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This paper is concerned with acoustic radiation of the first subharmonic of the forcing
frequency in a low-Mach-number excited jet. Two jets with laminar and transitional initial
conditions are experimentally studied in the same facility. An acoustic directivity with an
extinction angle in the sideline direction is observed for the laminar case (ReD = 6.7×104),
that can be interpreted as the radiation of a compact axisymmetric quadrupolar source.
A superdirective radiation is measured for the transitional jet (ReD = 1.3 × 105), that is
characterized by an exponential angular variation providing a larger range of the sound
pressure level. A wave extrapolation method is developed to interpret the measured near
and far pressure fields of these two configurations.

I. Introduction

Mollo-Christensen1 et al. was one of the first study to stress the importance of organized structures in jet
noise. A large number of works were subsequently devoted to the investigation of the role of coherent struc-
tures in the jet flow, and especially at the end of the potential core. Thanks to a coherent external acoustic
excitation, Crow & Champagne2 were able to organize and enhance the growth of centerline fluctuations and
thus revealed the presence of a preferred mode, the jet column mode. The Strouhal number StD of this mode
is in close relation with the Strouhal number of the hump in the far field pressure spectra, StD ≃ 0.3, the
exact value depending on the observation angle. The Strouhal number is defined by StD = fD/Uj where f
is the frequency, D is the jet diameter and Uj is the jet exit velocity. Crow & Champagne2 also investigated
the structure of the jet column mode and exhibited large-scale vortex puffs for jets at Reynolds numbers
ReD = UjD/ν between 103 and 104, where ν is the kinematic viscosity. Laufer3 suggested that the pairing
of vortical structures is a pre-eminent noise mechanism in subsonic jets. Although the coherent process of
pairing was quickly recognized to be very unlikely in natural jets, this noise source has been much studied as
it constitutes a benchmark for the application of aeroacoustic analogies4–6 and for the comparison of basic
noise theories.7–9

In a jet with a laminar initial shear-layer, stable pairing is usually obtained for a suitable excitation.10,11

Kibens,10 for instance, obtained a stable cascade of three successive pairing stages by controlling the growth
of the most unstable shear-layer mode predicted by the linear stability theory.12,13 Pairings occurred at fixed
positions and generated discrete noise components, e.g. the first subharmonic of the excitation frequency,
fs1 = fex/2, which is associated to the first pairing, and the second and third subharmonics, fs2 = fex/4
and fs3 = fex/8, corresponding to the second and third pairing stages respectively. Bridges & Hussain14

performed a careful investigation of the acoustic radiation produced by stable pairing in a similar laminar low-
Mach-number jet at ReD = 7.4× 104 and noticed an extinction angle θ⋆ in the acoustic far field, at 65o from
the jet axis in the downstream direction. This cancellation was explained14 by modeling the aerodynamic
noise source by an axisymmetric and compact distribution of quadrupolar source terms. Such a description
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indeed predicts15,16 an extinction angle θ⋆ around 55o . Several assumptions have been put forward to
explain the discrepancy between this theoretical value and measurements8 or numerical simulations.4

Laufer & Yen17 also investigated vortex pairing noise in low-Mach-number jets but at higher Reynolds
numbers (ReD > 105) than in Bridges & Hussain,14 so that the conditions of the initial shear-layer were
probably not fully laminar. From the classification established by Zaman,18 the initial flow state is suspected
to have been nominally laminar in this case. The measured acoustic directivity17 is radically different from
the observations of Bridges & Hussain.14 In particular, there is no extinction angle, and the directivity is
oriented far more in the downstream direction. An exponential antenna factor, qualified as superdirective,19

was proposed by Laufer & Yen17 to mimic this distribution. This puzzling result was addressed theoretically
by Huerre & Crighton,7 who argued that such an exponential radiation diagram cannot result from a compact
source in spite of the very low Mach number of the jet. They therefore developed Lighthill’s analogy20 for
a non-compact source in the axial direction, and recovered a similar superdirective antenna factor for a
Gaussian distribution of the source term along the shear-layer. Some discrepancies remain however between
the predicted acoustic field and the measurements. An alternative approach based on a wavy-wall analogy
was later proposed by Crighton & Huerre.19 Instead of modeling the aeroacoustic source term of the vortex
pairing, these authors considered the streamwise distribution of pressure slightly outside the shear-layer and
calculated the pressure radiated from this boundary by resolving a wave equation outside the jet. From a
Gaussian wave-like distribution, the exponential antenna factor was again recovered.

Motivation and goals

The present work brings further insight into the noise mechanisms associated to vortex pairing in low-Mach-
number excited jets, and reports a new experimental evidence of the superdirective radiation backing up
the work of Laufer & Yen.17 Note also that to the best of our knowledge, no other experimental work has
been published since the work of Bridges & Hussain14 to investigate the directivity and the location of the
extinction angle in excited jets. In the present work, the two radiation patterns were recovered in the same
facility to avoid usual criticisms, such as a possible artefact introduced by the nozzle in the Laufer & Yen
experiment.17

The initial conditions are suspected to play a key role. The streamwise dynamics of vortices is indeed
strongly controlled by the state of the boundary-layer at the nozzle exit,21 which probably influences the
emitted acoustic radiation. Two jets were investigated, one with a laminar initial shear-layer and the other
with transitional initial conditions. The same experimental facility was used in both cases and only the
jet velocity Uj was varied. An external acoustic excitation was used to control the natural axisymmetric
instability wave in the shear-layer and thus to enhance the pairing process, following Zaman & Hussain.11

The two radiation patterns of the vortex pairing were reproduced. For the two configurations, flow properties
are carefully documented and characterized to highlight the specific noise mechanisms.

The paper is structured as follows. The experimental procedure as well as the initial flow conditions for
the two jets are presented in § 2. Experimental results are reported in § 3 for flow characteristics under
forcing and the acoustic radiation of the first subharmonic. These experimental results are analysed in § 4
thanks to a wave extrapolation method developed in Appendix A. A discussion and some concluding remarks
are given in § 5.

II. Jet facility and data processing

The experiments were performed with a circular jet of diameter D = 5 cm and for two velocities Uj ,
20 m.s−1 and 40 m.s−1, corresponding to Reynolds numbers ReD of 6.7 × 104 and 1.3 × 105 respectively.
The experiments were carried out in the small anechoic wind tunnel (6.10×4.60×3.80 m3, cut-off frequency
100 Hz) of the Centre Acoustique located at Ecole centrale de Lyon.22 The flow was powered by a variable
velocity fan and conditioned by mufflers, mesh screens and honeycombs down to the converging nozzle of
area ratio 1/46. The turbulence level in the jet at the nozzle exit was less than 0.3 %, and the jet velocity
Uj varied by less than 1 % during the experiments. An excitation device constituted by four loudspeakers
and cavities enabled to control the shear-layer at the nozzle exit. The acoustic perturbation was generated
through a 2 mm-wide slot oriented at θ = 110o from the jet axis. The nozzle including the speakers was
designed to minimize possible acoustic reflexions and to prevent possible feedback. Note also that the nozzle
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is not baffled, in contrast to the experiments of Laufer & Yen.17

Velocity measurements were made with a 5 µm diameter and 1.25 mm long hot-wire mounted on a Dantec
Streamline constant temperature anemometer. The overheat ratio was 0.80 and the frequency response was
optimized up to 20 kHz, which is sufficient for the present work. The near pressure field was investigated
with a 1/8′′ Bruel & Kjaer (BK) microphone and the acoustic far-field with a 1/2′′ BK microphone. Velocity
and pressure spectra, denoted by u′

f (m.s−1) and p′f (Pa) respectively, were measured by a Hewlett-Packard
35652B analyser with a frequency resolution of 8 Hz, and 1000 data blocks were used to compute the power
spectral density.

Figures 1(a) and 1(b) display the velocity profiles for the natural jet at two axial locations. Near the
nozzle exit, the mean velocity profiles are in good agreement with the Blasius profile, as shown in Figure 1(a),
with a shape factor close to 2.56. Velocity profiles measured at x/D ≃ 0.09 are also plotted in Figure 1(b).
The mean axial velocity profiles are well approximated by a hyperbolic tangent profile. Note that streamwise
velocity fluctuations grow by an order of magnitude as Uj increases. This is attributed to a Reynolds number
effect. Following Zaman’s classification,18 the boundary-layer is laminar at Uj = 20 m.s−1 and nominally
laminar at 40 m.s−1. Turbulence levels, as well as other initial flow characteristics, are reported in Table 1.
The natural development of the two jets was also investigated and data can be found in Fleury.23

Boundary-layer

Uj δθ/D u′

M/Uj H

20 m.s−1 0.0023 0.14 % 2.62

40 m.s−1 0.0026 3.34 % 2.53

Shear-layer

Uj δθ/D u′

M/Uj f0 (Stδθ0
) f1 (Stδθ1

)

20 m.s−1 0.0042 0.18 % 1283 Hz (0.0135) 1520 Hz (0.0160)

40 m.s−1 0.0028 3.36 % 4144 Hz (0.0144) 4950 Hz (0.0172)

Table 1. Initial flow characteristics in the boundary-layer and in the shear-layer. δθ is the momentum thickness,

u′

M is the maximum velocity fluctuation at r = r1/2 in the boundary layer, with r1/2 defined as U(r = r1/2) =

Uj/2, or the shear-layer centre (r = D/2), and H is the shape factor. The frequencies f0 and f1 are associated

to the natural axisymmetric and first helical shear-layer modes respectively.

III. Experimental results

The excitation device was used to control the development of the natural axisymmetric disturbance in
the shear-layer and therefore, to organize vortex pairing. Freymuth13 and Michalke12 demonstrated the
broadband frequency receptivity of the shear-layer and exhibited a maximum growth rate of the fluctuation
u′

fex
for an excitation Strouhal number Stδθex

around 0.017.
The excitation frequency fex and the excitation level afex

are reported in Table 2 for the two jet velocities.
For comparison, Husain & Hussain24 used excitation levels afex

and afex/2 of 0.1 % to force a laminar shear-
layer. Laufer & Yen17 mentioned the maximum saturation of u′

fex
/Uj along the shear-layer. A fluctuation

rate between 2% to 7.6% was measured, which is slightly lower than the levels used in the present study,
namely 7.5% for Uj = 20 m.s−1 and 11% for Uj = 40 m.s−1. This difference results mainly from the high
excitation Strouhal number Stδθ

(fex) used by these authors, around 0.017 instead of the optimal value11 of
0.012.
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Figure 1. Mean and fluctuating velocity profiles for the two velocities � : Uj = 20 m.s−1 and ▽ : Uj =

40 m.s−1. Figure (a) shows the boundary layer profiles measured at x = 0.5 mm from the nozzle exit, The

Blasius profile is plotted in solid line and rj = D/2 is the initial jet radius. Figure (b) shows the shear-layer

profiles measured at x = 3.5 mm from the nozzle exit, where r1/2 is defined as U(r = r1/2) = Uj/2. The

dashed curve represents the hyperbolic tangent mean profile U/Uj = 0.5 [1 + tanh(η)].

Uj ReD M fex (Stδθ
) afex

20 m.s−1 6.7 × 104 0.06 1500 Hz (0.0158) 0.05 %

40 m.s−1 1.3 × 105 0.12 3530 Hz (0.0124) 0.1 %

Table 2. Excitation characteristics.

A. Jet characteristics under forcing

Times traces and spectral analysis

To analyse the influence of the excitation on the stability of the vortex pairing, velocity time traces and
spectra were measured in the shear-layer and in the potential core. For Uj = 20 m.s−1, shear-layer fluctu-
ations are quasi-periodic and well organized according to the frequency fex and its first two subharmonics
fs1 and fs2 as shown in Figures 2(a) and 2(b). This indicates the presence of a stable vortex pairing cascade
with at least two successive pairings in the shear-layer. A third pairing is also detected in the potential
core. Centreline fluctuation spectra shown in figure 2(c) indicate indeed the presence of a third subharmonic
fs3 = fex/8. This coherent low-frequency fluctuation controls the jet column mode by imposing its Strouhal
number StD(fs3) close to 0.47. In this case, both centreline and shear-layer fluctuations are synchronized by
the excitation.

For Uj = 40 m.s−1, shear-layer fluctuations are clearly much less organized, as reported in Figure 3(a).
The spectrum in Figure 3(b) reveals the suppression of the second subharmonic u′

fs2
and therefore the absence

of a coherent second pairing stage in the shear-layer. As in the natural jet (not reported here), the pairing
cascade is inhibited by the breakdown of vortices during the first pairing, which is the main difference with
the laminar shear-layer. Close to the nozzle exit, centreline fluctuations are controlled by the fluctuations
associated to the excitation and the first subharmonic, see Figure 3(c), but farther downstream the spectral
energy of velocity fluctuations is broadband as in the natural jet. The presence of the second subharmonic
u′

fs2
probably results from a few stable vortices, which do not break down during the first pairing stage, and

thus generate a second subharmonic through their interaction. This contribution of u′

fs2
is however weak

and was not detected in the shear-layer. In the present case, the effects of the excitation are limited to the
initial development of the jet, and the flow is turbulent downstream of the pairing–breakdown position.
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Figure 2. Velocity fluctuations for the excited jet at Uj = 20 m.s−1. A typical velocity signal measured in

the shear-layer at x = D/2 is shown (a) and its PSD is given in (b). Centreline velocity spectra are plotted

in figure (c), from x = 0 (bottom) to x = 6D (top), every ∆x = D/2. The dotted lines indicate the

excitation frequency fex and its first three subharmonics fs1, fs2 and fs3.
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Figure 3. Velocity fluctuations for the excited jet at Uj = 40 m.s−1. The legend is the same as in Figure 2.

The dashed line in (c) indicates the jet column mode.
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Growth of the fundamental and the subharmonics in the shear-layer

The initial growth of the shear-layer fluctuations u′

fex
, u′

fs1
and, for Uj = 20 m.s−1, u′

fs2
, is well predicted

by the linear stability theory, but farther downstream, as their amplitude reaches higher levels, non-linear
interactions are expected. Therefore, the presence or not of the second subharmonic influences the dynamics
of u′

fex
and u′

fs1
. This point is considered in the present section.

For Uj = 20 m.s−1, the streamwise dynamics of u′

fex
, u′

fs1
and u′

fs2
are shown in figure 4(a). Initially, the

growth is exponential and is faster for higher Strouhal numbers Stδθ
, as predicted by the linear stability theory

for Stδθ
< 0.017. The decrease of the growth rate of u′

fs1
, which is observed at x = 0.14D = 33δθ, results

from the non-linear resonant interaction with u′

fex
. The growth of u′

fs1
is reinitiated farther downstream by

the saturation of u′

fex
in xex = 0.22D = 52δθ with a turbulent rate u′

fex
/Uj of 6%. For a turbulent intensity

u′

fs1
/Uj of 2%, a resonant interaction occurs with the second subharmonic u′

fs2
, resulting in this case in a

reduction of u′

fs2
around x = 0.26D = 62δθ. A similar mechanism of attenuation was observed by Husain &

Hussain24 when the Strouhal number Stδθ
of the dominant disturbance is lower than 0.01. In the present

interaction, the dominant fluctuation is u′

fs1
with a Strouhal number of 0.008. This first subharmonic u′

fs1

then grows up to xs1 ≃ 2xex, where it saturates with a turbulent rate of around 16.5%. As defined by Ho
& Huang,26 the saturation of the first subharmonic corresponds to the position of the first vortex pairing,
where the maximum of acoustic pressure is generated during the pairing process. The saturation of u′

fs1
is

accompanied by a transfer of energy in favour of fex = 2fs1. The same mechanism is observed during the
second pairing stage in xs2 ≃ 4xex, whence energy is then supplied to u′

2×fs2=fs1
by the distortion of the

velocity fluctuation u′

fs2
. The first subharmonic u′

fs1
displays thus two humps along the shear-layer. Though

not well documented, this phenomenon can be also noticed in the data presented by Laufer & Zhang27 in
their figure 40.

For Uj = 40 m.s−1, the streamwise evolution of u′

fex
and u′

fs1
is less complex, since the second subharmonic

is not involved. As shown in figure 4(b), the disturbance u′

fex
saturates in xex = 0.16D = 57δθ for u′

fex
/Uj =

11%. A second maximum of u′

fex
is noticed at x = xs1 = 0.5D = 179δθ, where u′

fs1
saturates, with u′

fs1
/Uj

as low as 2%. Note that the condition xs1 = 2xex stated by Monkewitz28 to lead to the optimal aeroacoustic
organisation of the pairing cascade, is not satisfied in this case. The successive pairings of vortices is then
stopped downstream of the first pairing and u′

fs1
does not display other maxima due to the absence of second

subharmonic.
The coherence Cu′p′(fs1) of the first subharmonic u′

fs1
along the shear-layer was investigated by using a

near field pressure signal p′fs1
as reference. The reference microphone was fixed in the vicinity of the jet at

r ≃ D/2, x = D/2 and at an azimuthal angle of 90o from the hot-wire traversed along the shear-layer. For
Uj = 20 m.s−1, Cu′p′(fs1) is close to unity up to xs2 as shown in Figure 5. This indicates the absence of
phase jitter between the velocity fluctuation u′

fs1
and the generated near field pressure p′fs1

. On the contrary,

for Uj = 40 m.s−1, a lower level of coherence is measured upstream of the pairing position xs1. As shown by
Hussain & Zaman,21 ring vortices are indeed easily destabilized by random perturbations in the shear-layer,
leading to the formation of circumferential lobe structures. This might result in the presence of phase jitter
between the aerodynamic field and the acoustic field separated by an azimuthal angle of 90o . The coherence
Cu′p′(fs1) collapses downstream of the pairing–breakdown location xs1.

B. Acoustic radiation of the first subharmonic

Far-field pressure spectra, not shown here, indicate clearly the presence of the subharmonics of the excitation
frequency, without frequency shift in function of the polar angle θ. These components are associated with the
noise produced by fixed vortex pairings in the jet, as pointed out by Kibens,10 Laufer & Yen17 and Bridges
& Hussain.14 In the following, only the pressure field p′fs1

generated by the first vortex pairing process is
considered.

In the present work, measurements of p′fs1
were made in the very close vicinity of the shear-layer by

moving a microphone along the line θ = 10o in order to follow the slow expansion of the jet. At the origin
x = 0, the microphone is located at D/5 approximately from the shear-layer centre r = D/2. These data
are reported in Figure 6(a) for the two jet velocities. For Uj = 20 m.s−1, |p′fs1

| displays two strong maxima
in xs1 and xs2, close to the saturation of u′

fs1
in the shear-layer center. This two-lobe distribution of the

subharmonic pressure was also observed by Bridges & Hussain14 as reported in their figure 10. Note that
for Uj = 40 m.s−1, the near pressure field is quite different.
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Figure 4. Growth of instability waves along the shear-layer centerline: (a) : Uj = 20 m.s−1 and (b) : Uj =

40 m.s−1. The component associated to the excitation u′

fex

is represented by the dotted line , u′

fs1
by

the solid line , and u′

fs2
by the dashed line .
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Figure 5. Correlation coefficient Cu′p′(fs1) between the velocity fluctuation u′
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the pressure fluctuation p′

fs1
in the jet vicinity. � : Uj = 20 m.s−1 and ▽ : Uj = 40 m.s−1.
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The acoustic directivity was also measured at 40 D from the nozzle exit as a function of the angle θ from
the dowstream jet axis, and is shown in Figure 6(b). For the case Uj = 20 m.s−1, the directivity presents a
typical extinction angle that is often associated with the radiation of an axisymmetric quadrupolar source.
For the case Uj = 40 m.s−1, the radiation is strongly oriented in the downstream direction, with a dynamic
of around 25 dB instead of the 15 dB found in the previous case.

x/D

|p′fs1
|

0 0.25 0.50 0.75 1.00

(a)

2.5 dB

|p′fs1
|

(b)

θ
0 20 40 60 80 100 120

5 dB

Figure 6. Distribution of the amplitude of the subharmonic pressure p′

fs1
: (a) along the shear-layer,

(b) acoustic directivity. � : Uj = 20 m.s−1 and ▽ : Uj = 40 m.s−1.

IV. Analysis based on a wavy-wall analogy

A. Acoustic directivity

Although the pairing is confined radially by the shear-layer thickness, its streamwise extent is comparable
to the typical wavelength of p′fs1

in the near pressure field.17 The global evolution of fluctuations along the

shear-layer is then required for predicting the radiated acoustic field, as developed by Tam & Burton29 to
describe the Mach wave radiation by supersonic jets for instance. This approach was also used by Crighton
& Huerre19 to interpret the superdirective emission by vortex pairing observed in the experiments by Laufer
& Yen.17 These authors postulated the space-time evolution of the subharmonic pressure slightly outside the
shear-layer to mimic the experimental results. This distribution has the form of a pressure wave convected
in the downstream direction, and modulated by an envelope function E(x) :

p′fs1
= E(x) exp(ikxx − iωt) (1)

where kx stands for the wavenumber and ω for the pulsation of the pairing.
In the present section, the wavy-wall model developed in Appendix A is applied with the near pres-

sure field data as input, and the superdirective case is more specifically discussed. For the laminar case
Uj = 20 m.s−1, the near pressure field can be modelled with an analytical distribution based on sinusoidal
functions :

E(x) ≃ cos

(
π

x − xs1

σe

)
B(x, xs1, σe) + P21 cos

(
π

x − xs2

σe

)
B(x, xs2, σe)

as shown in Figure 7(a). B(x, xsi, σe) is the boxcar function, which is equal to one for |x − xsi| < σe/2 and
zero otherwise. The parameter P21 is the ratio of the pressure amplitude between xs2 and xx1, and σe refers
to the length-scale of the envelope, taken to be the size of one sinusoidal arch. The expression (11) derived
in Appendix A is then used to predict the acoustical directivity in the far field reported in Figure 7(b). All
the parameters involved in the model are taken from the present experiments, and are reported in Table 3.
For completeness, the analytical expression of the radiated pressure is given in Appendix B. The prediction
approximates well the measurements and recovers a minimum pressure for θ = 90o . This value is basically
controlled by the phase difference of the fluctuating pressure between the two lobes kx(xs2 − xs1), which is
taken equal to π in the modeling and provides an exact cancellation in the crosswise direction θ = 90o .

The most interesting result is perhaps obtained for the transitional case Uj = 40 m.s−1. The near pressure
field can be fitted by functions defined from their Fourier transform (7) :

Ên(k) = exp [−(σnk)n] (2)
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Uj σe/D λx/D λ∞/D σe/λx λ∞/σe Mp

20 m.s−1 0.3 0.5 9.1 0.6 30.4 0.9Mj

40 m.s−1 0.3 0.3 3.8 1.0 12.8 0.7Mj

Table 3. Parameters of the near and far pressure fields from measurements : σe is the length-scale of the

enveloppe E, see expression (1), λx the wavelength of the oscillatory part, λ∞ the acoustic wavelength and

Mp the phase or convection Mach number, Mp = ω/kx = λx/λ∞ .

x/D

|p′fs1
|

0 0.25 0.50 0.75 1.00

(a)

2.5 dB

xs1/D xs2/D
|p′fs1

|

(b)

2.5 dB

θ
0 20 40 60 80 100 120

Figure 7. Laminar case � : Uj = 20 m.s−1. (a) distribution of the amplitude of the subharmonic pressure p′

fs1

along the shear-layer, and (b) acoustic directivity; analytical fit by sinusoidal distribution and associated

directivity given by expression (11).

For n = 2, 3 or 4, comparisons with pressure measurements along the shear-layer are in good agreement,
as shown in Figure 8(a). Note that the case n = 2 corresponds to the Gaussian distribution used by Crighton
& Huerre19 to derive an expression of the radiated acoustic field. By applying again the approach derived
in Appendix A, the acoustic far-field associated with the distributions En(x) is given by :

|p′fs1
(R, θ)| ∝ 1

k∞R
exp (nσn

nkn
x × Mp cos θ) (3)

for Mp ≪ 1, where Mp is the phase Mach number defined from (1) as Mp = ω/kx, see also Table 3. For
the far field directivity, only the numerical factor varies with respect to the considered function En. The
calculated directivities are plotted in Figure 8(b) and a good agreement is found with experimental data for
the case n = 3, for which nσn

nkn
x |n=3 ≃ 45. This result is also in agreement with the empirical expression

derived by Laufer & Yen17 in fitting their measurements, namely |p′fs1
| ∝ exp (45 × Mp cos θ).

For n = 4, an attenuation coefficient nσn
nkn

x |n=4 of around 150 is found, which yields a directivity far
sharper than the measurements. And the radiated acoustic field predicted by the model (11) for a Gaussian
distribution provides a numerical factor nσn

nkn
x |n=2 ≃ 20, and thus a poor approximation of the far-field

pattern.

B. Near-field sound pressure

The decay of p′fs1
was investigated by moving the microphone away from the point (x = D/2, r = D/2), and

by following a fixed direction θ. The microphone displacement is denoted by d. For the two jet velocities,
two directions were considered, θ = 90o and θ = 20o . These measured profiles are compared to the
incompressible limit of the wave-wall approach developed in Appendix A.

For Uj = 20 m.s−1, the decay of p′fs1
very close to the shear-layer indicates a fast exponential evolution,

with more than 40 dB of attenuation as shown in Figure 9(a). The agreement with the prediction (12) is
fairly good in the vicinity of the shear-layer. A classical 1/d decay law is recovered farther away, for d > 2D
in the crosswise direction and for d > 4D at θ = 20◦, as reported in Figure 9(b).

For Uj = 40 m.s−1, the initial decay of p′fs1
is very similar and also indicates an exponential decay of

40 dB, see Figure 10, and the 1/d decay law is recovered for d > 3D. Favorable comparisons are obtained
with n = 3 for the description of the boundary pressure. Note that the pressure decay associated with the
Gaussian envelope function, n = 2, is not in good agreement with the experimental data.
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x/D
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|

0 0.25 0.50 0.75 1.00

(a)

2.5 dB xs1/D |p′fs1
|

(b)

θ
0 20 40 60 80 100 120

5 dB

Figure 8. Transional case ▽ : Uj = 40 m.s−1. (a) distribution of the amplitude of the subharmonic pressure

p′

fs1
along the shear-layer, and (b) acoustic directivity; analytical fit by En functions, see definition (2), with

n = 2 (Gaussian), n = 3 , n = 4 and associated directivity given by expression (11). The

parameter σn involved in (1) is taken as σ2 = σe/2 for n = 2, σ3 ≃ σ4 ≃ 0.125D for n = 3 and 4.

d/D

p′
fs1

θ = 20◦

θ = 90◦

10 dB

(a)

0 0.25 0.50 0.75 1.00 1.25

d/D

p′
fs1

θ = 20◦

θ = 90◦

10 dB

(b)

1 2 5 10

Figure 9. Laminar case � : Uj = 20 m.s−1. Decay of the near pressure field p′

fs1
in two directions θ = 20◦ and

θ = 40◦ : (a) in the vicinity of the shear-layer, incompressible wavy-wall analogy (12), exponential

attenuation given by (4); (b) farther away from the shear-layer, 1/d decay law.
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The radial attenuation of the near pressure field is not sensitive to the detailed streamwise distribution
of p′fs1

along the shear-layer. This result can be emphasized with the expression (15) of the near pressure
field for a slowly modulated boundary pressure σekx ≫ 1, where σe is the characteristic length scale of the
envelope E in (1). The near pressure decays exponentially according to the distance from the shear-layer
centre r − D/2, with an attenuation rate based on kx and with no influence of the form of the function
E(x). This asymptotic model describes fairly well our observations, but underestimates the decay rate found
experimentally in the near-field. The following empirical expression is found to be more relevant :

|p′fs1
| ∝ exp [−αkx(r − D/2)] (4)

For Uj = 40 m.s−1, the parameter α is around two, independently of the direction θ. For Uj = 20 m.s−1,
α varies slightly according to θ, and is equal to approximately α ≃ 3 for θ = 90o and α ≃ 4 for θ = 20o .

replacemen

d/D

p′
fs1

θ = 20o

θ = 90o

10 dB

(a)

0 0.25 0.50 0.75 1.00 1.25

d/D

p′
fs1

θ = 20o

θ = 90o

10 dB

(b)

1 2 5 10

Figure 10. Transional case ▽ : Uj = 40 m.s−1. Decay of the near pressure field p′

fs1
in two directions θ = 20◦

and θ = 40◦ : (a) in the vicinity of the shear-layer, incompressible wavy-wall analogy (12) for n = 3,

n = 2 (Gaussian distribution), n = 4, exponential attenuation given by (4); (b) farther away from

the shear-layer, 1/d decay law.

V. Discussion and concluding remarks

In the present work, acoustic radiation generated by vortex pairings in a circular low-Mach-number
excited jet has been investigated experimentally for two different initial states of the boundary layer at the
nozzle exit. For a laminar boundary layer at the nozzle exit, a stable pairing cascade occurs and the noise
radiated by the first subharmonic is close to the theoretical radiation of a compact axisymmetric source. A
superdirective radiation has been observed for a transitional boundary layer, with a exponential directivity
of the form ∼ exp(β × Mp cos θ). These two regimes have been reproduced for the first time in the same
facility, and the present experimental work is the second experimental evidence of superdirective emission
in jet noise since the work of Laufer & Yen.17 Specific mechanisms for these two acoustic radiations have
been found. In particular, the classical vortex pairing noise and the superdirective radiation have been
distinguished according to the vortex dynamics, either stable and very well organized in the first case, or
followed by vortex breakdown in the second case.

From a theoretical point of view, these two radiation patterns can be recovered from a wave extrapolation
method, as developed in the present Appendix A in following the study of Crighton & Huerre.19 Such
an approach allows to understand the structure of the near acoustic field, and to identify the different
involved length scales. Note that similar developments have also been proposed for the acoustic radiation
of a Tollmien-Schlichting wave.30,31 In the superdirective case, favorable comparisons with experiments are
found for a near pressure defined from expression (2) with n = 3, and the pressure amplitude is then found
as follows :

|p′fs1
(R, θ)| ∝ 1

k∞R
exp (β × Mp cos θ) β ≃ 45
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A possible next step could be to use the direct computation of aerodynamic noise32 to reproduce these
two configurations by controlling separately Reynolds and Mach numbers. Mean flow propagations effects
would be included and would allow to discuss more precisely the presence and the location of an extinction
angle for the far-field directivity.

Appendix

A. Acoustic radiation of an axisymmetric pressure distribution

The acoustic field radiated from an axisymmetric pressure distribution into a quiescent medium is investi-
gated. The pressure is prescribed in r = rj = D/2 as a traveling wave modulated by an envelope E(x) :

p′(x, r = rj , t) = E(x) exp [i(kxx − ωt)] (5)

where ω and kx are the pulsation and the axial wavenumber of the fluctuation respectively. The pressure
p′(x, r, t) in the domain r ≥ rj is then sought as :

p′(x, r, t) = p(x, r) exp(−iωt)

The pressure p(x, r) is governed by the Helmholtz equation :

(
∂2

∂x2
+

1

r

∂

∂r
+

∂2

∂r2

)
p + k2

∞
p = 0 (6)

with k∞ = ω/c∞ the acoustic wavenumber and c∞ the speed of sound. By taking the Fourier transform of
p(x, r) according to x,

p̂(k, r) =
1

2π

∫ +∞

−∞

p(x, r) exp(−ikx)dx (7)

the solution of the wave equation (6) is given by :

p̂(k, r) =

{
C(k)H1

0 (ikrr) if |k| > k∞
C(k)H1

0 (krr) otherwise
(8)

where kr =
√
|k2

∞
− k2| is the transverse wavenumber and H1

0 is the Hankel function of the first kind and
zero order. The coefficient C(k) is deduced by the Fourier transform of the boundary condition (5) :

C(k) =

{
Ê(k − kx)/H1

0 (ikrrj) if |k| > k∞

Ê(k − kx)/H1
0 (krrj) otherwise

(9)

The solution p(x, r) to the problem (5) and (6) is then obtained by taking the inverse Fourier transform of
p̂(k, r). In the following, asymptotic expressions of the pressure p(x, r) in the far and near fields are derived.

Regarding the far field, i.e. for krr ≫ 1, |p̂(k, r)| decays as 1/
√

r for |k| < k∞ and as exp(−krr)/
√

r for
|k| > k∞. Thus, the contribution to the far acoustic field results mainly from components |k| < k∞ and the
pressure p(x, r) reduces to :

p(x, r) ∼
∫ +k∞

−k∞

Ê(k − kx)

H1
0 (krrj)

H1
0 (krr) exp(ikx)dk

In order to estimate the directivity pattern, the polar coordinates (R, θ) are introduced for the observer.
The method of stationary phase then yields, for krR cos θ ≫ 1 :

p′(R, θ, t) ∼
√

2π
k∞Ê(k∞ cos θ − kx)

H1
0 (k∞rj sin θ)

exp(ik∞R − iωt + iπ/4)

k∞R
(10)

This expression can be further simplified by assuming the pressure field to be radially compact, i.e.

k∞rj ≪ 1. The term H1
0 (k∞rj sin θ) can thus be approximated by 2i ln(k∞rj)/π. In addition, by introducing
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the Doppler factor Dθ = 1−Mp cos θ where Mp is the phase Mach number defined as Mp = k∞/kx, expression
(10) can be expressed as :

p′(R, θ, t) ∼
√

π

2

π

ln(k∞rj)
× k∞Ê(−kxDθ) ×

exp(ik∞R − iωt − iπ/4)

k∞R
(11)

This asymptotic expansion is relevant for the configurations investigated in this study, since k∞rj = 0.34
for Uj = 20 m.s−1 and k∞rj = 0.83 for Uj = 40 m.s−1.

Regarding the near pressure field, i.e. for k∞|r − rj | ≪ 1, compressibility effects are negligible and the
problem governed by equations (5) and (6) can be simplified by setting k∞ = 0. The solution p̂(k, r) is then
directly deduced from expressions (8) and (9) :

p̂(k, r) =
Ê(k − kx)

H1
0 (i|k|rj)

H1
0 (i|k|r)

and the near pressure field p(x, r) is given by :

p(x, r) =

∫ +∞

−∞

Ê(k − kx)

H1
0 (i|k|rj)

H1
0 (i|k|r) exp(ikx)dk (12)

This expression of the near-field can be evaluated for a slowly spatially modulated boundary pressure (5),
i.e. for σe/λx ≫ 1 or σekx ≫ 1, where σe is the typical length scale of the envelope E(x) and λx = 2π/kx

is the wavelength of the pressure wave. By splitting the integral (12) according to positive and negative k
wavenumbers and by introducing the new variable u = σe(k − kx), the pressure p(x, r) becomes :

p(x, r) = exp(ikxx)

∫ +∞

−σekx

Ê(u/σe)

H1
0

[
i(σekx + u)

rj

σe

]H1
0

[
i(σekx + u)

r

σe

]
exp

(
i

u

σe
x

)
du

σe

+exp(ikxx)

∫
−σekx

−∞

Ê(u/σe)

H1
0

[
−i(σekx + u)

rj

σe

]H1
0

[
−i(σekx + u)

r

σe

]
exp

(
i

u

σe
x

)
du

σe

(13)

For σekx ≫ 1, p(x, r) is mainly given by the contribution of the first integral, which can be evaluated by
expanding the two Hankel functions H1

0 . Hence :

p(x, r) ∼ exp(ikxx)

∫ +∞

−∞

Ê

(
u

σe

)
exp(−(kx + u/σe)r)/

√
(kx + u/σe)r

exp(−(kx + u/σe)rj)/
√

(kx + u/σe)rj

exp

(
i

u

σe
x

)
du

σe

By introducing the variable z = x + i(r − rj), the near pressure field reads :

p(x, r) ∼
√

rj

r
E(z) exp(ikxz) (14)

The boundary pressure in r = rj is thus analytically continuated in the near-field r ≥ rj , with a supple-
mentary attenuation factor in 1/

√
r. A cruder expansion can be obtained by comparing the characteristic

length-scales of the evolution of E(z), (rj/r)1/2 and exp(ikxz) for σekx ≫ 1. For this, expression (14) is
written according to the auxiliary variable η = kxz :

p(x, r) ∼
√

rj

rj + ℑ(σeη)/(σekx)
E

(
1

σekx
σeη

)
exp(iη)

and for σekx ≫ 1, one obtains:
p(x, r) ∼ E(0) exp(ikxz)

Finally, |p(x, r)| reduces to the exponential evolution :

|p(x, r)| ∝ exp [−kx(r − rj)] (15)
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To sum up, expression (11) provides the acoustic far field for any boundary pressure (5), and in particular,
regardless of its axial compacity σekx. Only the condition k∞rj ≪ 1 has been assumed. For comparison,
the expression found by Crighton & Huerre,19 see their equation (3.4), for the acoustic field generated by a
plane boundary pressure is recalled with our notations :

p(R, θ, t) ∼
√

2π sin θ k∞Ê(k∞ cos θ − kx) × exp
(
ik∞R − iωt − iπ

4

)
√

k∞R

The main differences with expression (11) are the 1/
√

R decay law and the dipolar term in sin θ due
to the two-dimensional geometry of the problem considered by Crighton & Huerre19.19 Note also that the
behaviour of the near pressure field can be also estimated by (15) in assuming a slowly modulated boundary
pressure for (5), i.e. σe/λx ≫ 1.

B. Application to the laminar case Uj = 20 m.s−1

The experimental near pressure field displayed in Figure 7(a), is represented by :

E(x) = cos

(
π

x − xs1

σe

)
B(x, xs1, σe) + P21 cos

(
π

x − xs2

σe

)
B(x, xs2, σe) (16)

To estimate the acoustic directivity, the Fourier transform Ê(x) of the sinusoidal distribution (16) must
be evaluated :

Ê(k) = {exp(ikxs1) + P21 exp(ikxs2)}
cos

(
kσe

2

)

1 −
(

kσe

π

)2

and the acoustic directivity is then explicitly provided by expression (11) :

|p′(R, θ)| ∝ π3/2

√
2

kacσe

ln(kacrj)

1

kacR
I(θ)Da(θ) (17)

The Factor Da(θ) is the directivity associated to a single sinusoidal arch centered in x = 0 :

Da(θ) =

∣∣∣∣∣∣∣∣∣

cos

(
kxσe

2
Dθ

)

1 −
(

kxσe

π

)2

D2
θ

∣∣∣∣∣∣∣∣∣

and I(θ) accounts for the interference between the acoustic waves emitted from the two arches :

I(θ) = |exp(ikxxs1Dθ) + P21 exp(ikxxs2Dθ)|

where Dθ = 1−Mp cos θ corresponds to the Doppler factor. The results plotted in Figure 7(b) are obtained
with the numerical values given in Table 3, and with P21 = 0.957.
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15Möhring, W., 1978, On vortex sound at low Mach number, J. Fluid Mech., Vol. 85, No. 4, pp. 685-691.
16Kambe, T. & Minota, T., 1983, Acoustic wave radiation by head-on collision of two vortex rings, Proc. R. Soc. Lond., A

386, pp. 277-308.
17Laufer, J. & Yen, T.C., 1983, Noise generation by a low Mach number jet, J. Fluid Mech., Vol. 134, pp. 1-31.
18Zaman, K.B.M.Q., 1985, Far-field noise of a subsonic jet under controlled excitation, J. Fluid Mech., Vol. 152, pp. 83-111.
19Crighton, D.G. & Huerre, P., 1990, Shear-layer pressure fluctuations and superdirective acoustic sources, J. Fluid Mech.,

Vol. 220, pp. 355-368.
20Lighthill, M.J., 1952, On sound generated aerodynamically - I. General theory, Proc. Roy. Soc. London, Vol. 211, Ser. A,

1107, pp. 564-587.
21Hussain, A.K.M.F. & Zaman, K.B.M., 1980, Vortex pairing in a circular jet uner controlled excitation. Part 2. coherent

structure dynamics, J. Fluid Mech., Vol. 101, pp. 493-544.
22Berhault, J.P., Sunyach, M., Arbey, H. & Comte-Bellot, G., 1973, Réalisation d’une chambre anéchöıque revêtue de
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