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u




Ev =




0
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0
τxz

τyz
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


In the above equations, ρ refers to the fluid density, u, v and w refer to the velocity components in the x, y
and z directions, and p to the pressure. Taking into account the perfect gas law, the total energy et is given
by et = p/[(γ − 1)ρ] + (u2 + v2 + w2)/2. The heat term q is given by Fourier’s law, and the components of
the stress tensor τ are those of a viscous Newtonian fluid.

III. Numerical aspects

A. Numerical algorithm and boundary conditions

A 2-D structured body-fitted grid is created around the NACA0012 airfoil. For the three-dimensional
simulations, this grid is duplicated in the spanwise direction with a constant δz spacing. The use of structured
highly regular grids is in general appropriate for high-order finite-difference schemes. In this work, eleven-
point finite-difference schemes are used to calculate spatial derivatives over the entire computational domain,
including solid-wall boundary zones. Over the interior part of the computational grid, a centered optimized
scheme2 is used. This scheme is dissipation-free thanks to its centered nature, and generates only very low
dispersion for waves discretized by at least four points per wavelength, and is thus ideally suited to the
direct computation of the sound field radiated by turbulent flows. Non-physical high-frequency oscillations,
resulting from the use of centered high-order schemes on non-uniform grids and from solid-wall boundary
conditions, are removed by an explicit optimized eleven-point filter.2 Near solid boundaries, the centered
high-order eleven-point scheme and filter cannot be used. It is possible to use centered schemes up to the solid
wall, but at the cost of reducing the stencil size and order of the schemes and filters, and thus deteriorating
the overall numerical precision near the wall. Instead of this approach, non-centered eleven-point optimized
schemes developed specifically for boundary treatment19 are used for spatial derivatives, together with the
corresponding non-centered optimized filters. A good illustration of the benefits of using non-centered
optimized schemes and filters near solid walls is given by Visbal and Gaitonde.20 The association of high-
order non-centered schemes and filters near the solid wall makes it possible to maintain high numerical
accuracy, both in terms of dispersion and in terms of dissipation, while employing small numbers of points
per wavelength that would yield poor results if lower-order centered schemes and filters were used. The same
centered and non-centered schemes are used to calculate the partial derivatives ∂(ξ, η, ζ)/∂(x, y, z) of the
grid transformation’s Jacobian matrix, thanks to the expression

J =
1

|J−1|
[
cofactors(J−1)

]T
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A no-slip wall condition is imposed at the airfoil’s surface, and three-dimensional far-field radiation conditions
developed by Bogey and Bailly21 are used. A periodic condition is imposed in the spanwise direction. The
simulation domain extends only one half of an airfoil chord downstream from the trailing edge for reasons
of computational cost, and therfore a sponge zone in the last 20 points of the wake region is implemented
to dampen vortical structures before they reach the outgoing boundary condition. Explicit time integration
is performed with a six-stage Runge-Kutta scheme optimized for angular frequencies up to ω∆t = π/2,
implemented in a low-storage form.
The simulation code has been tested on numerous two-dimensional test-cases, including a two-body acoustic
scattering problem22 and a low-Reynolds-number flow around a cylinder. Results23 were shown to be in
good agreement with the corresponding analytical solutions and experimental data.
In the LES approach presented here, filtering plays a dual role. It is used not only to remove spurious
high-frequency (typically grid-to-grid) oscillations which are generated close to geometrical singularities, but
also as an implicit form of subgrid-scale treatment.24 The spectral-like resolution of the high-order optimized
filters leaves flow features larger than the filter cut-off wavelength unaffected, while cleanly removing energy
being transferred to smaller wavelengths. Examples of LES performed with this technique, as well as more
in-depth discussions on the role of the filtering, can be found in Bogey & Bailly.25, 26

B. Parallelization

The code used for the three-dimensional simulations was parallelized using the MPI-1 interface. The grid is
divided into structured blocks of equal numbers of points, as illustrated in Figure (1). Each block covers the
entire span of the simulated section of airfoil.

Figure 1. Decomposition of the computational domain around the NACA0012 airfoil into structured subgrids.

At every interface between adjacent blocks, an overlap of five points is used to allow the application of the
centered eleven-point differencing scheme and filter right up to the interface. The communication procedure
involves sending and receiving the values of the five physical variables (ρ, ρu, ρv, ρw, ρe) for all the grid
points over a depth of 5 points from the interface. Figure (2) shows a simple 1D illustration of the transfer
process, which is performed at every sub-iteration of the Runge-Kutta integration. Synchronisation of the

Process 2

interface

nx

nx−4 nx1

1 5

Process 1

Figure 2. Illustration of the communication procedure between two subdomains composed of nx points.
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communication with respect to the underlying numerical algorithm, and in particular with respect to the
spatial differencing, is essential. To this end, the MPI BARRIER routine is used to ensure that the spatial
derivatives at points in the interface regions are calculated with the most up-to-date values of the variables.
The parallelization of a large-stencil-size finite-difference code leads to relatively large amounts of data being
transferred at each interface between neighbouring sub-domains. Indeed, for a two-dimensional interface
between two sub-domains, measuring 50 by 50 points, each communication call requires the transfer of
50 × 50 × 5depth × 5variables × 64double-precision bits × 2send / receive ≈ 1 MB of data. Fortunately, clusters now
have very fast networks, typically capable of transferring at least 1Gbit/s, and dedicated cluster networks
also have very short latencies, so that the actual time cost of these large data transfers remains small
compared to that of the Navier-Stokes resolution. In the simulations shown in this work, the transfer time
on an ethernet-based network always remained inferior to 5% of the wall-time, and substantially less on
a dedicated network. Figure (3) shows the acceleration rate obtained thanks to the parallelization, on a
cluster of ALPHA EV68 1250 MHz processors connected by a Hippi communications network. The same
total computational domain was used for all but the single processor case, where a smaller domain was used
due to memory issues. Overall, the acceleration results indicate that the parallel code scales well, at least
for the moderate numbers of sub-domains so far tested. The results also show that parallelized high-order
large-stencil schemes do not necessarily incur unreasonable communication overheads, and that their use for
highly parallelized simulations is not proscribed.
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Figure 3. Speedup obtained thanks to parallelization, as a function of the number of processors.
– theoretical linear acceleration, + - - + acceleration obtained

IV. Two-dimensional airfoil

Preliminary NACA0012 calculations were performed in two dimensions, to investigate the behaviour of the
code around the trailing edge, as well as to provide comparison points for the three-dimensional simulations.
The airfoil chord is set to c = 0.1m, and the incoming flow has a Mach number of M= 0.22. This yields
a chord-based Mach number of Rec = 500, 000. The computational grid is composed of 1400 points in the
azimuthal direction and 280 points in the radial direction. Figure (4) shows the RMS velocity fluctuations,
rendered non-dimensional by the free-stream velocity U∞, in the upper and lower boundary layer. The
velocity fluctuations are measured at a height of hy = 0.0035 × c above the airfoil surface. They are
equal to zero up to x/c ≈ 0.3, indicating that the boundary layer is laminar up to this point, and their
subsequent progressive increase is due to the appearance and development of the vortical structures visible in
Figure (5). Transition from a laminar state thus appears to begin considerably too close to the leading-edge,
as experimental data18, 27, 28 indicate the transition zone to start between x/c = 0.6 and x/c = 0.7. Figure (5)
presents a snapshot of the instantaneous vorticity field around the NACA0012 airfoil. The behaviour of the
vorticity is adversely affected by the two-dimensional aspect of the simulation. Indeed, the lack of mixing of
the positive and negative vorticity is noticeable, and positive/negative vortex pairs visible downstream from
the airfoil have left the wake zone due to their induced velocity. Furthermore, the vorticity field appears
to be composed of overly large vortices and is free of small vortical structures, which is not the case in the
snapshot of a cut of the vorticity field around the three-dimensional airfoil, shown in Figure (10). In fact,

5 of 11

American Institute of Aeronautics and Astronautics



despite starting to undulate early compared to experimental data, the boundary layer fails to transition to
a turbulent state, due perhaps to the fact that secondary instabilities leading to turbulent boundary layers
are three-dimensional in nature. An additional consequence of the abnormal vorticity development along
the airfoil’s surface is an increased boundary layer thickness, of the order of 4 mm at the trailing edge, to be
compared with 2 mm in the three-dimensional simulation. However, the directivity of the computed pressure
field agrees fairly well with the directivity obtained by Oberai et al29 for the wavelength λ = c/2.26, which
is the closest match to the dominant wavelength λ = c/4.5 found in our simulation.
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Figure 4. Turbulent velocity fluctuations u′
rms/U∞ in the upper and lower boundary layers at a distance of

hy = 0.0035 × c above the airfoil surface, plotted as a function of x/c.

Figure 5. Vorticity intensity around a 2D NACA0012 airfoil at a chord-based Reynolds number of Rec = 500, 000.
Color scale is between ±3 × 105

V. Three-dimensional airfoil

A parallel simulation of the three-dimensional flow around a NACA0012 is now presented. The flow configu-
ration is identical to that used in the two-dimensional simulation: the airfoil chord is c = 0.1m and the Mach
number of the incoming flow is M= 0.22. The C-type grid used for the simulation is composed of 11.9× 106

points, distributed as follows: 1200 points in the azimutal direction, 220 in the radial direction and 45 points
in the spanwise direction. Grid spacings near the airfoil are identical to those used for the two-dimensional
simulation. The 45 spanwise points correspond to a length of roughly 5% of the chord. This span is larger
than those often used in LES of airfoils (Mary and Manoha30 for example simulated a span corresponding
to 1.5% of the chord), but the Reynolds number is lower in the present work, meaning that transversal
characteristic lengths are larger. The results presented here were obtained after an initial transitory period
of 140,000 iterations, corresponding to 5 convection times along the airfoil. Average quantities such as mean
velocity profiles in the wake and the wake centerline velocity defect are traced in Figures (7) and (8), and
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Figure 6. RMS pressure directivity around the 2D NACA0012 airfoil, measured at r/c = 1.5.

compared with experimental data measured by Hah and Lakshminarayana31 in the wake of a weakly inclined
NACA0012 airfoil at a chord-based Reynolds number of Rec = 3.8× 105.
The velocity deficit (U∞ − U) is scaled by the maximum deficit (U∞ − Uc) where Uc is the velocity on the
wake centerline, and is plotted as a function of y scaled by the height ls at which the velocity defect is halved.
The profiles compare favorably with the Gaussian function exp[−0.7(y/ls)2], as do Hah’s measured data.
The velocity defect profile at the trailing edge (x/c = 1.0) deviates notably from the autosimilar solution, as
also noted by Hah, which is not surprising since the autosimilar expression was originally derived for a far
wake.33 Likewise, the velocity recovery in the wake, over the short wake distance actually resolved in the
computation, shows reasonable agreement with Hah’s experimental data. The data measured by Chevray
and Kovasznay32) in the wake of a flat plate are also included for comparison.
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Figure 7. Mean velocity defect profiles in the wake at x/c=1.0 x/c = 1.1 - - - x/c=1.2 —
Gaussian function exp[−0.7(y/ls)2]

A mean drag coefficient of Cd = 0.02 is found, which is a little higher than the value of 0.011 obtained by
Hah and Lakshminarayana for an airfoil at a lower Reynolds number of 380, 000 and 3◦ angle of attack. The
mean pressure coefficient Cp = (p − p∞)/(0.5ρu2

∞), shown on Figure (9), corresponds very closely to that
measured by Lee and Kang18 for NACA0012 airfoils at Reynolds numbers of 400, 000 and 600, 00 and at
zero degrees incidence to the mean flow.
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Figure 8. Decay of the wake centerline velocity defect. ◦ NACA0012 airfoil at 3◦ incidence and Rec = 3.8× 105

(Hah and Lakshminarayana31) + flat plate wake(Chevray and Kovasznay32) — present simulation
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Figure 9. Mean pressure coefficient Cp = (p − p∞)/(0.5ρu2
∞) around a NACA0012 airfoil. ◦ airfoil at Reynolds

number of 600,000 (Lee and Kang18), — present simulation

According to experimental data available, the boundary layers around the airfoil transition from a laminar
to a turbulent state before reaching the trailing edge. Kerho and Bragg28 examined a NACA0012 airfoil at a
Reynolds number of 7.5×105 and situated the beginning of the transition zone at x/c = 0.65, and the end of
the zone -i.e. the beginning of the fully turbulent zone- at x/c = 0.78. Gartenberg and Roberts,27 working
at a lower Reynolds number of 3.75 × 105, found the boundary layer to remain laminar up to x/c = 0.8,
while Lee and Kang18 found the transition zone for an airfoil at a Reynolds number of 6× 105 to be located
between x/c = 0.62 and x/c = 0.78. It should be noted that the location and length of the transition zone
is very dependent on experimental conditions, and in particular on the background turbulence level of the
upstream flow.
Figure (10) presents an (x, y) cut of the instantaneous vorticity field Ωz = ∂v/∂x − ∂u/∂y around rear
half of the airfoil. The boundary layer is laminar to around x/c = 0.6, and from x/c = 0.65 onwards, the
vorticity starts to undulate and progressively rolls up into vortical structures of wavelength λ ≈ 0.0024 m.
These structures correspond to Tollmien-Schlichting instabilities, and are characteristic sign of the beginning
of transition in a boundary layer. The wavelength of λ ≈ 0.0024 m is in good agreement with the value
of 0.0021m predicted by linear instability theory. Figure (11) shows top and side isosurface views of the
streamwise vorticity Ωx = ∂w/∂y − ∂v/∂z near the trailing edge of the airfoil. The streamwise vorticity
masks the initial Tollmien-Schlichting instabilities that start around x/c = 0.65, and highlights the secondary
instabilities that develop farther downstream. At x/c = 0.9, strongly organized streamwise structures appear,
that resemble low-speed streaks characteristic of near-wall turbulence. The spanwise distance δ+

z measured
in wall units separating these structures is approximately δ+

z = 110, which is very close to the value of
δ+
z = 100 typically found in the literature.34 The end of the transition zone in the simulation is located
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slightly farther downstream than experimental data would tend to indicate, but it is as yet unclear whether
this is due to the complete absence of turbulence in the incoming flow, a condition not easily to achieve
experimentally, or to numerical aspects of the simulation.
Figure (12) presents an (x, y) cut of the instantaneous pressure field around the airfoil. It is obtained directly
by the LES simulation, without the use of a separate wave equation. The radiation is strongly dipolar due
to the remanents of the Tollmien-Schlichting instabilities crossing the trailing edge, with a marked upstream
directivity. Calculations currently under way will allow the direct computation of a substantially larger zone
of radiated field, as well as detailed analyses of the acoustic perturbations.

Figure 10. Instantaneous vorticity field Ωz = ∂v/∂x − ∂u/∂y around a 3D NACA0012 airfoil at a chord-based
Reynolds number of Rec = 500, 000. Color scale is between ±3 × 105

Figure 11. Streamwise vorticity in the upper boundary layer near the trailing edge. Top and side isosurface
views of Ωx = ∂w/∂y − ∂v/∂z. Red and blue isosurfaces correspond respectively to 1.5 × 105 and −1.5 × 105.
Distances are rendered nondimensional by the airfoil chord c.

VI. Conclusions

A three-dimensional parallel Large Eddy Simulation code, solving the compressible Navier-Stokes equations
on structured curvilinear grids thanks to high-order explicit finite differences and filters, is presented. A
NACA0012 airfoil at zero incidence and at a Reynolds number of 500,000 is then studied, both in two
dimensions and in three dimensions. The flow parameters are such that the boundary layers around the airfoil
are initially laminar, and transition to a turbulent state before reaching the trailing edge. Results obtained
by simulating the two-dimensional Navier-Stokes equations show that the boundary layer dynamics are not
correctly captured in two dimenions, but that the resulting acoustic perturbations are correctly propagated.
The three-dimensional parallel code is shown to capture the transition dynamics in the boundary layers, and
both mean and fluctuating flow values around the airfoil match experimental data reasonably well. More
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Figure 12. Instantaneous pressure fluctuations around a 3D NACA0012 airfoil at a chord-based Reynolds
number of Rec = 500, 000. Color scale between ±20Pa.

detailed analyses of the flow statistics as well as the radiated acoustic field are currently under way.
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