
Large Eddy Simulation of Screech Tone

Generation in a Planar Underexpanded Jet

J. Berland∗, C. Bogey†and C. Bailly‡
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The screech tones generated by a three-dimensional planar underexpanded jet are com-
puted directly using compressible large eddy simulation (LES). The jet operates at fully
expanded Mach number Mj = 1.55, with Reynolds number Reh = 6 × 104. The LES
strategy is based on explicit selective filtering with spectral-like resolution, and low dis-
persion and low dissipation numerical algorithms are implemented to allow direct noise
computation of the phenomenon. The investigation of the numerical results shows that
the flow development, the shock cell structure and the upstream acoustic field are well
reproduced by the computation. Flow visualization of shock/vortex interactions within
the third shock-cell provides evidences that screech sound sources can be interpreted using
the shock-leakage theory.

I. Introduction

Under certain operating conditions, supersonic over- and under-expanded jets can produce discrete fre-
quency sounds, referred to as screech tones, dominating all other noise sources in the forward direction.
This phenomenon was first observed in the 1950s by Powell,1 who proposes that the screech production is
controlled by a feedback loop. Indeed, the interactions of the turbulent motions developing in the jet shear-
layers with the shock waves of the quasi-periodic shock-cell system may give rise to upstream-propagating
acoustic waves. These waves are reflected back at the nozzle lip, and excite the shear-layer, closing the
resonant loop.

Since the first observations of Powell, a large number of experimental and theoretical studies have been
carried out, and knowledge has been gained on the self-sustained loop characteristics. One may refer for
instance to the review of Raman2 for further details. Current understanding of the screech is neverthe-
less primarily qualitative, and quantitative predictions are limited to the fundamental frequency at which
the phenomenon occurs. In particular, there is no theory that permits to determine the amplitude of the
upstream-propagating acoustic fluctuations. Such a prediction relies on a clear understanding of the sound
production due to shock/vortex interactions inside the shear-layer. Recent works by Suzuki & Lele3 in-
troduced geometrical acoustics to model the sound generation process. An analogy between ray trajectory
inside the jet and shock deformation may indeed be drawn. The theory of Suzuki & Lele3 showed that
shocks tend to leak through the shear-layer near the saddle points of vortices. This process moreover results
in production of sound waves with shapes similar to that of the screech tones. However, the study of Suzuki
& Lele3 has been accomplished for a single shock interacting with a shear-layer. Experimental evidences
of the shock-leakage phenomenon are not available so far, but numerical simulations can now help toward
demonstrating that shock-leakage occurs in screeching jet.

Simulation of jet screech noise has indeed become recently feasible. Nevertheless, such computation
remains a challenging issue: the self-sustained aeroacoustic loop responsible for screech tones leads to a
strong coupling between the aerodynamic and the acoustic fluctuations, and both fields must therefore be
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resolved within a same run. This method, referred to as Direct Noise Computation (DNC), has in addition
difficulty dealing with shock-associated noise simulations because it requires discretization algorithms with
high-order properties. Such simulations must compute shock waves while being able to resolve the full range
of length and amplitude scales associated with aerodynamic and acoustic fluctuations, and non-reflecting
boundary conditions for both turbulent motions and sound waves have to be implemented.

Shen & Tam4 solved for example the unsteady Reynolds Averaged Navier-Stokes (URANS) equations
to reproduce the screech tones of circular jets. Their method however provides a phase-averaged solution
at the forcing frequency induced by the screech, and thus simulates a limited bandwidth of the turbulence
spectra. The full range of turbulence scales can be obtained by Direct Numerical Simulations (DNS). The
required computational effort is unfortunately very important, and flow investigation using DNS is generally
restricted to low Reynolds number phenomena. In an attempt to study shock-associated noise, Suzuki &
Lele3 have for instance performed the DNS of a supersonic shear-layer impinging on an oblique compression
wave, with the aim of providing an insightful investigation of the shock-leakage phenomena. However, such a
DNS can hardly be extended to a complete shock-containing supersonic jet. The study of flows with Reynolds
number of practical interest, and of their radiated acoustic fields may be performed using compressible large
eddy simulation (LES). Indeed, in LES, only the larger scales are resolved and a subgrid scale model takes
into account the influence of smaller unresolved wavelengths. It is therefore possible to deal with realistic
turbulence configurations while keeping computational cost at a reasonable level. Feasibility of DNC of
subsonic jets using LES has been demonstrated for instance by Bogey & Bailly5–7 or Bodony & Lele.8 As
for supersonic jet noise, Al Qadi & Scott9 performed the LES of a rectangular jet exhibiting screech tones,
the shocks being captured with a high-order filter combined to a TVD (Total Variation Diminishing) time
integration scheme. Imamoglu & Balakumar10 carried out the computation of a shock-containing circular jet
using implicit LES based on WENO (weighted essentially non oscillatory) spatial discretization techniques,
and on a TVD algorithm for time advancement. Loh et al.11 also simulated the screech tones of a circular
jet using a low-order finite volume method. The simulations above however involve shock capturing or
low-order algorithms, and these methods have been shown not to be well suited for LES because they may
introduce excessive dissipation on the resolved scales,12 or generate numerical errors with large magnitude.13

The alternative is thus to perform a LES relying only on low dispersion and low dissipation algorithms,
which ensure numerical accuracy while avoiding significant artificial damping of the wavelengths accurately
resolved.

The objectives of the present work are twofold. First, in order to show the feasibility of the DNC of screech
tones using high-order algorithms, the compressible LES of a planar shock-containing jet is performed. The
jet operates at underexpanded conditions so that a quasi-periodic shock cell structure is formed in the jet
plume. The Reynolds number based on the fully expanded jet Mach number Mj = 1.55, and on the jet
height h = 3 mm, is equal to 6 × 104. The LES approach is based on low dispersion and low dissipation
numerical methods,14,15 and selective filtering is applied explicitly to take into account the effects of subgrid
scales.16 The computation aims at reproducing the aerodynamic flow development and the features of the
screech tones. Once consistency of the simulation is demonstrated, the results are used to provide numerical
evidences of the shock-leakage phenomenon due to shock/vortex interactions.

The outline of the paper is the following. The numerical procedure and the simulation parameters are
detailed in section II. The turbulent flow development and the acoustic field of the LES are then investigated
in section III. Flow visualizations of shock/vortex interactions in the shear-layer are finally depicted in
section IV to provide evidences of the connection between the shock-leakage process and the sound sources
of the screech tones. Concluding remarks are drawn in section V.

II. Numerical procedure

A. LES strategy and numerical methods

The filtered compressible Navier-Stokes equations written in the form proposed by Vreman et al.17 are solved
to perform the LES of a three-dimensional planar underexpanded jet. To take account of the dissipation
provided by the unresolved scales, an eddy-viscosity-based model is commonly introduced. This modeling
approach may nevertheless introduce excessive dissipation on the resolved scales, leading to a decrease of
the effective Reynolds number of the simulation.18 An alternative to eddy-viscosity models consists in
minimizing the dissipation on the resolved scales. Explicit selective high-order filtering of the flow variables
is therefore applied to diffuse energy only at the smaller resolved scales, close the grid cut-off wave number.
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Figure 1. Sketch of the computational domain and of the coordinate system.

The method has been successfully used in recent applications5–7,19 and is used here to compute the turbulent
flow development and the acoustic field of a planar supersonic shock-containing jet.

Low dispersion and low dissipation explicit numerical schemes designed on 11 points14 are used for spatial
discretization, and time integration is carried out by a fourth order low-storage Runge-Kutta scheme.15

Periodic boundary conditions are implemented in the z-direction while non-reflecting conditions of Tam &
Dong20 are used in the x and y directions so that acoustic perturbations leave the computational domain
without the generation of significant spurious waves. In addition, a sponge zone is set up at the outflow in
order to attenuate aerodynamic fluctuations before they reach the downstream limit of the domain. The jet
nozzle, which is known to be necessary for screech tone emergence, is described by two parallel adiabatic
plates separated by a distance h defining the jet height. Inside the nozzle, characteristics21 are implemented
to specify the inflow conditions. A sketch of the computational domain and of the coordinate system is given
in figure 1.

B. Simulation parameters

1. Inflow conditions

The jet is assumed to be supplied by a convergent nozzle whose designed Mach number Md is therefore equal
to 1. The ambient region surrounding the flow is at rest and characterized by a pressure p∞ = 105 Pa and a
density ρ∞ = 1.22 kg.m−3. Reservoir temperature Tr is set to 288 K, and an elevated pressure pe/p∞ = 2.09
is imposed inside the nozzle so that the jet operates at underexpanded conditions. The fully expanded jet
Mach number Mj , defined by,

Mj =

{
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is then equal to 1.55. This value has indeed been observed by Krothapalli et al.22 to correspond to maximum
screech sound radiation for a rectangular jet with a large aspect ratio.

Inside the nozzle, flow variables are uniform except near the walls where the no-slip condition is required.
Boundary layer profiles are therefore implemented close to the solid surfaces using an approximation of the
laminar Blasius solution, given by,

u

Ue
=

{

η(2 − 2η2 + η3) if η < 1

1 if η ≥ 1
(2)

where η is the distance to the wall normalized by the boundary layer thickness δ, and Ue = 310 m.s−1 is the
designed nozzle velocity. The inflow density profile is then given by the Crocco-Busemann relation:
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Figure 2. View of the Cartesian mesh in the planes (xy) and (yz). Only one point over four are plotted. The
dashed line stands for the beginning of the sponge zone and the white surfaces are the nozzle lips.

where the density on the walls ρw can be evaluated by the perfect gas relationship ρw = pe/rTr. For high
Reynolds number (∼ 105), boundary layers are generally very thin23 with a momentum thickness δθ/h of
the order of 10−3. However, to perform a computation with an affordable number of grid points, δθ/h is set
in this work to a larger value: 3 × 10−2.

The jet height is h = 3 mm and the nozzle lip thickness hl is similar to the one used in the experiments
of Raman & Rice,24 that is hl = h/4. The Reynolds number Reh = Ujh/ν is then 6× 104, where Uj = Mjcj

with cj = 278 m.s−1.

2. Numerical parameters

The computational domain is discretized by a Cartesian grid of 525 × 257 × 121 ∼ 16.3 × 106 points. The
smallest mesh size ∆m = h/40 allows to use 40 mesh points within the jet height and 7 nodes inside the
boundary layer. The grid is presented in Figure 2 and the domain of interest, which excludes the sponge
zone, has the following dimensions: 25.6h × 16h × 5h, with a nozzle extending over 0.6h inside the domain.
The time step ∆t ≃ 8.6 × 10−8 corresponds to a CFL = (Uj + cj)∆t/∆m number equal to 1, and selective
filtering is applied every iteration. To ensure statistical convergence and to compute at least one hundred
periods of the screech loop, the simulation is run over 80,000 time steps. Simulation parameters are given
in table 2.

III. Results and validation

A. Instantaneous vorticity and pressure

An instantaneous snapshot of isosurfaces of the spanwise vorticity ωz in the whole computational domain
is represented in figure 3. A large range of turbulence scales, especially the fine scales characterizing high
Reynolds number flows, are observed. Pressure isocontours in the plane z/h = −2.5 are also reported.
Upstream-propagating wavefronts are clearly visible on either side of the jet. This acoustic radiation is
typical of screech tones, and it will be shown in section D that the phenomenon is locked on a frequency
denoted fs, whose Strouhal number St = fsh/Uj is equal to 0.126.

Table 1. Parameters used for the LES of the three-dimensional planar underexpanded jet.

Mj pe/p∞ h (mm) hl δθ/h Reh ∆m ∆t (s)

1.55 2.09 3 h/4 3 × 10−2 6 × 104 h/40 8.6 × 10−8
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Figure 3. Instantaneous snapshot of spanwise vorticity ωz in the whole computational domain and of pressure
in the plane z/h = −2.5. The nozzle lips are represented in gray.
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Figure 4. Colormap of the normalized mean streamwise velocity u/Uj in the central (x,y)-plane. ,
sonic line (M = 1). The black rectangle represents the nozzle lips.

B. Mean flow field

1. Global mean flow

A colormap of the normalized mean streamwise velocity u/Uj in the central (x, y)-plane is shown in figure 4.
Due to the overpressure at the nozzle exit, five shock-cells exhibiting the distinctive bow-shape structure
are apparent in the jet plume for x/h < 10. In addition, a decrease of the axial velocity and a weakening
of the shock strength in the downstream direction is observed. The interactions between the cells and the
shear-layer are indeed stronger as the vortical structures develop in the streamwise direction. The velocity
and pressure gradients induced by the shocks are consequently smoothed out. Also shown in figure 4 is the
supersonic core of the jet, whose boundary is defined by the sonic line (points where the Mach number M is
1). This region extends down to x/h = 22 which is somewhat larger than the value of x/h = 15 measured by
Krothapalli et al.22 for a large-aspect-ratio rectangular jet operating at Mj = 1.52. This discrepancy may
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Figure 5. (a) Shock-cell spacing Ls/h as a function of the fully expanded jet Mach number Mj . Measurements
on rectangular jets: +, Raman & Rice;24 ×, Panda et al.25 , analytical solution of Tam26 for a plane
jet. •◦, present computation. (b) Shock strength p1/p∞ − 1 for the first three shock-cells (p1 is the pressure
upstream the shock). ◦ , Raman28 measurements on a Mj = 1.55 rectangular jet; � , present
computation.

be attributed to the turbulent development of the jet. The initial shear layer of the jet simulated by LES
is laminar and relatively large. The shear-layer at the nozzle exit of the experiments of Krothapalli et al.22

is however probably thinner and turbulent, which may lead to a faster jet development and to a stronger
decay of the mean centerline velocity with respect to the simulation.

2. Shock-cell structure

Average shock-cell spacing deduced from the LES mean flow data is presented in figure 5.a, where the shock-
cell spacing Ls/h is plotted as a function of the fully expanded jet Mach number Mj for various experiments
on rectangular jets. The shock-cell spacing provided by the computation appears to be slightly smaller than
expected. This trend may be explained by the initial shear-layer thickness used for the calculation. Indeed,
according to Tam,26 the jet column acts as a waveguide for flow discontinuities, and the successive reflections
of shocks and expansion waves on the sonic line give rise to the periodic shock-cell structure. Shock spacing is
therefore related to the height of the supersonic core, which is relatively small for the present LES due to the
thickness of the shear-layer. The supersonic core height at the nozzle exit is more precisely h∗ ≃ 0.8h. The
normalized shock cell-spacing Ls/h∗ is then equal to 2.7, which is in better agreement with the experimental
results shown in figure 5.a. This trend is in addition supported by the shock cell model of Morris & Baht,27

which shows in particular that shock spacing of round jets decreases when the mixing layer thickness is
increased.

The strength (p1/p∞ − 1), where p1 is the mean pressure just upstream of the shock, of the first three
shocks of the simulation are compared in figure 5.b to the measurements of Raman28 observed for a supersonic
rectangular jet at the same Mach number. The strength of the first shock is found to agree with the result
of Raman,28 whereas the second and the third shocks exhibit a larger pressure gap. The overestimation
of the shock strengths have two origins. First, as it has been reported above in this section, the nozzle
inflow conditions implemented for the LES probably induce a slower turbulent flow development, implying
a slower weakening of the shocks compared to the experiment of Raman.28 One may also argue that
shear-layer development in the major-axis plane of rectangular jets contributes to three dimensional shock-
cell structures,29 whereas for planar jet the mean flow is homogeneous in the spanwise direction. This
observation could support the fact that the first shock is similar in rectangular and planar jets. However,
further downstream, the three-dimensional structure of the jets should differ, resulting in discrepancies
between shock strengths.
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Figure 6. (a) Jet half-width δ0.5/h as a function of the downstream position x/h. (b) Transverse profile of
the mean axial velocity u/Um normalized by the centerline velocity as a function of y/δ0.5. , profile
given by (4); ◦, Gutmark & Wygnanski;30 , Bradbury;31 +, present computation at x/h = 25.

3. Mean velocity distribution

Figure 6.a presents the axial evolution of the jet half-width δ0.5/h. In the upstream part of the jet, for
x/h < 5, the jet half-width is modulated by the expansion and compression waves of the first two shock-
cells. Between x/h = 5 and x/h = 15, the jet spreads apparently linearly so that we can write δ0.5 = k(x−x0),
where k is the spreading rate and x0 the virtual origin. Thus, for 5 < x/h < 15, the rate is relatively small
and equal to 0.05. Further downstream at x/h = 20, large vortical structures begin to appear, and the
spreading rate increases and reaches the value of 0.18. This value is consistent with the measurements of
Krothapalli et al.22 which provide a spreading rate of 0.16 for a Mj = 1.52 rectangular jet, in the downstream
region for 40 < x/h < 80.

The transverse profile of the mean axial velocity u/Um normalized by the centerline velocity is given
in figure 6.b as a function of y/δ0.5. Also shown in figure 6.b are the experimental results of Gutmark &
Wygnanski30 and Bradbury,31 and the analytical self-similar profile for a plane jet :

u

Um
=

1

cosh2(0.88y/δ0.5)
(4)

The various profiles appear to collapse very well over the whole transverse range.

C. Shear-layer oscillation modes

The shear-layer development is now investigated using velocity fluctuations provided by the LES, with the
aim of characterizing the development of the aerodynamic instabilities.

1. Dominant instability modes

The axial evolution of the instability modes is first studied. Spectra of axial and transverse velocity perturba-
tions u′ and v′ are computed in the shear-layer along the line (x, y = h/2, z = 0), as shown in figure 7 where
the location of the measurement points are reported. The streamwise development of the power spectral
density of the velocity component u′ is depicted in figure 8.a as a function of the axial position x/h in term
of a colormap (in logarithmic scale). In the upstream part of the flow, for x/h < 10, the dominant mode
is observed to be locked on the screech Strouhal number St = 0.126. In addition, the amplitude of velocity
fluctuations for this mode exhibits a significant modulation by the shock-cells structure, which is indicated
by the successive decrease and recovery of the power spectral level close the shocks. Further downstream,
for x/h > 15, the instability at the screech frequency vanishes, and a lower-frequency mode with a broader
spectral distribution is seen to develop in the shear layer. The peak frequency is moreover shown to slightly
decrease with x/h. The corresponding Strouhal number is indeed equal to 0.054 in x/h = 15, and to 0.036
in x/h = 25. Note that these frequencies are not sub-harmonic of the screech tones.
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Figure 7. Definition of the measurement points in the central (x,y)-plane.

The axial evolution of the power spectral density of v′ is now presented in figure 8.b. Similarly to the
velocity component u′, the dominant oscillation mode of the shear-layer occurs at the fundamental screech
frequency. The mode nevertheless shows a weaker modulation by the shocks and it is in addition clearly
observed up to x/h = 22. For x/h > 15, a low frequency mode similar to the one observed for u′ emerges,
but with a fairly constant Strouhal number, equal to 0.045 at x/h = 25.

2. Transverse symmetry of the modes

Screech instability modes identified in the upstream part of the jet may be classified using the interpretation
reported by Thomas & Prakash32 of the sinuous and varicose instabilities of the planar jet. Cross-spectra
of the velocity fluctuations on either the jet, in the shear-layer, are therefore determined using the data at
the locations (x/h, y/h) = (1.3, 0.5) and (x/h, y/h) = (1.3,−0.5), as shown in figure 7 by the points S+ and
S−. The cross-spectrum based on the axial perturbations u′ is denoted Puu, while Pvv is the cross-spectra
determined from v′. The quantities deduced from the cross-spectrum are the amplitudes |P |, the coherence
functions C and the phases ϕ which are respectively provided in figures 9.a1, 9.a2 and 9.a3 for the axial
velocity fluctuations u′, and in figures 9.b1, 9.b2 and 9.b3 for the transverse perturbations v′.

The amplitude |Puu| shows four harmonic peaks whose fundamental corresponds to the screech frequency.
In addition, the coherence function Cuu appears to be close to 1 for these four frequencies, demonstrating
that they are coherent on either side of the jet. The phase ϕuu, which indicates the phase difference between
fluctuations in y = h/2 and y = −h/2, shows that the fundamental (fs) and the second (3fs) harmonics are
antisymmetric, whereas the first (2fs) and the third (4fs) harmonics are symmetric. It is indeed observed
that ϕuu(fs) = −π, ϕuu(2fs) = 0, ϕuu(3fs) = π and ϕuu(4fs) = 0.

Consider now the cross-spectrum calculated from the transverse fluctuations v′, it is found that the
amplitude |Pvv| is similar to that obtained for u′. A series of harmonic peaks are visible in figure 9.b1,
and are coherent since the coherence function Cvv displays a large value (> 0.8) for these frequencies. The
cross-spectrum phase ϕvv is nevertheless different from ϕuu. The fundamental (fs) and the second (3fs)
harmonics are symmetric, while the first (2fs) and the third (4fs) are antisymmetric. Phase difference in
figure 9.b3 is indeed such as ϕvv(fs) = 0, ϕvv(2fs) = −π, ϕuu(3fs) = 0 and ϕuu(4fs) = π.

It can be finally deduced from the phase differences on either side of the jet that the oscillation modes at
the screech fundamental frequency (fs) and at the second harmonic (3fs) are sinuous instabilities, whereas
the jet undergoes a varicose mode at the first (2fs) and third (4fs) harmonic frequencies. It should be noted
that the oscillation modes at fs, 2fs and 3fs identified by Raman & Rice24 on a screeching rectangular jet
have the same phase distribution.

A similar investigation has been carried out for the low frequency mode observed in the downstream region
of the jet, for the transverse velocity fluctuations v′. The cross-spectrum Pvv is therefore now computed
between the points at (x/h, y/h) = (22.5, 0.5) and (x/h, y/h) = (22.5,−0.5). The amplitude |Pvv|, the
coherence function Cvv and the phase ϕvv are respectively plotted in figures 10.a, 10.b and 10.c. A peak
at Strouhal number St = fh/Uj = 0.045 can be seen in the plot of the amplitude |Pvv|. The coherence
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Figure 8. Streamwise development of the power spectral density of the velocity fluctuations in the shear-
layer, along the line (x,y = h/2,z = 0), in logarithmic scales. (a) Axial perturbations u′ and (b) transverse
fluctuations v′. The shock locations deduced from the mean-flow are represented by the symbols •.

function at this frequency is about 0.85, and is large enough to conclude that the velocity perturbations
are correlated on either side of the jet. The phase difference ϕvv then demonstrates that the low frequency
oscillation mode is symmetric, as ϕvv = 0 at St = 0.045. The shear-layer consequently exhibits a flapping
instability mode in the downstream part of the jet.

3. Convection velocity

The convection velocities of the screech oscillation modes inside the shear-layer are now determined. The
axial phase variation ∆ϕ of the coherent mode is computed using the cross-spectra of the velocity component
u′ between measurement points on the line (x, y = h/2, z = 0) and a reference point located at (x/h, y/h) =
(0.05, 0.5). The phase evolution is presented in figure 11 as a function of x/h for the fundamental and the
first harmonic of the screech. The relative phase, which is observed to increase regularly in the downstream
direction, indicates a convection process. The average convection velocity uc is then given by uc = 2πf/α,
where f is the mode frequency and α the slope of the least-square straight line fit of the curve ∆φ. Convection
velocities are found to be uc = 0.57Uj for the fundamental, and uc = 0.51Uj for the first harmonic. These
values are in agreement with the experimental data of Raman & Rice24 which provide uc = 0.54Uj and
uc = 0.56Uj for the instabilities at the screech frequency and at the first harmonic, for a Mj = 1.44
rectangular jet.

4. Spanwise structure

The spanwise structure inside the shear-layer is identified by computing space-time velocity correlations
inside the shear-layer. The spanwise correlation coefficient based on the axial velocity fluctuations u′ is
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Figure 9. Cross-spectra of the velocity fluctuations on either side of the jet, in (x/h,y/h) = (1.3,0.5), and
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harmonic (2fs); �, 2nd harmonic (3fs); ⋆, 3rd harmonic (4fs). (a), Cross-spectrum of the axial velocity
perturbations u′; (b), cross-spectrum of the transverse velocity perturbations v′. (1), Amplitude |P |; (2),
coherence function C; (3), phase ϕ.
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Figure 10. Cross-spectrum of the velocity fluctuations on either side of the jet, in (x/h,y/h) = (22.5,0.5), and
(x/h,y/h) = (22.5,−0.5), as a function of the Strouhal number St = fh/Uj . •, St = 0.045. (a), Amplitude
|Pvv |; (b), coherence function Cvv ; (c), phase ϕvv .
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Figure 11. Phase variation ∆ϕ/(2π) with axial distance x/h of the velocity fluctuations u′ for the fundamental
and the first harmonic screech modes, on the line y = h/2 (z/h = 0). + , fundamental (fs); × ,
first harmonic (2fs).

defined at x, as,

Ruu(x, rz, τ) =
u′(x, t)u′(x + rzez, t + τ)

[

u′2(x, t) u′2(x + rzez, t)
]1/2

(5)

where ez is the unit vector associated with the z-direction, rz the spanwise separation, τ the time lag and
· the statistical average. The coefficient Rvv(x, rz, τ) is computed in a similar manner for the transverse
perturbations v′.

The coefficients Ruu and Rvv are determined at two locations in the shear-layer. The first measurement
position is located in the upstream part of the jet, at (x/h, y/h, z/h) = (5, 0.5, 0), in order to investigate the
screech oscillation mode. The second point is situated further downstream, at (x/h, y/h, z/h) = (22.5, 0.5, 0),
in order to identify the low frequency mode observed in the spectra of figures 8.a and 8.b. Results obtained
at (x/h, y/h, z/h) = (5, 0.5, 0) are plotted in figures 12.a and 12.b for Ruu and Rvv, respectively, while
figures 12.c and 12.d present the coefficients Ruu and Rvv at x/h = 22.5. Note that in these figures, the time
lag τ is normalized by the screech period Ts, and that rz is restricted to the interval [−2.5h, 2.5h], which
corresponds to the domain extent in the spanwise direction.

Consider first the results at x/h = 5. As expected, the maximum correlation occurs at (rz, τ) = (0, 0),
where Ruu = Rvv = 1. Both correlation coefficients Ruu and Rvv then quickly decrease as the spanwise
separation or the time lag are increased, suggesting the existence of small-scale spatially coherent structures.
However, the correlation coefficients do not fall down to zero for large space-time shifts. For instance, for
τ = 0, Ruu and Rvv remain fairly constant equal to 0.25 when rz/h ranges from −2.5 to 2.5. In addition,
when the time lag τ is increased, the correlation coefficients show a periodic evolution locked on the period
Ts of the fundamental screech tone, and do not display significant variations with the spanwise separation
rz. These trends indicate that the oscillation mode of the shear-layer at the screech frequency has a two-
dimensional structure. This instability is furthermore periodic and strongly correlated in time, which is
consistent with the self-excitation due to the screech tones.

The space-time correlations in the downstream region of the jet are now investigated at x/h = 22.5. The
axial velocity correlation Ruu in figure 12.c is equal to 1 at (rz, τ) = (0, 0). When the spanwise separation
or the time lag are increased, the magnitude of Ruu decreases, but the correlated region is larger than that
observed for x/h = 5. Moreover, for |rz| > 1.25 and τ > 0.5, the correlation coefficient is close to 0 and the
velocity perturbations are therefore weakly correlated. The downstream oscillation mode of the streamwise
velocity component u′ is thus dominated by turbulent motions which do not exhibit any particular spatial
or temporal properties. It is not the case for the correlation coefficient Rvv of the transverse velocity which
displays in figure 12.d a shape similar to that obtained for x/h = 5. The coefficient Rvv is indeed periodic with
the time lag τ , and is fairly constant as the separation rz varies. In addition, the period of the phenomenon
corresponds to the low frequency observed in the spectrum of figure 8.b, at Strouhal number St = 0.045.
Note however that the correlation in the spanwise direction and in time are weaker than further upstream at
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Figure 12. Space-time correlation coefficients determined in the shear-layer as functions of the spanwise
separation rz/h and the time lag τ/Ts normalized by the screech period. (a) Ruu(rz ,τ) at x/h = 5, (b)
Rvv(rz ,τ) at x/h = 5, (c) Ruu(rz , τ) at x/h = 22.5, and (d) Rvv(rz , τ) at x/h = 22.5, along the line (y =
0.5h,z = 0). , Ruu or Rvv = 0.

x/h = 5. These results indicate that the downstream region of the jet displays a two-dimensional flapping
mode, involving the transverse velocity v′.

D. Acoustic field

1. Upstream acoustic radiation

The time evolution of the pressure signal at the upstream location (x/h, y/h) = (−0.4, 0.85), represented by
the point P+ in figure 7, is plotted in figure 13 as a function of the time t, normalized by the screech period Ts.
At the beginning of the computation, for t/Ts < 30, the upstream acoustic field shows a transient behavior.
At time t/Ts = 30, the screech feedback is set up, and the pressure signal exhibits periodic oscillations up
to the end of the computation, at time t/Ts = 135.

The power spectral density of the pressure perturbations close to the nozzle lip in P+ is given in figure 14.a
as a function of the Strouhal number St = fh/Uj . A series of peaks are visible. The dominant tone is observed
at St = 0.126 and corresponds to the fundamental screech tone frequency. The other peaks are found to be
the harmonics of the phenomenon and have a decreasing energy as the frequency increases. Remark that a
non-harmonic peak can also be observed in figure 14.a at the Strouhal number 0.171. The presence of this
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Figure 13. Pressure history close to the nozzle lip, at x/h = −0.4 and y/h = 0.85. The dotted line represents
the end of the transient period of the computation.
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Figure 14. (a), Power spectral density of the pressure fluctuations close to the nozzle lip, at (x/h,y/h) =
(−0.4,0.85), as a function of the Strouhal number St = fh/Uj . (b), Strouhal number St = fh/Uj of the funda-
mental screech tone as a function of the fully expanded jet Mach number Mj . Measurements on rectangular
jets: ×, Panda et al.;25 +, Raman & Rice.24 , solution of Tam26 for a planar jet (uc = 0.5Uj). Present
computation: •◦.

discrete frequency, which has not been reported in rectangular jet experiments, is difficult to explain. It is
nevertheless interesting to note that this Strouhal number may be interpreted as the sum of the two dominant
oscillation modes of the shear-layer reported for v′ in the downstream direction, shown in figure 8.b. Indeed,
the low frequency mode occurs at St = 0.045 and the screech mode at St = 0.126, leading to a sum equal
to 0.171. Nonlinear interactions between these two modes may thus contribute to the non-harmonic tone
radiated in the upstream direction, but the mechanism of sound production has not been identified.

The Strouhal number of the fundamental discrete frequency is now represented in figure 14.b, where it
is also plotted against the fully expanded jet Mach number for several experiments on rectangular jets, and
where the analytical solution proposed by Tam26 is shown for comparison. The screech Strouhal number
provided by the LES is found to be slightly higher than experimental and theoretical results. Indeed, as
pointed out in section B, the shock-cell spacing obtained by the LES is smaller than the experimental spacing,
and an increased of the screech frequency may consequently be observed. Nevertheless, it should be noted
that the screech Strouhal number predicted by the computation remains within 10% of the values measured
on rectangular jets.

The sound pressure level (SPL) of the dominant screech tone is presented in figure 15 as a function of
the fully expanded jet Mach number Mj , for the present computation and for the experiments of Panda
et al.25 on rectangular jets. A difference of 5 dB is visible between the SPL provided by the LES and
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Figure 15. Sound pressure level of the screech fundamental tone as a function of the fully expanded jet Mach
number Mj . ×, Panda et al.25 experiments on rectangular jets. Present computation: •◦.
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Figure 16. Pressure history on either side of the jet in the upstream direction: , at (x/h,y/h) =
(−0.4,0.85); at , (x/h,y/h) = (−0.4,−0.85).

the SPL obtained in the experiments of Panda et al.25 This discrepancy may be attributed to the shock
strengths. Experimental results indeed suggest that the dominant screech sources are located for rectangular
jets between the third and fourth shock cells.28 However, as shown in section B, the planar geometry of
the computation leads to shock strengths higher than those observed for rectangular jets, especially in the
downstream direction. Although a connection between shock strength and screech amplitude has not been
clearly settled so far,28 this observation could explain the differences in figure 15.

Phase difference on either side of the jet is now investigated in the upstream direction, close to the
nozzle exit. The time history of the pressure signals measured at the locations (x/h, y/h) = (−0.4, 0.85)
and (x/h, y/h) = (−0.4,−0.85), represented by the points P+ and P− in figure 7, are depicted in figure 16
for ten periods of the screech. The fluctuations at the two locations clearly seem to be correlated and in
phase opposition. This trend is strongly supported by the computation of the cross-spectrum Ppp between
the two pressure probes P+ and P−. The corresponding amplitude |Ppp|, coherence function Cpp and phase
ϕpp are respectively plotted in figure 17.a, 17.b and 17.c as functions of the Strouhal number St = fh/Uj .
Four harmonic peaks, corresponding to the screech tones, are visible on the cross-spectrum amplitude |Ppp|.
Moreover, the coherence function Cpp ensures that the pressure signals at the two observation points are
correlated. The phase difference information finally indicates that the fundamental (fs) and the second
harmonic (3fs) screech tones are antisymmetric, whereas the first (2fs) and the third (4fs) harmonics are
symmetric. The quantity ϕpp is indeed equal to −π and π at the frequencies fs and 3fs, and is null for f = 2fs

and f = 4fs. These results are in agreement with the measurements of Raman & Rice24 who observed that
the upstream acoustic field generated by a rectangular jet is antisymmetric for the fundamental screech tone,
symmetric for the first harmonic and antisymmetric for the second harmonic.
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Figure 17. Cross-spectrum of the pressure fluctuations in the upstream direction, on either side of the jet, in
(x/h,y/h) = (−0.4,0.85) and (x/h,y/h) = (−0.4,−0.85)), as functions of the Strouhal number St = fh/Uj .
•, Screech fundamental frequency (fs); N, 1st harmonic (2fs); �, 2nd harmonic (3fs); ⋆, 3rd harmonic (4fs).
(a), Amplitude |Ppp|; (b), coherence function Cpp ; (c), phase ϕpp .
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Figure 18. Schematic view of the extrapolation domain and of the interface planes used to introduce the LES
data into the far-field computation.

2. Far-field extrapolation

A hybrid zonal approach is implemented to predict the far-field noise. In this way, the near-field data
provided by the LES computation are extrapolated using a simplified set of equations, allowing long-range
propagation of acoustic waves.

In the present work, the three-dimensional equations of linear acoustics are solved beyond an extrapolation
surface, where the LES near-field is specified. Assuming that time-dependent perturbations are small and
that the surrounding medium is at rest, keeping only the first order terms in the Euler equations yields the
linear acoustic equations:

∂U′

∂t
+

∂E′

∂x
+

∂F′

∂y
+

∂G′

∂z
= 0 (6)

where,

U′ = [ρ′, ρ∞u′, ρ∞v′, ρ∞w′]

E′ = [ρ∞u′, p′, 0, 0]

F′ = [ρ∞v′, 0, p′, 0]

G′ = [ρ∞w′, 0, 0, p′]

(7)

The mean flow variables are ρ∞ and p∞ for the density and the pressure. Pressure fluctuations can then be
computed thanks to the relationship p′ = c2

∞
ρ′, where c∞ =

√

γp∞/ρ∞ is the mean sound speed, and the
specific heat ratio is γ = 1.4.

The numerical methods used to solve equation (6) are identical to those of the LES. Low dispersion and
low dissipation explicit numerical algorithms14,15 and non-reflecting conditions20 are thus implemented for
space and time discretizations. The domain is periodic in the spanwise direction. The time step is doubled
compared to LES and the mesh size is six times larger. The computational domain contains the volume
[−35h, 45h] × [0, 45h] × [−2.5h, 2.5h].

The flow variables issued from the LES are introduced into the far-field computation at two interface
planes, as shown schematically in figure 18. The first plane lies in the directions x and z and is situated on
the top of the domain at y/h = 7, while the second is in the (y, z)-plane at x/h = −0.4 and is used to take
into account the acoustic field radiated in the upstream direction. Furthermore, to reduce diffraction effects
due to the end of the vertical plane close to the nozzle, a symmetry condition is enforced at the bottom of
the far-field grid.

A snapshot of instantaneous pressure in the central (x, y)-plane is depicted in figure 19. The radiation
of the fundamental screech tone appears in the upstream direction where periodic low-frequency wavefronts
are observed. On the contrary, downstream and sideline acoustic fields seem to be dominated by a broader
frequency range, containing in particular wavelengths shorter to that of the screech. It should be however
noted that the data provided by the far-field extrapolation are not relevant for low angles of observation
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Figure 19. Snapshot of instantaneous pressure in the central (x,y)-plane obtained with the far-field extrapo-
lation. Colorscale from −0.025p∞ to 0.025p∞ .

(< 30◦). The interface (x, z)-plane indeed extends over 0 < x/h < 25, whereas the far-field is computed up
to x/h = 45. A shadow zone therefore appears for x/h > 25 in the vicinity of the bottom of the domain.

The power spectral densities of the pressure fluctuations are computed for various positions in the far-
field. Measurement points are located in the central (x, y)-plane, on a circle of radius 35h centered on the
position (x/h, y/h) = (6, 0), which is close to the third shock-cell. The angle of observation with respect to
the downstream direction is denoted θ. Power spectral densities are plotted in figure 20 as functions of the
Strouhal number St = fh/Uj , for θ = 155◦, θ = 80◦ and θ = 40◦. In the upstream direction, for θ = 155◦,
the pressure spectrum is dominated by the screech harmonics and is similar to the spectrum of figure 14.a,
computed in the vicinity of the nozzle. In the sideline direction, for θ = 80◦, screech fundamental tone is
no longer visible whereas the first harmonic has the largest amplitude. Furthermore, two broadband peaks
are noticeable. One occurs at Strouhal number St ≃ 0.07 and may be associated with the mixing noise
generated by the large turbulent structures. The second peak is located between St = 0.1 and St = 0.2
and is attributed to shock-associated noise. Further downstream, for θ = 40◦, turbulent mixing noise is the
principal component of the acoustic field. A dominant peak centered on Strouhal number St ≃ 0.07 is indeed
observed in the spectrum.

These observations are supported by figure 21 which represents a colormap of the power spectral density of
the pressure fluctuations in the far-field in logarithmic scale, as a function of the Strouhal number St = fh/Uj

and of the angle of observation θ with respect to the downstream direction. Also shown in the figure is the
predicted central frequency of shock-associated noise based on the model of Tam.33 The fundamental screech
tone appears to radiate in the upstream direction (for instance at θ ≃ 150◦ and St ≃ 0.13) whereas the first
harmonic dominates other noise sources in the sideline direction, for θ ≃ 80◦. Moreover, the mixing noise
generated by large scale structure emerges in the downstream direction, for θ < 70◦, at a Strouhal number
close to 0.07. Shock-associated noise is especially visible in the region 50◦ < θ < 130◦ where a broadband
peak is seen with a central frequency varying with the angle of observation. In addition, the evolution of this
central frequency with θ is in agreement with the prediction of Tam.33 The acoustic far-field extrapolated
from the LES computation is thus in qualitative agreement with experimental data.34

Screech tones directivity patterns are now computed using the data provided by the far-field extrapolation.
For comparison, screech directivity is also determined using a phased array of acoustic monopoles.35 A series
of sources, situated at the end of the shock-cells, whose relative phases are given by the convection process,
radiate in far-field some pressure fluctuations which can be written as,

p = exp

[

2iπ(c∞t − r0)

λn

]

∑

j

Sj

rj
exp

[

−2iπj
Ls

λn

(

1

Mc
− cos θ

)]

(8)

where Ls is the shock spacing, r0 is the distance between the observation point and the reference location
(x/h, y/h) = (6, 0), rj is the separation between the observation point and the source j, Sj is the amplitude
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Figure 20. Power spectral density of the pressure fluctuations in the far-field as a function of the Strouhal
number St = fh/Uj , for various angles of observation θ with respect to the downstream direction. From the
top : θ = 155◦ , θ = 80◦ and θ = 40◦ .
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Figure 21. Colormap of the power spectral density of the pressure perturbations in the far-field as a function
of the Strouhal number St = fh/Uj and of the angle of observation θ with respect to the downstream direction
(logarithmic colorscale). , prediction of the central frequency of shock-associated noise.33

of the source j, and λn, the wavelength of the n-th screech harmonic, is given by the model of Tam:26

λn =
Ls

n

(

1 +
1

Mc

)

(9)

The convective Mach number is taken to be equal to 0.55Uj/c∞, and θ is the polar angle with respect
to the downstream direction. The present study makes use of six sources with the following arbitrary
amplitudes: (S1, . . . , S6) = (0.5, 0.5, 1, 0.5, 0.25, 0.25), the third shock-cell being the dominant source. Re-
call that measurement points are located in the central (x, y)-plane, on a circle of radius 35h centered on
(x/h, y/h) = (6, 0).

Both numerical and analytical directivities are reported as functions of angle θ in figures 22.a, 22.b and
22.c for the fundamental tone, the first harmonic and the second harmonic, respectively. In all figures, the
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Figure 22. Far-field directivity of screech tones. Sound pressure level (SPL) as a function of the angle of
observation θ with respect to the downstream direction. , far-field extrapolation ; , prediction
by a phased array of monopoles. (a) Screech frequency (fs), (b) 1st harmonic (2fs), (3) 2nd harmonic (3fs).

radiation patterns appear to collapse rather well for θ > 30◦. Indeed, lobe positions and relative amplitudes
obtained by the extrapolation of the LES data and by the phased array of monopoles are seen to agree quite
well. The fundamental screech tone exhibits a dominant lobe in the upstream direction and two secondary
lobes in the sideline direction. As for the first harmonic, two lobes of equal amplitudes are noticeable, one
around θ ∼ 80◦ and an other with a larger width in the upstream direction. Finally, the second harmonic
displays three lobes, the wider lobe being oriented toward θ = 180◦. As expected, for small angles, the
pressure field in the shadow zone does not agree with the prediction of (8). This trend is especially visible
for the fundamental tone in figure 22.a.

IV. Flow visualizations: shock/vortex interactions

Shock/vortex interactions are now investigated to highlight the screech sound production mechanisms.
The flow motions are visualized by plotting contour maps of the density gradient modulus |∇ρ| in the central
(x, y)-plane. The method, commonly referred to as numerical Schlieren, allows us in particular to identify
the location of the shocks, where strong gradients of the flow variables are observed. Such a visualization
is provided in figure 23 which presents an overview of the flow field in the central (x, y)-plane. Pressure
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Figure 23. Overview of the flow field and of the acoustic near field in the central (x,y)-plane. The density
gradient modulus |∇ρ| is plotted in gray (grayscale between 0 and 6ρ∞/h), and pressure iso-contours are
represented in the near-field (colorscale from p∞ to 1.1p∞).

iso-contours are also shown in the near-field. Wavefronts propagating in the upstream direction are visible
on either side of the jet and correspond to the screech. Furthermore, the third compression shock, which is
located around x/h = 6.5, seems to be the origin point of these sound waves. The flow visualization study
will therefore now focus on a region surrounding the third shock-cell, whose limits are given by the dashed
rectangle in figure 23. Visualizations of shock/vortex interaction are provided in figure 24 for this region.
Also shown in the figure is the upper part of the acoustic near field. Half a period of the screech cycle is
depicted from figure 24.1 to figure 24.9.

Coherent structures

As stated above, the numerical Schlieren allows to locate shock positions, but strong density gradients also
takes place in regions of the flow that are significantly sheared, like in the jet frontier. This behavior is
illustrated for instance in figure 24.1 where dark regions are visible in the streamwise direction and highlight
the sinuous shape of the jet, which is due to the flapping motion induced by the screech self-excitation.
Also observed in the figure are the coherent vortical structures associated with the screech tones excitation.
The blue arrows represent the rotation and the convection of a structure located in the lower part of the
jet, at (x/h, y/h) ≃ (6.5,−1). Two similar structures may be seen in the upper shear-layer: one is near
(x/h, y/h) ≃ (4, 1) and an other near (x/h, y/h) ≃ (9, 1). Note that these vortices are organized in an
antisymmetric manner, and that low-vorticity regions are found between them, as it is shown for instance
at (x/h, y/h) ≃ (6.5, 1) by the blue cross. These saddle points are of importance because shock-leakage is
expected to occur in their vicinity.3 A comparative study of the figures also shows the convection process. For
example, the vortex in figure 24.1 located at (x/h, y/h) ≃ (6.5,−1) moved to the position (x/h, y/h) ≃ (9,−1)
after half a period of the screech in figure 24.9. One may also remark that in figure 24.9 flow organization
is antisymmetric compared to figure 24.1. The blue arrows of figure 24.9 represents in particular a structure
antisymmetric to the structure in figure 24.1.

Shock motion

Flow visualizations in figures 24.1–24.9 give in addition the opportunity for investigating shock motions of
the third shock-cell, which is represented by a light blue dashed line. In all the figures, the shock remains
located between x/h = 6 and x/h = 7, and shows a rotating motion. In figure 24.1, the shock is oblique
and situated around x/h = 6.5. In figure 24.2 the shock is still close to x/h = 6.5, but the upper tip of the
shock has moved upstream and the lower tip downstream. This rotating motion is represented by the two
light blue arrows in figure 24.2. The other figures (24.3 to 24.9) show that this motion carries on through
the rest of the cycle, and leads to a shock-cell pattern in figure 24.9 antisymmetric to that of figure 24.1: the
shock in figure 24.9 is located at x/h = 6.5 and exhibits an oblique shape, but with a slope opposite to that
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Figure 24. Visualizations of the flow field and of the acoustic near field in the central (x,y)-plane, during half
a period of the screech loop. The density gradient modulus |∇ρ| is plotted in gray (grayscale between 0 and
6ρ∞/h), and pressure iso-contours are represented in the near-field (colorscale from p∞ to 1.1p∞). From (1)
to (9): t/Ts = 0, 1/16, . . . , 7/16, 8/16, where Ts is the screech period. , shock; , sound wave

generated by the shock-leakage phenomenon; , rotating density gradient. , coherent structure. ,
low-vorticity region.
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in figure 24.1.

Sound generation

The sound generation mechanisms are now investigated in term of the shock-leakage phenomenon. The
focus is therefore brought into the interactions between the compression shock and the low-vorticity region
initially located at (x/h, y/h) ≃ (6.5, 1) in figure 24.1. The flow motion implies that the low-vorticity region
is convected downstream while the upper tip of the shock moves upstream. The low vorticity region and
the shock tip are seen to interact in figure 24.3, and the coupling results in the production of an acoustic
wavefront which is represented by a dashed blue line. Recall that the shock-leakage mechanism proposed
by Suzuki & Lele3 states that the shock leaks through the shear-layer near the saddle points of vorticity,
and creates a pressure gradient that propagates in the near-field with a nearly circular wavefront, covering
a wide range of angles including the upstream direction. This sound generation mechanism is observed in
figures 24.3–24.9, where the wavefront generated in 24.3 visibly forms a circular sound wave propagating in
the upstream direction. The maximum amplitude moreover occurs in this direction.

Another aspect of the geometrical interpretation of Suzuki & Lele3 of the shock/vortex interaction is
the rotating effect of local vorticity on the wavefront normal. This behavior can be observed in the flow
visualizations in the present work. Indeed, it has been shown above that the compression shock leaks through
the shear-layer, but it seems in addition that the shock generates a wave which is trapped inside the vortical
structure. The phenomenon is apparent in figures 24.5–24.9, where a strong density gradient represented
by a magenta dashed line is seen in the core of a coherent structure. The wavefront moves upstream, but
remains inside the vortex due to its rotating motion.

V. Conclusion

In the present paper, the compressible large eddy simulation of a three-dimensional planar underexpanded
jet is performed using explicit selective filtering with spectral-like resolution, and low dispersion and low
dissipation numerical methods. The investigation of the numerical results demonstrates that the computation
correctly reproduces the screech tone generation phenomenon, which shows the feasibility of the direct noise
computation of such a feedback loop with high-order algorithms. Flow visualizations of the third-shock cell
motions finally provided evidences that shock-leakage occurs in between coherent vortices associated with
the screech excitation, resulting in the production of upstream-propagating sound waves.
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