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A shock-capturing methodology is developed for non-linear computations using low-
dissipation schemes and centered finite differences. It consists in applying an adaptative
second-order filtering to handle discontinuities in combination with a background selective
filtering to remove grid-to-grid oscillations. The shock-capturing filtering is written in its
conservative form, and its magnitude is determined dynamically from the flow solutions.
A shock-detection procedure based on a Jameson-like shock sensor is derived. A second-
order filter with reduced errors in the Fourier space with respect to the standard second-
order filter is also designed. Linear and non-linear problems are solved to show that the
methodology is capable of capturing shocks without providing dissipation outside shocks.
The shock detection allows in particular to distinguish shocks from linear waves, and from
vortices when it is performed from dilatation rather than from pressure.

I. Introduction

Issues! specific to Computational Aeroacoustics (CAA) have led over the last fifteen years to the design
of appropriate methods, reported for instance in the review of Colonius & Lele,? which are less dispersive and
less dissipative than standard methods of Computational Fluids Dynamics (CFD). Centered differentiation
schemes have in particular been considered to minimize numerical damping. They are however inaccurate
for the higher wavenumbers discretized, and might generate numerical instabilities, specially for grid-to-
grid oscillations, and therefore are usually implemented in combination with filtering of the high-frequency
waves involving selective filters® 7 affecting the low-frequency waves in a negligible manner. These methods
have been applied successfully to compressible unsteady Navier-Stokes computations for predicting the noise
generated by turbulent flows,%%? and have moreover been shown to be well suited to perform accurate
large-eddy simulations.!? ! They can also be used for strongly non-linear problems, such as the generation
of screech noise in supersonic jets as in Berland et al.,'? but it is generally recognized that they encounter
serious problems for flows containing discontinuities such as shocks. Near shocks, the implementation of
low-dissipation schemes might indeed result in spurious Gibbs oscillations due to spectral truncation in the
wavenumber space.

In order to prevent the appearance of Gibbs oscillations in simulations of shocked flows, the usual approach
is based on shock-capturing upwind-biased schemes. Such schemes have been formulated since the early eight-
ies by many researchers including, among others, Harten, Yee, Shu and coworkers.'> 18 To handle shocks,
these authors developed famous CFD algorithms such as the TVD (Total Variation Diminishing) schemes
making use of flux or slope limiters, and the ENO (Essentially Non-Oscillatory) and WENO (Weighted
ENO) schemes in which an adaptative stencil that adjusts to the smoothness of the solutions is applied.
These schemes ensure high stability, but they are in general of low accuracy, especially for time-dependent
problems. They might provide unsatisfactory results for shock-turbulence interaction problems,'” as well as
excessive numerical damping on turbulent scales in large-eddy simulations.?® Attempts have therefore been
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made to improve their performance by modifying their design?! or by increasing their formal order.?? In
this case, in order to assess the quality of the solutions, in particular in aeroacoustic studies, there is an
urgent need of analysing the spectral properties of the shock-capturing schemes in the Fourier space,?? and
of checking their accuracy by solving standard CAA test cases.?* Another interesting approach suggested
by Adams & Shariff?® is to couple compact/low-dissipation schemes with a shock-capturing scheme that is
turned on around discontinuities.?? 27 The adaptation of the spatial scheme then requires the detection of
the strong non-linear features within the computational domain. This has been done for instance by Visbal
& Gaitonde®® who applied a shock detector to switch between compact and shock-capturing schemes, but
furthermore explored a different methodology where numerical filtering is adapted to the flow features.

With the aim of using centered differentiation schemes to keep good resolution characteristics, one pos-
sibility is indeed to make use of an adaptative artificial dissipation model, corresponding also to a filtering
of the solutions, which is effective near the discontinuities but tends to have negligible influence everywhere
else. Jameson et al.?? thus introduced additional terms in the Euler equations that consist of a blend of
second-order and fourth-order dissipations with non-linear switching coefficients. Their method was applied
by Pulliam?° and Swanson & Turkel®! for steady inviscid flows around airfoils, but it was found to be
too dissipative for unsteady problems. For aeroacoustics purposes, Lockard & Morris®? and Kim & Lee33
proposed higher-order versions of Jameson’s model, in which the selective dissipation of Tam et al.*® is
implemented rather than the original fourth-order dissipation. Similarly Visbal & Gaitonde,?® Hixon et al.3*
and Emmert et al.?® recently developed shock-capturing dissipation models combining second-order and
high-order diffusion operators. One crucial point in the methodology is the definition of the shock detector,
which has to distinguish between shocks and gradients of any other kind in order to limit the range of the
shock-capturing dissipation specifically to the regions containing shocks.?® Detectors estimated from simple
gradients,?® 27 from second derivatives of pressure or density?% 33 3% such as the Jameson detector, and from
WENO-type smoothness criteria?®37 have in particular been used. Ducros et al.?® also proposed a modified
version of the Jameson detector taking into account the local property of compressibility, which is capable
of discriminating between turbulent fluctuations and shocks.?”3? Finally, once the shock-detection sensor is
evaluated, the shock region is dealt with by means of a switch which has to specify the type and amount of
dissipations to be specify at each grid point.

In the present study, a shock-capturing methodology based on an adaptive spatial filtering is derived
for high-accuracy non-linear computations including low-dissipation time integration and centered space
differencing. Following the works presented above, it consists in applying a background selective filtering at
each mesh point to remove grid-to-grid oscillations, in combination with a shock-capturing filtering around
discontinuities. To smooth possible shocks in a proper manner, the shock-capturing filtering is written in a
conservative form and is of second order, but its magnitude has to be adjusted dynamically from the flow
solutions to be nil in regions of linear propagation, for well-resolved gradients and for turbulent fluctuations,
so that the approach should be appropriate for unsteady CAA and CFD problems. To meet this requirement,
a second-order filter reducing phase errors with respect to the standard second-order filter when applied with
a non-uniform strength is first designed. A Jameson-like shock sensor evaluated from the magnitude of the
higher wavenumbers of the flow variables is then proposed. It can be estimated either from pressure as
classically done, or from dilatation in order to give weight to the local feature of compressibility in the
procedure of shock detection. The magnitude of the shock-capturing filtering is finally determined from
the shock sensor in a simple way, using a given threshold parameter. The efficiency of the shock-capturing
methodology is assessed by solving standard linear and non-linear problems*’ 3 with a low-dissipation
Runge-Kutta algorithm and centered finite differences, built up in Bogey & Bailly” to be well suited to CAA
needs. Problems of acoustic wave and shock propagation, vortex convection, shock-sound interaction and
shock-vortex interaction are specially considered. The influence of some methodology parameters such as the
filter shape, the use of pressure or dilatation for detecting the shock, and the threshold parameter providing
the filtering strength is thus discussed. The application of the selective filtering to the fluxes** rather than
to the flow variables is also briefly discussed for a non-linear problem.

The present paper is organized as follows. The equations governing the test problems and the background
numerical algorithm, including a sixth-order selective filter, are reported in section II. The development of the
shock-capturing filtering procedure is detailed in section III, with a focus on the impact of the conservative
form of the filtering in the Fourier space, the definition of the shock detector and the determination of the
filtering magnitude. The results obtained for the test cases using the adaptative shock-capturing filtering
are then shown in section I'V. Concluding remarks are finally provided in section V.
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II. Equations and numerical algorithm

A. Governing equations

To quantify the effects of the shock-capturing filtering on the behaviour and interactions of different kinds of
disturbances, solutions of test cases will be calculated in section IV by solving problems of acoustic and shock
propagation, vortex convection, shock-sound interaction in a transonic nozzle, and shock-vortex interaction.
They will be computed from the one-dimensional, the quasi-one-dimensional or the two-dimensional Euler
equations written in a conservative form using Cartesian coordinates. Dimensionless variables defined by
introducing reference scales for density, length and velocity (sound speed) are used.

1. One-dimensional equations

The one-dimensional Euler equations are expressed in the form

ou O0FE

DT | 1

ot " ox @)
where the vector U of conservative variables and the flux vector E are defined as U = [p, pu, pe]T and

E = [pu, pu* + p,u(pe + p)]T, and p, u, p denote density, velocity and pressure. The total energy is given
by pe =p/(y — 1) + pu?/2 with v = 1.4.

2. Quasi-one-dimensional equations

The quasi-one-dimensional Euler equations are written in the form

ou oOF
E—l—%ﬁ—Q—O (2)

where the variable vector U, the flux vector E and the source vector () are respectively given by U =

o, pu. pe)”, E = [pu, pu® +p,u(pe +p)]" and Q = (1/A) (dA/dx) [pu, pu, u(pe +p)]", and A = A(z) is
the cross-sectional area.

3. Two-dimensional equations

The two-dimensional Euler equations are finally expressed as

oU OFE OF
i Wt e S 3
ot T or oy (3)
where the variable vector U and the flux vectors F and F are provided by U = [p, pu,pv,pe], E =
[pu, pu? + p, puv, u(pe + p)| and F = [pv, puv, pv*® + p,v(pe + p)|. The total energy is now given by pe =
p/(y —1) + p(u? + v?)/2, where u and v are the two velocity components.

B. Numerical algorithm

When equations (1), (2) and (3) are solved, the spatial derivatives are approximated with 11-point 4th-order
centered finite differences, which have been designed” so as to generate negligible phase errors down to
waves discretized by four points per wavelength. Time integration is performed using a 6-stage 2nd-order
low-storage Runge-Kutta algorithm displaying low dispersion and dissipation in the Fourier space.” These
methods have been successfully implemented in previous studies to perform direct noise computations for
configurations such as subsonic and supersonic jets,'>4%46 and flows around an airfoil.*”

During the computations, a background numerical dissipation is applied in the following way: after each
time step, the conservative variables U are filtered explicitly using an 11-point selective filter at a magnitude
%7, to provide at node i
Ul =u; — 0¥ D (4)

3

where 0 < ¢%f < 1, and the filtering operator is given by

Dl =" d;Usy, (5)
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Table 1. Coefficients of the 11-point 6th-order selective filter, with d_; = d;.

do = 0.234810479761700 | d3 = —0.049303775636020
di = —0.199250131285813 | d4 0.012396449873964
dy = 0.120198310245186 | ds = —0.001446093078167

and d; are the filter coefficients. The filtering procedure is conservative as long as a constant magnitude o5t
is used. In what follows, this magnitude is moreover set to o°/ = 1, implying that grid-to-grid oscillations
are completely removed after each time iteration.

The selective filter involved in the present study is an 11-point 6th-order filter, whose coefficients d;,
reported in Table 1, have been determined so that its damping function Dy (kAz) = dp+2 Z?:l d; cos(jkAx)
is lower than 107> over a large wavenumber range. The damping function thus obtained is shown in Figure 1.
Compared to the standard 2nd-order filter, i.e. to a typical shock-capturing filter, the selective filter differs
basically by providing appreciable dissipation only for waves roughly over 7/2 < kAxz < 7, discretized
by fewer than four grid points, whereas the 2nd-order filter might affect small wavenumbers. To evaluate
accuracy limits of the selective filter, the two criteria Dy (kAx) < 2.5 x 1072 and Dy (kAx) < 2.5 x 10~ are
used as previously in Bogey & Bailly,” yielding \/Az = 4.82 and A\/Ax = 5.74 in terms of number of points
per wavelength. These limits are lower for instance than the limits A\/Az = 5.40 and A\/Az = 6.96 found for
the standard 10th-order filter also represented in Figure 1.
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Figure 1. Damping function, in logarithmic scales, as a function of the wavenumber kAx: optimized

11-point filter of order 6, — — — standard 10th-order filter, ------- standard second-order filter.

Finally, boundary conditions based on characteristics?® are implemented in the quasi-one-dimensional
problems, whereas the non-radiation boundary conditions derived by Tam & Dong®® are applied in the
two-dimensional cases.

III. Shock-capturing filtering

The aim is to develop a shock-capturing filtering procedure appropriate for unsteady high-order simu-
lations. Therefore the filtering will be of second order, and written in a conservative form to accurately
describe the propagation of shocks, and its magnitude will have to be adjusted dynamically from the flow
variables so that it is negligible everywhere except around discontinuities.

A. Conservative form of the filtering

The shock-capturing filtering is applied at each time step just after the background selective filtering removing
grid-to-grid oscillations. Since its magnitude depending on the shock detection is expected to vary, the
filtering operation is written in a conservative form as the difference between two damping fluxes taken at
the interface of two adjacent cells as recommended by Kim & Lee.?® At point ¢ on an uniform grid, the
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Table 2. Coefficients c; for conservative shock-capturing filtering: standard 2nd-order filter (Fo2), standard
4th-order filter (Fo4), and optimized 2nd-order filter (Fopt), with ¢;_; = —c¢;.

Fo2 Fo4 Fopt
¢ | 1/4 -3/16 —0.210383
Co 0 1/16 0.039617

conservative variables U are thus filtered explicitly to yield
Ut = U= (o3, D3¢y — 3, D3° ) (6)

where the filtering strength 0 < ¢°¢ < 1 is not constant, and the damping functions Dfi; and D7, are
2 2

estimated from the variables U using the following interpolations

n n
sc o sc TT. .
Di-s-%_ E c;Uitj and Di_%— E c;iUirj1 (7)
j=1l-n j=1-n

To determine the coefficients c; of the 2n-point interpolation defining the damping functions, one considers
the non-conservative form of the filtering

U =Ui—0i° Y U, (®)

j=——n

and notes that equations (6) and (8) must be equivalent when the filtering magnitude is uniform. For a
given n, the coeflicients c; are then directly obtained from the coefficients d; of the corresponding non-
conservative centered filter. The values found for the standard 2nd-order filter, here referred to as Fo2, are
collected in Table 2. The coefficients c; calculated for the standard 4th-order filter Fo4 are also given in the
Table, despite this filtering is not dissipative enough to handle strong discontinuities in a proper manner and
will not be used to capture shocks subsequently.

B. Characteristics of the filtering in the Fourier space

The effects of the shock-capturing filtering are investigated in the Fourier space by considering the application
of the conservative form (6) of the filtering with a non-uniform magnitude o3¢, = 0 + Acj¢ and 07¢, =
2

it+3
o8¢ — Aoi¢ (by construction 0 < of¢ <1 and —0.5 < Acf® < 0.5), yielding

Uz = U; — o5° ( I fo%) — Aoe (ij% + fo%) 9)
Introducing the damping functions (7) into expression (9) provides
n—1
U = Ui—0iScalliyn+ > (¢ — ¢j41)Uigj — c1onlUion
_ 10
—Ac¢ S enlUiin + D (¢ + ¢je)Uisj + c1—nlUizn
j=1-n

In order that the second term in the right-hand side of equation (10) should be equivalent to a filtering at
the magnitude o7¢ providing no dispersion, that is a filtering based on symmetrical coefficients, one has to

set ¢, = —c1—pn and ¢j —cj41 = c—; —c1—j. The coeflicients of the damping functions are then antisymmetric
with ¢; = —c¢;—j, and the filtering procedure (10) becomes
n—1
Uisc = U, — UZ»SC —2c1U; + Z(Cj — Cj+1)(U7;+j + Uz'—j) + Cn(UH-n + Uz'_n)
j=1
n—1 (11)
~Aci 8> (e + 1) Uinj = Uing) + en(Uign — Ui—n)
j=1
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Applying spatial Fourier transform to equation (11) allows us to write
Use = Ui(1 — 05 Dyeat(kAT) + iATE Dyppag (kAx) (12)

where D,.cqi(kAz) is the transfer function of the equivalent filter obtained with a uniform filtering magnitude,
and Dijyqq(kAx) is the transfer function of the phase errors generated by the variations of the filtering
strength. They are defined by

Dyeai(kAx) = —2¢1 + 2 Z —¢jt+1) cos(jkAzx) + 2¢, cos(nkAzx) (13)
n—1

and  Dijpaq(kAz) = —2 Z (¢j + ¢jy1) sin(jkAx) — 2¢, sin(nkAx) (14)
j=1

The tranfer functions for the standard 2nd and 4th-order filters Fo2 and Fo4 are presented in Figure 2.
The profiles for D,.eq(kAx) in Figure 2(a) correspond to the damping functions classically observed as a
function of the wavenumber, with the decrease of dissipation as the order increases. Those for D;y,qq(kAx)
in Figure 2(b) suggest that the phase errors might be important for the 2nd-order filter.

(a) (b)
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Figure 2. Tranfer functions, as a function of the wavenumber, of the real and imaginary parts, (a) Dyeqi(kAx)
and (b) Djmag(kAx), for conservative shock-capturing filtering: standard 2nd-order filter (Fo2), —
— — standard 4th-order filter (Fo4), and — - — - optimized 2nd-order filter (Fopt).

An attempt is now made to develop a specific 4-point conservative filter for shock capturing, referred
to as Fopt, that displays dissipation features similar to those of the standard 2nd-order filter Fo2, but also
generates reduced errors. The filter is then designed so that its damping function D,..q;(kAx) approximates
the damping function DF°%(kAx) of filter Fo2, while lowering its related phase errors given by Djyaq(kAz)
for a given range of wavenumbers. In pratice the coefficients c; of the filter Fopt are chosen so that the

integral error
27

| (Dreastioss) = D 30)) ak50) + [ 1Dy (B0 ds2) (15)
0 0

is minimized. The optimization is carried out by imposing 0 < D,. < 1 for 0 < kAx < 7. Two regularization
constraints must also be satisfied: D,.(kAz = 0) = 0, which is naturally ensured by expression (13), and

D, (kAx = w) = 1 yielding
1 n )
c1 = 71 + 22(*1)]Cj (16)
]:

Therefore, for a 4-point filter defined by antisymmetric coefficients, there is only one coefficient to adjust.

The coefficients of the filter Fopt are reported in Table 2, and the corresponding tranfer functions are
presented in Figure 2. Compared to the filter Fo2, the optimized filter shows phase errors decreased by a
factor of about 2 for small wavenumbers, while being significantly more dissipative than the filter Fo4. Its
shock-capturing capabilities will be discussed in section IV devoted to the test cases.
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C. Adaptative filtering magnitude

The filtering strength o°¢ is to be estimated from the flow variables, so that it should be significant around
discontinuities but negligible everywhere else. A procedure of shock detection is therefore first proposed.
More precisely, in order to indicate the presence of shocks within the computational domain, a shock detector,
roughly similar to that formulated by Jameson et al.? making use of the second derivative of pressure, is
evaluated from the magnitude of the high-wavenumber components of a variable that can be either pressure
or dilatation.

Based on pressure, the present shock sensor is determined following three steps. The pressure high-
wavenumber components are first extracted from variable p using the second-order filter Fo2, yielding, at
node i

Dp; = (—piy1 +2pi — pi—1) /4 (17)

The magnitude of the high-pass filtered pressure is then calculated as
magn __ 1 2 2
Dpi™" =5 [(Dpi — Dpiy1)” + (Dp; — Dpi—1) (18)

and the shock sensor is defined as the ratio r expressed as

Dpmagn
Ty = 17172 +e (19)
b;

where € = 1071° is introduced to avoid numerical divergence later in expression (23).

In some cases the use of pressure to detect shocks might not be appropriate for distinguishing between
turbulent fluctuations and shocks in an unambiguous manner. To deal with this deficiency, as also suggested
by Ducros et al.,3® a possibility is to take into account the local property of compressibility. This led us to
perform the shock detection from dilatation ©® = V - u rather than from pressure. The high-pass filtered
dilatation is computed at node ¢ as

Do, = (7®i+1 +20; — @i—l) /4 (20)
and its amplitude as
1
Delmagn = 5 I:(D@i — D®i+1)2 + (D@i — D@i_1)2:| (21)
The shock sensor based on dilatation is then calculated as
D@Qnagn
;= 22
" c?/Az? e (22)

where ¢? = p; /p; is the square of the local sound speed.

Once the value of the shock detector r is known, from pressure or dilatation, the strength of the filtering
has to be given. In the present approach, following Visbal & Gaitonde?® for instance, a threshold parameter
r¢p, 18 used to specify the regions where the shock-capturing filtering is employed. The filtering magnitude is
evaluated by the function

) (23)

which is represented in Figure 3. For r; < 1y, the filtering magnitude is ¢)¢ = 0 as required. For r; > 7,
that is when the level of the high-wavenumber components of pressure or dilatation are appreciable, one
gets 0 < 07¢ < 1, and in particular ¢]¢ — 1 for 7; — 4+o00. The threshold parameter ry, is typically to be
set between 107% and 1074, a lower value corresponding to an application of the shoch-capturing filtering
on a wider region. In this way, the second-order filter is only switched on when the gradients of pressure or
dilatation are strong enough.

For completeness, for the application of the conservative form (6) of the shock-capturing filtering, the
values of 0°¢ between the nodes are simply approximated by

T

1 r r

(07 +074) (24)

-
DN | =

1
sc o & sc sc sc
O'i+%—2(02+1+0'1 ) and gil1
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Figure 3. Variations of the shock-capturing filtering magnitude o°¢ as a function of the shock sensor r/rp,.

IV. Test cases

Two kinds of test problems are solved to study the relevance and the efficiency of the shock-capturing
methodology. First linear problems (acoustic propagation and vortex convection) are considered in order to
verify that the shock-capturing filtering does not apply in these cases. Then non-linear problems involving
shocks (shock propagation, shock-acoustic and shock-vortex interactions) are simulated to demonstrate the
capability of the methology to take into account discontinuities in a proper manner. As previously men-
tioned, the numerical algorithm used for the discretization of the test cases combines 11-point low-dispersion
centered finite differences with a 6-stage optimized Runge-Kutta schemes designed in Bogey & Bailly,” and
a background selective filtering of the conservative variables is implemented after each time step using the
11-point filter of 6th order presented in section II.B, with a magnitude o5 = 1.

A. Linear problems

Two test cases are first computed in order to check whether the shock-capturing filtering is turned on in
linear problems involving acoustical or vortical disturbances.

1. Acoustic propagation

In order to compute the propagation of an acoustic wave from the one-dimensional Euler equations (1), with
or without making use of the shock-capturing procedure, a pressure pulse is specified by imposing at time
t = 0 the following conditions

1 T\ 2
u=0, p:7(1+0.00026Xp [-m@)(b)]) and p=1

where b is the Gaussian half-width of the pulse. The pressure amplitude of the right-going travelling wave
generated by the initial pulse is 10* times smaller than the ambient pressure 1/7, so that non-linear effects
are negligible during the propagation. The problem is solved on a uniform grid with a mesh spacing Az = 1,
with a time step At = 0.8.

To explore the adaptability of the shock-capturing method to linear wave propagation, two pulses, one
well resolved by the grid and another slightly under-resolved, defined respectively by half-widths b = 2 and
b = 3 are dealt with. The pressure profiles thus obtained at ¢ = 200 without shock-capturing are presented
in Figure 4(a). There is no visible dispersion nor dissipation of the broader pulse with b = 3, whereas the
shape of the pulse with b = 2 has been modified during the propagation with a amplitude that has been in
particular noticeably decreased by the selective filtering. The pressure profiles determined when the shock-
capturing procedure is switched on are not represented here, but they collapse perfectly with the previous
profiles for both pulse configurations. The shock detectors r calculated at ¢ = 200 from pressure or from
dilatation are indeed shown in Figures 4(b) and 4(c) to be lower than 1071°. These values are well below the
threshold parameter which is typically between r;, = 107¢ and 74, = 10~%. Consequently the magnitude
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of the shock-capturing filtering is set to ¢°¢ = 0, and the shock-capturing filtering is not employed in the
present linear problems.

(a) (b) (c)

1 2 2
b
2 o0s 3 e
= 0. [ 1 [ 1
7 g g
% = =
0 0 0
180 190 200 210 220 180 190 200 210 220 180 190 200 210 220
XIAX XIAX XIAX
Figure 4. Linear acoustic propagation. Solutions at ¢t = 200: (a) pressure computed without using the

shock-capturing procedure and, shock sensor r evaluated (b) from pressure and (c) from dilatation using the
shock-capturing procedure. Gaussian pulse half-width: b=3, b=2.

2. Vortex convection

The convection of a round vortex by a uniform flow is now considered by solving the two-dimensional Euler
equations (3). At ¢ = 0, the following initial conditions are then imposed

2 2 2 2
Y -ty T ¢ +y 1
=052 —In(2) [ —=* == —In(2) [ —= = d p=1
u Vo | -tu2) ()| o= Few @ (T )] p=t g

in order to introduce a divergence-free vortex at x = y = 0, similarly to what was done in the first CAA
Workshop,*® which will be convected in the axial direction at the dimensionless velocity 0.5 that is half the
speed of sound. The computation is performed on a grid containing 181 x 121 points with mesh spacings
Az = Ay = 1, with a time step At = 0.5. When the shock-capturing procedure is applied, the standard
2nd-order filter Fo2 is used in its conservative form, and a threshold parameter r, = 10~% is specified for the
shock detector. In addition, as previously for the acoustic pulses, two geometrical configurations are studied:
a well-resolved vortex defined by a Gaussian half-width b = 5, and a vortex with b = 3 characterized by a
narrower core.

As illustrations of the problem solutions, the vorticity and the pressure fields calculated at ¢ = 50 for the
vortex with b = 5 without shock-capturing are represented in Figure 5. As expected, the vortex has been
convected by the axial flow so as to be located at 2 = 25 and y = 0 in Figure 5(a). A region with negative
pressure induced by the vortex is also observed at this place in Figure 5(b), while a transitory circular sound
wave is noticed all around the vortical structure.

(a) (b)
60 . - " " " 60
40t 1 40
20 1 20
g of @ { 9 of
> >
=20t 1 -20
-40} -40
-60 : : - . . -60 . . - . :
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
XIAX X/AX

Figure 5. Vortex convection. Solutions at ¢ = 50 for the vortex with Gaussian half-width b = 5: (a) vorticity
and (b) pressure, computed without using the shock-capturing procedure. Representation of contours: w =
[—0.03, 0.15, 0.25] for vorticity and vp = 1 + [—0.25, —0.1, 0.03] for pressure.
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To give evidence of possible effects of the shock-capturing method on the present vortices, the pressure
profiles obtained along y = 0 at time ¢t = 50 with or without shock-capturing are shown in Figure 6. They
display pressure fluctuations of aerodynamic nature centered on the vortex core at = 25, and acoustic
pressure waves at x = —30 and = = 80. With respect to the solutions computed without shock-capturing
in Figure 6(a), the shock-capturing procedure using pressure as variable for the shock detection appears to
damp the solutions in Figure 6(b), especially for the narrower vortex with b = 3. Similar alterations due

to shock-capturing are however not observed in Figure 6(c), when dilatation rather than pressure is used to
evaluate the shock sensor.

(a) (b) (c)

o -0.1 o -0.1 = -0.1
= S =2
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Figure 6. Vortex convection. Profiles of pressure computed at ¢t = 50 along y = 0: (a) without using the
shock-capturing procedure, and using the shock-capturing procedure with a shock detector evaluated from
(b) pressure and (c) dilatation. Gaussian half-width: b=25, b=3.

The discrepancies between the solutions obtained using the shock-capturing method in Figures 6(b)
and 6(c) result from the choice of variable involved in the estimation of the shock sensor. In the first case,
pressure is used, yielding at ¢ = 50 for the axial shock sensor r the profiles plotted in Figure 7(a). Because
of the important gradients of aerodynamic pressure around the vortices, the shock sensor is of significant
magnitude at x ~ 25. In this way it might indicate the presence of a shock and lead to the application of
the shock-capturing filtering in the vortex region. In the present problems, the 2nd-order filter has been
in particular turned on in the beginning of the calculations, but is no more active at ¢ = 50 because the
threshold parameter is 7, = 107%. A different behaviour is found when dilatation is used to evaluate the
shock sensor r. In this case, the shock sensor takes very small values around the vortices, as demonstrated
by the profiles of Figure 7(b), and the shock-capturing filtering does not apply. The use of dilatation in
the procedure of shock detection therefore appears more appropriate in vortical flows because, contrary to
pressure, it allows to distinguish a vortex from a shock.

(a) (b)
1 1
7 05 S 05
o . o .
2 =
0P A 0
-35 5 45 85 -35 5 45 85
XIAX XIDAX

Figure 7. Vortex convection. Profiles of the axial shock sensor » computed at ¢ = 50 along y = 0: (a) from
pressure, (b) from dilatation, using the shock-capturing procedure. Gaussian half-width: b =5,
b=3.

B. Non-linear problems

Test cases are now simulated to look into the capability of the methodology to properly capture shocks

without appreciably affecting the accuracy of the solutions on both sides of the shocks, especially when the
shocks interact with acoustic or aerodynamic perturbations.
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1. Shock propagation

The first non-linear problem studied is concerned with shock propagation. The test case is taken from the
first CAA Workshop.? It is problem 2 from category 2, that is defined by the following initial perturbations
at time t =0

2y 2
2 1 -1 F—1 -1 =1
u:0.5exp[—ln(2)<:;> }7 p:,y<1_|_72 u) and p:<1+’Y2 u)v

The problem is solved from the one-dimensional Euler equations (1), using a mesh grid of spacing Az =1
and a time step At = 0.8, to provide pressure distributions at ¢ = 200.

Solutions are first computed without shock-capturing, by only applying selective filtering to the variables
or to the fluxes. They are presented respectively in Figures 8(a) and 8(b). In the first case, the initial
Gaussian pulse has become triangular in shape due to non-linear effects. A shock is visible at = ~ 248Axz,
surrounded by high-frequency Gibbs oscillations indicative of the spectral truncation of pressure components.
In the second case, the pressure pulse has been dispersed, and does not display a satisfactory shape. The
numerical approach consisting in filtering the fluxes, previously shown to generate phase errors for linear
equations,** might therefore be not suitable for strongly non-linear problems.

In what follows, the background selective filtering is then applied to the conservative variables as described
earlier in the paper, in combination with the shock-capturing method. Results obtained by varying the shock-
capturing parameters are reported to assess the performance of the methodology.

The pressure profile determined using the non-conservative form of the shock-capturing filtering, with
a shock detector evaluated from pressure, a threshold value 7, = 107° and the filter Fo2, is presented in
Figure 8(c). The spurious Gibbs oscillations occurring without shock-capturing have been removed. However
the shock is now located at x ~ 252Ax, farther downstream in the axial direction. This illustrates that the
conservative form of the shock-capturing filtering is required to properly calculate the speed of the shock
propagation. The solutions shown subsequently are therefore all computed using conservative filtering.

(a) (b) (c)
0.5 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
7 7 7
£ 0.2 £ 0.2 < 0.2
0.1 0.1 0.1
0 0 ,\,\/\/\ \/u 0
180 200 220 240 260 180 200 220 240 260 180 200 220 240 260
XIAX XIAX XIAX
Figure 8. Shock propagation. Pressure computed at ¢ = 200 using: (a) selective filtering of the variables

without shock-capturing, (b) selective filtering of the fluxes without shock-capturing, (c) selective filtering of
the variables and shock-capturing based on non-conservative filtering.

Solutions calculated with a threshold value 7, = 107° and the standard filter Fo2, using pressure or
dilatation to detect the shock, are represented in Figure 9. The two pressure profiles thus obtained do not
exhibit oscillation in Figure 9(a), and are even fairly superimposed. Estimating the shock detector from
pressure or from dilatation is therefore nearly equivalent for the present problem of shock propagation. In
order to find nevertheless small differences, the magnitudes of the shock-capturing filtering are plotted in
Figures 9(b) and 9(c). In the two cases the 2nd-order filtering is seen to be switched on over a limited zone
around the shock, containing 8 points using pressure as shock-detection variable, but only 4 points using
dilatation. Tracking the shock from dilatation rather than from pressure allows here to apply the filtering
to fewer grid points.

The influence of the threshold parameter 7, is now investigated by displaying in Figure 10 solutions
computed using filter Fo2 and a shock detection based on dilatation, with ry, = 107% and 74, = 1074 In
Figure 10(a), the pressure profile predicted for 7 = 1076 is smoother, whereas the profile for ry, = 1074
shows remaining, albeit of very low amplitude, Gibbs oscillations near the shock. This suggests that the
shock-capturing method is more dissipative when the value of 74, is decreased. More precisely, the shock-
capturing filtering appears to be applied over a wider region around the discontinuity, as indicated by the
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Figure 11. Shock propagation. Influence of the shock-capturing filter. Solutions computed at t = 200:

(a) pressure, (b) and (c) magnitude o3¢ of the shock-capturing filtering, using a shock sensor evaluated from
dilatation, a threshold parameter r;, = 10~ % and: filter Fo2, filter Fopt (4, o grid points).
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Figure 12. Shock propagation. Influence of the shock-capturing filter. Pressure computed at ¢t = 200, with
the same parameters as in Figure 11.
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profiles of the filtering magnitude o*¢ in Figure 10(c): this magnitude is nil everywhere except for 4 grid

points when the threshold parameter is 74, = 10~%, whereas 12 points are affected by the 2nd-order filtering
when 74, = 1076,

Finally the problem is solved using the following shock-capturing parameters: a threshold value ry, =
10~°, a shock sensor based on dilatation, and the standard filter Fo2 or the optimized filter Fopt. The
pressure distributions obtained in Figure 11(a) are very similar. The optimized filter Fopt is therefore
capable of properly capturing the shock. Furthermore one can note in Figure 11(c) that the magnitude of
the shock-capturing filtering is higher when filter Fopt is used rather than filter Fo2. Because filter Fopt is less
dissipative than filter Fo2, it may have to be applied with a higher strength to handle the shock, this strength
being determined dynamically from the solutions. Nevertheless this does seem to lead to a smoother solution.
On the contrary using filter Fopt provides a sharper shock than filter Fo2 in Figure 12. Implementing the
optimized filter in the shock-capturing procedure may then be interesting to reduce spurious damping.

2. Shock-acoustic interaction

The second non-linear problem considered is the category 1 problem 2 formulated in the third CAA Work-
shop®! to simulate shock-sound interaction in a transonic nozzle. To model this problem, the quasi-one-
dimensional Euler equations (2) are solved over the computational domain —10 < z < 10, with the area of
the nozzle given by

Az) = 0.536572 — 0.198086 exp(— In(2)(z/0.6)?) for = >0
1.0 — 0.661514 exp(— In(2)(2/0.6)?) for x <0

At the inflow boundary, the mean pressure, velocity and pressure are specified as p = 1, u = 0.2006533 and
P = 1/7. The mean pressure at the outflow boundary is set to p = 0.6071752 to create a shock. Once steady
state is achieved for the mean solutions, low-amplitude acoustic oscillatory disturbances are imposed at the
inflow boundary for density, velocity and pressure. Their amplitudes are 107> times the mean inlet values,
and their pulsation is w = 0.67.

Regarding the numerical parameters, the mesh grid contains 401 points and is characterized by a constant
spacing. The simulation is carried out with a CFL number of 0.8, providing a time step At = 0.8Ax. At the
boundary conditions, non-linear boundary conditions based on characteristics?® are used as in a previous
reference.?® Small correction terms have been also added in order to prevent the drift of mean inflow and
outflow values. Finally, when the shock-capturing methodology is implemented, the filtering is applied in its
conservative form, and the shock detector is evaluated from dilatation.

Solutions computed without shock-capturing are presented in Figure 13. The profiles of mean density and
pressure plotted in Figure 13(a) display the presence of a shock slightly downstream of the nozzle narrowing,
whose position and amplitude are found in Figure 13(b) to be in good agreement with the analytical solution.
The shock is thin and discretized by only 3 points, but it generates small oscillations, which are unfortunately
of high amplitude with respect to the acoustic disturbances introduced at the inflow. The distribution of
pressure perturbations obtained when steady state solutions are reached for the oscillatory problem thus
exhibits in Figure 13(c) strong peaks at the shock position, whereas the solutions in the upstream region

(a) (b) (c)
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Figure 13. Shock-acoustic interaction. Solutions computed without shock-capturing: (a)
sure and mean density, (b)
analytical solution, (c)

mean pres-
mean pressure (4 grid points) and — — — corresponding
fluctuating pressure and + corresponding analytical solution.!
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containing the superposition of the incident waves and the waves reflected back at the throat, and in the
downstream region where the transmitted waves are travelling compare successfully with the analytical
solution.*!

The problem is then now solved using the shock-capturing methodology with a threshold value r;;, = 1074,
a shock detection from dilatation, and the standard filter Fo2. Mean and fluctuating solutions are represented
in Figure 14 as previously. Except at the shock position, they collapse well with the solutions determined
without shock-capturing, both for the mean profiles in Figure 14(a) and for the pressure waves in Figure 14(c).
The transmitted sound waves have in particular been affected in a negligible way by the shock-capturing
method, and are in good agreement with the analytical solution.*! This likely results from the features of the
shock-detection procedure, because, as in the first non-linear problem in section IV.B.1, the shock-capturing
filtering is only applied to 5 points around the shock as it is indicated by the values of the filtering magnitude
in Figure 15. Using shock-capturing, the shock has moreover been smoothed so as to be discretized by 4
or 5 mesh points, but still agrees well with the analytical solution in Figure 14(b). The strong oscillations
observed in the distribution of the fluctuating pressure at the shock location without shock-capturing have
also disappeared in Figure 14(c). They have been damped by the 2nd-order adaptative filtering.

(a) (b) (c)
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A 08 0.5 “ o
\CIL A [ |o
A 0.6 o = 0
a v 3
vV 04 0.3 ! 1
0.2 -
0 0.1 -2
-10 -5 0 5 10 -0.5 0 0.5 1 -10 -5 0 5 10
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Figure 14. Shock-acoustic interaction. Solutions computed using 7, = 10~%, a shock sensor evaluated
from dilatation, and filter Fo2: (a) mean pressure and mean density, (b) mean
pressure (+ grid points) and — — — corresponding analytical solution, (c) fluctuating pressure and
41

+ corresponding analytical solution.

SC

O 0.5

04
-0.5

Figure 15. Shock-acoustic interaction. Magnitude o°¢ of the shock-capturing filtering, using the standard
2nd-order filter Fo2, a shock sensor evaluated from dilatation, and a threshold parameter 4, = 10~% (4 grid
points).

The shock-acoustic interaction is finally simulated by implementing filter Fopt rather than filter Fo2
in the shock-capturing procedure. The results determined for the mean pressure and density, and for the
fluctuating pressure are shown in Figure 16. They collapse those obtained with filter Fo2 in Figure 14,
except at the shock location. Using the optimized filter Fopt, the shock is indeed well captured but seems
sharper, the pressure gradient being discretized by 5 grid points in Figure 16(b), which is one point less
than in Figure 14(b). The variations of fluctuating pressure around the shock also appear less attenuated in
Figure 16(c) than in Figure 14(c).
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Figure 16. Shock-acoustic interaction. Solutions computed using 7y, = 10~%, a shock sensor evaluated
from dilatation, and filter Fopt: (a) mean pressure and mean density, (b) mean
pressure (+ grid points) and — — — corresponding analytical solution, (c) fluctuating pressure and

+ corresponding analytical solution.4!

3. Shock-vortex interaction

The third non-linear problem examined is the interaction of a planar shock wave with a single vortex. To
assess the numerical methodology, the flow conditions, namely the shock Mach number and the vortex
geometry and Mach number, are those of cases C and B respectively computed by Inoue & Hattori,*?
hereafter referred to as I&H,*? and by Inoue.*3 These authors simulated the test problem at very low
Reynolds numbers using Direct Numerical Simulation (DNS). The effects of the Reynolds number on the
physical phenomena taking place during the shock-vortex interaction were found to be very small, which is
also supported by good comparisons*? between results obtained from DNS and from the Euler simulations
performed by Ellzey et al.”! for slightly different flow parameters. This led us to compute the shock-vortex
problem from the 2-D Euler equations (3) in the present work.

The shock wave is defined by an upstream Mach number M = uoo /oo = 1.2, where the subscript oo
denotes a quantity upstream of the shock and c is the sound velocity. The single vortex is assumed to be
characterized by the velocity distributions of a Taylor vortex. The initial tangential and radial velocities of
the vortex are expressed by

ug(r) = =M, coor €Xp [(1 — 7“2) /2] and u.(r)=0

where the distance from the vortex core r is non-dimensionalized by the vortex radius R, and the Mach
number of the vortex is M, = ugmaz/Coo = 0.25 (Ugmar: maximum tangential velocity). The density and
pressure distributions are given by
1
y—1.5 N v
pr) = poo |1 = =M exp (1-17) and  p(r) = poo [p(r)/ ]

To study the influence of the grid resolution, the problem is solved on two mesh grids with constant
spacings Az = Ay: a coarse grid with Az = 0.2R and a fine grid with Az = 0.05R. These grids contain
651 x 451 and 2601 x 1801 points so as to both discretize a computational domain extending over —30R <
x < 100R and —45R < y < 45R. As a comparison, the grid spacing near the planar shock wave in the
DNS of 1&H*? was Az = 0.0025R. The shocks in the present calculations are therefore significantly thicker.
Initially the single vortex is located at x = —20R and y = 0, and the planar shock wave is specified at x = 0
by imposing density, velocity and pressure variables corresponding to the the left and right states of a steady
shock. Time ¢ is normalized by R/c~, and is adjusted so that the axial position of the vortex is ¢ = —2R at
t = 0. The simulations are carried out using a CFL number of 0.6, providing a time step At = 0.6Az/cx.
The shock-capturing procedure is based on a shock detector calculated from dilatation, as recommended in
section IV.A.2, to avoid switching on the shock-capturing filtering in the vortex core, and on a threshold
parameter set to 7, = 107°. The results shown hereafter are finally determined using the optimized filter
Fopt, written in its conservative form. Similar results have been obtained using the standard filter Fo2. The
shock is however larger by one mesh size, and grid-to-grid oscillations are enhanced in this case.

Snapshots of the pressure field Ap = (p — ps)/ps, where p; is the pressure downstream of the shock, are
represented at three consecutive times in Figure 17(a-b-c) for the coarse grid, and in Figure 17(d-e-f) for the
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fine grid. No Gibbs oscillation are observed around the shocks, which indicates that the shocks have been
correctly captured for both grids. The variation of the shock thickness with the grid resolution can also be
noted at ¢ = 0 in Figures 17(a) and 17(c). The shock being discretized by about 5 points in both cases,
the shock thickness is more precisely around R for the coarse grid, and 0.2R for the fine grid. Despite this
difference, the pressure fields displayed in the top and in the bottom figures look very much alike, and also
agree well with the corresponding figures of I&H.4? The noise generation mechanisms here are consequently
nearly independent of the Reynolds number as well as of the shock size.

As the vortex interacts with the shock, the shock wave deforms, and the interactions generate sound
waves in good concordance with the observations by I&H.#? A precursor wave of quadrupolar nature is first
emitted, with the clear appearance of four lobes in Figure 17(e). The precursor wave is followed by a second
sound wave, also of quadrupolar nature but of opposite sign, which can be seen in Figures 17(c) and 17(f).
This second sound wave results from the creation of two reflected shock waves from the incident shock, which
will be shown later.
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Figure 17. Shock-vortex interaction. Representation of the contours of the pressure field Ap =

[-0.1, —0.01, —0.005, —0.002, —0.002, 0.005, 0.01], obtained with the coarse grid (top), and with the fine
grid (bottom), at time: (a) and (d) t = 0, (b) and (e) t = 2.04, (c) and (f) t = 6. Computations performed
using a shock sensor evaluated from dilatation, a threshold parameter 74, = 10~%, and filter Fopt.

The spatial distribution of the sound pressure is investigated more quantitatively, and compared with
DNS data*?43 in Figure 18. Profiles of pressure Ap are first plotted in Figure 18(a) against the distance r for
an angle § = —45° with respect to the downstream direction, at time ¢t = 10, 20 and 30. The profiles obtained
with the coarse and the fine grids are roughly superimposed, and they agree well with the DNS curves of
Inoue.*® In particular, as the waves propagate, a pressure peak characterized by Ap > 0 corresponding to a
third sound wave appears after the precursor wave and the second sound wave.

The circumferential variations of pressure Ap, associated with the precursor wave and with the second
sound wave, are then represented in Figure 18(b). The quadripolar features of the two radiations are observed.
In addition the numerical results are weakly affected by the grid resolution, and compare successfully with
the DNS solutions of I&H.#? The only notable discrepancies are noticed for angles around 180° for the
second sound wave. In this case, the results might be influenced by the shock waves, depending on the shock
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Figure 18. Shock-vortex interaction. (a) Radial profiles of pressure Ap for 8 = —45° from the vortex centre, at
t = 10: fine grid, —— coarse grid, 4+ Inoue,*3 at t = 20: — — — fine grid, — — — coarse grid,
o Inoue,?3 and at t = 30: — - — - fine grid, —  — coarse grid, * Inoue;43 (b) circumferential distributions of
Ap at t = 6, at » = 6.0 (precursor): fine grid, coarse grid, + I&H,*? and at » = 3.7 (second
sound): — — — fine grid, — — — coarse grid,, o 1&H.*? Same computations as in Figure 17.

The way how the shock wave deforms as the interactions with the vortex are developing is finally empha-
sized by three shadowgraphs obtained from the Laplacian of the density in Figure 19 using the fine grid. As
the initially planar shock wave passes through the vortex at time ¢ = 2 in Figure 19(a), its shape is distorted
into an S-shape. For shock and vortex Mach numbers M, = 1.2 and M, = 0.25, a Mach reflection is then
observed®? with the formation of two reflected waves which elongate circumferentially and swirl around the
vortex in Figure 19(b), as well as two slip-lines emanating from triple points in Figure 19(c).
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Figure 19. Shock-vortex interaction. Representation of the shadowgraphs obtained for V2p with the fine grid,
at time: (a) t =2, (b) t =6, (c) t = 10. Same computation as in Figure 17.

V. Conclusion

In the present paper, a methodology based on a self-adaptative spatial filtering is developed to capture
shocks in non-linear problems which have to be computed using low-dissipation schemes such as aeroacoustic
problems. In order to assess and optimize the efficiency of the approach, the different components of the
shock-capturing procedure, including the shock detection from the flow variables, the determination of
the filtering strength from the shock detector and the second-order filter applied around the shocks, are
considered, and new formulations are proposed.

Results are obtained from inviscid unsteady simulations performed on uniform grids for standard 1-D and
2-D test cases, with and without embedded shocks. They show that the methodology is capable of properly
smoothing shocks, without providing significant spurious dissipation. Thanks to the methods used for the
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shock detection and for the specification of the shock-capturing filtering strength, the adaptative filtering
does not indeed apply for linear sound waves, as well as for vortical disturbances when the shock detector
is evaluated from dilatation rather than from pressure as usually done. Around a shock, the filtering is
moreover switched on over a very limited region containing about 5 points, centered on the discontinuity.

One original feature of the present methodology is that there is no arbitrary constant except for a
threshold parameter 74, defined so that the shock-capturing filtering is turned off when the shock detector is
smaller than its value. From the results obtained for the test cases, the range 1076 < r;;, < 10~ can however
be recommended, a higher value allowing to minimize the spurious dissipation whereas a lower value leads
to damp shocks more strongly. In order to handle shocks in an appropriate way, it also appears necessary to
apply a filtering of second order, in a conservative form. The standard second-order filter can be adopted,
but another second-order filter displaying optimized characteristics in the Fourier space is proposed. This
new filter is successfully used to compute flows embedding shocks, yielding improved results with respect to
the standard second-order filter.

Finally, the feasibility of dealing with CAA problems using the shock-capturing methodology is demon-
strated by simulating the building-block problem of 2-D interactions between a shock and a vortex. The
unsteady phenomena taking place in this problem, specially regarding noise generation, are accurately re-
produced. The present methodology will be then now employed for carrying out direct noise computations
for realistic shock-containing flows such as supersonic jets.
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